

1 **Title: Effects of urbanization on cloud-to-ground lightning strike frequency: a global**
2 **perspective**

3 J. Pablo Narvaez^{1,2*}, Stephen P. Yanoviak^{1,3}, Phillip M. Bitzer⁴, Jeffrey C. Burchfield⁵, Evan M.
4 Gora^{1,6}

5 ¹ Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Panama

6 ² Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA

7 ³ Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY,
8 40292, USA

9 ⁴ Department of Atmospheric and Earth Science, The University of Alabama in Huntsville,
10 Huntsville, AL, 35899, USA

11 ⁵ Earth System Science Center, The University of Alabama in Huntsville, Huntsville, AL, 35899,
12 USA

13 ⁶ Cary Institute of Ecosystem Studies, Millbrook, New York, NY, 12545, USA

14 *Corresponding author, email: pablo.narvaez@marquette.edu

15 **Key Points**

- 16 • Urban lightning enhancement is common and often very strong, but not all cities exhibit
17 enhancement.
- 18 • Lightning enhancement is influenced by urban heat island effects, enhanced local
19 precipitation, and regional lightning frequency.
- 20 • Likelihood and strength of enhancement were marginally increased in larger cities at
21 lower latitudes, elevations, and distances to water.

24 **Abstract**

25 Urbanization tends to increase local lightning frequency (i.e., the "lightning enhancement" effect). Despite many urban areas showing lightning enhancement, the prevalence of these effects is unknown, and the drivers underlying these patterns are poorly quantified. We conducted a global assessment of cloud-to-ground lightning flashes (lightning strikes) across 349 cities to evaluate how the likelihood and magnitude of lightning enhancement vary with geography, climate, air pollution, topography, and urban development. The likelihood of exhibiting lightning enhancement increased with higher temperature and precipitation in urban areas relative to their natural surroundings (i.e., urban heat islands and elevated urban precipitation), higher regional lightning strike frequency, greater distance to water bodies, and lower elevations. Lightning enhancement was stronger in cities with conspicuous heat island and elevated urban precipitation effects, higher lightning strike frequency, larger urban areas, and lower latitudes. The particularly strong effects of elevated urban temperature and precipitation indicate that these are dominant mechanisms by which cities cause local lightning enhancement.

38 **Keywords:** lightning enhancement, urban systems, remote sensing, urban heat island, model
39 averaging

40

41 **1. Introduction**

42 Lightning, particularly discharges that strike the ground (i.e., cloud-to-ground lightning),
43 is an agent of death and destruction in natural and anthropogenic systems. Local lightning
44 frequency increases with higher temperatures, greater fine aerosol concentrations, proximity to
45 water bodies, and the presence of tall, isolated objects (Westcott, 1995; Steiger *et al.*, 2002;
46 Naccarato *et al.*, 2003; Table 1). Many cities provide this exact combination of ingredients, and
47 local lightning frequency tends to be higher in urban areas – a phenomenon referred to as the
48 lightning enhancement effect (Orville *et al.*, 2001; Naccarato *et al.*, 2003; Table 1). However,
49 evidence for lightning enhancement is limited to a relatively small number of cities, and the
50 mechanisms are either unclear or unknown in most cases. Fundamentally, because these studies
51 compare one or a few cities to nearby landscapes that differ in a multitude of ways, the resulting
52 patterns are confounded by multiple variables, including both measured and unmeasured factors.
53 Thus, this study aimed to overcome these limitations by exploring global variation in lightning
54 enhancement to determine (1) how widespread is the positive effect of urbanization on regional
55 lightning strike frequency, and (2) what characteristics of cities are most strongly associated with
56 variation in the lightning enhancement effect.

57 Lightning enhancement is linked to air pollution and elevated temperatures associated
58 with urban areas (Table 1). Anthropogenic and naturally derived aerosols (e.g., sulfate and
59 nitrate aerosol products from the combustion of fossil fuels, and sea spray aerosols or volcanic
60 ash, respectively) can alter within-cloud processes to increase lightning frequency (Twomey *et*
61 *al.*, 1984; Yau & Rogers, 1996; Stolz, 2016; Thornton *et al.*, 2017). Similarly, the urban heat
62 island effect (i.e., the tendency for cities to be hotter than nearby natural environments; Oke,
63 1982) can increase convection, thereby increasing lightning activity (Bornstein & Lin, 2000).
64 Although lightning enhancement is often statistically linked to aerosol concentrations or urban
65 heat islands (9 of 12 studies for aerosols and 3 of 4 studies for urban heat islands; Table 1;
66 Soriano & de Pablo, 2002; Kar *et al.*, 2007, 2009), these factors are inherently confounded with
67 other aspects of urbanization. Associations with these factors are unknown for most cities
68 lacking lightning enhancement, perhaps due to the limited number of cities studied and potential
69 biases in city selection (e.g., 100% of single city studies reported enhancement, whereas 76.7%
70 of cities exhibited enhancement in multi-city studies; Table 1). This study addresses this problem
71 by examining a large number of cities spanning wide variation in pollution, heat island effects,
72 and lightning enhancement.

73 Lightning enhancement also is influenced by geography, topography, and associated
74 climatic patterns. On a global scale, lightning frequency is highest near the equator, where
75 temperatures and rainfall rates also tend to be high (Christian *et al.*, 2003). At more local
76 geographic scales, lightning frequency tends to be high near water bodies (Song *et al.*, 2004;
77 Freitas *et al.*, 2007; Holle & Murphy, 2017), presumably due to abundant moisture and higher
78 concentrations of fine particulate aerosols. Similarly, lightning frequency is particularly high in
79 the foothills of some montane regions (Mushtaq *et al.*, 2018), indicating that topography
80 influences lightning activity. These factors potentially interact with temperature and air pollution
81 near urban centers to modulate the likelihood and magnitude of the lightning enhancement effect.

82 However, the contribution of some of these factors (e.g., urban topography, population) is
83 typically overlooked in urban lightning research (Burke & Shepherd, 2023).

84 Apart from these mechanistic drivers, the best predictors of urban lightning enhancement
85 effects may be metrics of urbanization. Ultimately, the lightning enhancement effect is linked to
86 urban development and its impact on the local climate. Thus, critical metrics of urban
87 development, such as urban area, population size, or the density of urbanization (i.e., the extent
88 of natural cover within the urban areas), likely predict variation in the lightning enhancement
89 effect (e.g., Kar & Liou 2019; Soriano & Pablo, 2002). However, these relationships are
90 untested.

91 Here, we quantify the distribution of urban lightning enhancement among 349 cities
92 worldwide and explore the factors influencing the magnitude of enhancement. Specifically, we
93 evaluate how urbanization influences lightning frequency within the boundaries of each city.
94 Based on existing data and hypotheses described above, we predicted that urban lightning
95 enhancement is more common and stronger where (1) urban heat islands are hotter, (2) air has
96 higher aerosols and particulate concentrations associated with pollution, (3) urban areas are
97 closer to water bodies, and (4) cities cover more area or have greater populations. This study is
98 unique in scope and scale because it captures global variation in urbanization and its effects on
99 lightning enhancement. This approach does not measure physical processes within individual
100 cities. However, it is unprecedented in its scale and, thus, its statistical power to separate the
101 contributions of potentially confounding effects on lightning enhancement.

102 2. Methods

103 2.1. Lightning strike data

104 We quantified the urban lightning enhancement effect using Earth Networks Total
105 Lightning Network (ENTLN) data. ENTLN continuously detects and locates lightning using
106 each discharge's time and signal amplitude (Liu & Heckman, 2012); here, we focus on the
107 ENTLN-classified cloud-to-ground flashes (or a group of strokes), which we call lightning
108 strikes. We omitted lightning strikes <10 kA in magnitude to avoid misclassification with in-
109 cloud lightning (Cummins *et al.*, 1998). We calculated monthly mean lightning strike frequency
110 (lightning strikes $\text{km}^{-2} \text{yr}^{-1}$) on a 0.05×0.05 -degree grid (ca. 5×5 km) extending from 60°N to
111 60°S latitude for 2013-2020.

