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Abstract. Solving feedback Stackelberg games with nonlinear dynamics and coupled constraints,
a common scenario in practice, presents significant challenges. This work introduces an efficient
method for computing approximate local feedback Stackelberg equilibria in multiplayer general-sum
dynamic games, with continuous state and action spaces. Different from existing (approximate) dy-
namic programming solutions that are primarily designed for unconstrained problems, our approach
involves reformulating a feedback Stackelberg dynamic game into a sequence of nested optimization
problems, enabling the derivation of Karush—-Kuhn-Tucker (KKT) conditions and the establish-
ment of a second-order sufficient condition for local feedback Stackelberg equilibria. We propose a
Newton-style primal-dual interior point method for solving constrained linear quadratic (LQ) feed-
back Stackelberg games, offering provable convergence guarantees. Our method is further extended
to compute local feedback Stackelberg equilibria for more general nonlinear games by iteratively
approximating them using LQ games, ensuring that their KKT conditions are locally aligned with
those of the original nonlinear games. We prove the exponential convergence of our algorithm in con-
strained nonlinear games. In a feedback Stackelberg game with nonlinear dynamics and (nonconvex)
coupled costs and constraints, our experimental results reveal the algorithm’s ability to handle in-
feasible initial conditions and achieve exponential convergence toward an approximate local feedback
Stackelberg equilibrium.
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1. Introduction. Dynamic game theory [5] provides tools for analyzing strategic
interactions in multiagent systems. It has broad applications in control [10], biology
[26], and economics [17]. A well-known equilibrium concept in dynamic game theory
is the Nash equilibrium [36], where players pursue strategies that are unilaterally
optimal, and players make decisions simultaneously. However, this may not apply
to a broad class of games where a decision hierarchy exists, such as lane-merging
in highway driving [52], predator-prey competition in biology [2], and retail markets
in economics [30]. These games could be more naturally formulated as Stackelberg
games [47], where players act sequentially in a predefined order. For such games, the
Stackelberg equilibrium is the appropriate equilibrium concept.

The formulation of Stackelberg equilibria depends on the information structure [5].
For instance, in scenarios where players lack access to the current game state, one
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can compute an open-loop Stackelberg equilibrium (OLSE). At such an equilibrium,
players’ decisions depend on the initial state of a game and followers’ decisions are
influenced by the leaders’. When players also have access to state information and
their prior players’ actions, it becomes appropriate to compute a feedback Stackelberg
equilibrium (FSE), where each player’s decision is contingent upon the current state
and the actions of preceding players. One advantage of FSE over OLSE is its subgame
perfection, meaning that decision policies remain optimal for future stages, even if the
state is perturbed at an intermediate stage. This feature is particularly beneficial in
scenarios with feedback interactions among players, such as in lane-merging during
highway driving [44] and human-robot interactions [14]. In these situations, the sub-
game perfection of FSE makes it a more suitable equilibrium concept than OLSE, as
it allows players to adjust their decisions based on the current state information.

Though FSE is conceptually appealing, computing it poses significant challenges
[18, 33, 49, 50]. Previous research has extensively explored the FSE problem in finite
dynamic games, characterized by a finite number of states and actions [1, 5, 24, 42,
45, 48]. In contrast, infinite dynamic games—those with an infinite number of states
and actions—have mostly been considered within the framework of linear quadratic
(LQ) games, featuring linear dynamics and stagewise quadratic costs [5, 12, 15, 21, 46].
The computation of FSE for more general nonlinear games is more challenging than
for LQ games. A naive application of existing dynamic programming solutions in
finite dynamic games necessitates gridding the continuous state and action spaces,
often leading to computational intractability [6]. Recent works [35, 51] have proposed
using approximate dynamic programming to compute an approximate FSE for input-
affine systems. Additionally, several iterative L.QQ approximation approaches have
been proposed in [19, 22], but they lack convergence guarantees.

Moreover, existing approaches are ill-suited for handling coupled equality and
inequality constraints on players’ states and decisions, which frequently arise in safety-
critical applications such as autonomous driving [43] and human-robot interaction [23].
For instance, existing iterative LQ game solvers [19, 22] cannot be directly integrated
with the primal log barrier penalty method [39] to incorporate these constraints. The
most relevant studies, such as [13, 32, 34|, focus on computing OLSE in games under
linear constraints. This paper aims to bridge this gap in the literature.

Our contributions are threefold: (1) We first reformulate the N-player FSE prob-
lem, characterized by N players making sequential decisions over time, into a sequence
of nested optimization problems. This reformulation enables us to derive the Karush—
Kuhn-Tucker (KKT) conditions and a second-order sufficient condition for the FSE.
(2) Using these results, we propose a Newton-style primal-dual interior point (PDIP)
algorithm for computing a local FSE for LQ games. Under certain regularity condi-
tions, we show the convergence of our algorithm to a local FSE. (3) Finally, we propose
an efficient PDIP method for approximately computing a local FSE for more general
nonlinear games under (nonconvex) coupled equality and inequality constraints. The
computed feedback policy locally approximates the ground truth nonlinear policy.
Theoretically, we characterize the approximation error of our method and show the
exponential convergence under certain conditions. Empirically, we validate our algo-
rithm in a highway lane-merging scenario, demonstrating its ability to tolerate infea-
sible initializations and efficiently converge to a local FSE in constrained nonlinear
games.

2. Related works. Closely related to the feedback Stackelberg equilibrium
(FSE), the feedback Nash equilibrium (FNE) has been extensively studied, for
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example, in [4, 5, 25, 40]. Our work builds upon [25], where the authors proposed
KKT conditions for constrained FNE. However, the FNE KKT conditions in [25] fail
to hold true for FSE due to the decision hierarchy in FSE. In our work, we intro-
duce a set of new KKT conditions for FSE. Another key difference is that we adopt
the PDIP method for solving LQ and nonlinear games, whereas [25] considers the
active-set method. In general, the former has polynomial complexity, but the lat-
ter has exponential complexity [16]. Moreover, we are able to prove the exponential
convergence of our algorithm under certain conditions. However, there is no such
convergence proof in [25].

As highlighted in the literature, e.g., [5, 29, 35, 46, 51], the dominant approach
to computing unconstrained FSE is using (approximate) dynamic programming. LQ
games can be solved efficiently via exact dynamic programming; however, in more
general nonlinear cases the value function could be hard to compute and, in general,
has no analytical solution [35]. Compared with those works, our approach could be
considered as computing an efficient local approximation of the value function along
the state trajectory under a local FSE policy instead of approximating the value
function everywhere as in [35].

Finally, to further motivate our work, we discuss whether the FSE could be ap-
proximated well by an FNE or an OLSE. As suggested by [24], the FSE could coincide
with the FNE in repeated matrix games. However, we show a counterexample in Ap-
pendix A.1 that the FSE could be arbitrarily different from the FNE in LQ games.
Moreover, there is a recent trend of approximating feedback policies via receding-
horizon open-loop policies [27, 53], where an open-loop policy is re-solved at each
time for future steps. However, we show in another counterexample in Appendix A.2
that the trajectory under the feedback Stackelberg policy and the one under the
receding-horizon open-loop Stackelberg policy could be quite different, even if there
is no state perturbation. Thus, it is essential to develop specific tools for computing
the FSE.

3. Constrained feedback Stackelberg games. In this section, we introduce
the formulation of constrained feedback Stackelberg games. We formulate the problem
by extending the N-player feedback Stackelberg games [15] to its constrained setting.
We denote by N and R the sets of natural numbers and real numbers, respectively.
Given j,k € N, we denote by Ié’? ={j,j+1,....,k} if j < k and 0 otherwise. Let
T € N be the time horizon over which the game is played. At each time t, we denote
by x; and ui € R™ the state of the entire game and the control input of player i,
respectively. We define u; := [uf,u2,...,ulY] € R™, with m := vazl m;, to be the
joint control input at time ¢. Moreover, at each time ¢, players make decisions in the
order of their indices. We consider the time-varying dynamics

(3-1> T4 :ft(mtyut)a

where fi(xg,ug) @ R® x R™ — R™ is assumed to be a twice differentiable function.
Given a sequence of control inputs u := [ug,u1,...,ur] € RT™, we denote by x :=
[z0,21,...,2741] € RTHD™ 4 state trajectory under dynamics (3.1).

At each time t € I, we denote the stagewise cost of player i € I by £ (zy,uy) :
R"™ x R™ — R, and associate with each player a terminal cost, ¢4, (z741) : R - R.
Each player i € IV considers the following time-separable costs:

T

(32) Ji(X7u) :Zﬁ(mt,ut) +€%1+1(ZL'T+1).
t=0
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Moreover, let n}vm and ng)t be the number of equality and inequality constraints held by
player i € IV at time ¢, respectively. We denote the equality and inequality constraint
functions of player i by hi(xy,us) : R” x R™ — R™wt and gi(zy,u;) : R? x R™ — Rt
respectively. We specify the stagewise equality and inequality constraints of player
ieIy as

(3.3) 0="hj(ze,us), 0< gi(ae,up).

