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Abstract

Applying an excess entropy scaling formalism to the coarse-grained (CG) dynamics of liquids, we
discovered that missing rotational motions during the CG process are responsible for artificially
accelerated CG dynamics. In the context of the dynamic representability between the fine-grained
(FG) and CG dynamics, this work introduces the well-known Stokes-Einstein and Stokes-Einstein-
Debye relations to unravel the rotational dynamics underlying FG trajectories, thereby allowing
for an indirect evaluation of the effective rotations based only on the translational information at
the reduced CG resolution. Since the representability issue in CG modeling limits a direct
evaluation of the shear stress appearing in the Stokes-Einstein and Stokes-Einstein-Debye relations,
we introduce a translational relaxation time as a proxy to employ these relations, and we
demonstrate that these relations hold for the ambient conditions studied in our series of work.
Additional theoretical links to our previous work are also established. First, we demonstrate that
the effective hard sphere radius determined by the classical perturbation theory can approximate
the complex hydrodynamic radius value reasonably well. Also, we present a simple derivation of
an excess entropy scaling relationship for viscosity by estimating the elliptical integral of
molecules. In turn, since the translational and rotational motions at the FG level are correlated to
each other, we conclude that the “entropy-free” CG diffusion only depends on the shape of the
reference molecule. Our results and analyses impart an alternative way of recovering the FG
diffusion from the CG description by coupling the translational and rotational motions at the
hydrodynamic level.



I. Introduction

The dynamics of molecular systems at the atomistic resolution are composed of various diffusive
motions such as translation and rotation,!-3 and it is of the utmost importance to characterize these
motions in the liquid state.* > In this light, numerous transport properties, e.g., the diffusion
coefficient, shear viscosity, and structural relaxation times, have been extensively investigated by
combining experimental and computational studies. However, relatively little attention has been
given to the dynamics at reduced representations in multiscale modeling. In the process of
developing a coarse-grained (CG) model by renormalizing the complex fine-grained (FG) degrees
of freedom,!* correct fluctuation and dissipation forces controlling the dynamical information at
the reduced resolution can be rigorously described using the Mori-Zwanzig formalism.!>!8
However, inferring these fluctuation and dissipation interactions from the stochastic integro-
differential equations are often computationally expensive and pose some numerical issues for
complex systems. !>

Alternatively, one can evolve the CG variables using only the Hamiltonian equation of motion,
but the missing friction and fluctuations in the Hamiltonian mechanics often result in an
accelerated CG dynamics.!” 2!: 2528 Since the dissipative friction kernel appearing in the Mori-
Zwanzig equation of motion is intrinsically a many-body quantity, an accurate estimation of this
acceleration factor and its physical meaning has not been clearly elucidated.?>->3 This paper series
(denoted as Papers I to II1°*3¢ according to the numbering in their titles) strives to resolve this
discrepancy in the CG dynamics by providing a CG dynamic representability based on the
alternative framework known as the excess entropy scaling relationship. As suggested by
Rosenfeld in 1977,%7 this semi-empirical scaling relationship indicates that the reduced transport
properties, e.g., diffusion coefficient or shear viscosity, is proportional to the system’s reduced
(molar) excess entropy. For example, the reduced self-diffusion coefficient D* is expressed as
D" = D, exp(aSex),

(1)
where the reduced (molar) excess entropy s,, is a measure of how much the system entropy S
deviates from the ideal gas value S;4 at the same thermodynamic state points p and T, as given by

S 1
Sex = N:; = Nk, (S, T) = Sia(p, T)).

2)

Even though this quasi-universal scaling relationship is not rigorously derived from first-principle
physics (note that several attempts have been made to partially derive this relationship®%4?), we
demonstrated in Paper I** that this scaling relationship holds its universality for the same molecular
entities in the FG and CG representations, extending the applicability of the Rosenfeld scaling to
CG systems. Furthermore, the semi-empirical nature of the relationship was addressed for the CG
system by developing a statistical mechanical theory to understand the CG diffusion as a hard
sphere diffusion process, which is extensively discussed in Paper I1.%

Subsequently, Paper I11°¢ focused on a more fundamental question arising in CG dynamics: why
are CG dynamics under the Hamiltonian mechanics faster than the FG counterpart? We ascribed
this to the missing motions during the CG process. For example, in the single-site CG model, the
rotational motions are lost at the CG resolution, and thus the resultant CG model does not have
any rotational diffusion. Furthermore, there will not be any momentum exchange between the



different motions upon the collision of the CG molecules, highlighting that there is also no
translation-rotation coupling at the CG model level, which usually slows down the collective
diffusion processes. Based on these observations, we developed a systematic procedure to restore
the FG dynamics information to the CG model. Briefly stated, we first extracted the rotational
dynamics information from the FG system and incorporated it into the CG system. Then, upon
integrating the effective rotational dynamics, we evaluated the translation-rotation coupling
parameter***® based on the non-sphericity of the molecule®- >° to account for the momentum
changes in angular and linear momentum upon collision. In turn, our designed approach was able
to recover the reference FG diffusion coefficients and provide the correct time scale relative to the
CG diffusion.*® Yet, there was one critical limitation: prior knowledge of the rotational diffusion
at the FG level is required in order to correct the CG dynamics. This implies that the
aforementioned approach might face a circular argument because we do not have information
about the rotational diffusion of the target system during the CG process. We also note that the
bottom-up CG parametrization such as force-matching®!->> or relative entropy minimization®%-8
only requires statistical information of the reduced configurations to determine the CG interactions,
in which only the FG translational motions are left at this reduced resolution, and the motions
beneath the CG resolution are integrated out.

This work derived from spatial scales at opposites extremes is designed to resolve the above issues
by providing a clearer understanding of the translational and rotational diffusive motions at an
atomistic level. At the macroscopic hydrodynamics level, it is widely recognized that the
translational diffusion of large particles (solute) immersed in fluids (solvents) with much smaller

size follows what is known as the Einstein relation,> expressed as:
kyT

trans — T:

3)
where kg is the Boltzmann constant, T is the temperature, and ¢ denotes the effective friction
constant of the solute particle.®® To further determine the friction coefficient, when a solute is
assumed to be spherical with radius R under low-Reynolds number flow (non-turbulent),’! the
Stokes law®? can be applied to estimate the friction constant:

¢{ = cmnR,

4)
where 1 is the (shear) viscosity of the neat solvent, and c is a constant dependent on the
hydrodynamic boundary conditions applied at the solute surface. Specifically, c equals 4 for the
“slip” condition, implying zero normal component of solvent velocity at the interface, while ¢ =
6 is associated with the “stick” condition, where the velocity of the solvent on the solute surface
equals that of the solute (same relative velocity).®® Due to these boundary conditions, the exact
form of { and Dy, varies depending on the system. By combining kinetic theory [Eq. (3)] and
continuum hydrodynamics [Eq. (4)], the Stokes-Einstein (SE) relation can be derived as

kgT
Dirans = 6L
mnR
()

Analogous to Di,ys, the rotational hydrodynamic motion leads to the rotational diffusion
coefficient of a single (colloidal) solute:



kT

Drot = (r ’
(6)
where {" represents the rotational friction drag coefficient of a solute sphere. Under the same
assumption in deriving the SE relation, the Stokes-Einstein-Debye (SED) relation®* can be derived
that links D, to 7 and R:
kgT
Drot = Za-—p3’
f8mnR
(7)
where f is the hydrodynamic boundary condition factor for rotations that equals 1 under the stick
boundary condition and decays to 0 for the complete slip boundary condition. For non-stick and
non-spherical colloids, several studies have characterized the non-trivial f factor as well.%3-% The
theoretical elegance and simplicity of both the SE and SED relations have proven useful for almost
a century, with successful applications in elucidating the dynamics of numerous chemical and
physical systems.%

More importantly, while Eqgs. (3)-(7) are derived and rooted in the continuum-level description
under the critical assumption that the size of the diffusing particle is significantly larger than the
solvent molecules, it has been experimentally found that extending the SE/SED relations to tracer
molecules that are similar in size to the solvent molecules at the molecular level is valid.”®"” In
such molecular liquids, the solute size R should be replaced with the so-called hydrodynamic
radius Ry, and the diffusion coefficients become self-diffusion coefficients. Consequently,
computer simulations of liquids have focused on determining what extent the SE and SED relations
hold by investigating the decoupling between molecular diffusion and shear viscosity.”8%2 As the
SE and SED relations are intrinsically coupled to each other, our central argument is based on the
idea that the rotational diffusion might be inferred from the translational diffusion, which is
different from what we found in Paper IT1.3¢ Therefore, this paper aims to combine the SE and SED
relations with the excess entropy scaling formalism in order to retrieve the missing rotational
information upon the coarse-graining process based on the reduced CG configurations. Having
both translational and rotational dynamics from the SE and SED relations, we seek to provide an
alternative interpretation of the CG dynamics by presenting the dynamic representability (or
“dynamic correspondence”) between the FG and CG dynamics.

