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Key Points

e Urban lightning enhancement is common and often very strong, but not all cities exhibit
enhancement.

e Lightning enhancement is influenced by urban heat island effects, enhanced local
precipitation, and regional lightning frequency.

e Likelihood and strength of enhancement were marginally increased in larger cities at
lower latitudes, elevations, and distances to water.
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Abstract

Urbanization tends to increase local lightning frequency (i.e., the "lightning enhancement"
effect). Despite many urban areas showing lightning enhancement, the prevalence of these effects
is unknown, and the drivers underlying these patterns are poorly quantified. We conducted a global
assessment of cloud-to-ground lightning flashes (lightning strikes) across 349 cities to evaluate
how the likelihood and magnitude of lightning enhancement vary with geography, climate, air
pollution, topography, and urban development. The likelihood of exhibiting lightning
enhancement increased with higher temperature and precipitation in urban areas relative to their
natural surroundings (i.e., urban heat islands and elevated urban precipitation), higher regional
lightning strike frequency, greater distance to water bodies, and lower elevations. Lightning
enhancement was stronger in cities with conspicuous heat island and elevated urban precipitation
effects, higher lightning strike frequency, larger urban areas, and lower latitudes. The particularly
strong effects of elevated urban temperature and precipitation indicate that these are dominant
mechanisms by which cities cause local lightning enhancement.

Keywords: lightning enhancement, urban systems, remote sensing, urban heat island, model
averaging
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1. Introduction

Lightning, particularly discharges that strike the ground (i.e., cloud-to-ground lightning),
is an agent of death and destruction in natural and anthropogenic systems. Local lightning
frequency increases with higher temperatures, greater fine aerosol concentrations, proximity to
water bodies, and the presence of tall, isolated objects (Westcott, 1995; Steiger et al., 2002;
Naccarato et al., 2003; Table 1). Many cities provide this exact combination of ingredients, and
local lightning frequency tends to be higher in urban areas — a phenomenon referred to as the
lightning enhancement effect (Orville et al., 2001; Naccarato et al., 2003; Table 1). However,
evidence for lightning enhancement is limited to a relatively small number of cities, and the
mechanisms are either unclear or unknown in most cases. Fundamentally, because these studies
compare one or a few cities to nearby landscapes that differ in a multitude of ways, the resulting
patterns are confounded by multiple variables, including both measured and unmeasured factors.
Thus, this study aimed to overcome these limitations by exploring global variation in lightning
enhancement to determine (1) how widespread is the positive effect of urbanization on regional
lightning strike frequency, and (2) what characteristics of cities are most strongly associated with
variation in the lightning enhancement effect.

Lightning enhancement is linked to air pollution and elevated temperatures associated
with urban areas (Table 1). Anthropogenic and naturally derived aerosols (e.g., sulfate and
nitrate aerosol products from the combustion of fossil fuels, and sea spray aerosols or volcanic
ash, respectively) can alter within-cloud processes to increase lightning frequency (Twomey et
al., 1984; Yau & Rogers, 1996; Stolz, 2016; Thornton et al., 2017). Similarly, the urban heat
island effect (i.e., the tendency for cities to be hotter than nearby natural environments; Oke,
1982) can increase convection, thereby increasing lightning activity (Bornstein & Lin, 2000).
Although lightning enhancement is often statistically linked to aerosol concentrations or urban
heat islands (9 of 12 studies for aerosols and 3 of 4 studies for urban heat islands; Table 1;
Soriano & de Pablo, 2002; Kar et al., 2007, 2009), these factors are inherently confounded with
other aspects of urbanization. Associations with these factors are unknown for most cities
lacking lightning enhancement, perhaps due to the limited number of cities studied and potential
biases in city selection (e.g., 100% of single city studies reported enhancement, whereas 76.7%
of cities exhibited enhancement in multi-city studies; Table 1). This study addresses this problem
by examining a large number of cities spanning wide variation in pollution, heat island effects,
and lightning enhancement.

