
FAIR Assessment of Cloud-based Experiments
Krishna Kamath⇤, Nicole Brewer †, Tanu Malik⇤

⇤
School of Computing, DePaul University Chicago, IL USA

†
Center for Biology and Society, Arizona State University, Tempe, AZ USA

kkamath@depaul.edu, nbrewer6@asu.edu, tanu.malik@depaul.edu

Abstract—Several computer science experiments require cloud

infrastructure to produce results. Federally-funded cloud testbeds

such as Chameleon and CloudLab aim to meet this need. A

direct benefit of large-scale experimentation on these federally-

funded cloud testbeds is the ease of reproducing experiments on

the same hardware configuration originally used by an author.

In this paper, we analyze over 100 shareable computer science

experiments available on Chameleon, classifying them into differ-

ent types: tutorials, research experiments, bug reproduction, and

course assignments. We determine the packaging requirements

for these various types of experiments and assess whether the

resulting packages are repeatable on Chameleon and reusable

on other public cloud infrastructures like AWS. Our findings

reveal that several available experiments are contingent on

obtaining leases, which result in significant lag time, thus affecting

their ‘push-button’ reproducibility. Additionally, we find that

packaging systems often overlook experimental files and include

hardware configuration APIs that complicate reproducing these

experiments on other public cloud infrastructures. Based on

these findings, we offer recommendations for creating reusable

packages.

I. INTRODUCTION

Computer science experiments often need cloud infrastruc-
ture for development and execution to ensure scalability, flex-
ibility, and accessibility. The experiments range from devel-
oping new operating systems, virtualization methods, perfor-
mance variability studies, and power management research to
projects in software defined networking, artificial intelligence,
and resource management. Experiments of this type, often
cannot be supported by HPC resources or submitting jobs to
batch schedulers [14]. Requirements of such experiments often
necessitates a reconfigurable bare-metal system giving users
full control of the software stack including root privileges,
kernel customization, console access, as well as the ability to
experiment with software defined networking using innovative
features [13].

Several federally-funded bare-metal infrastructures exist that
serve as specialized cloud testbeds and provide researchers
with direct access to physical hardware (bare metal) instead
of virtualized environments. This access allows for more
precise control over hardware configurations, making these
infrastructures ideal for experiments that require specific hard-
ware setups, performance testing, and systems research. For
example, the NSF-funded Chameleon [14] is a large-scale,
reconfigurable testbed that provides bare metal access to a
variety of hardware including high-performance CPUs, GPUs,
FPGAs, and storage resources. Researchers can reconfigure
and experiment with different hardware setups and software

stacks. Similarly, CloudLab [8] is an NSF-funded testbed that
provides researchers with control over both the hardware and
software of their experimental environments, and supports a
wide range of research including cloud computing, big data,
and the Internet of Things (IoT).

Experimentation on shared testbeds directly results in the
creation of shareable digital artifacts, such as images, or-
chestration templates, datasets, tools, and notebooks. These
artifacts typically represent either a complete experiment or a
crucial part of one, and they can be used to replicate the exper-
iment on the testbed where it was originally conducted. As the
number of available artifacts grows, effective data management
and stewardship of artifacts on a cloud infrastructure be-
comes increasingly important. The FAIR principles—Findable,
Accessible, Interoperable, and Reusable—have recently been
established to characterize and guide these practices [23]. In
the context of experiments available on shared cloud testbeds,
we believe that it is not enough for experiments to simply
adhere to the FAIR principles; they must maintain continuous
FAIRness [7]. Continuous FAIRness means that all data re-
mains Findable, Accessible, Interoperable, and Reusable at all
times.

To assess continuous FAIRness, we analyze 100 computer
science experiments that were originally created and shared on
Chameleon. We first classify experiments into different types:
tutorials, research experiments, bug reproduction, and course
assignments to better assess their continuous FAIRness. We
also apply FAIRness criteria at the granularity of experiments.
An experiment is considered findable if it is associated with a
URI that provides access to all files related to the experiment.
It is deemed accessible if there are no restrictions on repeating
the experiment, particularly on Chameleon. An experiment is
interoperable if metadata about its execution can be gener-
ated using lightweight application virtualization tools such as
Sciunit or Reprozip. Lastly, an experiment is reusable if it
can be repeated on similar hardware within commercial cloud
infrastructures. To measure interoperability, we generate an
application virtualization package, and to assess reusability,
we determine whether the resulting package can be repeated
on a public cloud infrastructure like AWS.