The remainder of this paper is organized as follows. In Sec. II, we briefly review Papers I-111>4-3¢
and introduce computational approaches to employ the SE and SED relations in CG systems. Next,
we check the validity of the SE and SED relations in Sec. III. We derive two different equations:
(1) the reduced scaling relationship from the SE and SED relations and (2) a new expression for
the CG diffusion based on the SE and SED relations. Finally, concluding remarks are given in Sec.
IV.

II. Theory

A. Review: Excess Entropy Scaling for FG and CG Systems

Before establishing a link between the SE/SED relations and excess entropy relationships, some
notation and earlier findings discussed in the preceding papers will be reviewed first.



In Paper I, we have introduced Egs. (1) and (2) to the molecular systems at two different resolutions:
FG and CG.** The reduced diffusion coefficients for both resolutions are scaled by the same

macroscopic units given by Newtonian mechanics as®: 84
1

p3

D*=D o

()
(8)

where p is the system number density (N/V) with the molecule mass m. Therefore, based on Eq.
(8), we attributed the differences in the FG and CG diffusion coefficients to the following two
factors: the changes in the excess entropy term exp(as,, ) and the D, value in Eq. (1) denoted as
the “entropy-free” diffusion coefficient. This immediately suggests that the Rosenfeld scaling
could be applied to understand the CG dynamics with respect to the reference FG diffusion process,
but establishing a one-to-one correspondence was highly ambiguous until Papers I** and 1I*° due
to two reasons. First, there was no guarantee if both the FG and CG systems follow an identical
scaling [i.e., same a from Eq. (1)]. Also, no physical understanding of D, was available because
of its semi-quantitative yet empirical nature.®> Based on our recent understanding of the differences
in the FG and CG entropies using the entropy-enthalpy decomposition,¢ Paper 1% proposed a new
framework by combining the two-phase thermodynamic method with the systematic theories given
by Lazaridis, Karplus,®” and Zielkiewicz.®® Utilizing this framework, we further demonstrated that
the FG and its corresponding CG systems undergo the same scaling relationship, extending the
applicability of the Rosenfeld relationship. For water, these two scaling relationships were
obtained as (from Paper I*%):
InDjic = InDEC + aFCsES = 0.73 x sES + 2.15,

)

(10)

In D = InD§C + a®6sSE = 0.70 x sS& — 0.35.

Even though both Egs. (9) and (10) were scaled with a"¢ ~ a®S = 0.7, the artificially accelerated
CG dynamics can only be partially explained. Because of a relatively larger excess entropy term
s&G > sEG . the correspondence between Dy and D¢ is still not clear unless differences in D,
terms are resolved.

To clarify this ambiguity, in Paper I, we developed a statistical mechanical theory to analytically
derive the D, term for the CG liquid system.* Since the single-site CG system exhibits only
translational motions, we mapped the CG system into an effective hard sphere system conserving
the dynamical properties by capturing the long-wavelength fluctuations from the system

Stk = O)CG =Sk = O)HS:
(11)

where S(k) is the structure factor computed using the wave vector k, and the limit k = 0 on the
left-hand side gives S(k = 0) = 1+ 4mp [ Ooo dr R?[g(R) — 1] that can be determined from the
CG simulation. On the other hand, the right-hand side of Eq. (11) can be expressed as

S(k = 0)ys = pkpTkr.
(12)



Since the isothermal compressibility k7 = —(dV /dP)+/V is a function of the packing density ¢
for hard spheres, solving Eq. (11) yields a unique ¢ value that can conserve the CG dynamics.

Then, ¢ can be used to determine D$C because the hard sphere dynamics can be expressed as an
analytical function of the packing density using kinetic theory.®> *© We have tested various
equations of state used to describe the hard sphere systems and found that the DS values for water
at different temperatures were well reproduced regardless of the relative complexity or accuracy
of the chosen equations of state. For example, by employing the Carnahan-Starling equation of
state,”! the DS can be derived as

m'/® (1-¢)° 49 — 3¢°
CG (Y — 4/3
Do™(9) = 45 6" 2Bz — o) &P [ -9y l

(13)

B. Review: Role of Rotational Diffusion

Having established a physical understanding of D¢, our subsequent interest was to elucidate the
differences between D§S and DG, which was the main scope of Paper I11.°¢ As discussed in Sec.
I of this paper, the main difference between the FG and CG diffusion processes is that the relatively
finer motions beneath the CG resolution are lost during the CG process. That being said, for single-
site CG models, we envisaged that these missing rotational motions should be responsible for the
changes in D§® upon the coarse-graining process.

Since the excess entropy scaling relationship [Eq. (1)] is designed for translational diffusion, we
obtained the effectively projected translational displacements from the rotational motions based
on our findings in Paper II that the CG liquids (especially water) can be viewed as hard sphere
entities with an effective hard sphere radius of Ryg,»
R 1ot = Rys - ¢I(t)-

(14)
Interestingly, we further corroborated that the resultant effective rotational diffusion, Di_y o,
follows the universal scaling relationship derived from the translational motion,

Dt*—rot — D(t)—rot eXp(at—rotS;;rot)'

(15)
where at "%t = a¢S ~ FS, indicating the high fidelity of our projection method. Finally, when
plugging the “entropy-free” diffusion coefficient from the rotational motions D5~ °t back to the
CG model, we simultaneously introduced the translational-rotational coupling, which accounts for
the angular and linear momentum changes upon collision.*-** Chandler suggested that once the
translational-rotational coupling is in place, the realistic diffusion coefficient from rough hard
spheres Dgys is smaller than that of smooth hard spheres Dgys”?

Drus = ApDsps,

(16)
where the roughness parameter A is a measure of the translational-rotational coupling ranging
from zero to unity (i.e., perfectly smooth hard sphere).””*® Even though the roughness parameter
quantifies how close the system is to a smooth sphere, in which momentum exchange does not



occur upon collision, it might be an obscure and rather intractable quantity by definition. This
ambiguity can be clarified by adopting an alternative approach from Ruckenstein and Liu,>® where
they sought to understand the roughness parameter as a function of the intrinsic molecular
properties. This approach was possible by examining the acentric factor w,’” *® originally
introduced by Pitzer to describe the non-sphericity of liquids by quantifying the deviations in the
behavior of non-ideal liquids from the theorem of corresponding states.*® From 42 different data
sources, Ruckenstein and Liu found the following relationship between A, and w,

Ap = 0.9673 — 0.2527w — 0.70w?.
(17)
Combining Egs. (14)-(17), we estimated the roughness parameter for water from its acentric factor,
and recovered the rotational diffusion to the CG representation in the presence of the translational-
rotational coupling

InDES ~ InDEE + InD§T°t + In Ap,

(18)
where our central assumption is that the translational and rotational degrees of freedom are
decoupled. This assumption is analogous to the decoupling of the translational and rotational
structure factors of water in quasi-elastic neutron scattering studies.”!°! In order to indirectly
estimate D,, for the remainder of Sec. I, we introduce an alternative computational protocol to
employ the SE/SED relations for our system.

