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Abstract

We conducted an exploratory study of 25,260 instant
messages from 14 interdisciplinary team networks
focused on digital innovation with advanced machine
learning technologies. We seek to contribute to theory
on network embeddedness in such teams and find that
the embeddedness of a message sender influences the
messaging activity in teams. However, we further find
that the influence of homophily vary depending on the
topology of the network, and can contribute to the
stratification of these network teams.

Keywords: Social Networks, Relational Event
Model, Tertius Iungens, Digital Innovation Teams,
Embeddedness 1

1. Introduction

The generation of digital innovation occurs through
collaborative, computer mediated team networks.
Increasingly, cutting-edge digital innovation relies
heavily on advanced machine learning based artificial
intelligence technologies. Teams that are generating
these sorts of innovations are intensely interdisciplinary,
and seeking to embed computer scientists in a
fundamental way within networks of traditional domain
and technology specialists. An important question
involves how the structure of these teams may influence
the cross-disciplinary embeddedness of these advanced
machine learning computer scientists.

In this research, we conducted an exploratory study
of 14 interdisciplinary team networks that are generating
digital innovations using advanced machine learning

1Cook, R., Berente, N., & Schecter, A. (2025). Closing Time: The
Impact of Transitivity on Organizational Instant Messaging. Hawaiian
Conference on Information Systems (Forthcoming).

capabilities. We analyzed 25,260 messages from the
instant messaging channel data of the team networks
using Relational Event Modeling (REM) techniques.
REM is well-suited for exploring network dynamics and
the likelihood of events such as the edge formation among
nodes in a network. It is a technique well suited for
exploring the factors influencing the embeddedness of
members of a team.

Our exploratory research is intended to generate
theoretical insight, and can thus be considered a
type of computationally intensive theory construction
that involves an iterative approach to scholarship
where researchers draw on existing theory and use
computational techniques to contribute to this body
of work [4, 26]. We draw on classic research on
organizational network analysis [16] and computer
mediated communications for collaboration [18, 36]. In
particular, we leverage concepts of homophily, centrality,
and triadic behaviors to understand these team dynamics.
We find that embedded message senders are critical for
driving the messaging activity necessary for the triadic
closure that enhances the embeddedness of all members
of the network. We caution, however, that this increased
network density is not necessarily indicative of more
inclusive networks, because homophily can continue to
drive stratification among team members even in dense
networks. The influence of homophily depends on the
network topography. These findings question some of
the prevailing assumptions in the study of innovation
team networks.

2. Organizational Instant Messaging

The integration of Web 2.0 tools into the electronic
social networks of organizations has afforded alternative
communications channels outside of traditional phone
calls and emails to include instant messaging (IM),
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video conferencing, shared document repositories, etc.
[36]. These channels – referred to as computer
mediated communications (CMC) – have grown over
time in both media/channel (e.g., instant messaging and
video conferencing) and scope (e.g., including external
members). Geographically dispersed teams can often
collaborate concurrently on different media of exchange
or switch between CMC tools depending on the task and
team communication norms [30].

Organizational research has long recognized the use
of instant messaging (IM) for complex work discussions
and expressive, flexible communication [18, 27]. This
real-time and direct nature of IM affords “presence
awareness,” which allows colleagues to communicate
more synchronously and productively by knowing when
each other are online and available [37]. Research
has shown that this presence awareness inherent to the
synchronous nature of IM is a sufficient condition for
effective knowledge sharing [24]. Thus, organizations
must consider IM as essential for communications
structure and knowledge transfer [36].

Wellman et al. (2001) contends that “computer
networks are inherently social networks” and email
networks have the ability to span geographic distance
to facilitate interpersonal relationships [44]. Email
networks have been shown to exhibit “small world”
behavior that influences the spread of information
through the network [13]. Several studies have similarly
applied contagion theory to electronic networks to
analyze the spread of information through computer
mediated ties [13, 11]. Analogously to classical social
network theory, studies have shown that “the way
information spreads is affected by the topology of the
interaction network” and spread is limited by how the
topology increases path distance between actors [45].