Our findings indicate that meeting all four properties of
Findable, Accessible, Interoperable, and Reusable (FAIR) re-
mains challenging for experiments shared publicly. While most
experiments are findable, their accessibility is often limited,
as many available experiments require obtaining leases, which
can involve significant lag time and thus hinder ’push-button’

reproducibility. Additionally, packaging systems frequently
overlook experimental files and include hardware configura-
tion APIs, complicating the reproduction of these experiments
on other public cloud infrastructures. Based on these obser-
vations, we provide recommendations for creating reusable
packages.

The rest of the paper is organized as follows: We describe
how experiments are organized and shared within Chameleon
in Section II. We analyze available experiments into different
types and determine their Findable and Accessible metrics
in Section III-A. We determine Interoperable and Reusable
metrics via lightweight packaging systems in Section III-A.
Finally, we discuss how experiments can be packaged into
reusable artifacts that can be replayed on other cloud infras-
tructures in Section V.

II. CHAMELEON OVERVIEW

Chameleon [14] is an experimental cloud testbed that
enables computer science systems research. It allows bare-
metal reconfigurability, and provides users with full control
of software stack, which includes root privileges and kernel
customization. Chameleon supports a wide variety of hard-
ware configurations including FPGAs and a range of GPU
technologies like Nvidia A100 tensor core and Nvidia Tesla
K80, with over 550 nodes and 5 PB of storage [4].

Trovi [21] is a portal on Chameleon where users can share
and replay experiments (also called artifacts). Experiments are
bundled as Jupyter Notebooks, along with requisite data, files,
and software dependencies. The Jupyter Notebook interface
is used by both authors and reviewers to share, publish, and
reproduce experiments. Currently, there are over 100 different
public experiments published on Trovi, covering a wide array
of topics from machine learning to database management
systems, and class assignments to bug reproduction in open
source codebases.

When a Chameleon user launches an experiment with Trovi,
the underlying JupyterHub infrastructure spawns a copy of the
experiment on a fresh Jupyter Notebook server. This server,
intended to serve as a ”head node,” guides users through
coordinating experiments run on other dedicated hardware. As
such, the Jupyter server environment is intentionally limited
to 1 CPU core and 1GB of memory.

A. Chameleon Artifacts

We classify shared experiments/artifacts available on
Chameleon into four categories: tutorials, research experi-
ments, bug reproduction, and course assignments. Tutorials
either cover topics relevant to running experiments in the
cloud or are specifically tailored to running experiments on
the Chameleon platform. Research experiments range from re-
producing a machine learning model and its results to network
emulations and database research. Bug reproduction artifacts
involve the user reproducing a specific bug, implementing the
fix, and analyzing the improvements in runtime or memory
management. Chameleon is also widely used in educational
settings for instruction.

Fig. 1: Generic Chameleon Artifact Template

We analyzed 113 artifacts, added to Chameleon from April,
2022 to December, 2023. (As of August 2024, there are 173
artifacts on Chameleon.) Table I shows the number and per-
centage of artifacts that belong to each of the four categories.

Most Chameleon artifacts consist of one or more of the
following steps (Figure 1): (i) system setup (ii) performing
the experiment (iii) conducting analysis. The system setup
involves the reservation of one or more specialized hard-
ware that are available via the Chameleon cloud testbed and
then provisioning the node(s) with the appropriate image(s)
and connecting to the reserved node(s). The setup step also
involves downloading the libraries and software required to
conduct the experiment (see Setup.ipnyb in Figure 1).
Once the setup step is complete, the user can connect to the
specialized node (via ssh) and perform the experiment. The
last step of the artifact template is analyzing the data obtained
from the experiment. The availability of Jupyter Notebooks
makes it easy to bring back analysis results and visualize via
the notebook.