C. Viscosity and Representability Issue

In order to determine the translational and rotational diffusion coefficients using the SE and SED
relations, one must consider a shared variable between the SE/SED relations: the shear viscosity
n. In general, in a similar approach for calculating the diffusion coefficient,? i is often obtained
using the Green-Kubo formalism

[oe]

%4
n= kB_T . dt(?aﬁ(o) ':Paﬁ(t)>:

(19)
where the stress tensor element Py can be chosen from the five independent shear components
of the stress tensor: Py, Prz, Pyz, (Pex — Pyy)/2, and (P, — P,,)/2.'% For example, without
loss of generality, an xy-direction will give a tensor element Py,, of the form

1
Ry =72,
I
(20)

where v{* (or 1’ is the x- (or y-) component of the velocity vector for the CG site 7, (Rf — Rf")

)

mviv) + Z(R,x - R]")Fg
J>1

denotes the x-component of the displacement vector linking the CG sites / and J, and FI}’ is the y-

component of the effective force acting on the CG site / from the CG site J. Even though Eq. (20)
is defined in the CG representation, the “actual” shear viscosity can be computed from the
atomistic trajectories using the atomistic virial by summing over each atom assigned to the CG
representation, 103 104



However, after propagating the CG model, an exact determination of the CG virial from the CG
trajectory is much more difficult due to the following two issues. The first issue is from the
sampling problem that occurs when computing both the FG and CG shear viscosities. It is well
known that an accurate calculation of shear viscosity at many different temperatures and force
fields is computationally challenging. In our case, we need to carry out 40 independent
computations for shear viscosity, which may suffer from sampling issues despite the use of
statistical techniques that can enhance the sampling of the pressure tensor using the isotropy of the
system suggested by Daivis and Evans,!?> 1% or the time decomposition method.!?” Alternatively,
this sampling problem could be lessened by employing different microscopic expressions, e.g., the
Born-Green formula!'®® or viscoelastic theory.!®

Aside from the sampling issue, a more fundamental problem arises from the representability
problem in bottom-up CG modeling.!? 8 119 111 The representability issue states that conventional
observable expressions defined at the atomistic resolution generally change in their CG counterpart
due to the renormalization process, resulting in a lack of expressiveness of the approximate CG
model. In particular, because of these missing degrees of freedom, naively estimated CG virials
would be always smaller than the FG reference, resulting in an underestimation of the pressure
tensors.!!! Furthermore, naive estimation of virials is known to give non-physical CG pressure
with negative values.!!? In order to accurately capture the CG virial, one needs to introduce new
basis sets that effectively describe the CG interactions and are compatible with the virial
expressions. These basis sets should be parametrized with respect to the FG information, as
extensively illustrated in Ref. 112. Therefore, in this paper, we opt not to explicitly calculate the
stress tensor and shear modulus.

D. Structural Relaxation Time: Proxy to Viscosity

Instead of directly calculating viscosity, an alternative approach that has been widely adopted in
the previous literature is to utilize the relaxation time. In Sec. II D and Sec. II E, we provide a
physical link between the viscosity and relaxation time.

While there are many different timescales corresponding to the various time correlations, a
straightforward relaxation time related to viscosity is the Maxwell viscoelastic relaxation time!!?
T) that is often obtained from the relaxation behavior of the autocorrelation function of the stress
tensor components using a stretched exponential decay:

%4 t\
7 Pan(©) - Pap@) = G| (- ) |
21)
where G, is the infinite frequency shear modulus of the liquid. To note, y should be 1 for the
Maxwell viscoelastic model,!'# which is consistent with observations from molecular simulations
of water.!'> Hence, the Maxwell viscoelastic relaxation time is directly related to the viscosity of

liquids and can be computed via

© 3 A(Prs(0)P,s(t
TM::_oo:fo dZﬁ( 5(0)Pgp (t))

Zaﬁ(?aﬁ (0):])(1B (O) >’
(22)



though computing 7,, from the Green-Kubo formalism'!¢ [right-hand side of Eq. (22)] still suffers
from representability and sampling issues.

Given this context, a new relaxation time t, referred to as the structural relaxation time (or a-
relaxation time) corresponding to the long-time regime of the translational dynamics, is often
employed in place of 7). Nevertheless, since there is no systematic relationship between t,, and
7, it is still unclear whether 7 can be used instead of 7, to account for viscosity. For example, Shi,
Debenedetti, and Stillinger reported that structural and viscosity relaxation times were not
equivalent at low temperatures in glass-forming systems.!!’

Notably, a study of the TIP4P/2005 model for water at different temperatures indicates that the
relaxation time ratio 7,;/7 remains nearly constant at ambient temperatures.®? A noticeable change
in Ty /T only occurs below 285K, indicating a decoupling between viscosity and relaxation
processes. This observation is also consistent with the interpretation given by Ref. 118 in which
the Maxwell viscoelastic relaxation timescale 7, is in close agreement with the local atomic
connectivity timescale 7y ¢ at temperatures higher than 285K. Since our system was prepared for
ambient conditions ranging from 280K to 360K, there should not be any noticeable decoupling
between the viscosity and relaxation processes, and thus it is reasonable to approximate the
structural relaxation timescale 7, as T in our work.

E. Structural Relaxation Time: Incoherent intermediate scattering function
In practice, the translational relaxation time 7 is obtained from the incoherent intermediate

scattering function, defined as
N

1
Rk ) = (x> expik - (R,(©) =R, @)])
=1
(23)
where the configurational variable R;(t) is the configuration of the CG site / at time ¢ The
wavenumber k = |K| was chosen to be at the first peak position of the static structure factor S(k)
from the mapped CG (center-of-mass) configurations. The intermediate scattering function is the
self-part of the Fourier transform of the Van Hove function, G(r, t), given as

F(kt) =fde(r, t)eikrt,

(24)
Note that F(k, t) is divided into two different contributions: the self F; (K, t) contribution and the
distinct F,; (k, t) contribution

> explik: (Ry© ~ R(@)]) = ik, 0) + Falk ),

=1 j=1

2|

F(k t) = (

(25)
where F; (K, t) is the contribution from I = J, and F;(k, t) is otherwise (I # J). The self-part is
called the incoherent intermediate scattering function, and it characterizes the relaxation time of
the system, which can also be directly examined from inelastic neutron scattering experiments.



Unlike previous studies in the determination of the translational relaxation time of water, we use
the reduced (CG) configurations, i.e., center-of-mass of the molecule, not the oxygen atom
throughout this work. Even though we have demonstrated that the structural correlation functions
based on the center-of-mass configurations do not noticeably deviate from the structural
correlation functions of oxygen atoms,!'” we note that all the values and results may not be
identical to that from the oxygen atoms. Since the reported structural relaxation times for water in
similar conditions are in the order of 0.1-1 ps, we re-sampled the FG trajectories with more
frequent sampling to collect the FG configurations during the simulations. Specifically, during the
constant NVT run using the Nosé-Hoover thermostat,'?% 12! we collected the FG configurations
every 10 fs over the course of 1 ns. For each of the 100,000 frames from the FG trajectories, the
incoherent intermediate scattering function was computed using the LiquidLib suite!'??> with a
frame interval of 10 fs, and the F; (K, t) was averaged every 0.1 ns.

After computing the F(k, t) at the CG resolution, the long-time relaxation behavior (a-relaxation
time) can be captured using the Kohlrausch-Williams-Watts (KWW) function

) ~ (= ) exp - (})] feesp - (;)B]
s 26)

Where the term f, exp[— (t/ T)ﬁ“] describes the stretched exponential decaying with the degree of

non-exponentiality S, .'2* The fitting procedure of the KWW function was carried out using
MATLAB R2019b!?* with the trust-region-reflective least-squares regression.!?

F. CG Water Systems: BUMPer Model

This series of papers is concerned with the molecular system of water. For the CG model, we
specifically utilized a recently developed CG water model called the Bottom-up Many-Body
Projected Water.!!” 126 The effective CG interaction underlying the BUMPer CG model has a
pairwise form, but this effective pairwise interaction is obtained by projecting the three-body
interaction of the Stillinger-Weber potential [Eq. (27)] form onto the pairwise basis sets:

Uéjzf}(RU) = Z U(3) (QJIKIRI]'RIK)
K>]

2 Y101 YikOix
= z A],KEHK(COS 0,1k — cos 90) exp (4> exp <—) .
K>/ Ry — ayy0y Rix — aixoix

(27)
In practice, since our model is constructed via bottom-up, we first performed the force-matching
from Multiscale Coarse-graining (MS-CG) methodology>!=® to the center-of-mass mapped
atomistic trajectories from the SPC/E,'?” SPC/Fw,!2® TIP4P/2005,'?° and TIP4P/Ice!*° force fields,

resulting in the two-body Ue(‘lzj) (R I ]) and three-body Uéz) (9],,{, R, R, K) interaction terms:

10



Usp = Z Z U@ (R, + Z Z Z U2 (6,1 Rij, Rix).