3. Network Shapes

3.1. Topological Variation

Business problems have both (1) a substantive task
and (2) an organizational/procedural problem [16], and
studies have explored whether the same substantive task
can be better solved by undertaking different social
network shapes. This “network shapes” literature was
born out of the idea in Bavelas (1948) that task success
and satisfaction should be considered a function of the
topological structure of small teams, where information
spreads through a network structure from central to
peripheral regions [3]. This hypothesis was tested by
Leavitt (1951) and Shaw (1954) through experiments
where cubicle workers passed notes through strategically
positioned slots in the walls between them to solve a

shared task [22, 39].

Figure 1. Paradigmatic network shapes as

summarized from Leavitt (1951) and Shaw (1964)

The Chain, Wheel, and Comcon are three
paradigmatic shapes of these networks (see Figure 1).
There are other shapes mentioned in the literature,
but these are variants of these main topologies. For
example, Shaw originally described a Circle shape,
but this can be considered as a derivative of a Chain
with a connection between the first and nth actors.
Studies have found that each shape has different types of
organizational task challenges. The Comcon structure
has to close off and specify which channels to use to
avoid cross-communication; the Wheel needs the hub
person to accept their role; and the Chain requires a more
complicated relay system to pass information to all actors
[16]. Further, we see implied hierarchy in each shape.
The Comcon shape connects all actors with a distributed,
flatter hierarchy. The Wheel displays a natural two-level
hierarchy to a centralized leader. The Chain implies at
least a three-level hierarchy such that peripheral actors
don’t communicate directly with the leader.

3.2. Topographies and Team Performance

There were varied and sometimes conflicting findings
from the original “Bavelas-Leavitt” message-passing
experiments concerning efficiency and performance.
Shaw (1964) found no difference in the number of
messages sent, group satisfaction and performance on
the task, but a notable difference in time taken to reach
a decision for different shapes [38]. Wheel structures
were shown to produce higher performance and better
efficiency, but lower satisfaction metrics than other
network shapes [38, 22]. In addition to the increased
performance of the Wheel, these studies found that Chain
and Comcon structures offer lower performance and
efficiency, respectively [22, 38].

Researchers also examine the effectiveness of each
shape based on the complexity of the substantive task.
Macy et al. (1953) increased difficulty of the substantive
task by purposely introducing errors in the coding
process and demonstrated that redundancy in a network
structure can be a mechanism to reduce error rate
[23]. Shaw (1954) found that Chain structures are
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better suited for complex problems since they distribute
information access to more members, increasing the
“possibilities for contribution” needed for complex tasks
[39] . Centralized structures such as the Wheel structures
face difficulties with complex tasks in which the central
leader becomes so overburdened by a difficult substantive
task that it inhibits their ability to function as the
necessary hub of the organizational task [9].

3.3. Centrality

Centrality serves as a proxy for information
availability and embeddedness in a communications
network, impacting the degree to which an actor can
contribute to the substantive and organizational tasks
[22, 39]. Since individual centrality correlates with
the amount of information an actor receives about a
task, it affects the time to complete an activity and
emergence of a leader [39, 31, 6]. But a completely
centralized decision structure risks overburdening the
leader by sheer volume of organizational work, causing
information blockages [31].

Organizations can also err by trying to over-integrate
peripheral subgroups into the decision structure, which
instead overburdens every actor [21]. Without structured
communications, the organizational task becomes harder
by extensively increasing the amount of work for each
actor [9]. However, recent studies on decentralization
have shown promising results and there has been a shift
towards strategic decentralization [10, 9].