Fig. 2: SC MLEC23 Artifact

For example, the “SC23 MLEC Artifact” [17] reproduces
the results of a paper presented in SC23, “Design Consider-
ations and Analysis of Multi-Level Erasure Coding in Large-
Scale Data Centers” [22]. This artifact consists of several
notebooks, data, and scripts as shown in Figure 2. The first
step is to set up the hardware and software via the setup.ipynb
notebook, which leases and reserves a zen3 compute node for
five days, and launches the hardware with an Ubuntu20.04
image (Figure 2). The setup further clones the simulator
repository from GitHub, as well as necessary packages like
numpy and matplotlib using Conda on the reserved node. The
second step is to then run the experiment on the leased node,
which executes for 8-12 hours. After the simulation experi-
ment finishes, the user can run further analysis experiments
and generate figures. One of the experiments computes burst
tolerance for different MLEC schemes and repair methods
using dynamic programming. In total, the experiment performs

five different kinds of analysis, each of which are described
in a separate notebook. Given the significant execution time
of the experiments, the authors have configured both the
experiment and the analysis to run in the background, thus
retaining notebook interactivity and allowing the reviewer to
run any subsequent notebook cells.

While the majority of Chameleon artifacts adhere to this
prototypical template, many educational artifacts do not adhere
to this template. Such artifacts have a range of purposes:
Some guide the user through creating and coordinating a
particular kind of resource. Some contain examples of how to
use packages developed by the artifact author. Others provide
examples of post-experiment data analysis and visualization.
Most educational notebooks highlight one or more steps in the
process of running a complete experiment on Chameleon: (i)
system setup (ii) performing the experiment (iii) conducting
analysis. Next, we will discuss two specific examples of
notebooks falling outside the standard experiment template to
demonstrate the breadth of purposes of Chameleon artifacts.

In the “Machine Learning Process” artifact [15] - an in-
troductory level courselet on Machine Learning Processing -
goes through all the steps of a data life-cycle, including acquir-
ing, exploring, processing, and analyzing data. The courselet
concludes with a notebook that distinguishes between the
model-development phase, as exemplified by the courselet, but
does not include the production phase, which would require
scaling with dedicated hardware or cloud infrastructure. In
“Initializing a VM at KVM@TACC with multiple storage
volumes” [12] an instructional Jupyter Notebook details how
to reserve hardware, assign a floating IP address, and set up a

second, independent Jupyter server on that dedicated hardware
but does not contain any experiment or analysis.

Many Chameleon artifacts demonstrate that common prac-
tice: using the Jupyter workspace in Trovi to reserve a more
powerful independent node running its own Jupyter server
for conducting computationally-intensive experiments. In fact,
the recursive nature of using Jupyter to manage other Jupyter
servers is colloquially addressed in the Chameleon documen-
tation as “Jupyter all the way down”.

III. ARTIFACT FAIRNESS

We found the definitions of FAIRness, as given by the
authors in [23] limiting for reproducible analysis of artifacts.
According to the original definition, artifacts are findable as
long as they have persistent URI attached and the experiment
metadata is indexable. However, findable artifacts may be
incomplete, i.e., some of the files are missing. Similarly other
definitions are related to metadata and data and not to artifact
execution. We think the FAIR terms are relevant to artifact
reproducibility, but each term must be redefined to better suit
the reproducibility requirements of artifacts as follows:

1) Findable: An artifact is findable if it is associated with
a persistent URI that results in all the necessary files and
data for a successful experiment run.

TABLE I: Chameleon Artifact Types

Type Number of artifacts Percentage
Tutorials 39 35%
Research Experiments 46 40%
Bug Reproduction 19 17%
Course Assignments 9 8%
Total 113 100%

2) Accessible: An artifact is accessible if the necessary
found files result in a successful execution and produces
some result.

3) Interoperable: An artifact is interoperable if its bun-
dled package can be successfully executed to generate
standardized metadata about its execution, such as W3C
PROV [9]. In other words, both artifact file data and
metadata are interoperable.

4) Reusable: An artifact is reusable if it can be successfully
executed in an alternate environment, i.e., an environment
in which it was not natively found.