T J>I T J#l K>]

(28)
The three-body parametrization method was introduced by Ref. 131, and related discussions are
followed in Ref. 132. Then, from Eq. (28), we extracted the effective conditional probability for
triplet variables appearing in the Stillinger-Weber interaction'?® at the fixed pair distance,
p(HJIK, R1K|R11)= and we numerically integrated the three-body interactions weighted by the

conditional probability with respect to the auxiliary variables (6, and Rk in this case) such that

Uéjzf}(RU) =2(N.— 1) f dg]IKdRIKp(QJIK'R1K|RI])U(3) (QJIK'RI]'RIK) )

(29)
where the local coordination number N, appears in order to match the counting over triplets to the
pair summation. The final BUMPer interaction is, thus, expressed as a summation of the two-body
and effectively projected two-body interactions from the three-body interactions:

Uy = ) D UDR)+ D > > U (0, Ry Ri)

1 J>I 1 J#I K>]

Z Z{ (2) (RU) +2(N, — 1) f dg]IKdRIKp(QJIKIRIKlRU)U3b (HJIK'RI]’ RIK)}

J#I

(30)

Details of the many-body projection theory and its performance are extensively discussed in Refs.
119, 126. Interestingly, in prior work, we have applied this new BUMPer model to low-
temperature regimes to demonstrate that the model is capable of capturing the various hierarchical
anomalies of water.%® However, in this work, we are only interested in the ambient conditions
where the temperature ranges from 280K to 360K corresponding to the liquid phase of water as
the Rosenfeld scaling relationship is valid for ambient liquid phases. This condition removes the
possibility of the SE and SED violations where it generally occurs for T < 1.5T; where the glass
transition temperature for water is T;~136K."’*1® Even though this general rule of thumb
coincides with the reported simulations of the SE and SED violations in water, a careful assessment
of the validity of the SE and SED relations (especially at lower temperatures) is still needed.

G. Computational Details: Translational and Rotational Diffusion

In order to utilize the SE and SED relations, the translational and rotational (self) diffusion
coefficients must be computed beforehand. We calculated these dynamical properties with
different FG force fields for water at different temperatures in Paper I11.3¢ Here, we briefly describe
the computational details we used to compute these properties.

Both the translational and rotational diffusion coefficients were computed using Einstein’s relation.

The translational diffusion coefficient is expressed using the center-of-mass mean square
displacement (MSD) (R?(t)) as

11



Ncg

I S 11 - - 2
Durans = Jim 2 (R2(0) = Jim 2o D R (0 = RO
I G1)
where R 1 (t) denotes the configuration of the CG site 7 at time ¢ Similarly, the rotational diffusion

coefficient is defined using the rotational MSD (¢2(t))
Ncg
1

1 1 - - 2
= 1i _— 2 = 1i _— —_
Drot = lim 22(®%(0)) = lim =3 E |6:(0) = 6,0,

(32)
where qg ;(t) is a rotational displacement vector for the CG site 7 at time ¢ Unlike the translational
MSD [Eq. (31)], the rotational MSD [Eq. (32)] should be carefully calculated while ensuring it is

unbounded. This is because q_b),(t), by design, is bounded from 0 to 2n. Following the procedure
employed in Ref. 137, we instead constructed a normalized polarization vector p;(t) to describe
the differential of rotational displacement vectors. We define p,(t) as the vector from the center-

of-mass configuration of molecule / [1_?) 1 ()] to the midpoint of two hydrogen atoms, 74 ; and 7

A 1 - - =
pi(t) = 5 (THl,I + rHZ,I) — R (®).

(33)
Then, the differential of the rotational displacement from time from t to t + 8t can be expressed
as

|Ag; (& + 6t)| = cos™(p,(t) - p; (t + &1)),

(34)
where the direction of A¢,;(t + 8t) is determined by the cross product between p;(t) and
p;(t + 6t)

A, (t + 6t) Il p;(t) X p,;(t + 6t).

(35)
Therefore, the finalized expression for the rotational displacement vector is given by numerically
integrating Ag?)) ; over the course of time

‘1_5)1(15) ~ i A(Z))I <t +i- tj;;o).

i=t0
(36)
Note that ¢;(t) in Eq. (36) is no longer bounded because it does not depend on the size of the
angular displacement, only on the differential.

It is worth noting that an alternative approach to extract the rotational dynamics is also possible
based on the rotational correlation function,'3®

Co(t) = (P[P () - 1 (0)]),

(37)
where P[] is the £th order Legendre polynomial. By fitting the computed C,(t) to the KWW-like
function, another structure relaxation known as the rotational relaxation time 7, can be inferred
and can play a major role in the SE and SED relations. However, in this work, we choose to
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calculate the rotational diffusion coefficient based on Eq. (32), since it has been reported that the
a-relaxation time 7 is analogous to the higher-order rotational relaxation time.!* In practice, we
used the FG and CG trajectories generated from Paper II1,’¢ employing the publicly available
software package, OpenMSCG.!** The computational details regarding the initial setup and
simulation details are thoroughly discussed in the aforementioned papers.

H. SE/SED Relations for Water

Two central factors should be clarified that influence the fidelity of the SE/SED relations for water
systems before discussing the analyses of the molecular simulations and diffusion coefficient. First,
while various theoretical studies”8! 139 141-199 and experiments’: 139-153 have reported violations
of the SE/SED relations in liquids, these violations are typically observed in low-temperature
regimes, e.g., supercooled states.”>77- 154 155 Therefore, given that our main focus is on ambient
conditions of water, where the excess entropy scaling also holds, we expect the SE/SED relations
will uphold without significant deviations.

Moreover, as outlined in the Introduction, the SE and SED relations are dependent on the
hydrodynamic boundary conditions (slip or stick), which become less straightforward to evaluate
and assess at the molecular level. For the translational diffusion, the boundary condition affects at
most 33% of the diffusion, but this becomes particularly problematic when assessing the rotational
diffusion as molecules deviate from stick conditions. Nevertheless, in this work, we assume that
water under ambient conditions obey stick conditions for several reasons. By experimental study,
Wilbur et al. characterized the ratio between kzT and mR;, Dy for water under different conditions,
corresponding to the hydrodynamic boundary condition factor ¢ in Eq. (4).!3° The authors further
observed stick-like behavior in ¢ factors, ranging from 4.9 to 6, at temperatures studied in this
work. This experimental observation is supported by other computational studies that employ stick
conditions to analyze the SE/SED breakdown for water at the atomistic level.!3* 157-160 At the CG
level, there has been no systematic investigation into this relationship until this study. Nevertheless,
we can reasonably estimate the boundary conditions based on the effective BUMPer interaction
profile reported in Ref. 119. Schmidt and Skinner found in Ref. 161 that pair interactions with
non-negligible attractions between non-sphere solute result in stick-like boundary conditions. This
condition perfectly aligns with BUMPer at the single-site resolution, suggesting that the stick
condition is plausible for both FG and CG level diffusion coefficients. Hence, throughout Sec. III,
we specifically utilize the following SE/SED relations under stick boundary conditions:

kyT
trans — MJ
(38a)
kT
rot — 87T7’]R,3;
(38b)

We note that additional improvement of Eqgs. (38a) and (38b) is possible by deriving the
hydrodynamic factor for translational diffusion

__1+4n/BRy
= 1+en/BR,
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39)
where [ is the slip coefficient (or sliding friction) that exhibits the slip condition for ¢ when
approaches 0 and stick when 8 — 00,162 163 Similarly, the hydrodynamic factor for the rotational
diffusion can be considered based on the non-spherical geometry of the system.%%-%8 Nevertheless,
as the primary objective of this paper is to introduce the SE/SED relations to uncover the excess
entropy scaling, pursuing this aspect is beyond the scope of the current work. Additionally, we
will demonstrate later in Sec. III that the stick condition can effectively capture the structural and
dynamical properties of water in quantitative manner. Therefore, we leave this area as a potential
avenue for future study when applying the present framework to water or even more complex
molecules.

I11. Results

A. Diffusion Coefficients for Translational and Rotational Motions

We first calculated the translational and rotational diffusion coefficients of the FG water models
using Egs. (31) and (32), respectively. The corresponding diffusion coefficients at different
temperatures are listed in Table 1.

Table 1: Translational and rotational diffusion coefficients of water evaluated for FG models at
temperatures ranging from 280K to 360K at intervals of 20K: (a) SPC/Fw, (b) SPC/E, (c) TIP4P/2005, and
(d) TIP4P/Ice.

(a) SPC/E (b) SPC/Fw

Temperature  Dyans (A2ps)  Dyo (rad®ps™')  Temperature  Dyans (A2ps?) Do, (rad®-ps™)
280K 1.5511x10" 7.6548%107 280K 2.1982x10" 1.0128x10™!
300K 2.5049x10" 1.0822x10™! 300K 3.5277x10" 1.6826x10!
320K 3.9796x10" 1.5765%x10™! 320K 4.8354x10" 2.1769x10™!
340K 5.3343x10" 2.0242x10! 340K 6.0839x10" 2.7744x10"!
360K 6.1163x10" 2.6898x10" 360K 6.7734x10" 3.3094x10"!