At the terminal time ¢t =T + 1, we represent the equality and inequality constraint
functions of player i € IV by hiy(zp41) : R® — R™ 7+ and gh (z741) : R® —
R™s.7+1 respectively. We consider the following equality and inequality constraints
of player i € I¥V at the terminal time,

(3.4) 0=hrp1(@r41), 0< gy (@741)-

We remark that these definitions generate coupled dynamics and constraints among
different players at each time ¢ € IOT+1. We consider the following regularity assump-
tion, following [11, 25].

Assumption 3.1. The feasible set F := {x € RT+U" o € RT™ . hi(xy,u) =
0,9i(ze,ue) > 0,k (2r41) = 0,95, (Tr41) = 0,241 = fu(we,uy) Vi€ IY ¢ € I}
is compact. The costs, dynamics, and equality and inequality constraints are twice
differentiable and bounded, but could be nonconvex in general.

3.1. Local feedback Stackelberg equilibria. In this subsection, we formalize
the decision process of feedback Stackelberg games. Before doing that, we introduce a
few notations to compactly represent different players’ control at different times. We
define uéi, ;= {uf, 7 € I!',j € I/ }. In particular, we define u}* ' :=( when i =1 and
uf ™'Y ;= when i = N. We also denote by u},. ;- :=0 when t =T.

The policy of each player can be defined as follows. At the tth stage, since player 1
makes a decision first, its policy function 7} (z;) : R — R™ depends only on the state
. For players i € IYY, the policies are modeled as 7! (z;,u} ") : R™ x RE=1™i
R™i. We will define the concept of local feedback Stackelberg equilibria in the remainder
of this subsection.

At the terminal time t = T + 1, we define the state-value functions for a player
ieIy as

i .o [0=hL, (zri1),
Iz T if { Tt
T+1( T+1) 0§9}1"+1(IT+1)7

(3.5) Vi (@) =
00 else.

At time t <T, we first construct the state-action-value function for player N:

N N O:$g+1—ft(1t7ut)a
b (zeue) + Vi () if { 0=h (wt,ur),

(3-6) ZtN(Z‘taU%:N_lauiv) = 0<gy (we,us),

00 else.
Given (z,u; V1), there could be multiple u)N minimizing ZN (xy,uf N 1 ulY). We
define player N’s local FSE policy ¥ by picking an arbitrary local minimizer u"*

)

(3.7) o (g, up N = ulr e arg min ZN (zp,uf N ANy,
Uy
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We then construct the state-action-value function of player i € Iév -1

0=m¢41—fe(@e,ue),
. . . 0="h}(z¢,uz)
7 (] t ) El
C(we ue) + Vi (@) i 0< g (me,u),

J— 1:j—1y . - N
uy =my (T ,uy )s ]GI,iJrl,

(3.8)  Z{(wy,u" "t up) =
00 else,

and its local FSE policy 7! by picking an arbitrary local minimizer u!

(3.9) Tz, uf ) =l € argmin Zi(xp,uf ™t al).
Ut

We finally construct the state-action-value function of the first player,

0=z¢p1—fe(xe,ue),
1 1 . 0="h}(ws,ur),
by (e, ue) + Vigy (2e4) i 0< g} (we,ur),

(310)  Zilwu)= ut =t D, e,
00 else,
and its local FSE policy
(3.11) 7 () i=u)* Gargrr}iantl(xt,ﬂ%).
Ut

We define the state-value function of player i € {1,2,..., N} at time t <T as

(3.12) Vti(:ct) :Z,f(xt,utl*,...,ui*L

where ul* = 77 (z,upV V) Vi €T
We formally define the local feedback Stackelberg equilibria as follows.

DEFINITION 3.2 (local feedback Stackelberg equilibria [5]). Let {ﬁz}tT:’Jg?i:l be a

set of policies defined in (3.7), (3.9), and (3.11), and define (x*,u*) to be a state and
control trajectory under the policies {ﬂ'z}t:’%{izl, i.e.,

(3.13) wr = filalul), wl =wiat,uy V) veetd i1y,

We say that (x*,u*) is a local feedback Stackelberg equilibrium trajectory if there
exists an € >0 such that, for all t € I},

Z) (wy,0y) > Z; (=7 ),

(3.14)
N-1)* ~ N-1
2 ™) 2 2 Y )
for all u} € {u:|ju—ut*l|a <e€},... and for all @l € {u: |lu —u]*||2 <€}

The above definition encapsulates the traditional approach to computing feedback
Stackelberg equilibria. This involves optimizing over state-action-value functions,
which are obtained by integrating other players’ policies into each player’s problem
and then recording the overall costs.

Remark 3.3 (existence of local feedback Stackelberg equilibria). In general, it is
difficult to establish a sufficient condition for the existence of an FSE [7]. The main
difficulty is that the decision problem of each player is nested within that of other
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players. It must be solved hierarchically. For example, the existence of feedback
Stackelberg policies [31] of a player i € Iiv_l is related to the topological properties
of the set of policies of players j € IfYH. Even if all the players’ costs are convex, the
feedback Stackelberg policy of player N at the terminal time could be lower semicon-
tinuous. Subsequently, the cost of player (N —1) could become upper semicontinuous
when substituting in the Nth player’s policy into the (N — 1)th player’s cost. Since
there may not exist a solution when minimizing an upper semicontinuous function,
there may not exist a feedback Stackelberg policy for player (N — 1). However, if we
can show that the policy of each player is always continuous in the state and prior
players’ controls, and the continuous costs are defined on a compact domain, then
there exist feedback Stackelberg equilibria [5].

We will now proceed to characterize the feedback Stackelberg equilibria in greater
detail in the subsequent section.

4. Necessary and sufficient conditions for local feedback Stackelberg
equilibria. We show in the following theorem that the dynamic programming prob-
lem, as described in Definition 3.2, can be reformulated as a sequence of nested con-
strained optimization problems. In this reformulation, the policies for other players
are integrated as constraints within the problem of each player ¢, instead of being
directly substituted into the costs for computing state-action-value functions, as is
typical in traditional optimal control literature. This approach enables us to es-
tablish KKT conditions for feedback Stackelberg games in the latter part of this
subsection.

THEOREM 4.1. Under Assumption 3.1, for each t € I} and each i € IV, a lo-

cal feedback Stackelberg policy i can be equivalently represented as an optimization
problem, given the knowledge of current state T; and prior players’ actions ﬂ%”_l:

(4.1a)
m (2,0 ) = 1f € arg min Oz, uf ) +Z Co(r ur) +0p i (T141)
ug U T=t+1
Uit1:T

Tt41:T+1
(4.1b) st 0=wu] — ) (T, 0" "L uy? 7, jeI,,
(41C) O:It+1 — ft(i't,’l_l%n_l7ui:N),
(4.1d) 0= hi(@g,ar " ui™), 0< gi(zy, a1 uil),
(4'16) Ozui_ﬂi(x‘rvu}-:jil)a TEI?+1,j€I{V\{Z'},
(4.1f) O0=x,11— fr(zru), Tell,,
(4.1g) 0="hi(z,,u,), 0<gt(z,,u,), Tell,,
(4.1h) 0="h7(@r41), 0< g7, 1 (T741),

where we drop (4.1b) when i = N, and we drop (4.1e), (4.1f), and (4.1g) when t=T.
The notation arg, min, , represents that we minimize over (u,v) but only return u as
an output.

Proof. The proof can be found in Appendix A. ]

In what follows, we will characterize the KKT conditions of the constrained opti-
mization problems in (4.1). Before doing that, we first introduce Lagrange multipliers,
which facilitate the formulation of Lagrangian functions for all players.
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Let t € IT and 7 € T¥. We denote by Ai € R™ the Lagrange multiplier for
the dynamics constraint 0 = Tyl — fi(zy,u). Let Rso be the set of nonnegative

real numbers. We define pi € € R™m¢ and vie R>O”’ as the Lagrange multipliers for the
constraints 0 = h}(xs,u;) and 0 < g; (z¢,us), respectively. When ¢ < T, the constrained
problem (4 1) of player i < N considers the feedback interaction constraint 0 = u —
Ty (xt,ui 1) jelX % ,. Thus, we associate those constraints with multipliers v} :=
[ttt 2 N where 7 € R™i. Moreover, when ¢ < T', the constrained
problem (4.1) of a player i < N includes the feedback interaction constraints 0 =
Wy =l (e,unl ) for T o>t and j € IV\ {i}. Thus, we associate those
constraints with multipliers ni := [pi',...,ni"~ 1,17; ’+17...,17t ], where i € R™3,
Finally, we simplify the notation by defining \; := [\},A2,...,AN], and define y, 7,
1, and ¥y accordingly.