We would like to emphasize the subtle difference between
the definitions of accessibility and reusability, especially in
the context of cloud-related experiments. Accessible refers to
whether the experiments can successfully run on the cloud
infrastructure they are hosted on (Chameleon in our case).
Reusable refers to whether the experiment can be run on differ-
ent cloud infrastructures. Thus, in general, experiments may be
reusable without being accessible. Finally, since the redefined
terms are related to artifact execution and environments, they
adhere to continuous FAIRness rather than snapshot FAIRness.

Chameleon artifacts are not badged. Thus, there is no prior
confirmation or verification of an independent reviewer having
run the artifact successfully. To analyze the reproducibility of
artifacts, we applied the redefined FAIR criteria to the arti-
facts to determine and measure their findability, accessibility,
interoperability, and reusability. We describe the findability
and accessibility metrics in the next subsection and describe
the interoperability and reusability metrics in the subsequent
subsection.

A. Findability and Accessibility of Artifacts

Table II shows the results of FAIR metrics on Chameleon
artifacts. As the Table shows about 92% of artifacts are
findable, i.e., all the files relevant to the stated experiment are
present. In this case, the relevancy of files is determined via
packaging tools as described further in Section IV. Amongst
the 8% non-findable experiments, 7 had no files at all, and 2
had one or more missing files.

In terms of accessibility, we experimented with repeating
each artifact on Chameleon. For repeatability, we applied
the most relaxed definition—that all cells of the interactive
notebook must run successfully, i.e., without compilation or
execution errors. In addition, we followed any instructions
provided by the author. If there were multiple notebooks, we
rant them in the order documented.

As shown in Table II, only 28.8%, or 30 out of 104 findable
artifacts, were accessible. We further analyzed the reasons
for the limited accessibility of the remaining 71.2%, or 74

TABLE II: Artifacts FAIRness
Findable Accessible Interoperable Reusable

Ratio of Artifacts 104/113 30/104 18/30 5/18
Percentage 92% 28.8% 60% 27.7%

TABLE III: Artifact Accessibility
Type Accessible Lease Issues Code Issues JupyterHub Issues
Tutorials 10 12 14 0
Research Experiments 10 13 14 5
Bug Reproduction 10 4 3 1
Course Assignments 0 7 1 0
Total 30 36 32 6

artifacts, as presented in Table III. The primary reason for
non-accessibility was code-related issues that resulted in run-
time errors. For example, “ATC/OSDI 23 Simple Filesystem
Benchmark” [2] fails because setup filebench.sh does not run.
Similarly, “IGNITE-14003 reproduce” [11] stalls in the build
process and doesn’t complete. We attribute these issues to the
author’s lack of maintenance over time.

However, not all issues were author-related. About 41%
of the issues stemmed from the inability to acquire timely
leases for specialized and popular hardware such as GPUs,
indicating heavy usage and contention for resources, and due
to JupyterHub not spawning the notebook. We would like to
emphasize that our results are based on several attempts to
acquire leases over a five-week period. Often, for machine
learning-based artifacts, the requested leases are for in-demand
GPU resources and span several days. The long duration of
these leases makes them non-accessible and non-repeatable.
We did not attempt to reduce the lease time as we believe it is
author-determined and would alter the experiment’s duration.

Finally, it is worth noting that among the 28.8% of acces-
sible artifacts, there were minor dependency issues in about
5 of them pertaining to discrepancies between the versions
that were installed at runtime and the stated versions in the
documentation. Such discrepancies were manually resolved.
Thus, to ensure artifact reproducibility, reviewers should make
minimal assumptions about packages installed on systems.

IV. INTEROPERABILITY AND REUSABILITY OF ARTIFACTS

Application virtualization tools [5], [20] use system call in-
terposition to determine files used during application execution
and containerize them within a package or a container. Typ-
ically packages resulting from application virtualization are
much smaller in size than the original resources provisioned.
While the packages contain the necessary and sufficient files,
they do not include the complete OS environment and need
an instance to be executed. Most tools run in two modes:
an audit mode to create a package/container, and a repeat
mode to re-run a package/container [5], [20]. In AV audit
mode, a container of a user application is created as the user
executes the application (in the context of auditing, such an
execution is termed a reference execution). In repeat mode, the
application is executed from the container itself by monitoring
its processes with ptrace, interrupting application system calls
and extracting their path, and redirecting the calls to the files
in the package/container. After the package is created, the
contents are deduplicated to optimize space.