112 2.2. Urban and natural areas

113 We used the 2018 Moderate Resolution Imaging Spectroradiometer (MODIS) land cover
114 data (MCD12C1 Version 6; Friedl & Sulla-Menashe, 2019) on a 0.05-degree grid to identify
115 urbanized land and its surrounding natural areas. The operational definition of a city used in this
116 study was $>300,000$ inhabitants, based on the definition of a city in the UN World Urbanization
117 Prospects (UN, 2018). We did not differentiate among various definitions of urban areas (e.g.,
118 city proper, urban agglomeration, metropolitan area), which likely introduces additional
119 variation. Regardless, these were the best data available and suitable for capturing broad trends
120 in population size. We omitted only five cities by limiting the data to within 60°N and 60°S
121 latitude. Additionally, we did not evaluate the increase or decrease in the urban area during the

122 2013-2020 period. We assumed that the changes in area in most cities in the last decade are not
123 significant enough to influence the lightning enhancement effect. Spatially, we defined cities as
124 clusters of 0.05 x 0.05-degree cells with more than 50% urbanization overlapping the city center,
125 defined by the United Nations World's Cities in 2018–Data Booklet (UN, 2018), or contiguous
126 with other urban cells. Because the urbanization footprint of a city is often a mosaic of developed
127 and undeveloped space (e.g., water bodies), we also included any cell with >50% urban area that
128 was within two cells of the city center or contiguous city area (no cells of <50% urban area were
129 included in a city). These adjacent and nearby urban cells collectively represented the urban area
130 for each city (Fig. S1a-c). This process collapsed 22 pairs of cities into a single urban center
131 (e.g., Dallas/Ft. Worth, Philadelphia/Trenton). We identified 884 cities with >300,000
132 inhabitants and at least one cell comprising >50% urban area.

133 We used MODIS to identify *natural areas* surrounding each city. Specifically, we
134 defined natural areas as any combination of non-modified MODIS terrestrial layers: mixed
135 forest, evergreen needleleaf forest, evergreen broadleaf forest, deciduous needleleaf forest,
136 deciduous broadleaf forest, woody savannas, savannas, grasslands, closed shrublands, open
137 shrublands, permanent wetlands, permanent snow, and barren land (excluding water bodies,
138 urban area, and croplands) within 150 km of the boundaries of a city. We chose a 150 km radius
139 because it is ca. 1/10 of the detection distance of this sensor system and therefore should
140 experience limited bias in detection efficiency across its area. Additionally, a buffer of 150 km
141 captures sufficient area to estimate non-urban lightning frequency, and this radius was previously
142 used to assess climatic differences between urban and non-urban pairs (e.g., urban island effect
143 and pollution; He et al., 2007; Mendez-Espinosa et al., 2019). When a cell was within 150 km of
144 multiple cities, we associated that natural area cell with the closest city. To limit edge effects, we
145 removed all natural areas within two cells (ca. 10 km) of any cell with >50% urban area (Fig.
146 S1d). We only retained cities in our dataset if they had at least 100 km² of associated natural area
147 (691 cities qualified; Fig. S2c). The natural areas capture typical lightning frequency of each
148 region with limited direct influence of urbanization, functioning as a reference point for
149 evaluating the effect of each urban area.

150 2.3. Calculating lightning frequency

151 We calculated each pixel's average (i.e., the mean) annual lightning frequency using only
152 months with meaningful lightning activity. We removed all cities with < 1 lightning strike km⁻²
153 yr⁻¹ in their associated natural areas. We also removed months from individual cities if their
154 natural areas exhibited < 1 lightning strike km⁻² yr⁻¹ in those months (328 cities removed). This
155 approach was necessary for two reasons. First, we lacked the statistical power to test for urban
156 enhancement when lightning frequency is low because lightning frequency is strongly
157 overdispersed and within-city sample sizes were small. Second, removing low-frequency months
158 avoided spurious effects resulting from uneven seasonality patterns (e.g., including all months
159 would produce a latitudinal effect relating to season rather than the strength of urban
160 enhancement). Additionally, we removed months and cities (8 cities in total) lacking data for
161 their covariates (e.g., precipitation data was not available for 2019 and 2020, and the aerosol

162 optical depth sensor could not make its measurement in certain areas during the study).
163 Following these criteria, we ultimately included 349 cities in the analyses.

164 We used Glass's delta effect size and a simulation approach to evaluate whether each city
165 exhibited unambiguous lightning enhancement. Glass's delta effect size is a statistical method for
166 quantifying the magnitude of the difference between a treatment group (here, an urban area) and
167 a control (nearby natural areas). To calculate Glass's delta, we divided the mean difference in
168 lightning strike frequency (lightning strikes $\text{km}^{-2} \text{ yr}^{-1}$) between urban and natural areas by the
169 standard deviation of lightning strike frequency of the associated natural area. Glass's delta was
170 preferable to other effect size metrics because the much larger sample size of the natural areas,
171 relative to the cities, results in a more precise estimate of standard deviation (Fig. S2a-c). Effect
172 sizes ≥ 0.5 were considered significant (Cohen, 1992). We confirmed that 218 of the 228 cities
173 with effect sizes > 0.5 were also identified as significant using a simulation test based on random
174 pulls from the natural area associated with each city. Specifically, we calculated the mean
175 lightning strike frequency for random pulls of natural area cells (10,000 repetitions with the
176 number of resampled natural cells equal to the number of urban cells). We confirmed that $< 5\%$
177 of repetitions had an average lightning frequency equal to or greater than the observed lightning
178 frequency in the urban area. We considered the 218 cities identified with both approaches as
179 those exhibiting unambiguous lightning enhancement. This conservative approach likely
180 eliminated false positives while potentially producing some false negatives.

181 The detection efficiency of ENTLN likely exhibits unquantifiable spatial biases.
182 However, the spatial grain of these biases is much larger than that of our city and natural area
183 measurements (150 km radius) because individual ENTLN sensors detect lightning over
184 distances > 1000 km. Moreover, changes in network sensitivity over time will be experienced
185 similarly by all city-specific pixels because of their proximity. We measured the strength of
186 urban enhancement by dividing a city's average lightning strike frequency by the average
187 lightning strike frequency in its associated natural area (hereafter, *urban-natural strike ratio*).
188 Accordingly, this approach is insensitive to possible differences in detection efficiency among
189 cities or over time.

190 2.4. *Climatological, topographical, and geographic covariates*

191 We used spatially explicit, gridded data products to aggregate climatological,
192 topographical, and geographic covariates for each 0.05 x 0.05-degree cell (Table 2). We assigned
193 each 0.05 x 0.05 cell the proportional average of overlapping sulfur dioxide (SO_2) values because
194 of the mismatch in resolution. All other data were downscaled or upscaled to the same spatial
195 grain as the lightning data (Table 2). Climate and pollution data were aggregated monthly. The
196 temperature metrics captured monthly averages of daily trends and were advantageous because
197 of their broad spatial coverage and fine resolution, but they did not capture detailed within-day
198 variation, which could influence both rainfall and lightning activity (Sheperd et al., 2015). All
199 other variables had a single value because they did not change during the study period (e.g.,
200 topography) or data were limited (e.g., population).