Subsequently, we define the Lagrangian functions of all the players. We first
consider player i € IV,
(4.2) _ _

Li(Taet g 15 Ut 41, Moo s Ve e ) - = (e, ug) = N (Tegr — folae, ue))

— iy hi () =i gy (@, )

i, T :
o (= (@ w7 )

JELN

P . . .
] J J 1:5-1
- E Ur (ut+1_77t+1(33t+1,ut+1 ),
JEI\{i}

where the right-hand side terms represent player i’s cost, dynamics constraint, equality
and inequality constraints, and constraints encoding the feedback interaction among
players at the current and future time steps.
Furthermore, at the terminal time ¢ = T, for player i € IV, we consider
(4.3) | |
Lo (zr.ry1,ur, ATs prer 1, Y741, 1) 2 = Lp (@, ur) + Ly (1)

— N (w741 — fr(or,ur))

- MT hT(xTvuT) N%T+1h§1+1($T+l)

— T gh (@, ur) — AL g (T 1)

g1
— > (W — (e, ug’ )

Jelq+1

where the right-hand side terms represent player i’s costs, dynamics constraint, equal-
ity and inequality constraints, and constraints encoding the feedback interaction
among players at the terminal time T. Note that there is no more decision to be
made at time ¢ = T + 1, and therefore, there is no term representing the feedback
interactions among players for future time steps in (4.3), which is different from (4.2).

For all time steps ¢t € I¥" and players i € IY, assuming the state z; is given and
each player j < i has taken action u], we formulate the Lagrangian of the problem
(4.1) of player i at the tth stage as

L,Zg(lft:T-H Ty ATy Pt T+15 Ve T+1, T —1,5 ¢t:T)
T—1

(44) = Z Li—(xT:T+17uTIT+1?)\T7MT5’Y‘F7T/T7wT)

T=t

+ Lip(@r.r41, ur, AT, 41, YT:m 41, UT)
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where for each 7 € If,,, the terms associated with ¢, in L. ensure constraints al-
ready addressed by the terms associated with n,_; in L¢_; and can therefore be
dropped when defining £i. We can concatenate the KKT conditions of each player
at each stage, and summarize the overall KKT conditions for (4.1) in the following
theorem.

THEOREM 4.2 (necessary nondition). Under Assumption 3.1, let (x*,u*) be a
local FSE trajectory. Suppose that the linear independence constraint qualification
(LICQ) [37] and strict complementarzty condition [9] are satisfied at (x*,u*). Fur-
thermore, suppose {ﬂ't}t 0,i—1 15 a set of local feedback Stackelberg policies and Tl s

differentiable around (:Et,ui (=1 Y Vtell, i eIV, The KKT conditions of (4.1) can
be formulated as for alli € IY, t € I¥,

(4.5)
0= Vi L4 (Tr 15 Ugors ATy [T 41, VeI 41, MeT—1, YT,

i T+1
0=V, Ly (i1 Wb, ATy BT41, YT+ 1. Ner—1, Yer) VT €L
0= vuﬂt’ E:(‘TI:T-FMU::Tv At:Ts Ht:T+1,Ve:T+1, Me:T—1, 7/’t:T) Vj e I7+1’

0= Vuyf' LT} i1y Wers Ny o741, Ve 41 e —1, Yer) - V5 €IY \ {i}, Vr € I7 4,

0= — fr(ak,ul) vrell,
Ozhi(xi,uf_) vrell,
0<7; Lgp(ar,up) >0 vrelf,

0= h%"+1(17*T+1)7
0< ’Y%H 1 giT+1(x}+1) >0,

where L represents the complementary slackness condition [9]. Then, there exist

Lagrange multipliers X = [\]{_q, p = [uli_o, v = lulieo, m = i<y, and
W= [hy|L,, such that (4.5) holds true.
Proof. The proof can be found in Appendix A. ]

Constructlng the KKT conditions in (4.5) requires the computation of policy
gradients, {Vﬂ't}t 0.i=1» Which appear in the first four rows of (4.5). However, knowing
the policy itself is not required, as any solution satisfying the KKT conditions obeys
the corresponding feedback Stackelberg policy, as shown in the proof of Theorem 4.2.
A key distinction between (4.5) and the FNE KKT conditions in [25] lies in the
accommodation of a decision hierarchy among the N players at each stage. This
is reflected in the terms _del YT (ul — 7l (2, ut 7)) in the Lagrangian £:.
Additionally, this decision hlerarcﬂy differentiates the construction of the FSE KKT
conditions from those of FNE. We will outline a detailed procedure for constructing
the FSE KKT conditions in sections 5 and 6, with an example provided in Appendix B.

Furthermore, we propose a sufficient condition for FSE trajectories in the follow-
ing theorem.

THEOREM 4.3 (sufficient condition). Let (x*,u*) be a trajectory and {i} Y 0.i=1
be the associated policies. Suppose there exist Lagrange multipliers {A,u,’y,n,'«/}}
satisfying (4.5) and there exists an € >0 such that, for alli € IV, t € I, and nonzero

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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{Axri1 Y U{Ax,, Au, Y, satisfying

. ) 1)k A )
0=Au] —Vﬂ'i(arf,ui'(j 2 ) [ 1?1} vieIl,
A,

Az,

0= AU‘Z_ - V?Ti(l‘:‘_, u}_(ﬂ—l)*) |:Au11j1:| VJ S I{V, VT € Iz:'_l,

(4.6) A
0=Az,41 — V(25 ul) {Aﬁﬂ} vrell,

0=Vhi(zk,uk) [izj , 0= thTH(x*TH)AxTH vrell vjell,

Az, i 1Az, i
we have Zf:t[Aui]TV[z,, Li[nni]+ Ax;+1V2*+1LT+1AxT+1 > 0.

. ik
X ulx]FTLAYL T

Then, (x*,u*) constitutes a local FSE trajectory.
Proof. The proof can be found in Appendix A. ]

Remark 4.4. The gap between the necessity condition in Theorem 4.2 and the
sufficiency condition in Theorem 4.3 is due to the fact that a solution to (4.5) may
not necessarily be an FSE, and that there exist feedback Stackelberg equilibria where
the cost functions possess zero second-order gradients.

Theorems 4.2 and 4.3 establish conditions to certify whether a trajectory (x,u)
constitutes an FSE with a set of feedback Stackelberg policies {wé}th’]aii:l. How-
ever, computing feedback Stackelberg equilibria can be challenging. In the following
sections, we will discuss how to approximately compute local feedback Stackelberg
equilibria. We will first compute feedback Stackelberg equilibria for LQ games and
then extend the result to nonlinear games.

5. Constrained LQ games. We consider the linear dynamics
(51) Ti41 = ft(:z:t,ut) = Atxt + Btlutl + et Bt]\]ui\[ + Ct, te Ig,

where A; € R™*" Bl € R"™*™i and ¢, € R". We denote B, :=[B}, BZ,...,B}N]. The
cost of the ith player is defined as

T rAi iT ) ,
AR

i 1
Et(fﬂtﬂbt):i Ut SZ' Ri Ut

(5.2) %
giTH(fETH) = §x;+1QiT+1$T+1 + q%‘—:»leJrla

where symmetric matrices Q! € R™*" and R € R™*™ are positive semidefinite and
positive definite, respectively. The off-diagonal matrix is denoted as S; € R™*"™. In
particular, we partition the structure of R}, S; and r; as follows:

R’ti,l,l R’ti,l,Q . R’ti,l,N Sz,l ri,l
2,2,1 2,2,2 7,2, N ©,2 1,2
i Rt’ ' Rt’ T Rt’ i St i rt
(5.3) Rt = . . . . ) St = . y Ty = . )
i,N,1 i,N,2 i, N,N i, N i, N
RN RN o RN St, e
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idk i i iT pidk, k3T cisd VA
where R,”", Sy, and r} represent the cost terms uy R, uy, uj Sy’ x4, and v, uy
in ¢;(x¢,us). The linear equality and inequality constraints are specified as

0=hj(zy,u) = Hi mp+ Y Houl +h, telf,
t
jeIN
0< gi(we,u) =Gl + > ngu{ +g, tell,
jemwv

(5.4)

i _qpi 74
0=hppi(@r+1) = Hy, o1 + iy,

0<gr1(@r41) =Gopy @41 + G141

5.1. Computing feedback Stackelberg equilibria and constructing the
KKT conditions for LQ games. In this subsection, we introduce a process for
deriving FSE and the KKT conditions for LQ games. When we have linear inequality
constraints, the optimal policies of LQ games are generally piecewise linear functions
of the state [8, 25]. However, this makes them nondifferentiable at the facets. In our
work, we propose to use the primal-dual interior point (PDIP) method [37] to solve
constrained LQ games. The benefits of using PDIP are its polynomial complexity
and tolerance of infeasible initializations. Critically, under certain conditions, PDIP
yields a local differentiable policy approximation to the ground truth piecewise linear
policy, as shown in the rest of this section and an example in Appendix A.3.