(c) TIP4P/2005 (d) TIP4P/Ice

Temperature  Dyans (A2ps)  Dyo (rad®ps™')  Temperature  Dyans (A2ps?) Do, (rad®-ps™)
280K 1.2031x10" 5.9983x107 280K 6.0386x107 3.2848%107
300K 2.1091x10" 1.0171x10™! 300K 1.2431x10" 5.7670%x107
320K 3.2525x10" 1.5224x10"! 320K 1.8838x10™ 9.3879%107
340K 4.4492x10" 2.0914x10! 340K 2.9431x10" 1.4744%107!
360K 6.2018x10" 2.7117x10"! 360K 3.9958x10" 2.0005x10"!

In order to understand the relationship between Dy, s and Do, from Table 1, we computed the
incoherent intermediate scattering function F(k, t) for each thermodynamic state point using Eq.

(23), as shown in Fig. 1.
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Figure 1. The incoherent intermediate scattering function F;(k, t) from the FG trajectories at temperatures
ranging from 280K to 360K: (a) SPC/E, (b) SPC/Fw, (c) TIP4P/2005, and (d) TIP4P/Ice. From the
computed F; (K, t), we fitted the KWW function [Eq. (26)] to capture the stretched exponential contribution
fc exp[—(t/ ‘L’)'Ba]. Table S2 in the Supplementary Material lists the full results of parametrized variables.

The incoherent intermediate scattering function is known to exhibit one to two relaxation times
depending on the temperature of the system. Regardless of the FG force fields, the relaxation time
is longer at lower temperatures. Interestingly, we notice that the TIP4P/Ice force field has a
pronounced decaying shoulder, which can be understood from the design principle of the
TIP4P/2005 force field to match the freezing temperature of water and other associated behaviors
at low temperatures.

The fitted relaxation times t from Eq. (26) that are plotted against temperature in Fig. 2(a) range
from 0.4 (higher temperature) to 1.5 ps (lower temperature), which is in good agreement with the
reported timescales 8% 117, 139, 148, 149, 164-168 Fyrthermore, we do not observe cases where the
relaxation time becomes remarkably larger, indicating that we do not have to worry about
supercooled-like dynamics for our cases, which can break down the SE or SED relation. A detailed
analysis of the temperature dependence of T will be provided in Sec. II. B, and a more
straightforward validation of the SE and SED relations will be given in Sec II. C. We also
computed F; (K, t) for the propagated CG trajectories to check if the spurious CG dynamics can be
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also represented by the incoherent intermediate scattering function. Figure S1 in the
Supplementary Material compares F; (K, t) for the FG and CG trajectories at the same temperature
and underlying force fields.

B. Translational Relaxation Time and Temperature Dependence

Having computed both the diffusion coefficients and the translational relaxation time, a natural
direction is to examine the temperature dependency of these dynamical observables. Similar to the
Adam-Gibbs theory in liquid dynamics,'®® the following temperature dependency has been
suggested by Vogel-Fulcher-Tamman, commonly known as the Vogel-Fulcher-Tamman law!7%
172 that links the common dynamical observables X such as diffusion coefficients, shear viscosities,
and relaxation times to temperature T

X=X°exp< 4 )
T_To ’

(40)
where X°, A are constants, and Ty, is so-called Vogel divergence temperature. Therefore, we first
validate if the computed translational relaxation time contains correct dynamical information that
satisfies the Vogel-Fulcher-Tamman equation. Consequently, we examine if similar temperature-
dependent behaviors are observed in the translational and rotational diffusion coefficients. As
introduced in Eq. (40) above, unlike the diffusion coefficients, the translational relaxation
timescale is reciprocal to the dynamical properties, resulting in two Vogel-Fulcher-Tamman-like

laws
T,
=0exp(B— )
t=t exp( T—-T,

1 1 (B T, )
p —poP\Pr 1)

(41)

(42)
where the unknown parameters B, T, 7°, and D° are obtained by fitting these relationships. Here,
DO is different from D,, an entropy-free diffusion coefficient from Eq. (1). We note that the Vogel-
Fulcher-Tamman law has been widely used for the supercooled regime when the SE relationship
breaks down, but we still seek to examine the fidelity of this law at ambient conditions in order to
elucidate the temperature-dependence of the computed dynamical properties. Figure 2 depicts
three dynamical properties (7, Dirans, and Dyo¢) computed at temperatures ranging from 280 to
360K. We first confirm that the translational relaxation times obtained by fitting the KWW
function to Fig. 1 demonstrate the exponential behavior, as expected from Eq. (41). Furthermore,
for four atomistic force fields, we discover that the TIP4P/Ice has the largest relaxation time and
decays more rapidly as temperature increases compared to TIP4P/2005, SPC/E, and SPC/Fw. This
behavior is consistent with the Vogel-Fulcher-Tamman scaling behavior for diffusion coefficients
[see Figs. 2(b) and 2(c)], where the inverse of diffusion coefficients for the TIP4P/Ice model sees
the largest changes.
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Figure 2. The temperature dependence of the various dynamical properties of water: (a) Translational
relaxation time, and the inverse of self-diffusion coefficients for (b) translational motion and (c) rotational
motion of water. The dotted line in each panel denotes the fitted Vogel-Fulcher-Tamman relation.

In order to validate if both the translational and rotational motions originate from the same
molecular nature, we further compare the crossover temperatures T, obtained from fitting the
Vogel-Fulcher-Tamman relation. Surprisingly, we discover that for the same FG force field, both
the translational and rotational T, values are in close agreement. Specifically, SPC/E gives 144
and 150K, SPC/Fw gives 184 and 180K, whereas TIP4P/2005 yields 210 and 213K and TIP4P/Ice
yields 154 and 150K (see Table S3 for full parametrized results). In Fig. 2(a), the T,, values derived
from 7, which are listed in Table S3, exhibit slightly different values due to the a-relaxation but
faithfully follow the same Vogel-Fulcher-Tamman relation as temperature changes. Hence, a
similar molecular nature underlying the translational and rotational diffusive motions also provides
an alternative explanation for why two different motions follow the same excess entropy scaling
relationship shown in Egs. (1) and (15).

We are aware that there are other models designed for explaining the temperature-dependent
behavior of dynamical properties, e.g., Speedy-Angell,!”® Bissler,!’” and Krausser-Samwer-
Zaccone.!” Some of these models, including the Vogel-Fulcher-Tamman model used in this
section, provides a rather ad hoc description. However, we would like to note that the main purpose
of this section is not to investigate the microscopic origins of these fitting parameters themselves
but to validate whether our simulations correctly exhibit temperature-dependent behavior of
translational relaxation time and diffusion coefficients. Particularly, as we are not interested in
supercooled conditions, the choice of these models do not significantly impact our temperature-
dependent behavior. In turn, our analysis indicates that both the translational relaxation time and
the diffusion coefficients can be used interchangeably to describe the dynamical properties of the
FG system.

C. Validity of the SE and SED Relations
We now examine the validity of the SE and SED relationships by utilizing 1/t as an intermediate
variable to approximate 7. In particular, we first validate if the SE and SED relations are well-
satisfied for our system. A common practice to examine this is to introduce the fractional SE and
SED relations defined as
Ty Gt
Dirans~ (_) ’

T
(43)
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Dyot~ (%) _ér;
(44)

where the exponents {; and ¢, indicate how far the system is from the correct SE and SED relations,
where {; = (. = 1. When the SE and SED relations fail at low temperatures (i.e., supercooling
regime) below 240K, { is reported to have much lower values near 0.8.13% 148 149 Hence, we
depicted the log-log plot for the translational and rotational diffusion coefficients versus 7 /T for
four FG force fields. Interestingly, we observed that the exponents for both translational and
rotational diffusion scalings are 1.1. Because these exponents are near 1.0, it is reasonable to
conclude that the SE and SED relations hold in our systems. This is somewhat expected since we
choose the temperature ranges to be within the liquid phase range (280-360K) where there is no
sign of supercooling. Given the recent success in elucidating the various anomalies associated with
the supercooling using BUMPer,!!"? an interesting future direction from this analysis would be to
study the fractional SE and SED relations for the FG water and BUMPer models in the supercooled
regime.
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Figure 3. Assessment of the SE and SED relations by plotting the translational and rotational diffusion
coefficients versus the structural relaxation time divided by the temperature 7 /T for four FG force fields:
SPC/E (red circle), SPC/Fw (green triangle), TIP4P/2005 (blue diamond), TIP4P/Ice (purple pentagon). (a)
SE relation from the translational diffusion coefficients at different 7/T and (b) SED relation from
rotational diffusion coefficients at different 7/T. The 7 values are from Table 1. The dashed lines (blue:
translation, red: rotation) represents the fitted fractional SE and SED relations, Dirans~(7/T) ™St and
Dyot~(1/T)~%r, where both exponents ¢ and {; are near 1.1.