201 We used these spatially explicit datasets to calculate potential predictors of variation in
202 the lightning enhancement effect. For each variable described in Table 2, we extracted its
203 average value for each urban area during the months retained in the dataset (i.e., months with > 1
204 lightning strike $\text{km}^{-2} \text{yr}^{-1}$). We calculated annual and cumulative averages of those values from
205 2013-2020. The only exception was regional lightning frequency, which equaled the mean
206 lightning strike frequency across all natural and urban cells (i.e., the region). To assess the
207 density of urbanization within each city, we calculated the percentage of land covered by natural
208 areas within the urban cells of each city (hereafter, *greenspace*). We also calculated the local
209 effect of urbanization on temperature, precipitation, and all aerosol variables. Specifically, we
210 divided the average values of these predictors in the urban areas by their average across all cells
211 in the associated natural areas, and we referred to these variables as the “variable” ratio (e.g.,
212 temperature ratio or precipitation ratio). This allowed us to determine if lightning enhancement
213 was directly associated with the effect of urbanization on local climate and pollution, such as the
214 urban heat island effect (i.e., urban temperature divided by natural area temperature). We log-
215 transformed overdispersed variables before analysis (12 of the 17 fixed-effect predictors were
216 transformed; average temperature, local precipitation, total elevation, absolute latitude, and
217 *greenspace* were not transformed). Because the annual data for aerosol depth and urban-natural
218 strike ratio included 3 and 4 zero values, respectively, we added half the smallest positive value
219 (0.0020 for aerosol optical depth and 0.0446 for urban-natural strike ratio) to each variable
220 before transformation.

221 2.5. Model averaging

222 We used Akaike Information Criterion (AIC) model averaging to explore spatiotemporal
223 variation in the likelihood and magnitude of the lightning enhancement effect. This statistical
224 method fits all possible models from the set of predictors and then blends predictions from the
225 best-performing candidate models based on their goodness-of-fit (i.e., AIC scores), ultimately
226 identifying fixed effects that consistently explain variation in the response variable. To evaluate
227 the probability of enhancement, we constructed a generalized linear model with a binary
228 response variable indicating whether there was lightning enhancement (determined by a
229 threshold of Glass' delta ≥ 0.5). This model included a single value for each city with 17
230 predictors averaged across all years (349 observations; Table 2). To explore spatiotemporal
231 variation in enhancement strength, we assessed how the urban-natural strike ratio varied among
232 cities with unambiguous enhancement using annual data from 2013-2018 (218 cities with 1,217
233 city-year observations). Specifically, we constructed a mixed-effect linear model (fitted with the
234 *lmer* function of the *lme4* package; Bates et al., 2015) with an urban-natural strike ratio as the
235 response variable, a random effect for the city (accounting for the annual lightning variation of
236 each city), and the same collection of 17 fixed-effect predictors (Table 2; representing the linear
237 relationships between these predictors and the response variable). We used unique annual values
238 for all variables with yearly data (i.e., all lightning, climate, and pollution variables). We note
239 that some variables were omitted from this final set of predictors (i.e., mean maximum
240 temperature, mean minimum temperature, the ratios between urban and natural areas for these
241 two variables, and the total concentration of NO_2) because of collinearity, as determined by
242 Pearson correlations ($R > 0.7$) and variance inflation factors ($\text{VIF} > 5$).

243 We fitted models for every possible combination of these terms (function *dredge*). Then,
244 we averaged all models with AICc values within 4 of the lowest AICc values (function
245 *model.avg* in package MuMin; Barton, 2010). We scaled all variables (Z-transformation) to
246 allow direct comparison of coefficients, and we identified significant predictors as model-
247 averaged coefficients with 95% confidence intervals that did not overlap with zero. Additionally,
248 we performed forward model selection and assessed whether including pairwise interaction
249 terms between the significant predictors decreased model AIC. We verified the appropriate
250 model fit and the need for all transformations by evaluating model residuals (e.g., Q-Q plots). All
251 analyses were conducted in the R statistical environment (R Core Team, 2013).

252 3. Results

253 Among the 349 cities with ≥ 1 lightning strike $\text{km}^{-2} \text{yr}^{-1}$, 218 exhibited unambiguous
254 lightning enhancement based on the criteria used in this study (Fig. 1a-b). The likelihood of
255 exhibiting unambiguous lightning enhancement increased with increasing regional lightning
256 strike frequency, stronger urban heat island effects, higher precipitation ratios (i.e., local
257 precipitation divided by natural area precipitation), larger distance to water bodies, and lower
258 elevation (Fig. 2, Fig. 3a-e, Table S1, Table S3). However, the likelihood of enhancement was
259 not associated with average temperature, local precipitation, pollution, other topographic and
260 geographic variables, or any metrics of urbanization. There were no interactions among the
261 significant predictors identified with model averaging.

262 The effects of lightning enhancement were particularly strong in some cities. Urban
263 lightning strike frequency was more than double nearby natural areas in 46.8% of cities with
264 enhancement (102 of 218), with a maximum of 10 times more lightning strikes in the urban area
265 of Baoding, China, compared to its natural surroundings in 2020 (16.2 vs. 1.6 lightning strikes
266 $\text{km}^{-2} \text{yr}^{-1}$ in its urban and natural area, respectively; Fig. 2f). Among cities with significant
267 lightning enhancement, the urban-natural strike ratio (i.e., the magnitude of enhancement)
268 increased with higher regional lightning strike frequency, strong urban heat island effects, higher
269 precipitation ratios, larger urban areas, and at lower latitudes. However, the strength of urban
270 lightning enhancement did not change with pollution, other climate and topographic variables, or
271 other urban characteristics (Fig. 2; Fig. S3a-d, Table S1, Table S3).

272 The effects of higher precipitation ratios (i.e., urban precipitation relative to their natural
273 areas) and urban area were modified by interactions with other variables (Fig. S4a-c, Table S1,
274 Table S3). The impact of increased precipitation ratios on the strength of lightning enhancement
275 was greater in regions with higher overall lightning strike frequency and among cities located in
276 higher latitudes. By contrast, the effect of urban area on the strength of lightning enhancement
277 was lessened in regions with high lightning strike frequency. There were no significant
278 interactions among other predictors.

279 4. Discussion

280 Here, we provide the first global assessment of urban lightning enhancement and its
281 drivers. Increased local lightning strike frequency occurred in at least 218 major cities
282 worldwide, with extremely strong effects in a subset of those cities. However, we also show that

283 not all urban areas had detectable lightning enhancement effects. The results indicate that urban
284 heat island effects disproportionately influence lightning enhancement, potentially by altering
285 storm activity. These patterns improve our understanding of how cities change local climate and
286 highlight potential avenues for mitigation.

287 The results of this study support the prediction that urban heat island effects influence
288 lightning enhancement; however, we found no evidence that pollution increases lightning strike
289 frequency in urban areas. Our approach could underestimate the cumulative effects of pollution
290 by ignoring lightning enhancement in nearby natural areas. Nonetheless, when considering
291 lightning enhancement over cities themselves, our global analysis effectively separates the
292 contributions of many varied factors, revealing that urban heat island effects are stronger and
293 more consistent than the effects of pollution. Urban heat island effects can disrupt atmospheric
294 stability, leading to thunderstorms due to the increased convection of air masses (Naccarato *et*
295 *al.*, 2003). Because urban heat island effects are dependent on urban design, efforts to reduce
296 urban heat islands via shifts in urban planning (e.g., green roofs, building orientation, or
297 construction materials; Shahmohamadi *et al.*, 2010; Changnon, 1992; Shepherd *et al.*, 2015) may
298 also reduce lightning enhancement. Unraveling the mechanisms underlying urban heat island
299 effects on lightning enhancement requires a detailed exploration of the physical processes of
300 lightning initiation.