To this end, we introduce a set of nonnegative slack variables {si}tTZJBIZJZVI such
that we can rewrite the inequality constraints as equality constraints for ¢ € IOTJrl and
ic Iy,

(5.5) 92(%7%) - 31 =0, 9iT+1(5UT+1) - 5iT+1 =0.

In this paper, we consider PDIP as a homotopy method as in [37]. Instead of solving
the mixed complementarity problem (4.5) directly, we seek solutions to the homotopy
approximation of the complementary slackness condition

(5.6) Y @sp=pl, s,>0, 7>0,

where ® denotes the elementwise product and p > 0 is a hyperparameter to be reduced
to 0 gradually such that we recover the ground truth solution when p — 0. In the
following section, we will construct the KKT conditions where we replace the mixed
complementarity condition with its approximation (5.6). For each p > 0, we denote
its corresponding local feedback policy as {ﬂ'é p}tT:’J(\)[’izl, if it exists.

As shown in Theorem 4.2, the construction of the KKT conditions for player i at
stage t requires the policy gradients of subsequent players at the current stage and
future stages. In what follows, we construct those KKT conditions in reverse player
order and backward in time.

5.1.1. Player N at the Tth stage. Before constructing the KKT condi-
tions, we first introduce the variables of player N at the terminal time T, ZQJY =

W Y 1 1 Y1 SYer 1 @r41]. As shown in Theorem 4.2, the KKT condi-
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tions of player N at time T can be written as

Vauy LY
VWT+1L¥
TT4+1 — fT(JUT,uT)

N
(5.7) 0=K7,(27):= ,’;g (@r,ur) ;
N T+1(~’UT+1) N
gr (zr,ur) — ST
9T+1(9CT+1) —S741
Y7or41 © Sppgr — P

where the rows of Kﬁ p(z¥ ) represent the stationarity conditions with respect to ul¥

and x4, the dynamics constraint, equality constraints, inequality constraints, and
relaxed complementarity conditions. To obtain a local policy and its policy gradient
around a z¥ satisfying (5.7), we build a first-order approximation to (5.7),

Al’T

N N N
(58) VKT,p . AZT + v[zT,u;iNil]KT,p . |:AU;N1

|+ 2, @) =0
If there is no solution Az¥ to (5.8), then we claim there is no feedback Stackelberg
policy. Suppose (5.8) has a solution AzY; then we can define AzY as

AJET

N _ N +. - N | N N

F%V(AQJT,Au;iN_l)

where (-)* represents the pseudoinverse and we denote Az as a function FY of
(Azgp, AufN ™). Since AuY represents the first my entries of Az}, we consider
Auf as a function of (Azxp, AufN 1),

+ Az
(5.10)  Aug =-— [(VK’fFV,p) ]u¥ ’ (v[l’T,u;Nl]K,Z[}{p- [Au%gl} +K]T\[~,p(z¥)>7

where [(VKgp)Jr]ug represents the rows of the matrix (VK%{[,)JF corresponding to

the variable u¥, i.e., the first my rows of the matrix (VK%%)#

Furthermore, for some = € R® and «'V-! € REL' ™ let Avpr =  — 27,
AulT:Nfl =N ulT:Nfl, and Auf =u® —ul. Substituting them into (5.10), we
obtain a local policy ﬁ]T\i 0 for player N at time T,

(5.11)

T

4 Xr—xT
=uy — [(VKZ,) Lz (V[xT,uliNl]Kgp' [UI:NI U;N—l} +Kﬁp(zN))~

Suppose that VKgp(zg) has a constant row rank in an open set containing z% ; then,
by the constant rank theorem [20], the policy ﬁ'ﬁ , of player N at time T' is locally
differentiable with respect to (z,u!*N 1), and its gradient over (z,ut'N=1) is

(5.12) Vﬁ]TVm = [(VKTQ{P)jTug ' v[xT,ulT:Nfl]K%{p'

In the following subsection, we construct the KKT conditions of a player i < N at
stage T'.
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5.1.2. Players ¢ < N at the T'th stage. For player i < N, assuming that ziﬁl
has been defined and Vﬂ'H_l has been computed, we first introduce variables

(5'13) y%‘ = [u%vw%’v /\é“ﬂﬂg’:T+1ﬂ7%“:T+1’ s%’:T+1} and Zi [YTﬂ ZZTJrl]'
The KKT conditions of player ¢ at time T are
_ VuiTLITZ_ _
V?UT-HLT
. V%UT Vj e Iﬁrl
. K, (vr) i (i Wy (x7,ur)
(514)  0=Kp (o) i= | ot o K= | e
” KTJ:_p (z7") ” Ry yq (@)
g (@7, ur) — sk
9T+1(33T+1) 5741
Y1 © Sy — P

where the definition of L%, involves the policy 7rZT+p1, as shown in (4.3). Building a

first-order approximation to 0 = K, (z), we have

i i i Ax i i
(5.15) VKT,p ° AZT + V[IT,U;:"—l]KT,P * |:AU}’}‘;F_1:| + KT,p(ZT) = 0.

However, a drawback of PDIP is that the policy ﬂ}*'pl is nonlinear in state xr
and prior players’ controls u}i’, as shown in a simplified problem in Appendix A.3.
The computation of VKT 1nvolves the evaluation of V(Vuz L%.), which requires the

computation of V (i’ ’HV H'1) Vet H'l + ok i+ Vgﬂf;pfpl. Furthermore,
to evaluate V27T1+p1 , we need the computatlon of V37rl+p2. In other words, the con-

struction of VK%, | needs the evaluation of V2ry ), Viai2 ... VN=H1g) - The
evaluation of high-order policy gradients is challenglng in practlce [25] because there
is no closed-form solution to the KKT equation 0 = KZTT;( zi .

We prove in Appendix A.3 that the high-order policy gradients could decay to
zero as p — 0, when the ground truth policy is piecewise linear and differentiable
around xp. Motivated by this observation, we propose to approximate the nonlinear

policy 7TH'1 by its first-order approxnnatlon W}erl in (5.11). With this approximation
we have V(W lHV”H) Vit H'l We refer to this policy 7er as a quasi-
policy.

In the remainder of this section, we will always approximate the ground truth
nonlinear policy by quasi-policy when we define the KKT conditions.

Solving (5.15), we can obtain Az, and Vﬂ'T as in (5.9) and (5.12), respectively.
However, by construction, the dimension of AZT is higher than Az”’l. Therefore,
it is more expensive to compute (VK7 )™ than (VKZTJ;})*, and it is worthwhile to
reduce the complexity of computing Az’ by leveraging the computation that we have
done for Az”‘l and V”t} To this end, by exploiting the structure z% = [y, H’l]

n (5.13), we can rewrite (5.15) as
.16 b AVE+ Viap Ry | Ayt | + Ky (9) =0,

VG Az 4V, e KL [MT_] + Kt (2 = 0.

[zp,ulif 1T p Au%z
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Observe that we have solved the second equation of (5.16) in section 5.1.1. What
remains to be solved is the first equation in (5.16). We solve it as follows:

>\t i Az i i
—(VK%,) " (v[zT’u?_l]KT’p. [Au;%} +KT7p(yT)>,

Ayl

Ei(Azp, Auli™h)
i vio T i Ax i i
Aup=—[(VK7,) ], - (V[IT,u;“}KT,p‘ {Au;?l] +KT7,,(yT)),

~i i\t i
Vi, == [(VKT,p) ]u?‘T ) v[wTﬂ#i_l]KT’P'
Combining (5.17) and (5.9), we have

i AyiT _ F%(A;z:T,Au?_l)
(5.18) Avp = [Azgl} - [F;H(Am, Aukil)

Since Aul is also a function of (Azz, Auz" '), as shown in (5.17), we can represent
(5.18) compactly as Azl = Fi(Azp, Aug' ™).

As such, given that the KKT conditions of player (i 4+ 1) at time T have been
constructed, we have finished the construction of the KKT conditions for player i at
time T, and we have introduced a computationally efficient way to compute Vﬁé«y o
We can derive the KKT conditions and quasi-policy gradient of player i < N at time
T, sequentially, fromi=N —1toi=1.