It is also worth mentioning that the scaling behavior depicted in Fig. 3 does not explicitly depend
on the type of FG force fields. We believe that the universality of the scaling relationship between
D and /T is satisfied because the peculiarities and differences among various FG force fields are
already encoded in diffusion coefficients and translational relaxation times. Altogether, Fig. 3
confirms that we can utilize the (correct) SE and SED relations to describe the diffusion
coefficients for our systems.
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Then, the next step is to check the temperature dependence of the SE and SED relations.!!” In
doing this, we alternatively examine the temperature dependence of DiyansT/T and Dyo.T/T
(known as “Stokes-Einstein ratio”), as shown in Fig. 4. By normalizing Dt /T at the highest
temperatures (360K), we observe that this ratio slightly decreases as with decreasing temperature,
but it does not significantly deviate from the reference value expected from the SE and SED
relations. We note that the violation of the SE and SED relations at lower temperatures for water
are often associated with a magnitude of Dt/T around 1.5 — 4 for translational diffusion!3® 148 149
and 1.5 — 8 for rotational diffusion,'®” which is far beyond the values presented in Fig. 4. Finally,
based on Figs. 3 and 4, we conclude that the SE and SED relations faithfully hold in our system at
the chosen temperature ranges. Combined together, the next key step is to combine the SE/SED
relations with the excess entropy scaling formalism.
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Figure 4. Assessment of the SE and SED relations at different (ambient) temperatures ranging from 280 to
360K for four FG force fields: SPC/E (red circle), SPC/Fw (green triangle), TIP4P/2005 (blue diamond),
TIP4P/Ice (purple pentagon). (a) SE relationship was examined by computing Diranst/T, (b) SED
relationship was examined by computing D,,.t/T, where the plotted data were scaled by their values at
T=360K.

D. Determining Hydrodynamic Radius and Reduced Scaling Relationship

Having confirmed the SE and SED relations using the translational relaxation time, the last
remaining variable to estimate in Eqgs. (38a) and (38b) is the hydrodynamic radius Rj . In
experimental settings, R, can be determined using gel (permeation or filtration)
chromatography!’® or NMR diffusion spectroscopy.!”” However, estimating R, for non-spherical
and complex molecules in theory is more ambiguous and challenging.!6!- 162 178 Tn this direction,
an alternative SE relationship could be derived that does not explicitly involve the hydrodynamic
radius by reformulating the relation based on reduced (dimensionless) properties!” and was
recently validated for water.!%° Nevertheless, since our main objective of this paper is to be able to
indirectly estimate the complex hydrodynamic radius from the hard sphere description, in this
subsection we introduce a formal approach that can potentially estimate the hydrodynamic radius
of our system, which deviates from a perfect sphere.
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To account for the non-spherical nature of molecules, an ellipsoidal approximation of the molecule
would provide more flexibility and expressiveness. Formally, a rigorous method to determine the
hydrodynamic radius of an ellipsoid was proposed by Perrin under the continuum hydrodynamic
case, where the SE and SED relations were initially derived, i.e., a colloidal solute in a continuum
medium. 8% 18! Tn such cases, R), can be estimated by decomposing the exerted friction along three
different inertial axes as follows:

R = keT 1 3
"TemnD T emp \fi '+l + £t
(45)
where f; (I € [1,3]) denotes the friction coefficients along the three different inertial axes of the
particles. Perrin then demonstrated that a friction component along the inertial axes takes the

formISO
16mn

ﬁ_n+ﬁa'

(46)
Here, a; are dimensionless shape factors that account for the deviations from spherical symmetry
along each principal axis of the ellipsoid, and P; and II are elliptical integrals to account for the

anisotropy (acentricity) defined as follows:

p f‘” ds
l 0 (s+rAOJGE+rD(E+rD(s+1d)
(47)
*© ds
I ::f 2 2 2y
0 \/(s+r1)(s+r2)(s+r3)
(48)

In Egs. (47) and (48), s is an integration variable with the dimension of length squared, and r; are
the semi-axes of the ellipsoidal particles, with 7y, 7, and r3 specifically referring to the radii along
the three principal axes of the ellipsoid. These definitions yield dimensions of length™ for P; and
length™! for II, respectively.

Since the diffusion observed in the single-site CG systems shows isotropically averaged
behavior,'8! f;7! in Eq. (45) can be simplified, resulting in the diffusion coefficient of the form

kgT

pD=-_-2"

41
(49)

While the presence of the II term in Eq. (49) reflects the non-spherical nature of the friction due to
the intrinsic topology of FG systems,'®? it should be noted that a formal derivation of II is only
valid for colloidal Brownian motion under a continuum hydrodynamic description. Yet, inspired
by the practical evaluation of IT done in hydrated proteins,'®* 134 a reasonable estimation of the II
integral can be made by assuming that the elliptical boundaries given by 7y, 5, and 5 correspond
to the shape of the water molecule.
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Once the molecular-level elliptical integral II is available, we can now apply the excess entropy

scaling relationship to Eq. (49)
1 1
p3 p3ymkgT
D* = D 1 = H
41

(o)
(50)

We emphasize here again that the dimensionless diffusion D* in Eq. (50) follows D* =
Dy exp(as,,). In order to further elucidate the molecular nature underlying D, we simplify other
variables appearing in Eq. (50) by introducing the viscosity scaling relationship. From Andrade’s
theory, the dimensionless viscosity can be represented as'®

*

n = \/7 =To exp(ansex)-

(1)
Hence, 1 can be expressed as
2
§V 770 exp( ¢4 Sex)
(52)
We now substitute 17 in Eq. (50) with Eq. (52) to further simplify:
1
_Tp 3
= P exp(—ansex).
(33)

Since D* = D, exp(as,,), in order to satisfy these two scaling relationships for many different s,
values, the unique solution is if and only if the scaling exponents for both diffusion and viscosity

satisfies a,, = —a with the entropy-free property:
1

[Ip 3
4mn,

D0:

(54)
Equation (54) is the main result of this subsection, as it directly relates the scaling coefficients
from different dynamical properties (D, and 1ny) with the system property p and intrinsic
molecular property II. To note, II can, in principle, be estimated from the molecular-level
approximation, as demonstrated in the Supplemental Material. We also note that the skew-
symmetric nature established in Eq. (53) between the diffusion and viscosity scaling relationship
(e, = —ayp) was originally reported by Rosenfeld'® and confirmed by other follow-up studies.'®"
193 Our theory expressed in Egs. (50)-(54) further proves the universal excess entropy scaling for
both diffusion and viscosity with the correct skew-symmetric behavior, which is believed to
facilitate the correct scaling behavior for viscosity that has been recently reported in the field!**
198 and also expand our understanding on the correct physical description of the SE relations when
applying it to the excess entropy scaling.!”>-2°! As future work, we plan to accurately determine
the shear viscosity in the FG and CG systems to uncover 1, values and rigorously bridge between
D, and 1, along with II.

E. How to Estimate Hydrodynamic Radius: SE/SED approach and perturbation approach
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Starting from the definition of the hydrodynamic radius, we showed that the SE relation implies
the universal excess entropy scaling for dynamical properties. However, an estimation for the
elliptical integral Il is built upon numerous approximations, and thus it might contain numerical
errors when directly plugged into the SE and SED relations.

On the other hand, a relatively less complicated and more direct approach to compute the
hydrodynamic radius is possible by utilizing the coupling between the SE and SED relations.
Assuming that the hydrodynamic radii in Egs. (38a) and (38b) are identical, the hydrodynamic
radius can be alternatively expressed using the ratio between Dy, s and Dy

Ry = Rsg_sgp =

(55)
Since we already confirmed that the SE and SED relations hold in our case, we can directly validate

this assumption by checking if the ratio \/ (3Dtrans)/(4Dyor) 1s constant at different temperatures.
Figure 5(a) shows the ratio between the diffusion coefficients Dqi/Dirans as a function of
temperature.