301 Both regional lightning strike frequency and the differences in precipitation between
302 urban and surrounding natural areas shape lightning enhancement patterns. The effect of regional
303 lightning strike frequency on lightning enhancement suggests that urbanization primarily
304 amplifies lightning frequency where it already occurs rather than creating lightning where it is
305 uncommon. Additionally, the higher rates of lightning enhancement among cities that also
306 exhibited higher precipitation ratios (presumably caused by anthropogenic factors such as urban
307 aerosols; Shepherd *et al.*, 2015), indicate that urbanization could increase lightning strike
308 frequency, in part, by producing more or stronger storms (Bornstein & Lin, 2000; Baik *et al.*,
309 2001; Rozoff *et al.*, 2003; Wang, 2005; Van den Heever *et al.*, 2006; Martins, 2009; Thielen *et*
310 *al.*, 2000). Our metric of increased precipitation ratios does not directly measure convection, but
311 it likely captures differences in convective rainfall and overall storm activity. We need further
312 investigation into urbanization, lightning, and storm formation to understand the processes
313 underlying these relationships.

314 Aspects of geography, topography, and urbanization also influenced lightning
315 enhancement. These effects suggest that large, lowland cities in tropical regions are the most
316 susceptible to strong lightning enhancement effects. Predictions of future urbanization suggest an
317 increased number of large cities in tropical areas (Gupta, 2002), many of which will be at low
318 elevations. Thus, these cities will be particularly likely to produce strong lightning enhancement
319 effects. Cities at low elevations typically have higher temperatures than high-elevation cities,
320 which may exacerbate urban heat island effects on lightning enhancement. Counter to our
321 expectations, coastal cities exhibit less lightning enhancement than inland cities. One possible
322 explanation is that coastal cities exhibit less temperature variation than inland cities due to the
323 thermal buffering of the ocean (Pamarthi, 2019), and fast temperature changes (which were not

324 captured in this study) could produce both more thunderstorms and stronger urban heat island
325 effects (Lal & Pawar, 2011). However, this effect was particularly weak and was not apparent in
326 the bivariate analyses or the enhancement strength. Urban planning to reduce urban heat island
327 effects, which has many other benefits, could also reduce the likelihood of lightning
328 enhancement among these growing cities.

329 The results of this study suggest at least three avenues for further research that would
330 improve our understanding of anthropogenic effects on lightning frequency and distribution.
331 First, large-scale studies of local-scale atmospheric phenomena across more cities could validate
332 the global-scale trends of lightning enhancement in our study (Table 1). Second, the effects of
333 urbanization on lightning characteristics (e.g., the fraction of flashes that are ground strikes and
334 the intensity of individual discharges) remain unknown. Finally, examining lightning
335 enhancement among smaller-scale geographic features (e.g., the relevance of urban greenspace)
336 and beyond the boundaries of urban limits (e.g., downwind effects of urbanization) could inform
337 urban planning decisions. Ultimately, continued monitoring will be crucial to understanding how
338 humans shape regional atmospheric phenomena and how those effects will respond to global
339 change.

340 **Acknowledgments**

341 The Smithsonian Tropical Research Institute (STRI) provided logistical support. This work was
342 partially funded by an STRI Earl S. Tupper Fellowship and by grants from the National Science
343 Foundation (DEB-2213246 to S.P.Y.; DEB-2213247 to P.B.; and DEB-2213245 to E.M.G.). The
344 authors declare no conflicts of interest relevant to this study.

345 **Author's Contributions**

346 P.N. and E.M.G designed the study. P.N. assembled the datasets, and P.N. and E.M.G. analyzed
347 the data. P.N. led the writing of the manuscript. P.B. and J.B. processed the global lightning data.
348 All authors contributed to the conceptual development and writing of the manuscript.

349 **Data Availability Statement**

350 Data and code will be made publicly available via the Cary Institute Figshare. [Dataset] Earth
351 networks provide lightning data, which are not publicly available. [Dataset] CHELSA V2
352 climatic monthly time series were used to assess the temperature and precipitation data (Karger
353 *et al.*, 2017), available
354 at https://envicloud.wsl.ch/#/?prefix=chelsa%2Fchelsa_V2%2FGLOBAL%2F. [Dataset]
355 Terra/MODIS Aerosol Optical Depth monthly time series (Kaufman *et al.*, 2002) were
356 downloaded from https://neo.gsfc.nasa.gov/view.php?datasetId=MODAL2_M_AER_OD.
357 [Dataset] Aura Nitrogen Dioxide monthly time series (Krotkov *et al.*, 2016) are available
358 at https://neo.gsfc.nasa.gov/view.php?datasetId=AURA_NO2_M. [Dataset] Modern-Era
359 Retrospective analysis for Research and Applications version 2 (MERRA-2) Sulfate Dioxide
360 monthly time series (Gelaro *et al.*, 2017) can be found
361 at https://disc.gsfc.nasa.gov/datasets/M2TMNXAER_5.12.4/summary. [Dataset] Global Solar
362 Atlas terrain elevation data (Solargis, 2019) can be downloaded

363 from <https://solargis.com/es/maps-and-gis-data/download/world>. [Dataset] Global Oceans and
364 Seas shapefile to measure the distance to water bodies (Flanders Marine Institute, 2021) was
365 downloaded from <https://www.marineregions.org/downloads.php#seavox>. [Dataset] The urban
366 area and greenspace were obtained from the Moderate Resolution Imaging Spectroradiometer
367 (MODIS) Land Cover Climate Modeling Grid (CMG) (MCD12C1) Version 6.1 (Friedl & Sulla-
368 Menashe, 2019) in <https://lpdaac.usgs.gov/products/mcd12c1v061/>. [Dataset] The Annual
369 Population of Urban Agglomerations with 300,000 Inhabitants or More in 2018 by country,
370 1950-2035, was downloaded from the World Urbanization Prospects 2018 (UN, 2018) and found
371 at <https://population.un.org/wup/Download/>.

372 **5. REFERENCES:**

373 Ackerman, A. S., Toon, O. B., Stevens, D. E., Heymsfield, A. J., Ramanathan, V., & Welton, E.
374 J. (2000). Reduction of tropical cloudiness by soot. *Science*, 288(5468), 1042–1047.
375 <https://doi.org/10.1126/science.288.5468.1042>

376 Baik, J.-J., Kim, Y.-H., & Chun, H.-Y. (2001). Dry and moist convection forced by an urban heat
377 island. *Journal of Applied Meteorology*, 40(8), 1462–1475.

378 Barton, K. (2010). MuMIn: multi-model inference. R package version 0.13. 17. *Http://CRAN. R-
379 Project. Org/Package= MuMIn*.

380 Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H., ... &
381 Bolker, M. B. (2015). Package ‘lme4’. *convergence*, 12(1), 2.

382 Bornstein, R., & Lin, Q. (2000). Urban heat islands and summertime convective thunderstorms
383 in Atlanta: Three case studies. *Atmospheric Environment*, 34(3), 507–516.

384 Burke, J. D., & Shepherd, M. (2023). The urban lightning effect revealed with geostationary
385 lightning mapper observations. *Geophysical Research Letters*, 50(6), e2022GL102272.

386 Changnon, S. A. (1992). Modification in Urban Areas : Lessons for Global Climate Change.
387 *Bulletin of the American Meteorological Society*, 73(5), 619–627.

388 Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E., Driscoll, K. T.,
389 Goodman, S. J., Hall, J. M., Koshak, W. J., Mach, D. M., & others. (2003). Global
390 frequency and distribution of lightning as observed from space by the Optical Transient
391 Detector. *Journal of Geophysical Research: Atmospheres*, 108(D1), ACL--4.

392 Cohen, J. (1992). Quantitative methods in psychology: A power primer. *Psychological Bulletin*.

393 Cummins, K. L., Murphy, M. J., Bardo, E. A., Hiscox, W. L., Pyle, R. B., & Pifer, A. E. (1998).
394 A combined TOA/MDF technology upgrade of the US National Lightning Detection
395 Network. *Journal of Geophysical Research: Atmospheres*, 103(D8), pp. 9035–9044.