Lightning enhancement also is influenced by geography, topography, and associated
climatic patterns. On a global scale, lightning frequency is highest near the equator, where
temperatures and rainfall rates also tend to be high (Christian ef al., 2003). At more local
geographic scales, lightning frequency tends to be high near water bodies (Song et al., 2004;
Freitas et al., 2007; Holle & Murphy, 2017), presumably due to abundant moisture and higher
concentrations of fine particulate aerosols. Similarly, lightning frequency is particularly high in
the foothills of some montane regions (Mushtaq et al., 2018), indicating that topography
influences lightning activity. These factors potentially interact with temperature and air pollution
near urban centers to modulate the likelihood and magnitude of the lightning enhancement effect.
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However, the contribution of some of these factors (e.g., urban topography, population) is
typically overlooked in urban lightning research (Burke & Shepherd, 2023).

Apart from these mechanistic drivers, the best predictors of urban lightning enhancement
effects may be metrics of urbanization. Ultimately, the lightning enhancement effect is linked to
urban development and its impact on the local climate. Thus, critical metrics of urban
development, such as urban area, population size, or the density of urbanization (i.e., the extent
of natural cover within the urban areas), likely predict variation in the lightning enhancement
effect (e.g., Kar & Liou 2019; Soriano & Pablo, 2002). However, these relationships are
untested.

Here, we quantify the distribution of urban lightning enhancement among 349 cities
worldwide and explore the factors influencing the magnitude of enhancement. Specifically, we
evaluate how urbanization influences lightning frequency within the boundaries of each city.
Based on existing data and hypotheses described above, we predicted that urban lightning
enhancement is more common and stronger where (1) urban heat islands are hotter, (2) air has
higher aerosols and particulate concentrations associated with pollution, (3) urban areas are
closer to water bodies, and (4) cities cover more area or have greater populations. This study is
unique in scope and scale because it captures global variation in urbanization and its effects on
lightning enhancement. This approach does not measure physical processes within individual
cities. However, it is unprecedented in its scale and, thus, its statistical power to separate the
contributions of potentially confounding effects on lightning enhancement.

2. Methods
2.1.Lightning strike data

We quantified the urban lightning enhancement effect using Earth Networks Total
Lightning Network (ENTLN) data. ENTLN continuously detects and locates lightning using
each discharge's time and signal amplitude (Liu & Heckman, 2012); here, we focus on the
ENTLN-classified cloud-to-ground flashes (or a group of strokes), which we call lightning
strikes. We omitted lightning strikes <10 kA in magnitude to avoid misclassification with in-
cloud lightning (Cummins et al., 1998). We calculated monthly mean lightning strike frequency
(lightning strikes km™ yr") on a 0.05x0.05-degree grid (ca. 5x5 km) extending from 60°N to
60°S latitude for 2013-2020.

2.2.Urban and natural areas

We used the 2018 Moderate Resolution Imaging Spectroradiometer (MODIS) land cover
data (MCD12Cl1 Version 6; Friedl & Sulla-Menashe, 2019) on a 0.05-degree grid to identify
urbanized land and its surrounding natural areas. The operational definition of a city used in this
study was >300,000 inhabitants, based on the definition of a city in the UN World Urbanization
Prospects (UN, 2018). We did not differentiate among various definitions of urban areas (e.g.,
city proper, urban agglomeration, metropolitan area), which likely introduces additional
variation. Regardless, these were the best data available and suitable for capturing broad trends
in population size. We omitted only five cities by limiting the data to within 60°N and 60°S
latitude. Additionally, we did not evaluate the increase or decrease in the urban area during the



122
123
124
125
126
127
128
129
130
131
132

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

151
152
153
154
155
156
157
158
159
160
161

2013-2020 period. We assumed that the changes in area in most cities in the last decade are not
significant enough to influence the lightning enhancement effect. Spatially, we defined cities as
clusters of 0.05 x 0.05-degree cells with more than 50% urbanization overlapping the city center,
defined by the United Nations World's Cities in 2018—Data Booklet (UN, 2018), or contiguous
with other urban cells. Because the urbanization footprint of a city is often a mosaic of developed
and undeveloped space (e.g., water bodies), we also included any cell with >50% urban area that
was within two cells of the city center or contiguous city area (no cells of <50% urban area were
included in a city). These adjacent and nearby urban cells collectively represented the urban area
for each city (Fig. Sla-c). This process collapsed 22 pairs of cities into a single urban center
(e.g., Dallas/Ft. Worth, Philadelphia/Trenton). We identified 884 cities with >300,000
inhabitants and at least one cell comprising >50% urban area.