The ratio of the translational and rotational diffusion coefficients is essentially a measure of the
decoupling between the two motions. It has been widely studied that for glass-forming liquids'3”-
202,203 and water,!%7- 204 205 the translation-rotation decoupling is observed in the supercooling
regime where the SE and SED relations break down. In the SE/SED breakdown case, the
Dyot/Dirans Tatio is known to rapidly decrease as temperature lowers'®” because the SED relation
breaks down quicker than the SE relation.!3* However, in our case, we note that the diffusion ratio
does not greatly change with decreasing temperature [Fig. 5(a)], with an average of 0.428 rad?/A?
for SPC/E, 0.467 rad®/A? for SPC/Fw, 0.471 rad®/A? for TIP4P/2005, and 0.502 rad®A? for
TIP4P/Ice. Even though these ratios fluctuate slightly with a standard deviation of 0.038 rad?/A2,
Dyot/Dirans does not show the breakdown behavior. Thus, we assert this fluctuation is negligible,
and the hydrodynamic radius can be estimated by the ratio between the two diffusion coefficients.
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Figure 5. Validation and estimation of the hydrodynamic radius using two approaches for four FG force
fields: SPC/E (red circle), SPC/Fw (green triangle), TIP4P/2005 (blue diamond), TIP4P/Ice (purple
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pentagon). (a) Validation of the converged hydrodynamic radius using the SE and SED relations by
computing the ratio of the rotational and translational diffusion coefficients D;.q¢/Dirans as @ function of
temperature. (b) The ratio of the hydrodynamic diameter derived from the SE and SED relations osg_sgp =
2Ry [Eq. (55)] and the Barker-Henderson diameter ogy.

Having established the hydrodynamic radius, the next question we want to address is how the
hydrodynamic radius is related to the excess entropy scaling. We now provide a new understanding
of the hydrodynamic radius that is physically consistent with the excess entropy scaling formalism.
As extensively discussed in Paper II of this series,* the CG diffusion process can be described by
a hard sphere diffusion process. Specifically, in terms of the excess entropy scaling, the CG
diffusion can be alternatively expressed as

D¢g = Dg° exp(a“®sgf) = Dg°(n) exp(a“Csge),

(56)
where a statistical mechanical link can be established between DS and the hard sphere nature of
the CG system represented as a packing density ¢ or the effective hard sphere diameter (EHSD)
oggsp- From the definition of the packing density, ¢ is related to the EHSD ogygp via

I

?=% OFuspPs
(57)
where p is the number density of the system.

From the molecular CG system, ogysp can be estimated based on the CG interaction profile. The
Barker-Henderson perturbation theory?%® 297 suggests that opysp can be reasonably approximated
as the “repulsive” regimes at short ranges by calculating the Barker-Henderson diameter ogy

Ry
Oy = [1 —exp(—BU(R))] - dR,
0
(58)

where R, is the minimum distance where the interaction vanishes, i.e., U(Ry) = 0. Therefore, a
physical picture behind the Barker-Henderson diameter is that it is the effective “size” of the
system based on its repulsive core. Our approach shares a similar physics with the early work by
Bocquet et al. where they construed the hydrodynamic radius as the radius of the excluded
volume 229 Yet, Eq. (58) is a generalized description for the reduced CG representation. Since
Eq. (58) accounts for the weak repulsive contribution at larger distances [as long as U(R) > 0],
we expect that the ogy might provide a slightly larger estimate observed from the interaction
profile than the molecule’s actual size. Nevertheless, as long as the fluid molecule experiences the
dissipative and fluctuation forces that can be described by the hydrodynamic process, we envisage
that the Barker-Henderson radius Rgy = ogy/2 to be in close agreement with Ry,. By comparing
the Barker-Henderson diameters to the hydrodynamic diameter estimated from the atomistic
simulations using Eq. (55), gsg_sgp = 2Rsg_sep, Fig. 5(b) confirms that one could utilize the CG
description of molecules to assess a relatively challenging to evaluate hydrodynamic radius over a
wide range of temperatures.

F. New Theory for Translational-Rotational Diffusion Coefficients based on the SE/SED
Relations

For more general cases, Fig. 5(b) indicates that the hydrodynamic diameter can be reasonably
approximated from the EHSD of the CG system. Therefore, we can further relate the excess
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entropy scaling formalisms for the translational and rotational diffusion in terms of the SE and
SED relations when the following two assumptions are valid, i.e., 0sg_sgp = Ognsp, and there is
no SE or SED breakdown.

Here, the translational diffusion for the FG system given by the SE relation obeys the following
excess entropy scaling relationship:

D: B kBT p1/3
AT 6mnReg VEkgT/m
(39)

where we denote the (unified) CG radius as R¢g that is consistent with the SE/SED and EHSD
description

_ DFG t FG
) = Dy~ exp(a™@Ssgy),

1 1 1
Reg =5 0c6 = 5 0sp-sep = 7 OgHsp-
(60)
Similarly, the projected rotational diffusion can be expressed using the excess entropy scaling

. 2 p1/3 ~ ~
Dt_ror = §Drot - R ( = D5 " exp(a'~"0tsEd).

VkgT/m
(61)

Note that the constant 2/3 in Eq. (61) comes from the normalization factor during a transformation
of the rotational diffusion to the translational diffusion [the 4t factor in D, in Eq. (32) needs to
be corrected to 6t in Eq. (31)]. Introducing the SED relationship [Eq. (38b)] to Eq. (61) gives

Dt*_ L= kBT . R(2:G< p1/3 > — D(g—rot exp(at—rotsFG .
N 12mnRE; [kT/m X
(62)

From Paper III, we know that the exponent for the scaling relationships of translational and
projected rotational diffusion are nearly identical (a2 ~ a'*~°"), and thus the entropy parts of
the diffusion relationship are canceled by dividing Eq. (59) by Eq. (62), resulting in
D€
2= pETor

(63)

An interesting observation is that the left-hand side of Eq. (63) no longer has R¢g since R¢g is
canceled by projecting the rotational diffusion to the arc displacement, resulting in a dimensionless
value. Also, Eq. (63) states that the entropy-free diffusion at the FG (translational) level is directly
related to its translational-rotational component. This direct relationship further suggests that one
does not have to explicitly calculate the rotational diffusion at the FG level (and then project them
onto the translational basis), as long as the SE and SED relationships are valid.

Our next question is how this relationship impacts the full dynamic consistency between the FG
diffusion and CG diffusion. Recall that the FG and CG diffusion coefficients are linked by the
following relationship from Eq. (18),
DgG — D(():GD(t)_rOtAD.
(64)
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Then, Eq. (63) immediately suggests that Eq. (64) can be further reduced to
2

DGS = —.

0 AD

(65)

Equation (65) implies that the entropy-free diffusion coefficient of the single-site CG model is
only a function of the roughness parameter, Ap. In Eq. (17), we introduced an approach from
Ruckenstein and Liu®® where they tried to interpret Aj, as a function of the non-sphericity. Then,
combining Egs. (17) and (65) gives
DCG — 2
% 709673 —0.2527w — 0.70w?’

(66)

Now, the physical meaning of Eq. (66) becomes clearer: the entropy-free diffusion coefficient of
the CG system (thus translational motions) can be determined solely by the non-sphericity of the
CG molecule as long as the SE and SED relationships hold. This physical picture can be viewed
in a similar manner as the main result in Paper 11, where we introduced the hard sphere mapping
theory to determine D§® as a function of the packing density ¢.3° Recall that the analytical
expression for DY using the Carnahan-Starling EOS®' is reduced to Eq. (13):

1

6 2 (1-¢)° 4 — 3¢°
D§%(p) = D3 = —63 ex l(l 7|

(67)
Figure 6 summarizes the two different approaches for calculating the DG values.

Some differences between these two approaches should be noted. First, by definition, the hard
sphere mapping approach [Eq. (13)] represented by Fig. 6(a) is only valid for the hard sphere
description. If the system deviates from the hard sphere description, the systematic methodology
for determining the EHSD, such as the Barker-Henderson perturbation theory and fluctuation
matching, is no longer valid and results in an unphysical packing density.