4. Triadic Behavior

Classical theory on social capital and structural
holes comes to the conclusion that the best way
to optimize one’s network is by undertaking triadic
strategies. Simmel first identified the influence of
the third over a dyadic relationship and Burt built his
structural holes argument based on this influence/control
[40]. Exploitation of information asymmetry at a
structural hole is called tertius gaudens – i.e., the third
who enjoys, where an intermediary promotes active
separation of two parties (i.e., alters) to benefit from
exclusive information from the alters. Tertius gaudens
strategies are more often found in competitive markets
[2] and among unfamiliar/less embedded actors [32].
But even in competitive markets, firms might seek
a balance between embedded and arms-length ties as
embeddedness provides heightened social capital which
is more useful than immediate information benefits [41].

An orthogonal approach to triadic behavior is
seen in the tertius iungens social strategy, where
the intermediary acts as the “third who joins” two
disconnected parties [28]. Here, the intermediary

purposely closes the structural hole by introducing the
two previously unacquainted alters or facilitating further
interaction between two familiar parties [29]. In the latter
case, embedded actors may have some type of existing
ties with most people in the network, but they may not
consider formal collaboration until a broker increases
the level of trust in the relationship. Tertius iungens
purposefully leverages these types of dense, embedded
ties between all three actors in the triad to allow for trust,
more granular information sharing, and joint problem
solving [41].

Obstfeld (2005) also identifies teams engaged in
innovation as being in a prime environment for applying
tertius iungens to the “action problem,” as organizations
engaged in innovation must have some sparsity to
generate new ideas, but people must be joined to
produce coordinated action [28]. Employing a tertius
iungens strategy can be especially effective in diverse
and collaborative / non-competitive networks. This
strategic addition of ties has been shown to work
well in environments with cultural norms of openness,
teamwork, trust, and reciprocity [2].

5. Research Method

5.1. Relational Event Modeling

Traditionally, network activity and triadic behavior
has been measured via the distribution of survey
instruments [46, 2, 28], but this type of data can be biased
and is often costly to collect [19, 15]. Fortunately, the
increased availability of electronic communication and
event data has allowed for more fine-grained analysis of
social interactions [20, 5]. From a dataset of 14.5M
emails, Kossinets & Watts (2006) challenged traditional
network theory with findings that (1) homophily did
not have a significant effect on closing structural holes
and (2) the social capital of these brokers seemed to
average-out in large networks [20]. Quintane et al.
(2013) [33] also found that short-term stability (in
reciprocity and closure) is not necessarily subsumed into
the long term patterns in traditional network analysis.

This increased data availability has spawned new
methods through a revival of survival analysis in the
Relational Event Modeling (REM) technique. Butts
(2008) formalized REM as a way to model the trace
data of communications with a Poisson process such
that the probability of the next dyadic tie / relational
event has the minimum hazard rate in traditional survival
analysis [8]. Conditioning on the event history up to time
𝑡 − 1, the potential events at time 𝑡 happen stochastically
with different propensities based on their history of
occurrence. The “risk set” at time 𝑡 contains all possible
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dyads that might occur, and we can fit a Cox regression
with a binary dependent variable of which event in the
risk set actually occurred at time 𝑡.

5.2. Computationally Intensive Theory
Construction

Studies leveraging REM have shown exploratory
tendencies as researchers gain access to data at a new
level of granularity that allows them to examine new
relationships and address previously infeasible calls for
examination of network dynamics [20, 33, 17]. We
can exploit this increasingly abundant trace data via
computationally intensive theory construction (CITC),
which iteratively applies computational techniques with
grounded theory and sensemaking to develop new theory
[4, 26]. As we are considering areas with open questions
(e.g., REM sampling and scaling) and/or conflicting
theory (e.g., efficiency of Wheel vs. Comcon structures),
we can take the trace data as ground truth and perform
computationally rigorous sequential analysis to produce
propositions. We aim to offer theoretical propositions
for future research based on grounded network theory
and patterns derived from sequential analysis.

6. Study

6.1. Data

We studied 14 teams that are working across
universities and industry to generate machine learning
applications for scientific discovery in chemistry. The
teams were part of a broader, cross-disciplinary science
organization, and team members were primarily from the
fields of computer science (“CS”) or chemistry.