We used MODIS to identify natural areas surrounding each city. Specifically, we
defined natural areas as any combination of non-modified MODIS terrestrial layers: mixed
forest, evergreen needleleaf forest, evergreen broadleaf forest, deciduous needleleaf forest,
deciduous broadleaf forest, woody savannas, savannas, grasslands, closed shrublands, open
shrublands, permanent wetlands, permanent snow, and barren land (excluding water bodies,
urban area, and croplands) within 150 km of the boundaries of a city. We chose a 150 km radius
because it is ca. 1/10 of the detection distance of this sensor system and therefore should
experience limited bias in detection efficiency across its area. Additionally, a buffer of 150 km
captures sufficient area to estimate non-urban lightning frequency, and this radius was previously
used to assess climatic differences between urban and non-urban pairs (e.g., urban island effect
and pollution; He et al., 2007; Mendez-Espinosa et al., 2019). When a cell was within 150 km of
multiple cities, we associated that natural area cell with the closest city. To limit edge effects, we
removed all natural areas within two cells (ca. 10 km) of any cell with >50% urban area (Fig.
S1d). We only retained cities in our dataset if they had at least 100 km? of associated natural area
(691 cities qualified; Fig. S2¢). The natural areas capture typical lightning frequency of each
region with limited direct influence of urbanization, functioning as a reference point for
evaluating the effect of each urban area.

2.3.Calculating lightning frequency

We calculated each pixel's average (i.e., the mean) annual lightning frequency using only
months with meaningful lightning activity. We removed all cities with < 1 lightning strike km™
yr'! in their associated natural areas. We also removed months from individual cities if their
natural areas exhibited < 1 lightning strike km yr'! in those months (328 cities removed). This
approach was necessary for two reasons. First, we lacked the statistical power to test for urban
enhancement when lightning frequency is low because lightning frequency is strongly
overdispersed and within-city sample sizes were small. Second, removing low-frequency months
avoided spurious effects resulting from uneven seasonality patterns (e.g., including all months
would produce a latitudinal effect relating to season rather than the strength of urban
enhancement). Additionally, we removed months and cities (8 cities in total) lacking data for
their covariates (e.g., precipitation data was not available for 2019 and 2020, and the aerosol
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optical depth sensor could not make its measurement in certain areas during the study).
Following these criteria, we ultimately included 349 cities in the analyses.

We used Glass’s delta effect size and a simulation approach to evaluate whether each city
exhibited unambiguous lightning enhancement. Glass's delta effect size is a statistical method for
quantifying the magnitude of the difference between a treatment group (here, an urban area) and
a control (nearby natural areas). To calculate Glass’s delta, we divided the mean difference in
lightning strike frequency (lightning strikes km™ yr'') between urban and natural areas by the
standard deviation of lightning strike frequency of the associated natural area. Glass’s delta was
preferable to other effect size metrics because the much larger sample size of the natural areas,
relative to the cities, results in a more precise estimate of standard deviation (Fig. S2a-c). Effect
sizes >(0.5 were considered significant (Cohen, 1992). We confirmed that 218 of the 228 cities
with effect sizes >0.5 were also identified as significant using a simulation test based on random
pulls from the natural area associated with each city. Specifically, we calculated the mean
lightning strike frequency for random pulls of natural area cells (10,000 repetitions with the
number of resampled natural cells equal to the number of urban cells). We confirmed that <5%
of repetitions had an average lightning frequency equal to or greater than the observed lightning
frequency in the urban area. We considered the 218 cities identified with both approaches as
those exhibiting unambiguous lightning enhancement. This conservative approach likely
eliminated false positives while potentially producing some false negatives.

The detection efficiency of ENTLN likely exhibits unquantifiable spatial biases.
However, the spatial grain of these biases is much larger than that of our city and natural area
measurements (150 km radius) because individual ENTLN sensors detect lightning over
distances >1000 km. Moreover, changes in network sensitivity over time will be experienced
similarly by all city-specific pixels because of their proximity. We measured the strength of
urban enhancement by dividing a city's average lightning strike frequency by the average
lightning strike frequency in its associated natural area (hereafter, urban-natural strike ratio).
Accordingly, this approach is insensitive to possible differences in detection efficiency among
cities or over time.