Artifact Type Sciunit Reprozip
Data-Integration [6] Tutorial 164MB 52 MB; 166MB
Selection-Brushing [18] Tutorial 283MB 86.5MB;285MB
SPARK-25947 reproduce [19] Bug Reproduction 272 MB 80MB;265MB
CA-15902 reproduce [3] Bug Reproduction 271MB 85MB; 278MB
Machine Learning process [15] Experiment 502MB 152MB;504MB
Alexnet(Updated) [1] Experiment 89MB 28MB; 86MB

TABLE IV: Package sizes for Sciunit and Reprozip

To measure interoperability and reusability of artifacts, we
packaged Chameleon artifacts. Since packaging requires the
successful execution of artifacts, we attempted to package
only 30 of the accessible artifacts. Chameleon’s JupyteHub
interface provides users with a bash terminal whenever a
notebook of the corresponding experiment is launched. We
installed the application virtualization tools using package
managers such as pip using this terminal. The first step of
packaging is to create the package by auditing the experiment
execution. We determined how many of the accessible artifacts
could be successfully packaged. Table II shows that only 18
of the 30 accessible artifacts could be packaged. We could not
package all the 30 artifacts since we faced either leasing issues
or packaging errors. For about 8 out of the 12 unpackaged
artifacts, the resource was not available, so the experiment
would fail. For the remaining artifacts, the application virtual-
ization tool itself failed to successfully package, resulting in an
overall 60% success rate. For example, the MLEC experiment
highlighted in Section II is accessible but is not interoperable
because the authors use a terminal multiplexer to run the long-
running experiment in background. Thus it cannot be packaged
by both Sciunit and ReproZip.

Further, we also measured the size of the package sizes
created by the tools and compared them in the Table IV. The
sizes of the packages created by both Sciunit and Reprozip are
comparable, with a 2-3% difference on average. In general,
this size is much smaller than the compute resources, which
would inevitably have to be shared.

Finally, we measured the reusability of Chameleon ar-
tifacts. For this, we determined if the resulting packages
were runnable on AWS cloud infrastructure. Both Sciunit and
Reprozip packages can be shared on public cloud infrastruc-
tures by downloading the packaged container and repeating
the experiment using sciunit repeat or reprozip. A
primary motivation for determining reusability of packages
was due to the delay in acquiring leases on the Chameleon
cloud infrastructure.

Table II shows that only 5 of the successfully packaged
18 artifacts were reusable. The rest of the 13 packages
include Chameleon-specific resource allocation commands,
which make them non-reusable across commercial cloud in-
frastructures. For example, in the snippet provided below
(taken from AlexNet(updated) [1]), node.run() is a Chameleon
specific API. Using such commands prevents the reusability
of the artifact on other cloud providers and requires code
remapping. Since experiment details are intricately woven with
Chameleon API, it is difficult to disentangle the experiment
from the API and requires significant refactoring.

V. BEST PRACTICES FOR ENSURING CONTINUOUS
FAIRNESS OF ARTIFACTS

Our analysis reveals that leasing high-demand resources
on shared cloud infrastructure can cause significant delays.
In extreme cases, where the required resource is always in
high demand, the delay can extend to weeks or even months.
Packaging experiments using application virtualization tools
can be beneficial in such cases, especially if the user has
access to similar hardware through public cloud infrastructure
such as AWS. However, to repeat the experiment using Sciunit
in ”modified repeat” mode or with Reprozip, the user must
currently edit the configuration and code files and replace
cloud-specific API calls with code compliant with different
cloud infrastructure.

To create more reusable packages, we have observed several
ways authors can organize their experiments to achieve more
FAIR (Findable, Accessible, Interoperable, and Reusable) ex-
periments. Here are our recommendations:

1) Organize Notebooks by Purpose. Experiments should
be broken down into multiple notebooks, with each note-
book serving a single purpose. Notebooks that acquire
and set up the resource should be clearly distinguished
from those responsible for experiment execution. The
SC23 MLEC artifact is an ideal example, as it contains
multiple Jupyter Notebooks, each dedicated to a different
sub-experiment and resource setup.