5.1.3. Player IN at a stage t <T. At a stage t < T, assuming that we have
constructed the KKT conditions 0 = Kt1+17p(z%+1), we are ready to derive the KKT
conditions for player N at time ¢. We first introduce the variable z} := [y}, z; 4],
with yN = [ull, nN AN, ulN AN, sN 2441]. We construct the KKT conditions of player
N at time t as follows:

i VUNLiV T
f N
v$t+1Lt

VujHLéV VjeVt
5.19 0=KN (zV) .= Tip1 — fe(we, ug)
o1 ol W (e, ue)

gt (@, ue) — s

%ENl@ T N pl

L KtJrl,p(thrl) §

Building a first-order approximation to the above equation, we can obtain quasi-policy
gradient Vﬁ'tjyp as in (5.17) when it exists.

5.1.4. Players ¢ < N at a stage t <T. Suppose that we have constructed
the KKT conditions for the (i 4+ 1)th player at the tth stage; we are then ready to
construct the KKT conditions for player ¢ at the tth stage. We introduce the variable
zi = [y}, zi ] with yi = [ul, ¥, i, AL .2, 5. The KKT conditions of player 4 at
time ¢ are
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Algorithm 5.1. Local Feedback Stackelberg Equilibrium via PDIP.
Require: {f;} o, {¢i,hi, g ;m%llNl, initial homotopy parameter p, contraction rate
€ (0,1), parameters 3 € (0,1) and & € (O 1) tolerance e, initial solution
o2 = b A o 0, o) it 2 >0 amd 40 >0
Ensure pohcles {7 p}t 0,i=1, converged solutlon z,
1: for kUt =1,2,... k% do

max
2: while the merit function || K, (Zp )||2 >e¢ do
3: construct the first-order approximation of the KKT conditions
0=VK,- Az, + K,(z5)
4: Az, —(VE,) " K, (2
5: initialize the step size for line search, o <1
6: while | K,(z" + aAz,)| > k|| K,(257)]|2 or 2, := (2" + aAz,) has a
nonpositive element in its subvector [8,,%,] do
7: a+—fp-a
8: end while
9: if « ==0 then
10: claim failure to find a feedback Stackelberg equilibrium
11: end if
12: z,(ng) — zE;k) + alz,

13: end while
14: p—o-p
15: end for

. i \T.N (k)
16: construct {7} pliZ0im1 as in (5.11) and record z, <z, .
17: return {7} p}t 0.i=1+ Zp

vlt+1L%
Vi L’ V]EIH_l
. , j L7 vje IV
(5.20) 0= K () = | ¥ otn T VTSI
h (mt,ut) .
9§($t7@t) - 3%
VO sp—
Kz-‘rl( z+1)

Building a first approximation to the above equation, we can obtain the quasi-policy
gradient Vﬁ';p as in (5.17), when it exists.

We observe that, by construction, the KKT conditions in (4.5) are equivalent to
0=K; ,(z5). To snnphfy notation, we define

(5.21) z:=17), K,(z):= K&p(z).
The KKT conditions (4.5) can be represented compactly as 0 = K,(z). To more
effectively illustrate the construction process of KKT conditions described above, we

have included detailed examples of the KKT conditions for two-player LQ games in
Appendix B as a reference.
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5.2. PDIP algorithm and convergence analysis in constrained LQ
games. In this subsection, we propose the application of Newton’s method to com-
pute z* = [x*,u*, A", p*, y*,n*, 9", s*], ensuring 0 = K,(z*). This approach guar-
antees that the associated quasi-policies form a set of local FSE policies, provided
that we anneal the parameter p to zero and the sufficient condition in Theorem 4.3 is
satisfied. We formalize our method in Algorithm 5.1.

In Algorithm 5.1, we gradually decay the homotopy parameter p to zero such
that lim,_,¢ 2z, recovers an FSE solution. For each p, at the kth iteration, we first
construct the KKT conditions 0 = K,(z) along the trajectory zg,k). We compute
the Newton update direction Az := —(VK,)" ~Kp(zgk)). Since we aim at finding a
solution z* to 0 = K,(z*), a natural choice of merit function is || K,(z)||2. Given this
choice of the merit function, we perform a line search to determine a step size a and
update z,(ij) = zf,k) + aAz until convergence. The converged solution is denoted as
z;,. Subsequently, we steadily decay p and repeat these Newton update steps. We
characterize in the following result how the magnitude of the KKT residual value

|K,(z)]|2 influences the convergence rate of Algorithm 5.1 when solving LQ games.

THEOREM b5.1. Under Assumption 3.1, let F, :={z = [x,u,\, u,y,n,,s] : v >
0,8 > 0} be the solution set. We denote by VK,(z) and V*K,(z) the Jacobians of
the KKT conditions with and without considering quasi-policy gradients, respectively.
Suppose that VK ,(z) is invertible and there exist constants D and C' such that

(5.22a) (VK ,(z)) 2 <D VielY, Vze F.,

(5.22b) |V*K,(z) — V*K,(z)||s < C||z — 7|2 VieIllV, Vz,z¢€ F..

Let & € [0,1] be the mazimum feasible step size for all z € Fy, i.e., & := max{a €
[0,1]: 2,24+ aAz € F.}. Moreover, suppose ||V*K,(z) — VK,(z)|2 <0 for all z € F,

and D -6 < 1. Then, for all z € F,, there exists a € [0,4] such that ,
1. if | Kp(2)||2 > 1—DS  4hon |K,(z + aAz)|]2 < || K,(z)]|2 — (1-D$)? |

. nigey 12~ 3D
2. if |K,(2)ll2 < 15253 then |Kp(z+ alz)llz < (1 36(1 = DJ)) - || Ky(2)]l2,

and we have exponential convergence.
Proof. The proof can be found in Appendix A. ]

Theorem 5.1 suggests that, under certain conditions, the merit function || K,(z)||2
decays to zero exponentially fast, and Algorithm 5.1 converges to a solution satisfy-
ing the KKT conditions considering the quasi-policy gradients. The above analysis
can be considered as an extension of the classical PDIP convergence proof in [9]
to constrained feedback Stackelberg games where we consider feedback interaction
constraints 0 = uj — 7], p(xt,utl”'*l) and the quasi-policy gradients. The condition
(5.22a) equates to establishing a lower bound for the smallest nonzero singular value
of VK,(z). Practically, this can be achieved by adding a minor cost regularization
term to the KKT conditions [11]. Moreover, the constant C' in (5.22b) depends on
the maximum singular values of the Hessians of costs, the Jacobian of constraints,
and linear dynamics, which are all constant matrices in LQ games and can therefore
be upper bounded.

Given a p > 0, a converged solution z;, renders Kp(z;) =0. Note that the KKT
conditions 0 = K,(z}) reduce to the one in Theorem 4.2 when p decays to zero. As
p approaches zero, the solution z7, when converged, recovers a solution to the KKT
conditions in Theorem 4.2. When the sufficient conditions in Theorem 4.3 are also
satisfied, the computed solution converges to a local FSE.
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6. From LQ games to nonlinear games. In this section, we extend our solu-
tion for LQ games to feedback Stackelberg games with nonlinear dynamics. Without
loss of generality, each player could have nonquadratic costs. Coupled nonlinear equal-
ity and inequality constraints could also exist among players.

6.1. Iteratively approximating nonlinear games via LQ games by align-
ing their KKT conditions. In this subsection, we introduce a procedure which it-
eratively approximates the constrained nonlinear games using constrained L(Q games,
and computes approximate local feedback Stackelberg equilibria for the nonlinear
games. These LQ game approximations are designed to ensure that the first-order
approximations of their KKT conditions, expressed as 0 = VK ,(z) - Az+ K ,(z), align
with those of the original nonlinear games, specifically considering the inclusion of
quasi-policies. Our approach differs from the existing iterative L(Q game approxima-
tion techniques [19, 22] for FSE policies, which linearize the dynamics and quadraticize
only the costs. In contrast, our method linearizes the dynamics but quadraticizes the
Lagrangian. This enables us to utilize the convergence results for LQ games, as dis-
cussed in the previous section, to analyze the convergence properties of our method in
nonlinear games. Consequently, our work provides the first iterative LQ game approx-
imation approach that has provable convergence guarantees for constrained nonlinear
feedback Stackelberg games.