The teams display diversity of (1) tenure and (2) field
of study. Teams vary in size from 3 to 17 members and
display high variation in their personnel composition
across the ranks of graduate student, assistant faculty,
post docs, research scientists, staff, etc. While the
organization is interdisciplinary across teams, each team
tends to be homogeneous with respect to field as their
is only one team member out of 114 working in a team
different from their academic background. In order to
code whether a researcher had a more formal background
in the field of CS or chemistry, we examined the
biographies, publication histories, and LinkedIn profiles
of team members and validated our mappings with the
organization’s leadership.

To conduct network analysis, we collected trace data
from the Slack communications system used by the
organization. We gathered timestamps of 25,833 direct
messages sent among team members from its early usage
on August 24, 2019 to a data checkpoint on February

29, 2024. Each message is a relational event consisting
of a sender, receiver, and timestamp, which can be
considered as a directed tie between two network actors.
These trace data afford us the granularity to see the daily
communication habits of team members, but we realize
that we likely miss some of the offline communication
that happens outside of these platforms (e.g. in-person
conversations, emails, etc.). Despite the existence of
offline communication, there is precedent for usage of
email and messaging data for network analysis [13, 20,
33, 8].

To investigate whether different network shapes
correlate with different communications habits, we map
each of our teams to their nearest “Bavelas-Leavitt”
topology [3, 22]. Although these network shapes were
initially intended for small groups of 4-6 people passing
paper messages at a table, we can generalize these
topologies to include many geographically dispersed
actors by considering the (1) average betweenness
centrality, (2) overall density, and (3) a static snapshot of
the network topology. We use betweenness centrality due
to its similarity to the original experiments and findings
that centrality is better measured via betweenness than
network size/degree or closeness measures [14].

Figure 2. Plotting team topologies by Density and

Avg. Centrality maps to paradigmatic shapes

We consider the three paradigmatic Bavelas and
Leavitt shapes: Chain, Wheel, and Comcon. Chain
topologies display low centrality and density such
that each actor only messages 1-2 others with little
redundancy. Wheel shapes are primarily characterized
via a very highly centralized leader. Comcon structures
also typically have relatively high centrality, but they
are identified by their increased density and many
redundancies as most actors are connected. With these
criteria in mind, we can plot the density of the network by
its average betweenness centrality for each team in Figure
2. Since density correlates highly with betweenness
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centrality (𝜌 = 0.9779), we normalize this value by
the number of edges to capture the part of centrality
not shared with density, decreasing their correlation to
𝜌 = 0.3204. We can clearly see three distinct clusters
with similar network shape images within clusters.

6.2. Network Statistics

We calculate several network statistics of interest to
use as covariates in our REM, all of which can be found
in Table 1. We are interested in triadic behavior, so we
employ several different measurements of triadic closure.
We calculate a General Closure metric as the strength of
two-paths between some sender 𝑖 and a receiver 𝑗 through
an intermediary 𝑘 . When there are a lot of messages
sent on the 𝑖 → 𝑘 → 𝑗 paths, we see frequent brokerage
of information around messages between sender 𝑖 and
receiver 𝑗 with a high General Closure value.

We are also directly interested in the tertius iungens
activity, which closes structural holes or introduces new
projects to a closed triad. We are unable to model the
latter “existing iungens” activity, but we can consider the
initial introduction of two actors who share a common
contact. We create a First Closure statistic as a binary
indicator of the first time that some sender 𝑖 messages a
receiver 𝑗 with some shared 𝑘 intermediary.