2) Ensure Long-term Preservation. Most open-source
software decays without maintenance. This phenomena is
called software collapse and it is especially prevalent in
high-level languages with large numbers of contributors
such as Python [10]. Authors should consider frequently
repeating their published artifacts on Chameleon to en-
sure long-term reproduction. Such maintenance work
is rarely incentivized [16]. However, we believe it is
especially important for artifacts most likely to be reused
for training or serve as templates for other experiments.

3) Install Dependencies During Setup. All dependencies
required by an experiment must be installed during the
setup step. The experiment must not make any assump-
tions about installing the same dependency when the
head node is spawned as dependency packages, and their
versions vary between different repeated runs.

4) Automate Instructions. Notebooks should automate

resource reservation and coordination steps at ev-

ery stage of the experiment whenever feasible. For
example, some artifacts ask the user to create a reser-
vation manually on the Chameleon platform and then
run the notebooks. However, this isn’t easily reproducible
and should be avoided. Even notebooks that provide
automated reservation steps commonly do not include
automated instructions for tearing down and releasing re-
served resources upon completion of the experiment. We

recommend including teardown commands. Encourag-
ing users to release resources upon completing their com-
putational task may improve the overall availability of

import os

Automaticaly set region_name to user’s default region
region_name = os.getenv("OS_REGION_NAME", "CHI@UC")

Automatically set project_name to user’s project
Or user can update "CH-XXXXXX" manually as a backup
os_project_name = os.getenv("OS_PROJECT_NAME")
if not os_project_name:

os_project_name = "CH-XXXXXX"

Prepend lease name and other resources with user’s
name to avoid collisions
lease_name = f"{os.getenv(’USER’)}-power-management"
)

Fig. 3: Use environment variables present in Trovi’s Jupyter
interface to automate variable setting across user workspaces

limited resources which, as we have found, is a significant
contribution to non-repeatability on Chameleon. Finally,
we recommend using environment variables present in

Chameleon workspaces to automate variable setting

across users. For example, many notebooks contain a
line sets the project name using a hard-coded string
(e.g. “CHI-231217”). As often addressed in a comment,
the user must manually replace the project code with
their own. Artifact authors can avoid that by using the
“OS PROJECT NAME” environment variable available
in Chameleon workspaces (See example in Figure 3).
Similarly, authors should use the “USER” environment
variable to prepend lease and resource names with the
workspace owner’s username. Such naming conventions,
though not commonly used in Chameleon artifacts, avoid
collisions with other users who are members of the same
project, and it makes it easier to identify and clean up
extraneous unused resources without accidentally deleting
another project member’s resources.

5) Reduce Calls to Cloud-Specific APIs. Cloud-specific
APIs such as the Chameleon Python client, python-
chi, make resource reservation and coordination of
Chameleon artifacts easier read, execute, and reproduce.
However, authors should keep cloud-related commands
separate from experiment-related files as much as possi-
ble. For instance, an experiment may require executing
a series of commands on remote hardware. We observe
that many Chameleon artifacts implement such experi-
ments by invoking the Chameleon-specific API for each
individual bash command (See example in Figure 4).
This approach requires anyone wishing to reproduce the
experiment on another cloud platform to manually modify
every line that invokes a command using a Chameleon-
specific API. A better approach is to have a bash script
containing all the installation commands and call the bash
script using a single Chameleon-specific API invocation.
This ensures minimal changes are required before the user
can package the experiment and repeat it on a different
cloud resource. Reviewers can then replace Chameleon-
specific APIs and commands with analogous commands
for commercial cloud providers if they exist.