In what follows, we introduce local LQ game approximations of the original non-
linear game. Let z be a solution in the set F,. We first define the following linear
approximation of the dynamics and constraints around z for all t € I, € IV:

(6.1)
At =V, fe(e,ur), Bl = Vi fr(@e, ur), et = fe(Te,ut) — Tega,
H,, =V hy, Hiy =V ghi, G :=Vagi, G :=V,9; Viely,
hy o= Ry (e, ue), 9: = gi (e, uy),
H;;T+1 =Var, %“4_17 G;Tﬂ = va+1g§1+l7
Wiy = hpp (Tr4a), G4 = G (T 41)-

For each i € I and t € I¥, we represent the second-order terms and cost-related terms
in the Lagrangian £} as quadratic costs (5.2), with parameters defined as follows:

St =Vl + (Voo f) TAL = (Vauh) Ty — (Via90) T

(6.2) Ry = Vo, 0+ (Vo ) TN — (Vi) T — (Viagt) ™,
Q’ZT+1 = viz ZT+1 - (vix ZT+1)TNZT+1 - (meQZTH)T’YZTH:
(JZ = vacav Tili = vugzlta q%"—}—l = Vmng—&-l'

We can modify Algorithm 5.1 to address nonlinear games by applying an LQ game
approximation around the solution zf;k) in step 3 of Algorithm 5.1 and formulate the
resulting approximate KKT conditions 0 = K p(zg,k)) defined with terms in (6.1) and
(6.2). Furthermore, this LQ game approximation is reiterated around zﬁ,k) +alz, in
step 6, when we evaluate the merit function || K p(zgk) + aAz,)||2 during line search.

6.2. Quasi-policy approximation error and exponential convergence
analysis in nonlinear games. In the above solution procedure, we approximate
the ground truth nonlinear policies of nonlinear games by quasi-policies. However,
different from LQ games, the ground truth feedback Stackelberg policies for nonlinear
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games could have nonzero high-order policy gradients. Thus, it is worthwhile to char-
acterize the error caused by the quasi-policy gradients. Essentially, there are two
error sources. The first type of error is due to the fact that we have neglected high-
order policy gradients when evaluating the KKT Jacobian VKti, p(z), and the second
form of error is how these changes propagate into the expression of KKT conditions
0= KZ ,(z) for earlier players and stages. Suppose those two error sources could be
upper bounded; then, we can characterize their impact on the policy gradients error
in the following proposition.

PROPOSITION 6.1. Under Assumption 3.1, let z and z be two elements in the solu-

. i T,N .. ~q T,N
tion set F,. We denote by {ﬂ't’p t=0,i=1 @ set of policies around z and by {ﬂ't’p 120,i=1

a set of quasi-policies around z, respectively. We denote by {Kg’p(z)};f:’%ii:l and
{Kfj‘p(z) 31:’](\)7,1‘:1 the KKT conditions with and without quasi-policies, respectively.
Let i < N and t <T. Suppose that the Jacobian matrices VKti,p(i)7 VKtij‘p(i), and

VKtij‘p(z) are invertible. Let €, 5 >0 be an upper error bound such that
maX{IIVKZ,p(i) — VK (@)|l2, VK] (2) — VK, (2)]2,

(6.3) _ _ ‘ ,
1K: ,(2) = Ki ,(2)]]2, 1K, (2) — KZ,*,,(Z)IIz)} <eéng

Then, the error between the quasi-policy gradient and the policy gradient can be
bounded as follows:

a1~ Tl <cas (2195, s
T (IVEL @) o+ IV ()7 1) - 1955, ) 155, @)1 ).

Proof. The proof can be found in Appendix A. ]

Proposition 6.1 suggests that the error introduced by the quasi-policy gradients is
proportional to €, z, as described in (6.4). However, it is challenging to obtain an ana-
lytical bound ¢, 5 because the evaluation of K{* (z) and VK}* (z) requires computing
the high-order policy gradients. The above analysis only provides a partial analysis for
the policy gradient error introduced by the quasi-policy gradients. In principle, it is
possible that the quasi-policy gradients could lead to a different feedback Stackelberg
policy from the ground truth feedback Stackelberg policy. However, it is intractable to
compute high-order policy gradients when we have a long-horizon game. In general,
the quasi-policy is a local linear approximation to the ground truth nonlinear feed-
back Stackelberg policy, and when a state perturbation occurs at time ¢, such policies
are only approximately optimal for the resulting subgame. We believe that the local
feedback Stackelberg quasi-policy is the closest computationally tractable approxi-
mation possible when we consider the first-order policy approximation techniques for
long-horizon feedback Stackelberg games.

Furthermore, we can leverage the sufficient condition of the local FSE and the
convergence analysis in Theorem 5.1 to show that we will converge to a local FSE of
nonlinear games under certain conditions on the iterative LQ game approximations.

THEOREM 6.2 (exponential convergence in nonlinear games). Suppose that there
exist constants (D, C,6,&), as defined in Theorem 5.1, such that at each iteration k of
Algorithm 5.1, the approxzimate LQ game defined in (6.1) and (6.2) satisfies the con-
ditions of Theorem 5.1. Then, for each p >0 and a sufficiently large k, zf,k) converges

exponentially fast to a solution z, which renders ||K,(z})||2 = 0. Moreover, if the
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limit z* = lim, 0z, exists and Theorem 4.3, which provides a sufficient condition
Jor local FSE trajectories, holds true at z, for all p >0, then the converged solution
z* recovers a local FSE trajectory.

Proof. The proof can be found in Appendix A. ]

7. Experiments. In this section, we consider a two-player feedback Stackelberg
game modeling highway driving,! where two highway lanes merge into one and the
planning horizon T'= 20. We associate with each player a 4-dimensional state vector
ri= [pi’t,p;t?pfﬁﬂ where (pf, ;,p}, ;) represents the (x,y) coordinate, v denotes the
velocity, and 6} encodes the heading angle of player ¢ at time ¢. The joint state vector
of the two players is denoted as x; = [z},2?]. Both players have nonlinear unicycle

dynamics: Vt € IT, Vi € {1,2},

an,t+1 :Pi,t + At - U,f Sin(9§)7 p;,t+1 :pz,t + At - vi cos(@i),

(1) vl =vi+ At-al 0l =60+ At-w!
t+1 — Yt t) t+1 — Yt t*

We consider the cost functions, for all t € I,

(7.2) € (ze,ue) = 10(py  — 0.4)* +6(vy — v7)* + 2l|ugl|3, € (we, ue) = 67 |3 + 2| |13,
and the terminal costs £}, (z741) = 10(p}. p 1y —0.4)>+6(v} —v7)* and (7., | (z741) =
|67, 1113- Note that we include a fourth-order cost term in player 2’s cost at each stage
to model its preference of small heading angle. We consider the following (nonconvex)
constraints encoding collision avoidance, driving on the road, and control limits:

T+1
g_dsafez(), t610+ s

gy Vb= PLlE I8~ 23
Por =220, pr(pysps) 20, [ulloo < Umax, t€IET i€ {1,2},

where we define p; € R to be the left road boundary and denote by pr(p§7t7p;’t) the
distance between player ¢ and the right road boundary curve. We also consider the
following equality constraints at the terminal time:

(7.4) 'U%“Jrl - U%Jrl =0, 91T+1 =0,

where the two players aim to reach a consensus on their speeds, with player 1 main-
taining its heading angle pointing forward.

The nominal initial states of two players are specified as x§ = [0.9,1.2,3.5,0.0] and
23 =10.5,0.6,3.8,0.0], respectively. We randomly sample 10 initial states around z¢ =
[}, 23] under a uniform distribution within the range of —0.1 to 0.1. From each sam-
pled &g, we obtain an initial state trajectory x(°) by simulating the nonlinear dynamics
(7.1) with the initial controls u(®) = 0. Set the initial slack variables for the inequality
constraints as s(©) = 1, along with the corresponding Lagrange multipliers v(® = 1.
We set all other Lagrange multipliers {/\(0),#(0),17(0),1p(0); to zeros. Consequently,
we have constructed an initial solution z(® = [x(©), u(® A0 4(0),(0) 5 (0) 4,(®) (0],
We repeat this initialization trajectory defining process for different sampled .

For each sampled initial state Zy, we employ Algorithm 5.1 with iterative LQ game
approximations to compute a local FSE trajectory. The convergence of our method
under different sampled Z( is depicted in Figure 1. For each p, the merit function
value decreases as the iterations continue. Furthermore, since the cost functions are

IThe code is available at https://github.com/jamesjingqili/FeedbackStackelbergGames.jl.git.
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Fic. 1. Convergence of Algorithm 5.1 with iterative LQ game approzximations under different
values of the homotopy parameter p from 10 sampled initial states. The solid curve and the shaded
area denote the mean and the standard deviation of the logarithm of the merit function values,
respectively. By gradually annealing p to zero, the solution converges to a local FSE trajectory.
Moreover, under each p, the plots above empirically support the linear convergence described in
Theorem 6.2.
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(@) p=1k=6. (d)p=2""k=10.