2.4.Climatological, topographical, and geographic covariates

We used spatially explicit, gridded data products to aggregate climatological,
topographical, and geographic covariates for each 0.05 x 0.05-degree cell (Table 2). We assigned
each 0.05 x 0.05 cell the proportional average of overlapping sulfur dioxide (SOz) values because
of the mismatch in resolution. All other data were downscaled or upscaled to the same spatial
grain as the lightning data (Table 2). Climate and pollution data were aggregated monthly. The
temperature metrics captured monthly averages of daily trends and were advantageous because
of their broad spatial coverage and fine resolution, but they did not capture detailed within-day
variation, which could influence both rainfall and lightning activity (Sheperd et al., 2015). All
other variables had a single value because they did not change during the study period (e.g.,
topography) or data were limited (e.g., population).
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We used these spatially explicit datasets to calculate potential predictors of variation in
the lightning enhancement effect. For each variable described in Table 2, we extracted its
average value for each urban area during the months retained in the dataset (i.e., months with > 1
lightning strike km™ yr'!"). We calculated annual and cumulative averages of those values from
2013-2020. The only exception was regional lightning frequency, which equaled the mean
lightning strike frequency across all natural and urban cells (i.e., the region). To assess the
density of urbanization within each city, we calculated the percentage of land covered by natural
areas within the urban cells of each city (hereafter, greenspace). We also calculated the local
effect of urbanization on temperature, precipitation, and all aerosol variables. Specifically, we
divided the average values of these predictors in the urban areas by their average across all cells
in the associated natural areas, and we referred to these variables as the “variable” ratio (e.g.,
temperature ratio or precipitation ratio). This allowed us to determine if lightning enhancement
was directly associated with the effect of urbanization on local climate and pollution, such as the
urban heat island effect (i.e., urban temperature divided by natural area temperature). We log-
transformed overdispersed variables before analysis (12 of the 17 fixed-effect predictors were
transformed; average temperature, local precipitation, total elevation, absolute latitude, and
greenspace were not transformed). Because the annual data for aerosol depth and urban-natural
strike ratio included 3 and 4 zero values, respectively, we added half the smallest positive value
(0.0020 for aerosol optical depth and 0.0446 for urban-natural strike ratio) to each variable
before transformation.

2.5.Model averaging

We used Akaike Information Criterion (AIC) model averaging to explore spatiotemporal
variation in the likelihood and magnitude of the lightning enhancement effect. This statistical
method fits all possible models from the set of predictors and then blends predictions from the
best-performing candidate models based on their goodness-of-fit (i.e., AIC scores), ultimately
identifying fixed effects that consistently explain variation in the response variable. To evaluate
the probability of enhancement, we constructed a generalized linear model with a binary
response variable indicating whether there was lightning enhancement (determined by a
threshold of Glass' delta > 0.5). This model included a single value for each city with 17
predictors averaged across all years (349 observations; Table 2). To explore spatiotemporal
variation in enhancement strength, we assessed how the urban-natural strike ratio varied among
cities with unambiguous enhancement using annual data from 2013-2018 (218 cities with 1,217
city-year observations). Specifically, we constructed a mixed-effect linear model (fitted with the
Imer function of the Ime4 package; Bates et al., 2015) with an urban-natural strike ratio as the
response variable, a random effect for the city (accounting for the annual lightning variation of
each city), and the same collection of 17 fixed-effect predictors (Table 2; representing the linear
relationships between these predictors and the response variable). We used unique annual values
for all variables with yearly data (i.e., all lightning, climate, and pollution variables). We note
that some variables were omitted from this final set of predictors (i.e., mean maximum
temperature, mean minimum temperature, the ratios between urban and natural areas for these
two variables, and the total concentration of NOz) because of collinearity, as determined by
Pearson correlations (R > 0.7) and variance inflation factors (VIF > 5).
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We fitted models for every possible combination of these terms (function dredge). Then,
we averaged all models with AICc values within 4 of the lowest AICc values (function
model.avg in package MuMIn; Barton, 2010). We scaled all variables (Z-transformation) to
allow direct comparison of coefficients, and we identified significant predictors as model-
averaged coefficients with 95% confidence intervals that did not overlap with zero. Additionally,
we performed forward model selection and assessed whether including pairwise interaction
terms between the significant predictors decreased model AIC. We verified the appropriate
model fit and the need for all transformations by evaluating model residuals (e.g., Q-Q plots). All
analyses were conducted in the R statistical environment (R Core Team, 2013).