Transitivity and triad census consider the number of
closed triads in a given network/subnetwork [43]. We
would expect actors engaged in tertius iungens to have
a high degree of local clustering and embeddedness in
their immediate neighborhood (i.e., a high degree of
transitivity) since iungens is enacted by the intermediary
𝑘 connecting their mutual contacts. Calculating these
Transitivity statistics for both Sender and Receiver, we
can determine whether a given event/message 𝑖 → 𝑗

is likely to have resulted from local clustering / tertius
iungens behavior by some neighboring intermediary 𝑘

of sender 𝑖 or receiver 𝑗 .
Although we are primarily interested in triadic

behavior, we also need to add network statistics to
account for patterns at the node and dyad-levels which
might also explain communications activity. In line with
previous literature, we consider Inertia as the propensity
for sender 𝑖 to message receiver 𝑗 based on the number
of previous 𝑖 → 𝑗 messages exchanged. By symmetry,
we also track Reciprocity as the tendency for sender 𝑖
to message receiver 𝑗 based on the number of previous
messages in the opposite direction (i.e., 𝑗 → 𝑖). We
also need to account for the general propensity for a
given node to send or receive messages in the network.
We calculate each node’s Activity as the total number
of messages that the actor has sent to any other node
in the network and its Popularity as its total number of

messages received, which correspond to each node’s out-
and in-degree, respectively. Lastly, we want to consider
time-invariant features of each node including a given
node/actor’s rank (e.g., PI, grad student, post doc, etc.),
field (i.e., CS or chemistry), and which team they are
affiliated with. These fixed effects also lend themselves
to binary homophily metrics that account for whether an
𝑖 → 𝑗 message occurs between two actors of the same
rank, background, or team.

7. Models and Results

Relational Event Modeling (REM) can be seen as
an implementation of survival analysis by applying the
Cox Proportional Hazard Model (CPHM) to a particular
data structure of events, which we will call the Sampled
Event History (SEH). In a large network with |𝑉 | = 114
actors, it would be computationally infeasible to calculate
sequential network statistics for the entire risk set of
|𝑉 |! / (|𝑉 | − 2)! = 12, 882 potential directed dyads for
each of 𝑁 = 25, 260 relational events. Thus, at each time
period 𝑡, we randomly sample 20 control events for each
event/message, which meets the recommended threshold
in Schecter & Quintane (2020) for stable parameter
estimates [35]. Then, we calculate each of the network
statistics in Table 1 above and exponentially weight all of
our statistics using a half life of three days (from related
literature) and standardize them to ensure scale of the
network statistic does not impact our coefficient values
[33, 42]. These weighted, scaled network statistics serve
as covariates in a Cox regression for the event dummy
variable for whether an event in the case-control SEH
actually happened.

As mentioned above, we consider three levels of
network statistics in our modeling process. At the
node-level, we consider Activity and Popularity as
these are calculated with respect to a single actor
and how they individually interact with the rest of
the network. The dyad-level statistics include Inertia,
Reciprocity, In-Team, and homophily measures (i.e.,
Same Rank or Same Field) since these characteristics
are present in the messages sent between two particular
nodes 𝑖 and 𝑗 . We are primarily interested in our
triad-level statistics including general closure, first
closure, Sender Transitivity, and Receiver Transitivity
as they are enumerated across sender 𝑖, receiver 𝑗 , and
their intermediary(ies) 𝑘 .

Lastly, we consider fixed effects for characteristics
of nodes regarding their rank (e.g., PI, grad student,
etc.), field (i.e., CS or Chemistry), and team affiliation.
However, we find high multicollinearity between (1) field
and team – since only one team has an interdisciplinary
member – and (2) rank and team – since personnel varies
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Statistic Definition Level Formula Visualization

Activity tendency for 𝑖 to send a message to
𝑗 based on 𝑖’s previous number of
messages sent in the network

Node 𝑋act
𝑖 𝑗 (𝐻𝑡 ) =

∑︁
𝑘

𝑛𝑖𝑘𝑡

Popularity tendency of 𝑗 to receive a message
from 𝑖 based on 𝑗’s history
of receiving messages from all
members of the network

Node 𝑋
pop
𝑖 𝑗

(𝐻𝑡 ) =
∑︁
𝑘

𝑛𝑘 𝑗𝑡

Inertia tendency of 𝑖 to send a message to 𝑗
based on the past number of messages
𝑖 has sent to 𝑗