396 den Heever, S. C., Carrió, G. G., Cotton, W. R., DeMott, P. J., & Prenni, A. J. (2006). Impacts of
397 nucleating aerosol on Florida storms. Part I: Mesoscale simulations. *Journal of the
398 Atmospheric Sciences*, 63(7), 1752–1775.

399 Flanders Marine Institute. (2021). *Maritime boundaries geodatabase: maritime boundaries and
400 exclusive economic zones (200NM), version 11* [Dataset]. <https://www.marineregions.org>

401 Freitas, E. D., Rozoff, C. M., Cotton, W. R., & Silva Dias, P. L. (2007). Interactions of an urban
402 heat island and sea-breeze circulations during winter over the metropolitan area of São
403 Paulo, Brazil. *Boundary-Layer Meteorology*, 122(1), 43–65.
404 <https://doi.org/10.1007/s10546-006-9091-3>

405 Friedl, M., & Sulla-Menashe, D. (2019). MCD12Q1 MODIS/Terra+ aqua land cover type yearly
406 L3 global 500m SIN grid V006 [Dataset]. *NASA EOSDIS Land Processes DAAC*, pp. 10,
407 200. <https://lpdaac.usgs.gov/products/mcd12q1v006/>

408 Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A.,
409 Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper,
410 C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., ... Zhao, B. (2017). The
411 modern-era retrospective analysis for research and applications, version 2 (MERRA-2)
412 [Dataset]. *Journal of Climate*, 30(14), 5419–5454. <https://doi.org/10.1175/JCLI-D-16-0758.1>
413

414 Gupta, A. (2002). Geoindicators for tropical urbanization. *Environmental Geology*, 42(7), 736–
415 742.

416 He, J. F., Liu, J. Y., Zhuang, D. F., Zhang, W., & Liu, M. L. (2007). Assessing the effect of land
417 use/land cover change on the change of urban heat island intensity. *Theoretical and applied
418 climatology*, 90, 217-226.

419 Holle, R. L., & Murphy, M. J. (2017). Lightning over three large tropical lakes and the strait of
420 Malacca: Exploratory analyses. *Monthly Weather Review*, 145(11), 4559–4573.
421 <https://doi.org/10.1175/MWR-D-17-0010.1>

422 Kar, S. K., Liou, Y.-A., & Ha, K.-J. (2007). Characteristics of cloud-to-ground lightning activity
423 over Seoul, South Korea in relation to an urban effect. *Annales Geophysicae*, 25(10), 2113–
424 2118.

425 Kar, S. K., Liou, Y.-A., & Ha, K.-J. (2009). Aerosol effects on the enhancement of cloud-to-
426 ground lightning over major urban areas of South Korea. *Atmospheric Research*, 92(1), 80–
427 87.

428 Kar, S. K., & Liou, Y. A. (2014). Enhancement of cloud-to-ground lightning activity over
429 Taipei, Taiwan in relation to urbanization. *Atmospheric Research*, p. 147–148(May 2014),
430 pp. 111–120. <https://doi.org/10.1016/j.atmosres.2014.05.017>

431 Kar, S. K., & Liou, Y.-A. (2019). Influence of land use and land cover change on the formation
432 of local lightning. *Remote Sensing*, 11(4), 407.

433 Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann,
434 N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth's
435 land surface areas [Dataset]. *Scientific Data*, 4, 1–20.
436 <https://doi.org/10.1038/sdata.2017.122>

437 Kaufman, Y. J., Tanré, D., & Boucher, O. (2002). *A satellite view of aerosols in the climate
438 system* [Dataset]. 419(September), 215–223. <https://doi.org/10.1038/nature01091>

439 Krotkov, N. A., & Veefkind, P. (2016). OMI/Aura Nitrogen Dioxide (NO₂) Total and
440 Tropospheric Column 1-orbit L2 Swath 13x24 km V003 [Dataset]. *Greenbelt, MD, USA,*
441 *Goddard Earth Sciences Data and Information Services Center (GES DISC)*, 10.

442 Lal, D. M., & Pawar, S. D. (2011). Effect of urbanization on lightning over four metropolitan
443 cities of India. *Atmospheric Environment*, 45(1), 191–196.

444 Liu, C., & Heckman, S. (2012). Total lightning data and real-time severe storm prediction.
445 *Conference on Meteorological and Environmental Instruments and Methods of*
446 *Observation.*, pp. 1–12. https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-109_TECD-2012/Session5/P5_10_Liu_Total_Lightning_Data_and_Real-Time_Severe_Storm_Prediction.pdf

449 Lorenz, C., & Kunstmann, H. (2012). The hydrological cycle in three state-of-the-art reanalyses:
450 Intercomparison and performance analysis. *Journal of Hydrometeorology*, 13(5), 1397–
451 1420. <https://doi.org/10.1175/JHM-D-11-088.1>

452 Lynn, B. H., Yair, Y., Shpund, J., Levi, Y., Qie, X., & Khain, A. (2020). Using Factor Separation
453 to Elucidate the Respective Contributions of Desert Dust and Urban Pollution to the 4
454 January 2020 Tel Aviv Lightning and Flash Flood Disaster. *Journal of Geophysical*
455 *Research: Atmospheres*, 125(24). <https://doi.org/10.1029/2020JD033520>

456 Martins, J. A., Silva Dias, M. A. F. da, & Gonçalves, F. L. T. (2009). Impact of biomass burning
457 aerosols on precipitation in the Amazon: A modeling case study. *Journal of Geophysical*
458 *Research: Atmospheres*, 114(D2).

459 Mendez-Espinosa, J. F., Belalcazar, L. C., & Betancourt, R. M. (2019). Regional air quality
460 impact of northern South America biomass burning emissions. *Atmospheric Environment*,
461 203, 131-140.

462 Mushtaq, F., Nee Lala, M. G., & Anand, A. (2018). Spatio-temporal variability of lightning
463 activity over J&K region and its relationship with topography, vegetation cover, and
464 absorbing aerosol index (AAI). In *Journal of Atmospheric and Solar-Terrestrial Physics*
465 (Vol. 179). Elsevier Ltd. <https://doi.org/10.1016/j.jastp.2018.08.011>

466 Naccarato, K. P., Pinto Jr, O., & Pinto, I. (2003). Evidence of thermal and aerosol effects on the
467 cloud-to-ground lightning density and polarity over large urban areas of Southeastern
468 Brazil. *Geophysical Research Letters*, 30(13).

469 Oke, T. R. (1982). The energetic basis of the urban heat island. *Quarterly Journal of the Royal*
470 *Meteorological Society*, 108(455), 1–24. <https://doi.org/10.1002/qj.49710845502>

471 Orville, R. E., & Huffines, G. R. (1999). Lightning ground flash measurements over the
472 contiguous United States: 1995–97. *Monthly Weather Review*, 127(11), 2693–2703.
473 [https://doi.org/10.1175/1520-0493\(1999\)127<2693:LGFMOT>2.0.CO;2](https://doi.org/10.1175/1520-0493(1999)127<2693:LGFMOT>2.0.CO;2)

474 Orville, R. E., Huffines, G., Nielsen-Gammon, J., Zhang, R., Ely, B., Steiger, S., Phillips, S.,
475 Allen, S., & Read, W. (2001). Enhancement of cloud-to-ground lightning over Houston,
476 Texas. *Geophysical Research Letters*, 28(13), 2597–2600.
477 <https://doi.org/10.1029/2001GL012990>

478 Pamarthi, A. (2019). The recent trend of the temperature in major cities of India: A difference
479 between inland areas and coastal areas in the climate change scenario. *Atmospheric science*,
480 1, 1.