3. Results

Among the 349 cities with > 1 lightning strike km™ yr'!, 218 exhibited unambiguous
lightning enhancement based on the criteria used in this study (Fig. 1a-b). The likelihood of
exhibiting unambiguous lightning enhancement increased with increasing regional lightning
strike frequency, stronger urban heat island effects, higher precipitation ratios (i.e., local
precipitation divided by natural area precipitation), larger distance to water bodies, and lower
elevation (Fig. 2, Fig. 3a-e, Table S1, Table S3). However, the likelihood of enhancement was
not associated with average temperature, local precipitation, pollution, other topographic and
geographic variables, or any metrics of urbanization. There were no interactions among the
significant predictors identified with model averaging.

The effects of lightning enhancement were particularly strong in some cities. Urban
lightning strike frequency was more than double nearby natural areas in 46.8% of cities with
enhancement (102 of 218), with a maximum of 10 times more lightning strikes in the urban area
of Baoding, China, compared to its natural surroundings in 2020 (16.2 vs. 1.6 lightning strikes
km yr'! in its urban and natural area, respectively; Fig. 2f). Among cities with significant
lightning enhancement, the urban-natural strike ratio (i.e., the magnitude of enhancement)
increased with higher regional lightning strike frequency, strong urban heat island effects, higher
precipitation ratios, larger urban areas, and at lower latitudes. However, the strength of urban
lightning enhancement did not change with pollution, other climate and topographic variables, or
other urban characteristics (Fig. 2; Fig. S3a-d, Table S1, Table S3).

The effects of higher precipitation ratios (i.e., urban precipitation relative to their natural
areas) and urban area were modified by interactions with other variables (Fig. S4a-c, Table S1,
Table S3). The impact of increased precipitation ratios on the strength of lightning enhancement
was greater in regions with higher overall lightning strike frequency and among cities located in
higher latitudes. By contrast, the effect of urban area on the strength of lightning enhancement
was lessened in regions with high lightning strike frequency. There were no significant
interactions among other predictors.

4. Discussion

Here, we provide the first global assessment of urban lightning enhancement and its
drivers. Increased local lightning strike frequency occurred in at least 218 major cities
worldwide, with extremely strong effects in a subset of those cities. However, we also show that
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not all urban areas had detectable lightning enhancement effects. The results indicate that urban
heat island effects disproportionately influence lightning enhancement, potentially by altering
storm activity. These patterns improve our understanding of how cities change local climate and
highlight potential avenues for mitigation.

The results of this study support the prediction that urban heat island effects influence
lightning enhancement; however, we found no evidence that pollution increases lightning strike
frequency in urban areas. Our approach could underestimate the cumulative effects of pollution
by ignoring lightning enhancement in nearby natural areas. Nonetheless, when considering
lightning enhancement over cities themselves, our global analysis effectively separates the
contributions of many varied factors, revealing that urban heat island effects are stronger and
more consistent than the effects of pollution. Urban heat island effects can disrupt atmospheric
stability, leading to thunderstorms due to the increased convection of air masses (Naccarato et
al., 2003). Because urban heat island effects are dependent on urban design, efforts to reduce
urban heat islands via shifts in urban planning (e.g., green roofs, building orientation, or
construction materials; Shahmohamadi et al., 2010; Changnon, 1992; Shepherd et al., 2015) may
also reduce lightning enhancement. Unraveling the mechanisms underlying urban heat island
effects on lightning enhancement requires a detailed exploration of the physical processes of
lightning initiation.

Both regional lightning strike frequency and the differences in precipitation between
urban and surrounding natural areas shape lightning enhancement patterns. The effect of regional
lightning strike frequency on lightning enhancement suggests that urbanization primarily
amplifies lightning frequency where it already occurs rather than creating lightning where it is
uncommon. Additionally, the higher rates of lightning enhancement among cities that also
exhibited higher precipitation ratios (presumably caused by anthropogenic factors such as urban
aerosols; Shepherd et al., 2015), indicate that urbanization could increase lightning strike
frequency, in part, by producing more or stronger storms (Bornstein & Lin, 2000; Baik et al.,
2001; Rozoff et al., 2003; Wang, 2005; Van den Heever ef al., 2006; Martins, 2009; Thielen et
al., 2000). Our metric of increased precipitation ratios does not directly measure convection, but
it likely captures differences in convective rainfall and overall storm activity. We need further
investigation into urbanization, lightning, and storm formation to understand the processes
underlying these relationships.