Dyad 𝑋int
𝑖 𝑗 (𝐻𝑡 ) = 𝑛𝑖 𝑗𝑡

Reciprocity tendency of 𝑖 to send a message to 𝑗
based on the past number of messages
𝑖 has received from 𝑗

Dyad 𝑋
rcp
𝑖 𝑗

(𝐻𝑡 ) = 𝑛 𝑗𝑖𝑡

General Closure the tendency for 𝑖 to send information
to 𝑗 via an 𝑖 → 𝑘 → 𝑗 path through
some 𝑘 intermediary(ies)

Triad 𝑋
gcl
𝑖 𝑗

(𝐻𝑡 ) =
∑︁
𝑘

𝑛𝑖𝑘 𝑗𝑡

First Closure whether this message would be the
first between 𝑖 and 𝑗, with an existing
𝑖 → 𝑘 → 𝑗 path through some 𝑘
intermediary(ies)

Triad
𝑋fcl
𝑖 𝑗 (𝐻𝑡 ) = 1{∃𝑘 : 𝑖 → 𝑘 → 𝑗 ∈ 𝐻𝑡 ∧

𝑖 → 𝑗 ∉ 𝐻𝑡 }

Sender Transitivity ratio of closed triangles (𝑖 → 𝑘 →
𝑗 ∩ 𝑖 → 𝑗) to possible triangles (𝑖 →
𝑘 → 𝑗) which 𝑖 initiates

Triad 𝑋str
𝑖 𝑗 (𝐻𝑡 ) =

∑
𝑘→𝑔 𝑛𝑘𝑔𝑖𝑡∑
𝑘→𝑔 𝑛𝑘𝑔𝑡

Receiver Transitivity ratio of closed to possible triangles
which 𝑗 terminates

Triad 𝑋rtr
𝑖 𝑗 (𝐻𝑡 ) =

𝑠𝑢𝑚 𝑓→𝑘𝑛 𝑗 𝑓 𝑘𝑡∑
𝑓→𝑘 𝑛 𝑓 𝑘𝑡

Table 1. Network statistics calculated from the SEH and used as covariates in REM

across teams in a way that less common ranks (e.g.,
Staff, Postdoc) uniquely map to a single team. However,
past studies have used stratification on individuals to
remove the dummy variable coefficients from the partial
likelihood function of a Cox regression and still solve
this omitted variable issue [1, 12]. We perform this
stratification at the team level to account for the effects
of rank and field.

7.1. REM Results

We build a series of nested models to demonstrate
the improvement in fit as we add network statistics by
level. We start with a simple REM Model 1 that only
includes our node-level statistics activity and popularity
along with fixed effects. We are not surprised to find
that coefficients in each model are all very statistically
significant (i.e., p<2e-16) since we are testing against
the null hypothesis that events in the network occur
randomly. Coefficients greater than zero contribute to
an increase in proportional log likelihood of an event
happening with respect to the baseline rate.

Model 2 adds dyad-level statistics, refining our focus
from messages from some actor 𝑢 to the entire network
to consider messages between specific pairs of senders 𝑖
and receivers 𝑗 . Model 3 that controls for other network

event patterns and fits the data better (AIC = 19.0302)
than both of our naive models.

Looking at the Model 3 coefficients in Table 2, we
see that Sender Transitivity (𝜃𝑠𝑡𝑟 = 1.4430) and Same
Rank (𝜃𝑠𝑟 = 1.0949) have the highest magnitude impact
on the proportional likelihood of a relational event (i.e., a
Slack message). Put simply, messages occur much more
often between (1) embedded actors and (2) actors of the
same rank. We also note that our other homophily and
transitivity statistics – i.e., Same Field (𝜃𝑠 𝑓 = 0.6138)
and Receiver Transitivity (𝜃𝑟𝑡𝑟 = 0.3531) – score
relatively high coefficient values but are also comparable
to our fixed effect for Send PI (𝜃𝑟𝑡𝑟 = 0.4042). On the
opposite end of the figure, we find that the coefficient for
the binary indicator First Closure has a very small value
(𝜃𝑟𝑡𝑟 = −3.2338), indicating that introductions between
actors with a shared intermediary is understandably rare
– as first impressions are washed out by regular messages.