481 Pinto Jr., O., Pinto, I. R. C. de A., & Neto, O. P. (2013). Lightning Enhancement in the Amazon
482 Region Due to Urban Activity. *American Journal of Climate Change*, 02(04), 270–274.
483 <https://doi.org/10.4236/ajcc.2013.24026>

484 R Core Team. (2013). *R: A language and environment for statistical computing*.

485 Reap, R. M. (1986). American Meteorological Society Evaluation of Cloud-to-Ground Lightning
486 Data from the Western United States for the 1983 – 84 Summer Seasons Author (s):
487 Ronald M . Reap Source : Journal of Climate and Applied Meteorology , Vol . 25 , No . 6 (
488 June 1986. *Journal of Applied Meteorology and Climatology*, 25(6), 785–799.

489 Rozoff, C. M., Cotton, W. R., & Adegoke, J. O. (2003). Simulation of St. Louis, Missouri, land
490 use impacts on thunderstorms. *Journal of Applied Meteorology*, 42(6), 716–738.
491 [https://doi.org/10.1175/1520-0450\(2003\)042<0716:SOSML>2.0.CO;2](https://doi.org/10.1175/1520-0450(2003)042<0716:SOSML>2.0.CO;2)

492 Shahmohamadi, P., Che-Ani, A. I., Ramly, A., Maulud, K. N. A., & Mohd-Nor, M. F. I. (2010).
493 Reducing urban heat island effects: A systematic review to achieve energy consumption
494 balance. *International Journal of Physical Sciences*, 5(6), 626–636.

495 Shepherd, J. M., Stallins, J. A., Jin, M. L., & Mote, T. L. (2015). Urbanization: Impacts on
496 clouds, precipitation, and lightning. *Urban Ecosystem Ecology*, October, pp. 1–28.
497 <https://doi.org/10.2134/agronmonogr55.c1>

498 Solargis. (2019). *Global Solar Atlas 2.0. A free web-based application developed and operated
499 by the company Solargis s.r.o. on behalf of the World Bank Group, utilizing Solargis data,
500 with funding provided by the Energy Sector Management Assistance Program (ESMAP)*
501 [Dataset]. <https://globalsolaratlas.info>

502 Solomon, S. (2007). The physical science basis: Contribution of Working Group I to the fourth
503 assessment report of the Intergovernmental Panel on Climate Change. *Intergovernmental
504 Panel on Climate Change (IPCC), Climate Change 2007*, p. 996.

505 Song, Y., Semazzi, F. H. M., Xie, L., & Ogallo, L. J. (2004). A coupled regional climate model
506 for the Lake Victoria Basin of East Africa. *International Journal of Climatology*, 24(1), 57–
507 75. <https://doi.org/10.1002/joc.983>

508 Soriano, L. R., & de Pablo, F. (2002). Effect of small urban areas in central Spain on the
509 enhancement of cloud-to-ground lightning activity. *Atmospheric Environment*, 36(17),
510 2809–2816.

511 Steiger, S. M., Orville, R. E., & Huffines, G. (2002). Cloud-to-ground lightning characteristics
512 over Houston, Texas: 1989–2000. *Journal of Geophysical Research: Atmospheres*,
513 107(D11), ACL–2.

514 Stoltz, D. C. (2016). The simultaneous influence of thermodynamics and aerosols on deep
515 convection and lightning. In *Colorado State University*. https://minerva-access.unimelb.edu.au/handle/11343/56627%0Ahttp://www.academia.edu/download/39541120/performance_culture.doc

518 Strikas, O. M., & Elsner, J. B. (2013). Enhanced cloud-to-ground lightning frequency in the
519 vicinity of coal plants and highways in Northern Georgia, USA. *Atmospheric Science
520 Letters*, 14(4), 243–248.

521 Thielen, J., Wobrock, W., Gadian, A., Mestayer, P. G., & Creutin, J.-D. (2000). The possible
522 influence of urban surfaces on rainfall development: a sensitivity study in 2D in the meso- γ -
523 scale. *Atmospheric Research*, 54(1), 15–39.

524 Thornton, J. A., Virts, K. S., Holzworth, R. H., & Mitchell, T. P. (2017). Lightning enhancement
525 over major oceanic shipping lanes. *Geophysical Research Letters*, 44(17), 9102–9111.
526 <https://doi.org/10.1002/2017GL074982>

527 Twomey, S. A., Piepgrass, M., & Wolfe, T. L. (1984). An assessment of the impact of pollution
528 on global cloud albedo. *Tellus B*, 36(5), 356–366.

529 United Nations, D. of E., and S. A. P. D. (2018). *World Urbanization Prospects: The 2018
530 Revision* [Dataset]. United Nations New York, NY, USA.
531 <https://population.un.org/wup/Download/>

532 Wang, C. (2005). A modeling study of the response of tropical deep convection to the increase of
533 cloud condensation nuclei concentration: 1. Dynamics and microphysics. *Journal of
534 Geophysical Research: Atmospheres*, 110(D21).

535 Wang, H., Shi, Z., Wang, X., Tan, Y., Wang, H., Li, L., & Lin, X. (2021a). Cloud-to-Ground
536 Lightning Response to Aerosol over Air-Polluted Urban Areas in China. *Remote Sensing*,
537 13(13), 2600.

538 Wang, Y., Wan, Q., Meng, W., Liao, F., Tan, H., & Zhang, R. (2011). Long-term impacts of
539 aerosols on precipitation and lightning over the Pearl River Delta megacity area in China.
540 *Atmospheric Chemistry and Physics*, 11(23), 12421–12436.

541 Wang, Y., Lu, G., Shi, T., Ma, M., Zhu, B., Liu, D., Peng, C., & Wang, Y. (2021b).
542 Enhancement of Cloud-to-Ground Lightning Activity Caused by the Urban Effect: A Case
543 Study in the Beijing Metropolitan Area. *Remote Sensing*, 13(7), 1228.

544 Westcott, N. E. (1995). Summertime cloud-to-ground lightning activity around major
545 Midwestern urban areas. In *Journal of Applied Meteorology* (Vol. 34, Issue 7, pp. 1633–
546 1642). <https://doi.org/10.1175/1520-0450-34.7.1633>