6) Indicate estimated wait times. We recommend including

from chi import ssh
with ssh.Remote(floating_ip) as node:

node.run(’pip install --upgrade pip’)
node.run(’pip3 install tensorflow’)
node.run(’pip install matplotlib’)
node.run(’pip install tensorflow-datasets’)
node.run(’pip install python-csv’)
node.run(’pip install opencv-python’)
node.run(’pip install Pillow’)
node.run(’sudo apt-get install -y
libsm6 libxext6 libxrender-dev’)
node.run(’pip install --upgrade opencv-python’)
node.run(’pip install --upgrade Pillow’)
node.run(’pip install scikit-learn’)

Fig. 4: Resource configuration using cloud-specific APIs in
AlexNet(updated) Artifact [1]

estimated runtimes for tasks that take a long time to
reduce the total time spent on behalf of the individual
repeating the experiment. While the original experimenter
may have a tacit understanding of how long each step
takes, those repeating the experiment may be uncertain
whether a process is progressing as expected or if an
issue has arisen. Without this knowledge, they must wait
for the experiment to time out or fail. We recommend
including such indications at any stage in the experiment,
but especially when running computationally-intensive
steps.

VI. CONCLUSION

In this paper, we evaluated the reproducibility of arti-
facts available through the Chameleon platform across four
key dimensions: findability, accessibility, interoperability, and
reusability. We found that several artifacts were non-repeatable
either due to lack of maintained artifacts or required long-
term leases for in-demand hardware. We presented a detailed
analysis of the repeatability of these artifacts and their ability
to be packaged for reuse on other cloud infrastructures. Lastly,
we provided several recommendations for creating reusable
packages for the cloud.

VII. ACKNOWLEDGMENT

The authors would like to thank Kate Keahey and the
Chameleon team for allowing us to run the artifacts on the
platform, and discussing with us the issues related to artifact
accessibility.

REFERENCES

[1] AlexNet(updated) chameleon artifact https://chameleoncloud.org/
experiment/share/8ddcf919-79d5-4e48-b095-a778ead90933.

[2] ATC/OSDI 23 Simple Filesystem Benchmark Chameleon
Artifact https://chameleoncloud.org/experiment/share/
b2328ffc-7208-42f8-9aad-21482c582b66.

[3] CA-15902 Reproduce https://chameleoncloud.org/experiment/share/
097cf325-8835-4181-a4cd-36b36d5b745a.

[4] ”Chameleon” https://chameleoncloud.org/about/chameleon/.
[5] Fernando Chirigati, Rémi Rampin, Dennis Shasha, and Juliana Freire.

Reprozip: Computational reproducibility with ease. In Proceedings of

the 2016 International Conference on Management of Data, SIGMOD
’16, pages 2085–2088. ACM, 2016.

[6] Data-Integration https://chameleoncloud.org/experiment/share/
b1d3e4f1-bf88-4312-b841-dd51b237e5fd.

[7] William Dempsey, Ian Foster, Scott Fraser, and Carl Kesselman. Sharing
begins at home: how continuous and ubiquitous fairness can enhance
research productivity and data reuse. Harvard data science review, 4(3),
2022.

[8] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson,
Kirk Webb, et al. The design and operation of {CloudLab}. In 2019

USENIX annual technical conference (USENIX ATC 19), pages 1–14,
2019.

[9] Paul Groth, Luc Moreau, et al. Prov-dm: The prov data model. World
Wide Web Consortium (W3C) Recommendation, April 2013. Accessed:
2024-08-25.

[10] Konrad Hinsen. Dealing with software collapse. Computing in Science

Engineering, 21(3):104–108, 2019.
[11] IGNITE-14003 reproduce https://chameleoncloud.org/experiment/share/

751f1dd6-f398-43ab-a6b1-1f4bb14616d2.
[12] Initializing a VM at KVM@TACC with multiple stor-

age volumes https://chameleoncloud.org/experiment/share/
2ea29f95-17f5-47a7-8681-71abbfeefc38.

[13] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth,
Dan Stanzione, Mert Cevik, Jacob Colleran, Haryadi S Gunawi, Cody
Hammock, et al. Lessons learned from the chameleon testbed. In 2020

USENIX annual technical conference (USENIX ATC 20), pages 219–
233, 2020.

[14] Kate Keahey, Joe Mambretti, Paul Ruth, and Dan Stanzione. Chameleon:
a large-scale, deeply reconfigurable testbed for computer science re-
search. In 2019 IEEE 27th International Conference on Network

Protocols (ICNP), pages 1–2. IEEE, 2019.
[15] Machine Learning process https://chameleoncloud.org/experiment/share/

27289213-f69f-43a3-97d9-8123822a47f1.
[16] Limor Peer, Lilla V. Orr, and Alexander Coppock. Active maintenance:

A proposal for the long-term computational reproducibility of scientific
results. PS: Political Science 38; Politics, 54(3):462–466, 2021.