7.2. Results by Shape

To explore whether networks with varied topological
structures demonstrate different communications
patterns, we group teams by their shape and estimate
separate REMs for each shape. Figure 3 provides three
different REM coefficient estimates on the x-axis for

Page 5803



Model 1: Node Model 2: Node+Dyad Model 3: N+D+Triad
Coef. SE z Coef. SE z Coef. SE z

Sent by PI 1.2162 0.0146 83.47 1.4478 0.0152 95.30 0.4042 0.0164 24.62
Activity 0.0747 0.0032 23.54 0.0634 0.0049 12.82 -0.0334 0.0058 -5.77
Popularity 0.2415 0.0031 78.79 0.2212 0.0039 57.28 0.0859 0.0058 14.86
Inertia -0.1004 0.0052 -19.23 0.0160 0.0068 2.37
Reciprocity 0.1000 0.0032 31.38 0.0875 0.0035 25.22
In-Team 0.2391 0.0189 12.68 -0.0610 0.0208 -2.93
Same Field 0.5217 0.0219 23.87 0.6138 0.0226 27.12
Same Rank 1.3833 0.0141 98.20 1.0949 0.0139 78.58
General Closure 0.1097 0.0029 37.31
First Closure -3.2338 0.0497 -65.09
Sender Transitivity 1.4430 0.0109 131.88
Receiver Transitivity 0.3531 0.0034 104.71
Model AIC 3.8028 11.8411 19.0302

Table 2. REM coefficients, standard errors (SE), and z scores from the three nested models

Figure 3. Coefficient values for REM fit on on each shape – robust confidence intervals are included in red

our respective shapes on the y-axis. In addition to the
baseline hazard rate in green and the standard 𝛼 = 0.95
confidence interval (CI) in black, we also include an
extended bootstrap-robust CI in red. In this robustness
exercise, we again estimate a REM for each shape but
leave one of the teams out each and take the largest
and smallest values from these 𝜆 CIs as the bounds
for the bootstrap-robust CI. However, we appeal to (1)
the separation of clusters and (2) the visual similarity
of network topologies in Figure 2 such that the black
standard 95% CI is more likely than the robust red bars.

Examining the values across shapes, we notice
interesting trends on the dyad and triad-level statistics.
First, we find that none of the teams in the Chain shape
send in-team messages, leading to a NA coefficient in
the top right subplot. But we also see that unlike the
Wheel structure (𝜃𝑖𝑙 = −1.5905), the denser Comcon

teams are actually integrating in-team messaging as
indicated by the increased proportional likelihood of
the In-Team coefficient for Comcon (𝜃𝑖𝑙 = 0.1306) –
and this difference is even fully robust to our bootstrap
procedure. Further at the dyad-level, we see trends
in rank and field homophily which vary across shape.
Chain teams display the highest homophily tendencies
for both field (𝜃𝑠 𝑓 = 1.4785) and rank (𝜃𝑠𝑟 = 2.1371),
with the latter being bootstrap-robust. But we note an
interesting asymmetry in Wheels and Comcons such that
Comcons display higher rank homophily (𝜃𝑠𝑟 = 1.2568)
but lower field homophily (𝜃𝑠 𝑓 = 0.1107). This finding
is interesting since denser networks like Comcons are
often praised for reducing hierarchy, but we see these
increased ties occurring with rank stratification.

Finally, we show a bootstrap-robust finding that
Chains are displaying a higher marginal effect for First

Page 5804



Closure – albeit at a low magnitude. Perhaps we see
increased via tertius iungens brokerage behavior in which
disconnected actors are introducing common contacts.
Although the sparsity of these Chains supplies more
opportunities for first messaging, actors seem to be
capitalizing on these opportunities at a higher rate than
the denser Wheels and Comcons.