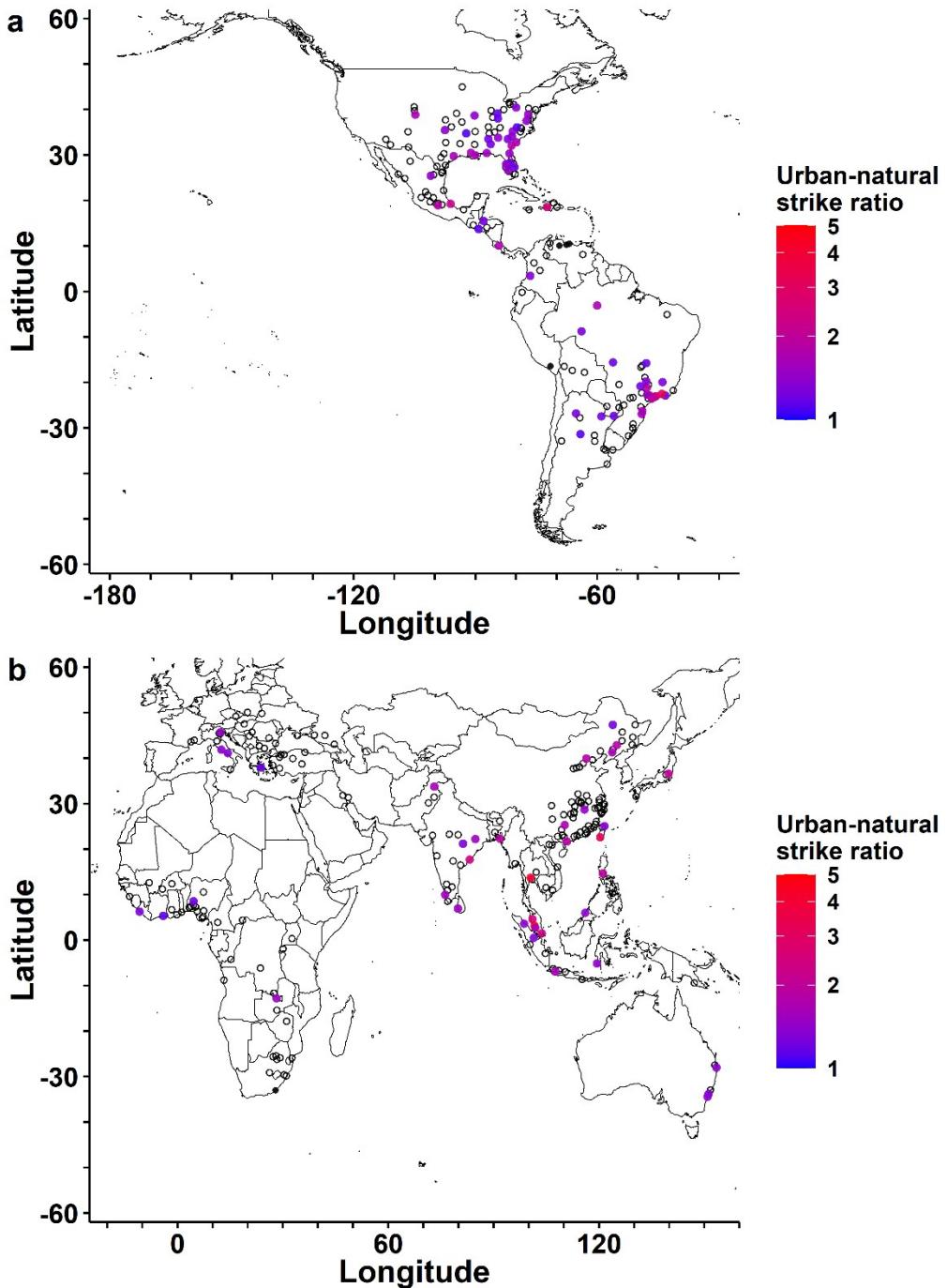
547 Williams, E. R., Zhang, R., & Rydock, J. (1991). Mixed-phase microphysics and cloud
548 electrification. *Journal of the Atmospheric Sciences*, 48(19), 2195–2203.

549 Yau, M. K., & Rogers, R. R. (1996). *A short course in cloud physics*. Elsevier.

550 **Table 1.** Review of studies investigating the urban lightning enhancement effect. "Response" is
 551 the response variable used to measure lightning enhancement reported as lightning strike
 552 frequency (km^{-2}), total lightning (in-cloud lightning and lightning strikes, km^{-2}), Z-ratio
 553 (lightning strikes/total lightning), or lightning potential index (LPI, J kg^{-1}). "Predictor(s)" refers
 554 to the variables that significantly predicted variation in the response reported as PM10 and
 555 PM2.5 (Particulate Matter less than 10 μm and 2.5 μm in diameter, respectively), SO_2 (sulfur
 556 dioxide concentration), UHI (Urban Heat Island effect), AOD (Aerosol Optical Depth), CAPE
 557 (Convective Available Potential Energy), or SRH (surface relative humidity). "Significant
 558 enhance." is the fraction of cities that exhibited significant enhancement within each study.

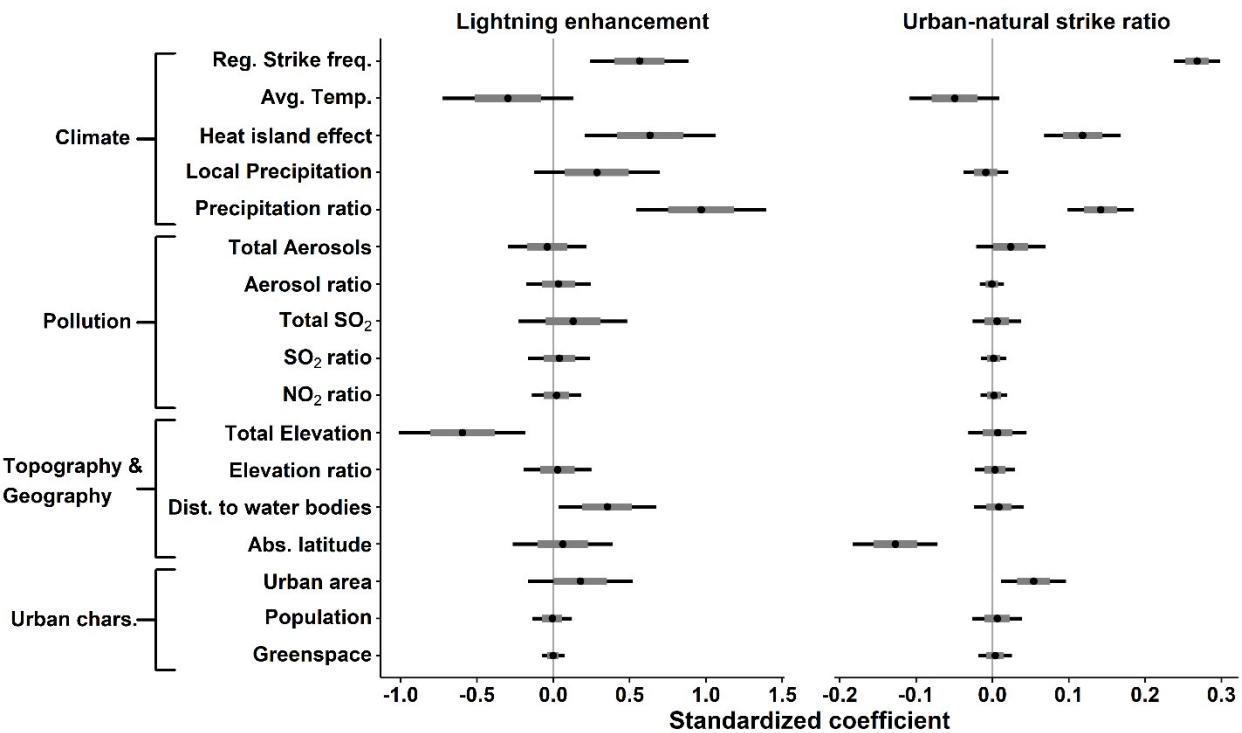
City or region	Response	Significant predictor(s)	Significant enhance.	Reference
São Paulo and nearby cities (Brazil)	Lightning strike frequency	PM10, UHI	3/3	Naccarato <i>et al.</i> (2003)
Manaus (Brazil)	Lightning strike frequency	UHI	1/1	Pinto <i>et al.</i> (2013)
Pearl River Delta megacity (China)	LPI, Lightning strike frequency	AOD	1/1	Wang <i>et al.</i> (2011)
Beijing (China)	Lightning strike frequency	Air temperature, SO_2 , NO_2 , PM2.5, and PM10	1/1	Wang <i>et al.</i> (2021b)
Chengdu, Wuhan, and Jinan (China)	Lightning strike frequency, Z-ratio	CAPE, SRH, and AOD	3/3	Wang <i>et al.</i> (2021a)
Delhi, Mumbai, Bengaluru, and Kolkata (India)	Total lightning	AOD, UHI	1/4	Lal and Pawar (2011)
Tel Aviv (Israel)	Total lightning	Aerosol concentration, AOD, PM25, PM10	1/1	Lynn <i>et al.</i> (2020)
Seoul (South Korea)	Lightning strike frequency	PM10 and SO_2	1/1	Kar <i>et al.</i> (2007)
Busan, Incheon, Daegu, Taejon and Gwangju (South Korea)	Lightning strike frequency	PM10 and SO_2	5/5	Kar <i>et al.</i> (2009)