Aspects of geography, topography, and urbanization also influenced lightning
enhancement. These effects suggest that large, lowland cities in tropical regions are the most
susceptible to strong lightning enhancement effects. Predictions of future urbanization suggest an
increased number of large cities in tropical areas (Gupta, 2002), many of which will be at low
elevations. Thus, these cities will be particularly likely to produce strong lightning enhancement
effects. Cities at low elevations typically have higher temperatures than high-elevation cities,
which may exacerbate urban heat island effects on lightning enhancement. Counter to our
expectations, coastal cities exhibit less lightning enhancement than inland cities. One possible
explanation is that coastal cities exhibit less temperature variation than inland cities due to the
thermal buffering of the ocean (Pamarthi, 2019), and fast temperature changes (which were not
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captured in this study) could produce both more thunderstorms and stronger urban heat island
effects (Lal & Pawar, 2011). However, this effect was particularly weak and was not apparent in
the bivariate analyses or the enhancement strength. Urban planning to reduce urban heat island
effects, which has many other benefits, could also reduce the likelihood of lightning
enhancement among these growing cities.

The results of this study suggest at least three avenues for further research that would
improve our understanding of anthropogenic effects on lightning frequency and distribution.
First, large-scale studies of local-scale atmospheric phenomena across more cities could validate
the global-scale trends of lightning enhancement in our study (Table 1). Second, the effects of
urbanization on lightning characteristics (e.g., the fraction of flashes that are ground strikes and
the intensity of individual discharges) remain unknown. Finally, examining lightning
enhancement among smaller-scale geographic features (e.g., the relevance of urban greenspace)
and beyond the boundaries of urban limits (e.g., downwind effects of urbanization) could inform
urban planning decisions. Ultimately, continued monitoring will be crucial to understanding how
humans shape regional atmospheric phenomena and how those effects will respond to global
change.
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Table 1. Review of studies investigating the urban lightning enhancement effect. "Response" is
the response variable used to measure lightning enhancement reported as lightning strike
frequency (km), total lightning (in-cloud lightning and lightning strikes, km), Z-ratio
(lightning strikes/total lightning), or lightning potential index (LPI, J kg™). "Predictor(s)" refers
to the variables that significantly predicted variation in the response reported as PM10 and
PM2.5 (Particulate Matter less than 10 um and 2.5 um in diameter, respectively), SOz (sulfur
dioxide concentration), UHI (Urban Heat Island effect), AOD (Aerosol Optical Depth), CAPE
(Convective Available Potential Energy), or SRH (surface relative humidity). "Significant
enhance.” is the fraction of cities that exhibited significant enhancement within each study.

City or region Response Slgglﬁcant Significant Reference
predictor(s) enhance.
Sdo Paulo and Lightning strike Naccarato et
nearby cities (Brazil) frequency PM10, UHI 33 al. (2003)
Manaus (Brazil) Lightning strike Pinto et al.
frequency UHI i (2013)
Pearl River Delta LPI, Lightning AOD U1 Wang et al.
megacity (China) strike frequency (2011)
Beijing (China) Lightning strike Alr temperature, Wang et dl.
frequenc SO2, NO2, PM2.5, 1/1 (2021b)
q Y and PM10
Chengdu, Wuhan, Lightning strike CAPE, SRH, and 33 Wang et al.
and Jinan (China) frequency, Z-ratio AOD (2021a)
Delhi, Mumbai, Lal and Pawar
Bengaluru, and Total lightning AOD, UHI 1/4 (2011)
Kolkata (India)
Tel Aviv (Israel) Aerosol
) ) concentration, Lynn et al.
Total lightning AOD, PM25, 1/1 (2020)
PM10
Seoul (South Korea) Lightning strike PM10 and SO U1 Kar et al.
frequency (2007)
Busan, Incheon,
Daegu, Taejon and Lightning strike Kar et al.
Gwangju (South frequency PM10 and 50> 313 (2009)
Korea)