8. Theory Development

8.1. Transitivity

REM coefficients are indicative of how certain
network statistics drive change in topology due on
their relationship to the proportional likelihood of
which new ties will occur. Based on our findings in
Table 2, we see Sender Transitivity as best predictor
of the likelihood of a relational event in the overall
network since it has the largest coefficient magnitude.
When considering message patterns on the aggregate
/ entire organization level – i.e., across teams in
an interdisciplinary innovation context – we consider
Sender Transitivity to be the primary driver for how the
network changes over time.

It is difficult to identify the triadic behavior that
led to these closed triangles in this network. First
Closure actually occurs more in sparse Chain shapes with
lower density and lower transitivity such that transitivity
does not seem to move with the introductory / new
contact facet of tertius iungens. But we also observe
the relative unimportance (with respect to the baseline
rate) of General Closure across all shapes. Further,
this tendency to pass information directly – rather than
through an intermediary, was previously found to not
correlate with transitivity in the data. Future research
should consider whether these triangles close through
purposeful triadic behavior, via some other mechanism,
or purely stochastically.

Thus, we focus our theory development on
the outcomes of transitivity – i.e., the increased
embeddedness of the actor. Network ties are activated
by messages between actors, so it makes sense that more
embedded actors (i.e., with higher local transitivity)
are driving network activity. Further, denser shapes
integrate in-team messaging and are more likely to
break field homophily and message external actors with
interdisciplinary such that their embedded actors seem to
be key players in the aggregate organizational network.
Based on these results, we offer the Proposition:

P1: Embeddedness of the sender drives
messaging activity at the organizational
level across interdisciplinary subgroups
engaging in innovation.

8.2. Homophily

Homophily also generally helps explain messaging
patterns at both the organization and shape levels. We
note that rank and field homophily are the second and
third largest coefficients in the center-level model and
display difference in mean across all shapes at 𝛼 = 0.95.
This homophily between actors is long established in
network diversity literature [25, 34, 31].

We find that all shapes still display relatively high
Sender Transitivity across paradigmatic shapes, but
we do find differences in different shapes homophilic
tendencies and integration of in-team messaging. Denser
Comcon topologies integrate in-team messaging but
display lower field homophily. Due to the near pure
homogeneity of field membership in teams, this is
surprising since increased in-team messaging might
imply increased field homophily as chemists talk to
chemists more often (and vice versa). However, we
note that in-team messaging and field homophily only
correlate 𝜌 = 0.1473, so it is unlikely that our REMs
are affected by multicollinearity between them. Thus,
external communications (i.e., to members outside
the team) of Comcons must display some level of
interdisciplinarity to achieve this lower field homophily
estimate with increased in-team messaging.

Further, we find another interesting trend as there
seems to be more rank homophily in these denser
networks as ties are more likely to arise between
members of the same tenure. Existing literature contends
that increasing density reduces hierarchy as it connects
actors and eliminates the information asymmetries that
create structural leadership and brokerage positions [16,
7]. Our finding is interesting since it shows that unlike
traditional concepts of density, dense networks might
not be reducing hierarchy or democratizing information
flows. We show that increasing density is not necessarily
reducing hierarchy in the practical sense as there is still
a higher level of rank homophily. Instead we might
take a more nuanced view on what hierarchy means in a
network context when we also consider implicit tenure /
rank as node characteristics. Thus, we propose:

P2: Rank homophily reinforces social
stratification on tenure at both the
organizational and subgroup level, even as
network density increases

9. Conclusion

In this study, we reviewed how different network
shapes might influence a team network’s dynamics
around triadic closure which would be associated with
the embeddedness and inclusivity of a team. We outlined
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triadic strategies that individual actors may undertake to
influence overall network topology. We drew on a REM
analysis of 14 team networks, and using these findings,
we generated theory that can be tested by future studies
to advance understanding of network dynamics.
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