Taipei (Taiwan)	Lightning strike frequency	PM10 and SO ₂	1/1	Kar and Liou (2019)
Central Spain	Lightning strike ratio (upwind/downwind)	Population, urban size, PM10 and SO ₂	7/9	Soriano and de Pablo (2002)
Midwestern (USA)	Lightning strike frequency	Pollution, topography	12/16	Westcott (1995)
Houston, Texas (USA)	Lightning strike frequency	PM10 and UHI	1/1	Steiger <i>et al.</i> (2002)
Northern Georgia (USA)	Lightning strike frequency	Distances from the nearest coal power plant and highways	1/1	Strikas and Elsner (2013)
Charlotte-Atlanta megaregion (USA)	Total lightning	Urban area, density, and orientation.	2/3	Burke and Shepherd (2023)

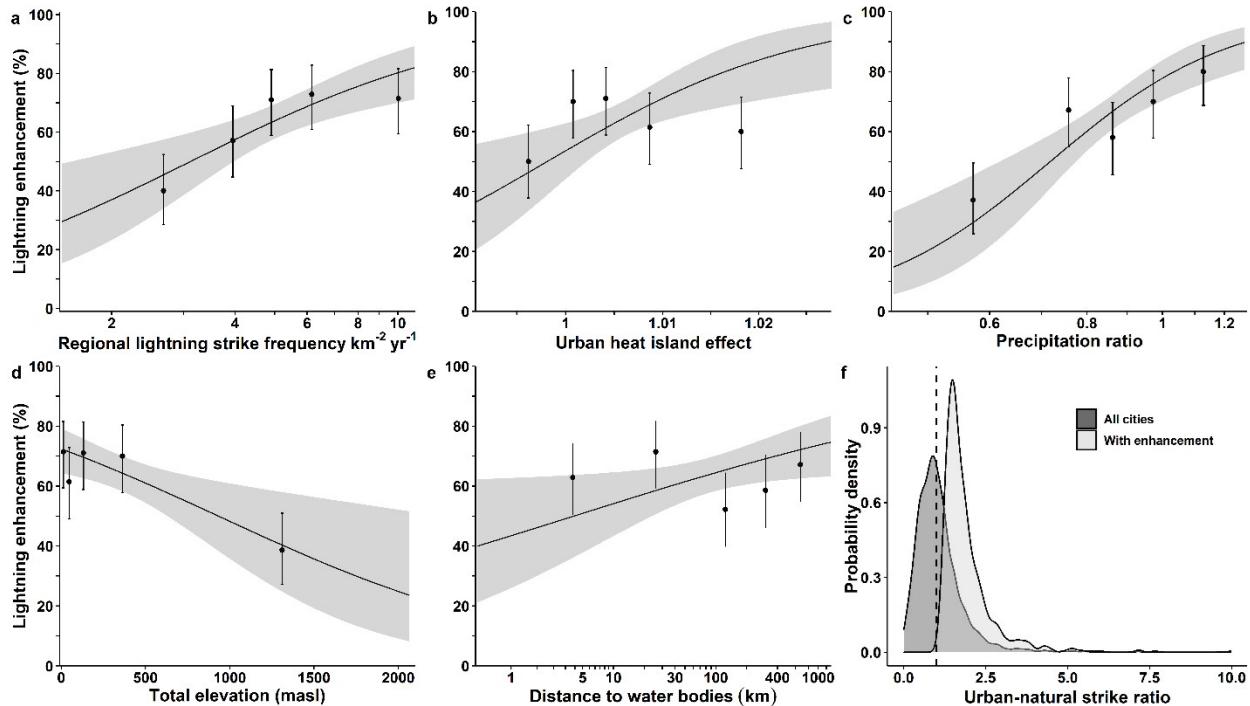

560 **Table 2.** Predictor variables explain the variation of lightning enhancement along with their measurement method, units, and source.
 561 All variables were upscaled or downscaled to the spatial grain of the lightning frequency data.

Group	Variable	Units	Temporal resolution (years covered)	Spatial scale	Data type	Source
Climate	Regional lightning frequency	Strikes $\text{km}^{-2} \text{ year}^{-1}$	Monthly total (2013-2020)	0.05 x 0.05	Electrical ground sensor network	Liu and Heckman, 2012
	Average air temperature	K (at 2 meters above the surface from ERA5 data)	Monthly averages of daily data (2013-2019)	0.05 x 0.05	Reanalysis of weather station data	Karger <i>et al.</i> , 2017
	Maximum air temperature					
	Minimum air temperature					
	Local precipitation	$\text{kg m}^{-2} \text{ month}^{-1}$	Monthly total (2013-2018)	0.05 x 0.05		Karger <i>et al.</i> , 2017
Pollution	Total aerosols	μm of particulates scaled from 0 to 1	Monthly averages (2013-2020)	0.1 x 0.1	Satellite sensors	Kaufman <i>et al.</i> , 2002
	NO_2	billion molecules mm^{-2}		0.1 x 0.1		Krotkov <i>et al.</i> , 2016
	SO_2	$\mu\text{g m}^{-3}$		0.625 x 0.5	Reanalysis of satellite data	Gelaro <i>et al.</i> , 2017
Topography & Geography	Elevation	m	Single measurement (2018)	3 arcsec ($\sim 90 \text{ m}$)	Satellite sensors	Solargis, 2019

	Distance to water bodies	km	Single measurement (2021)	0.1 x 0.1	Satellite sensors	Flanders Marine Institute, 2021
Urban chars.	Urban area	km ²	Single measurement (2021)	0.05 x 0.05	Satellite sensors	Friedl and Sulla-Menashe, 2019
	Population	1,000s of inhabitants	Single measurement (2018)	-	Population census	UN, 2018
	Greenspace	% of natural area	Single measurement (2021)	0.05 x 0.05	Satellite sensors	Friedl and Sulla-Menashe, 2019


562

563


564

565 **Fig. 1.** The global distribution of cities ($> 300,000$ inhabitants) and variation in the strength of
 566 urban lightning enhancement are split approximately between the western hemisphere (panel a)
 567 and the Eastern hemisphere (panel b). Black points represent cities with low regional lightning
 568 strike frequencies (< 1 strike $\text{km}^{-2} \text{yr}^{-1}$), and empty circles represent cities without urban
 569 lightning enhancement (< 0.5 Glass' delta). Colored points represent cities with significant
 570 lightning enhancement (≥ 0.5 Glass' delta) shaded by the strength of enhancement (i.e., urban-
 571 natural strike ratio).

572

573 **Fig. 2.** Model averaged relationships between the likelihood and magnitude of lightning
 574 enhancement (i.e., the urban-natural strike ratio) with the different explanatory variables. The
 575 black dots are the estimated value of the predictors, the gray bars are their standard error, and the
 576 black lines depict their 95% confidence intervals. If the 95% confidence interval for a given term
 577 overlaps with the zero line, then that indicates that the modeled effect was not significantly
 578 different from zero.

579

580 **Fig. 3.** Variation in lightning enhancement with significant predictors from the AIC model
 581 averaging analysis (panel a: regional lightning strike frequency ($\text{km}^{-2} \text{yr}^{-1}$); panel b: urban heat
 582 island effect; panel c: precipitation ratio; panel d: total elevation (masl); panel e: distance to
 583 water bodies). The regression lines represent the model averaging slopes for each predictor and
 584 lightning enhancement. The shaded portions represent the 95% confidence interval of each
 585 regression line. Lightning enhancement was binned into quantiles to allow visualization of model
 586 fit to the binary response variable. Panel f shows a density plot representing the probability
 587 density of the urban-natural strike ratio for all cities and cities with unambiguous lightning
 588 enhancement. The dashed line represents the value at which urban and natural lightning strike
 589 frequency equals.

590

591