Fic. 2. Tolerance of an infeasible trajectory initialization and the converged trajectories of two
players. In Figure 2(a), we plot the initial state trajectories of two players, where player 1’s tra-
jectory is infeasible because it violates the road boundary constraint. When p =1, we plot the state
trajectories in the third and sixzth iterations in Figures 2(b) and 2(c), respectively. They become
feasible at the sixth iteration. In Figure 2(d), we plot the converged solution, with p=2"10.

strongly convex with respect to each player’s controls, Theorem 4.3 ensures that
our converged solution constitutes a local FSE trajectory. Moreover, we show our
method can tolerate infeasible initialization in Figure 2, where the right road boundary
constraint is initially violated by initialization z(°), and as the algorithm progresses,
subsequent iterates z(¥) become feasible.

8. Conclusions. In this paper, we considered general-sum feedback Stackelberg
dynamic games with coupled constraints among N players. We proposed a primal-dual
interior point method to compute an approximate feedback Stackelberg equilibrium
and the associated policies for all players. To the best of the authors’ knowledge,
this represents the first attempt to compute approximate local feedback Stackelberg
equilibria in both linear quadratic games and nonlinear games under general coupled
equality and inequality constraints, within continuous state and action spaces. We
theoretically characterized the approximation error and the exponential convergence
of our algorithm. Numerical experiments suggest that the proposed algorithm can
tolerate infeasible initializations and efficiently converge to a feasible equilibrium so-
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lution. Future research should investigate the potential benefits of higher-order policy
gradient approximations. Additionally, extending our approach to solve other types
of equilibria in dynamic games is also a promising direction for future research.

Appendix A. Supplementary results.

Proof of Theorem 4.1. At the terminal time ¢ =T, for ease of notation, we define

zp = Zp and ur’ ™! = af"'. We observe that, for each player i € IV, (4.1) can be

rewritten as

iy € arg rngn{ min Op (o7, ur) + VTH(xTH)}

" g
s.t. O:ujT—ﬂjf(xT,ugj_l), 0=x741 — fr(zr,ur), jelfil,

0=hy(er,ur), 0< gp(zr,ur),

0= hiT+1($T+1), 0 SgiTH(wTH),

i-1

T-1
IO

,uk.). Moreover, for all t € and

1:—1 a%:z—l

. . . ~3 . i (= —1:
which implies @} € arg,; min,; Zh(Zr, Uy

1€ I1 , for the ease of notation, we assume x; = Z; and u; . We observe

T
il € argmin { min Oz ur) + ETH(xTH)}

ul g u:1+]\1]N T=t
Uti1.T
Tt41:T+1
j j 1:—1 . _IN
st 0=ul — 7 (ze,uf 77", jely,
T
0=xr41— fr(xr,ur), Tely,
1:j—1 T TN\ §:
O_uj_ﬂj(xTau I= )a TEIt-{-l?JeIl \{Z}v
i T
Oth-(x‘l'7u7')7 Ogg;(x‘r?u’r)? TEIt7
0="hpy i (@r41), 0< gp g (@r41)-
The above can be further rewritten as
€ argmln{ min 6 (x4, ug) + Vtz-&-l(xt-I—l)}
% u N
uy t umt+1
i j 1:j—1 . _ TN
st. 0=u] — 7] (2,0, = )y 0= p1 — fe(we, ue), Jelily,

0= hi(xtaut)a 0< gi(xt,ut).

i—1

It follows that @i € arg,,; min,; ZH(Zy, a1t ul).  Therefore, the set of strategies

{wt}t Z0.i—1 constitutes a set of local feedback Stackelberg policies. a

Proof of Theorem 4.2. For a time t € I}’ and player i € I, we set the gradient
of £ with respect to u} and x; to be zero. This constitutes the first two rows of
(4.5). In addition, a player i < N considers the feedback interaction constraints
0=ul*—n] (mt,u} J71%) for j € I ;. This constraint is implicitly ensured when we
enforce player j’s KKT conditions in player i’s KKT conditions. Thus, we only need
to ensure the gradient V, ;L% to be zero when synthesizing player i’s KKT conditions.
This corresponds to the thlrd row of (4.5). Moreover, at a time ¢ < T, each player
i € IY needs to account for the feedback reaction from other players in future steps.
Again this constraint is implicitly ensured when we define player j’s KKT conditions.
We only need to additionally set the gradient of £i with respect to u’ to be zero,
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where 7 € I],; and j € IY¥ \ {i}. These correspond to the fourth row of (4.5).
Finally, we include the dynamics constraints, equality and inequality constraints, and
complementary slackness conditions in the last five rows of (4.5). d

Proof of Theorem 4.3. We can check that the feasible set for the equality con-
straints of (4.6) is a superset of the critical cone of the problem (4.5). By Theorem

12.6 in [37], the solution (x*,u*) constitutes a local FSE trajectory. O
Proof of Theorem 5.1. By the fundamental theorem of calculus, we have K,(z +
alz) = )+ fo V*K,(z + TaAz)aAzdr, and we have
(A1)
1
| K,y(z + aAz)||2 = ‘ K,(z)+ / V*K,(z + TaAz)aAzdr
0 2

1
<||K,(z)+aV*K,(z)Az||s + H/ (V'K (z+ talz) — V'K, (z))aAzdr
0

2

Substituting Az into ||K,(z) + aV* K,(z)Az||2, we have

15,(2) + oV K, (2)Azl> = [|K,(2) — aV* K, (2)(VE,(2)) " K, (2)|
(A.2) < (1= )| Ky(2)ll2 + ol V* K, (2) = VK, (2)[|2[ (VE,(2) 7 2] Kp(2)]2
< (1= a)||K,(2)|]2 + ad D[ K, (Z)Ilz—(l— a(l = 6D))|[K,(2)]2-

Combining (A.2) and (A.1), we have
| K,(z + aAz)|2

1
<(I—a(l =0D))|[|Ky(2)|2 + |aAz||, / \V*K,(z+ Talz) — V'K, (z)|dr
0

2
1
< (1—a(1-0D))|Ky(2)ll2 + 50* D*C| K, (2)]3,

ST, Suppose | K, (2)]]2 >
* Dé§)?
brog;: then &> mramPoss and we have [|K, (2 + a*Az) || < || K, (2)]|2 - Dy

For the case ||K,(z )H2 < 522 et ai= . By aD?C||K,(2)[|]2 <1 — D§, we have

1K (2 + aAz)|2 < (1= 36(1 = D6))|| Kp(2)]|2- 0

where the right-hand side is minimized when o™ = W

Proof of Proposition 6.1. By definition, we have
IVt ,(2) =V, (2)|2 = I VK ,(2) 7 K] ,(2) — VK], (2) 7 K, (2) ]2

—IIVKZ (2) 71K ,(2) = VK, (2) 7 K77 (2)
VK, (2)7 K] ,(2) - VK, (2) 7' K; ,(2)
VE},(2)7 K} (2) = VK, (2) 7 K] ,(2)
VEL,( i p(2) = VK[, (2)” 1K’ p(2)l2

)~
)~
z)~ g
(HVK ()" - VKz,*m U+ VKL ()" = VR (2) 7 2) 1K ,(2)]l2
+ (15 (@) — K ()2 + 1 (2) = K7 ()l [V K (2) 7 2
< en(IVKL2) o + VKL (2) 7 2 ) IVEE @) 21K, @)

+ 26,2l VE ()7 o,

where the last line follows by applying Lemma A.1. |
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policy. open-loop Stackelberg policy.

Fic. 3. The trajectories wunder the receding-horizon open-loop Stackelberg equilibrium
(RH-OLSE) policy and those under the FSE policy are quite different, regardless of the initial
conditions. For example, in the above case, under the FSE policy, player 1 first moves toward the
origin and then player 2 follows. However, under the RH-OLSE policy, player 1 always stays at its
initial position, waiting for player 2 to approach.

LEMMA A.l. Let K and K be two invertible matrices. Suppose ||K — K|z <€
then we have |K=1 — K=o <e||[ K72 [|K Y2

Proof of Lemma A.1. Define K =K - K. Applying the Woodbury matrix
equality, we have K~! = K~!' + K~! - K- K~', and this implies |[K~! — K~!|| <
ell K- B 0

Proof of Theorem 6.2. Observe that the first-order approximation of the KKT
conditions for the local L) game approximations coincides with the one for nonlinear

games. By Theorem 5.1, for each p > 0, limg_,0 ||Kp(z5)k))||2 = 0, and we have
exponential convergence when k > ||Kp(z(po))|\2/(})§g§). Moreover, by Theorem 4.3,
the solution lim, oz} recovers a local FSE trajectory. ]

A.1. Comparing the FNE with the FSE. Consider a two-player lane ex-
changing problem? with linear double integrator dynamics. Let dsage(7¢) := 5 ((pk , —
p24)? + 0y — P54)?) and diarget (21) 1= (pgp — 1)*+(py — 10)* + (p3, +1)° + (0, —
10)2. Consider costs £} (x4, ur) = diarget (T1) — dsafe (1) + (fu}ﬁ,t)2 + (v — 1)2 + 4|u} ||
and 07 (x4, ur) = dyarget (T¢) — dsage (x¢) + (02 1)? + (v, — 1)? +4[|[u7[|3. Figure 5 suggests
that the FSE is a more appropriate equilibrium concept than the FNE when decision

hierarchy exists.