[17] SC23 MLEC Artifact https://chameleoncloud.org/experiment/share/
7a309c34-482b-4eac-b234-bbe4334830f2.

[18] Selection-Brushing https://chameleoncloud.org/experiment/share/
548fd57f-62b2-4470-a25b-6384767ee191.

[19] SPARK-25947 reproduce https://chameleoncloud.org/experiment/share/
61eb84b2-7d6e-45bb-82a2-1d77e2bcd6cd.

[20] Dai Hai Ton That, Gabriel Fils, Zhihao Yuan, and Tanu Malik. Sciunits:
Reusable research objects. arXiv preprint arXiv:1707.05731, 2017.

[21] ”Trovi” https://chameleoncloud.gitbook.io/trovi.
[22] Meng Wang, Jiajun Mao, Rajdeep Rana, John Bent, Serkay Olmez,

Anjus George, Garrett Wilson Ransom, Jun Li, and Haryadi S Gunawi.
Design considerations and analysis of multi-level erasure coding in
large-scale data centers. In Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis,
pages 1–13, 2023.

[23] Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg,
Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-
Willem Boiten, Luiz Bonino da Silva Santos, Philip E Bourne, et al. The
fair guiding principles for scientific data management and stewardship.
Scientific data, 3(1):1–9, 2016.

https://chameleoncloud.org/experiment/share/8ddcf919-79d5-4e48-b095-a778ead90933
https://chameleoncloud.org/experiment/share/8ddcf919-79d5-4e48-b095-a778ead90933
https://chameleoncloud.org/experiment/share/b2328ffc-7208-42f8-9aad-21482c582b66
https://chameleoncloud.org/experiment/share/b2328ffc-7208-42f8-9aad-21482c582b66
https://chameleoncloud.org/experiment/share/097cf325-8835-4181-a4cd-36b36d5b745a
https://chameleoncloud.org/experiment/share/097cf325-8835-4181-a4cd-36b36d5b745a
https://chameleoncloud.org/about/chameleon/
https://chameleoncloud.org/experiment/share/b1d3e4f1-bf88-4312-b841-dd51b237e5fd
https://chameleoncloud.org/experiment/share/b1d3e4f1-bf88-4312-b841-dd51b237e5fd
https://chameleoncloud.org/experiment/share/751f1dd6-f398-43ab-a6b1-1f4bb14616d2
https://chameleoncloud.org/experiment/share/751f1dd6-f398-43ab-a6b1-1f4bb14616d2
https://chameleoncloud.org/experiment/share/2ea29f95-17f5-47a7-8681-71abbfeefc38
https://chameleoncloud.org/experiment/share/2ea29f95-17f5-47a7-8681-71abbfeefc38
https://chameleoncloud.org/experiment/share/27289213-f69f-43a3-97d9-8123822a47f1
https://chameleoncloud.org/experiment/share/27289213-f69f-43a3-97d9-8123822a47f1
https://chameleoncloud.org/experiment/share/7a309c34-482b-4eac-b234-bbe4334830f2
https://chameleoncloud.org/experiment/share/7a309c34-482b-4eac-b234-bbe4334830f2
https://chameleoncloud.org/experiment/share/548fd57f-62b2-4470-a25b-6384767ee191
https://chameleoncloud.org/experiment/share/548fd57f-62b2-4470-a25b-6384767ee191
https://chameleoncloud.org/experiment/share/61eb84b2-7d6e-45bb-82a2-1d77e2bcd6cd
https://chameleoncloud.org/experiment/share/61eb84b2-7d6e-45bb-82a2-1d77e2bcd6cd
https://chameleoncloud.gitbook.io/trovi

	Introduction
	Chameleon Overview
	Chameleon Artifacts

	Artifact FAIRness
	Findability and Accessibility of Artifacts

	Interoperability and Reusability of Artifacts
	Best practices for ensuring continuous FAIRness of artifacts
	Conclusion
	Acknowledgment
	References