559

Taipei (Taiwan) Lightning strike PM10 and SO» U1 Kar and Liou
frequency (2019)
Central Spain Lightning strike Population, urban Soriano and
ratio size, PM10 and 7/9 de Pablo
(upwind/downwind) SO2 (2002)
Midwestern (USA) Lightning strike Pollution, Westcott
12/16
frequency topography (1995)
Houston, Texas Lightning strike Steiger et al.
(USA) frequency PM10 and UHI e (2002)
Northern Georgia Distances from the
(USA) Lightning strike nearest coal power 1 Strikas and
frequency plant and Elsner (2013)
highways
Charlotte-Atlanta Urban area, Burke and
megaregion (USA) Total lightning density, and 2/3 Shepherd
orientation. (2023)
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Table 2. Predictor variables explain the variation of lighting enhancement along with their measurement method, units, and source.
All variables were upscaled or downscaled to the spatial grain of the lightning frequency data.

Temporal
Group Variable Units resolution Spatial scale Data type Source
(years covered)
Regional lightning . 9 1 Monthly total Electrical ground Liu and Heckman,
frequency Strikes km'™ year (2013-2020) 0.05x0.05 sensor network 2012
Average air
temperature K
Maximum air Monthly averages
Climate (at 2 meters above the of daily data 0.05x 0.05 Karger et al., 2017
temperature surface from ERAS5 (2013-2019) Reanalysis of
Minimum air data) weather station data
temperature
L Monthly total
2 -1
Local precipitation kg m™ month (2013-2018) 0.05x 0.05 Karger et al., 2017
Total aerosols um of particulates 0.1x0.1 Kaufman et al., 2002
scaled from 0 to 1
Satellite sensors
. billion molecules Monthly averages
Pollution NO2 mm-2 (2013-2020) 0.1x0.1 Krotkov et al., 2016
SO: ug m 0.625% 0.5 Reanalysis of Gelaro et al., 2017
satellite data
Topography . Single 3 arcsec . .
& Geography Elevation m measurement (~ 90 m) Satellite sensors Solargis, 2019
(2018)
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Distance to water

Single

Flanders Marine

bodies km measurement 0.1x0.1 Satellite sensors Institute, 2021
(2021)
Single .
Urban area km? measurement 0.05x 0.05 Satellite sensors Friedl and Sulla-
Menashe, 2019
(2021)
Single
Urban chars. Population 1,000s of inhabitants measurement - Population census UN, 2018
(2018)
Single .
Greenspace % of natural area measurement 0.05x0.05 Satellite sensors Friedl and Sulla-
(2021) Menashe, 2019
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Fig. 1. The global distribution of cities (> 300,000 inhabitants) and variation in the strength of
urban lightning enhancement are split approximately between the western hemisphere (panel a)
and the Eastern hemisphere (panel b). Black points represent cities with low regional lightning
strike frequencies (<1 strike km-2 yr-1), and empty circles represent cities without urban
lightning enhancement (<0.5 Glass' delta). Colored points represent cities with significant
lightning enhancement (>0.5 Glass' delta) shaded by the strength of enhancement (i.e., urban-
natural strike ratio).
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573  Fig. 2. Model averaged relationships between the likelihood and magnitude of lightning

574  enhancement (i.e., the urban-natural strike ratio) with the different explanatory variables. The
575  black dots are the estimated value of the predictors, the gray bars are their standard error, and the
576  black lines depict their 95% confidence intervals. If the 95% confidence interval for a given term
577  overlaps with the zero line, then that indicates that the modeled effect was not significantly

578 different from zero.
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Fig. 3. Variation in lightning enhancement with significant predictors from the AIC model
averaging analysis (panel a: regional lightning strike frequency (km yr''); panel b: urban heat
island effect; panel c: precipitation ratio; panel d: total elevation (masl); panel e: distance to
water bodies). The regression lines represent the model averaging slopes for each predictor and
lightning enhancement. The shaded portions represent the 95% confidence interval of each
regression line. Lightning enhancement was binned into quantiles to allow visualization of model
fit to the binary response variable. Panel f shows a density plot representing the probability
density of the urban-natural strike ratio for all cities and cities with unambiguous lightning
enhancement. The dashed line represents the value at which urban and natural lightning strike
frequency equals.