A.2. A counterexample that the receding-horizon open-loop Stackel-
berg equilibrium fails to approximate the FSE well. We consider Example 1
from [28]. We show in Figure 3(a) that the receding-horizon open-loop Stackelberg
policy could lead to a trajectory quite different from the one under FSE. Therefore,
it is crucial to study the computation of FSE.

A.3. The decay of high-order policy gradients when we apply PDIP
to solve constrained LQ games. We validate the quasi-policy assumption in LQ
games in Proposition A.2 and include a simplified example in Figure 4.

PrOPOSITION A.2. Under the same assumptions of Theorem 5.1, let p > 0 and
denote by z;, a converged solution to an LQ) game under Algorithm 5.1 with high-order
policy gradients being considered. Let {7‘!‘%7‘) ?;J(Xizl be the converged policies. Suppose

that lim,_,0 z, exists and we denote it by z*. Moreover, suppose that the ground truth

2The code is available at https://github.com/jamesjingqili/FeedbackStackelbergGames.jl.git.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.


https://github.com/jamesjingqili/FeedbackStackelbergGames.jl.git

Downloaded 06/06/25 to 169.155.239.179 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

CONSTRAINED FEEDBACK STACKELBERG EQUILIBRIA 3745

0.6 1 25

— ground truth -
e .
0.4 ([ /1 0.0001
_ 206 R15
z £ £
) P04 > 10
0.2
0.2 5
_____ - - - _ -7
0 0 0 = =
-0.5 -0.5 0 0.5 -0.5 0.5
X X X
(a) Zeroth order. (b) First order. (c) Second order.

Fic. 4. Visualization of the policy gradients of a constrained single-stage linear quadratic reg-
ulator problem under different values of p. The cost is given by (ug —x0)2. The dynamics is defined
as x1 = xo + ug. We consider a constraint ug > 0. The ground truth piecewise linear policy is
not differentiable at x = 0. As p — 0, the policy obtained from PDIP and its first-order gradient
closely approximate the ground truth policy and its first-order gradient for all nonzero x. As shown
in Figure 4(c), the high-order gradient of the PDIP policy decays to zero as p— 0 for all nonzero x.
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Fic. 5. Players correctly exchange lanes under the FSE policy but fail to do so under the FNE
policy due to safety concern.

FSE policies {ﬂi}f:’%iizl are differentiable at (x*,u*). Then, lim, o ||V7i ,— V7|2 =
0 and lim, o |V77] |2 =0 VieI¥,teIf, j>2.

Proof. At time t = T, there is no policy gradient term in the Nth player’s
KKT conditions. Recall that Vwéy,p = _[(VK”}\{p) b, NV[M ukN - 1}KT[) and V7l =
~[(VKN)~1], NV
pointwise convergence hm,,_,o ||V7rT P — VN ||2 = 0 almost everywhere. We character-
ize those high-order quasi-policy gradrents of TI'T as follows We denote the map from

o1 K K7, Since lim, o | K7, (27 5) — KN( *)]|l2 =0, we have

’; to the jth-order gradient of 7 , by an operator AT szl s Vi - Observe
that [(VK}V )*l]uva can be considered as the concatenation of a matrix inverse oper-
ator M : X € R™*" — X~1 € R"*" and a linear operator M : zy b VKX . Note
that the matrix inverse is an infinitely differentiable operator when X 1s 1nvert1ble and
Vi uliN- 1]KT , 18 a constant matrix. Thus, by the chain rule [41], 7rT is infinitely
dlﬁerentlable which also implies that V77TT7 , Is continuous Vj > 1.

CET’LL

Since VK p(zT ») is invertible at zN* and AN’j Vj > 1 is a continuous operator,
there exists a compact set S containing z7 7, such that VKT (z¥ ) is invertible for all
z¥ € S. By the compactness of S and the continuity of A7, we have that AN’J i
a uniformly continuous operator on S. By Theorem 2 in [3], a unlforrnly continuous
operator preserves the pointwise convergence Thus, lim, o ||V? 7TT — ViaN|y =0.
Since the ground truth policy 7rT is piecewise linear and the high- order gradients of
7V vanish, we have lim,_q || V7 7rT,p||2 =0Vj>1

Subsequently, for player ¢ = N — 1, since lim,_,o ||V7r7]\{p — Vr¥l|l2 = 0, we have
lim, o |[VEK3(2%,) — VE§(2%)[2 = 0, which implies lim, o |V}, , — V7L|l2 = 0.
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A similar reasoning as above yields that lim, o [|[V/7f , — V]7TT||2 0Vj > 1

Moreover, we can show that for all players i <N — 1, lim,o [|V/ 77 , — v]’]TTHQ

Vj > 1. We continue this backward induction proof of lim, o [|VI7} , — VI7f[|2 = 0

Vj > 1 for prior stages backward in player decision order until ¢ =0 and i = 1.

d

Appendix B. KKT conditions for two-player LQ games. The KKT con-

ditions 0 = K7 (z7) of player 2 at time T are

0=%2_,R3*uj, + Sy a:T+rT + B3Ny — Gli g — Hi pi
T

0=Q%1T7+1+ 1 — GiTHVTH - HiTH/iTHa

0= TT4+1 — ATxT - B%w’LLT — BT’LLT —Cr,

0 H22UT+H2 ‘TT+H12L%"U‘%—'+E%7

0= H TT4+1 + h%—&-l?

37T+1
2
0="%.141 O sFpi1 — pl,
0= Gi%u%« + GiTxT + GilTulT + 9% —s

— (2 =2 2
O - GIT+1:'CT+1 + gTJrl - 8T+1’

We construct the KKT conditions 0 = K%A’p(le) of player 1 at time T

0:H11 uT —I—H;TatT —|—Hi%u2T + h,
0= H SL'T+1+77,%~+1,

ZL’T+1
0="7.711 @ 8741 — PL,
O:GilTu%erGiTxTwLGizTu%Jrg}fs
0= GalcT+1$T+1 + g%-u - 5%“-5-1’
0= K%p(ZQT).

We construct the KKT conditions 0 = K7 ,(z7) of player 2 at time t < T
0= R{™ud + SP%a, + i + BTN = Gidnf — Hd i,
T
0= Qt2+133t+1 + Qt+1 - - Giﬂﬁl Hiﬂ M1
1 \T, 2
At+1 t+1 St+1ut+1 + (th+17Tt+1 o) s
.

0="55_ Ry ul, + Stii@ent + 1 + B — Gi%+17t2+1 Hi 1 Nt+1

0=m441 — Ay — tut —Bfut — ¢4,
0= H22ut+H2 xt—i—Hilu%—‘riL?
0=7; @ s} -

0= G22ut + G2 o+ Ghaug + g7 — s,

0= t+1 p(Zt+1)

0:22 _RpMd, + Sy J:T—i—r '+ BiTA -Gl ’yT Hi;u%«—i—(vulﬂr%,p)—rw%,
0=Qr %141 + s — G»lﬂLl’YTH HiTHﬂTH,
0="%2_, Rp*ul, + 57 J:T—H"T +BF Ny — Gidnp — Hid pp — Y,

2
77757
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We construct the KKT conditions 0= K/ (z) of player 1 at time ¢t <T:

0= Z?:1Rt1 Tl ‘|‘S Tt +7't171 +BlT)‘1 Gll % Hll Mt +(V ul Ty p) %7
0=Qip1Tt11 +qryq — Gglcll%lﬂ H;IHM%H

At+1)‘t1+1+E? 1St’+1ut+1+(Vzt+17ft+1,p)T77t1a
0=x2_  RM2Iy] 4§l 4 pl2 4 AT _Gq 1 HlT 1 %7
0=33_ R5 7] + S e + 15 + BRI AL — GlT ’Ytl+1
0= Hyyui + Hy,xy + Hypui + by,
0= ©s; —pl,
0= Gi%u% + Gl + Gi%uf + 3 — s,
O:sz(zf).

1
Mt+1 Ure

ut+1

We continue the above construction process until ¢ =1 and ¢t =0.
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