However, the second approach delineated in Fig. 6(b) is not limited by the same issue. As long as
the target system at the FG resolution exhibits both translational and rotational motions, there must
be a momentum exchange upon collision between the system particles. This gives rise to a non-
unity value for Ap. At the same time, if the system is at ambient conditions such that the target
system satisfies the SE and SED relations, then both the translational and rotational motions are
coupled to each other. By combining these two descriptions, we arrive at Eq. (65), where no further
approximation is needed. The only approximation used in Eq. (66) is the functional form of Aj in
terms of w by Ruckenstein and Liu,*® which might be improved in future work.
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Figure 6. Two different approaches to understand the entropy-free diffusion coefficient D, from the CG
model: (a) Hard sphere approach from Paper II giving Eq. (13),”* (b) SE/SED approach from this work
giving Egs. (66) and (67) with use of Ref. 50. The approach illustrated in (b) provides a much wider and
extended view on Dy than (a).

Recall that our original purpose in introducing the SE and SED relation was to deduce the effective
rotational diffusion without actually calculating it at the FG level. By assuming that the
hydrodynamic radius is the thermodynamic radius from the Barker-Henderson criteria, we can
now indirectly estimate the rotational diffusion D, using the computed translational diffusion
coefficients and estimate the DS™°t. Note that the predicted variable is denoted by a hat notation.
In Fig. 7, we assess the performance of the SE and SED relations by comparing the rotational
diffusion coefficient D, from the FG simulations to the predicted diffusion coefficient D,

~ 3 1 \? 3D
Drot = ZDtrans : <R ) = R — 2"
B/ | f[1 - exp(—BUR))] - dR|

(68)

For clarity, we plotted the results obtained from Eq. (68) against the Vogel-Fulcher-Tamman
relation fitted from Fig. 2(c). As consistent with Fig. 6, we also observe that Fig. 7 confirms the
fidelity of Eq. (68), indicating that the rotational motions at the FG resolution do not need to be
explicitly calculated using complicated methods such as imposing polarization vectors or
calculating the rotational correlation functions. Instead, under ambient conditions, the SE and SED
relations not only act as an intermediate variable to predict the collective rotational motions
embedded in the system at the hydrodynamic level but also confirm our initial findings regarding
the rotational scaling relationship. In summary, this work demonstrates how these relations can
widen our understanding of liquid dynamics at both the FG and the CG levels.
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Figure 7. Assessing the fidelity of diffusion prediction based on the SE and SED relations for four FG force
fields: SPC/E (red circle), SPC/Fw (green triangle), TIP4P/2005 (blue diamond), TIP4P/Ice (purple
pentagon). Predicted diffusion coefficients D, using Eq. (68) are shown as filled points, whereas the actual
values from Fig. 2(c) are marked as empty points. The dotted lines are from fitting the FG rotational

diffusion coefficients to a Vogel-Fulcher-Tamman relation.

IV. CONCLUSIONS

This paper builds upon our earlier work on the correspondence between FG and CG dynamics®*-3¢
based on the hydrodynamic description. In particular, we introduce the SE and SED relations to
the CG system in order to extend the applicability of the currently established framework. In the
previous papers of this series, we had shown that information about the missing rotational diffusion
may play an important role in understanding the differences in the diffusion coefficients of FG and
CG liquids under Hamiltonian mechanics, in the limit of a “one bead” CG mapping. The earlier
Paper 111 suggested that the rotational motions at the FG resolution, which are integrated out during
the coarse-graining process, are responsible for this deviation.’® However, it was still ambiguous
how to extract this missing information at the reduced resolution. This work fills this gap by
combining the commonly used SE and SED relations with the excess entropy scaling relationship.
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Figure 8. Role of the SE and SED relations in elucidating the FG [panels (a) and (b)] and CG diffusion
[panel (c)]. (a) In terms of the excess entropy scaling, Paper III suggested that the original FG diffusion
(red line) DECG can be recapitulated by combining the CG diffusion (blue line) DS® and the missing
rotational diffusion (black line) at the finer resolution D{°%, where D, was computed by integrating the
differential of the angular displacement vector. (b) Alternatively, this work suggests that there is no need
to explicitly calculate the DES, as this value can be deduced by employing the SE and SED relations to the

computed DES ¢ value.

Figure 8 summarizes the essential findings from this work. As both the SE and SED relations are
a function of viscosity, a property that is highly challenging to correctly represent in the CG system
due to the representability issue, we propose using the translational relaxation time from the
incoherent intermediate scattering function as an intermediate variable to approximate the
viscosity. We confirmed that the SE and SED relations hold for our system at ambient temperatures
by checking the fractional SE and SED relations and also by computing the SE and SED ratios.
With this in mind, we provided an alternative approach to determine the hydrodynamic radius of
the system using the EHSD given by the classical perturbation theory. In turn, we corroborated
excellent agreement between the Barker-Henderson radius and the hydrodynamic radius from the
SE and SED ratios. On the other hand, from approximating the elliptical integrals from the inertial
frictions, we derived that the excess entropy scaling for viscosity is universal to the diffusion
scaling relationship but with an opposite sign in the entropy term. By further linking our findings
to the entropy scaling relationship, an interesting connection between the entropy-free diffusion
coefficient and the roughness parameter is established: we obtained an extended description of the
entropy-free diffusion coefficient from our original understanding of the hard sphere nature of the
CG diffusion process.

We conclude this paper by discussing a few promising and important directions for future work.
These directions involve (1) generalizations of the proposed framework and (2) applications to
more complex systems beyond liquids. First, throughout this series of papers, we have only
considered the single-site CG resolution. As a result, decoupling between translational and
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rotational motions was relatively straightforward for the single-site (one bead) CG resolution
because the rotational motions disappear at this resolution. Therefore, the next step in terms of
applicability would be to extend the developed approaches to CG resolutions other than the single-
site, where these two motions are no longer decoupled at the CG level. This also requires a
systematic methodology to determine the exact modal entropy and its ideal gas contribution at
nontrivial resolutions.

Relatedly, another inherent limitation of the scaling relationships employed in this series is that
they are only applicable to isotropic dynamical properties. This constrains the detailed description
of the system dynamics, as viscosity should be treated as a stress tensor, and diffusivity should be
anisotropic in principle. Importantly, anisotropy is pronounced in rotational diffusion, known as
the anisotropic rotational diffusion tensor. While this anisotropy effect is relatively minor in
water,?!? a faithful generalization to anisotropic diffusivity is crucial for understanding the
dynamics of complex molecules, e.g., high-density protein solutions.?!!: 212 However, since the
semi-empirical nature of the scaling relationship has only been established for scalar dynamical
properties,® there is no guidance on how this ad hoc scaling relationship could be generalized for
tensorial representation, nor is there a conceptual demonstration of how this would work in this
case, highlighting the need for future work to address these ambiguities. While there are currently
no microscopic grounds for the anisotropic generalization, we would like to note that the transport
process in confined systems (e.g., nanoporous system) would be an ideal starting point for testing
the validity of tensorial scaling relationships. Generally, transport diffusivity is described via
Fick’s law, but the confined geometry of nanoporous systems gives rise to anisotropic diffusivity.
Reference 213 showed that the scalar diffusivity, obtained by averaging the three diagonal
elements of the diffusion tensor, Dy = (D¢ xx + Dtyy + Dt z,)/3, Obeys excess entropy scaling
under the low-density approximation, which assumes that self-diffusivity and transport diffusivity
are identical.>!* Therefore, generalizing the current framework to understand how tensorial scaling
averages into scalar scaling would significantly enhance its applicability to describe complex
molecules.

In a related fashion, a systematic generalization of the current methodology is possible by
broadening the scope of this research to study different systems beyond simple liquids. Even
though most of the work on the SE and SED relations has been primarily focused on liquids
(especially supercooled liquids), it has been shown that these relations also hold for the diffusion
of proteins, macromolecules,?!>-2!® and nano-particles.?!® Therefore, we believe that it may be
feasible to extend the present understanding and our theory to more complex systems. One such
example would be polymeric systems, where the excess entropy scaling relationship at the
atomistic scale has been already reported.??°-22* For relatively simple polymers, we could
effectively estimate the hydrodynamic radius using the Kirkwood formula??>-2?7 or the Kirkwood-—
Riseman hydrodynamic equation,??”- 228 which can be directly utilized for the SE and SED relations.
Additionally, another related avenue would be to extend the reported analyses to glass-forming
liquids at the CG level, e.g., ortho-terphenyl??’ or to other experimentally relevant materials.?3% 23!
This broader applicability would facilitate the integration of excess entropy scaling into the
exploration of slow dynamics near the glass transition. While this future work poses significant
challenges due to the state point-dependent nature of CG interactions and the representability
problem in evaluating various CG properties, we believe that the systematic CG methodology
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presented in this work lays the groundwork for advancing this direction. We hope to report a
variety of new directions and applications in future publications.
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