

Liana versus tree seedling responses to spatial and temporal variation in dry season severity

Journal:	Ecosphere
Manuscript ID	Draft
Wiley - Manuscript type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Estrada-Villegas, Sergio; Universidad del Rosario, Department of Biological Sciences; Yale University, School of the Environment; New York Botanical Garden; Smithsonian Tropical Research Institute Browne, Luke; Yale University, School of the Environment Manzané-Pinzón, Eric; Universidad Tecnologica de Panama, Departamento de Ciencias Naturales; Smithsonian Tropical Research Institute Comita, Liza; Yale University, School of the Environment; Smithsonian Tropical Research Institute
Substantive Area:	Community Analysis/Structure/Stability < Community Ecology < Substantive Area
Organism:	Angiosperms < Plants
Habitat:	Tropical Zone < Terrestrial < Habitat
Geographic Area:	Mainland < Central America < Geographic Area
Key words/phrases:	Seasonal growth advantage, Panama, rainfall gradient, growth, mortality, 2015-2016 El Niño event, extreme drought, dry season severity, hierarchical Bayesian models, tropical
Abstract:	Lianas are key components of tropical forests, particularly at sites with more severe dry seasons. In contrast, trees are more abundant and speciose in wetter areas. The Seasonal Growth Advantage (SGA) hypothesis postulates that such contrasting distributions are produced by higher liana growth relative to trees during seasonal droughts. The SGA has been investigated for larger size classes (e.g., ≥5 cm diameter at 1.3m, DBH), but rarely for seedlings. Using eight annual censuses of >12,000 seedlings of 483 tree and liana species conducted at eight 1-ha plots spanning a strong rainfall gradient in central Panama, we evaluated whether liana seedlings had higher growth and/or survival rates than tree seedlings at sites with stronger droughts. We also tested whether an extreme El Niño drought during the study period had a more negative effect on tree compared to liana seedlings. The absolute density of liana seedlings was similar across the rainfall gradient, ranging from 0.32 individuals / m2 (0.20 to 0.49, 95% credible interval [CI]) at the driest end of the gradient and 0.27 individuals / m2 (0.13 to 0.51 95% CI) at

the wettest end of the gradient. The relative density of liana seedlings compared to tree seedlings was higher at sites with stronger dry seasons (0.27, 0.21 to 0.33, 95% CI), compared to wetter sites (0.12, 0.04 to 0.20 95% CI), due to lower tree seedling densities at drier sites. However, liana seedlings did not grow or survive better than tree seedlings in drier sites compared to wetter sites. Tree seedlings were more negatively impacted in terms of mortality by the extreme El Niño drought compared to liana seedlings, with an increase in annual mortality rate of 0.013 (0.003 to 0.025 95% CI) compared to lianas of -0.009 (-0.028 to 0.008 95% CI), but not growth. Our results indicate that lianas do not have a seasonal growth advantage over trees at the seedling stage. Instead, higher survival of liana vs tree seedlings during severe droughts or differences in liana vs tree fecundity or germination across the rainfall gradient, likely explain why liana seedlings have higher relative densities at drier sites.

SCHOLARONE™ Manuscripts Ecosphere Page 2 of 33

1	TITLE: Liana versus tree seedling responses to spatial and temporal variation in dry season
2	severity
3	
4	Sergio Estrada-Villegas ^{1,2,3,4*} , Luke Browne ² , Eric Manzané-Pinzón ^{4,5} , Liza S. Comita ^{2,4}
5	¹ Natural History of Tropical Plants Research Group, Faculty of Natural Sciences, Universidad del
6	Rosario, Bogotá, Colombia.
7	² School of the Environment, Yale University, New Haven, Connecticut 06511 USA
8	³ The New York Botanical Garden, Bronx, New York 10458 USA
9	⁴ Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panamá
10	⁵ Departamento de Ciencias Naturales, Facultad de Ciencias y Tecnología, Universidad
11	Tecnológica de Panamá, Panamá, Panamá
12	*Corresponding author: sergio.estradav@urosario.edu.co
13	
14	
15	Keywords: Seasonal growth advantage, Panama, rainfall gradient, growth, mortality, 2015-2016
16	El Niño event, extreme drought, dry season severity, hierarchical Bayesian models, tropical
17	forest.

Page 3 of 33 Ecosphere

ABSTRACT (350/350 WORDS)

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Lianas are key components of tropical forests, particularly at sites with more severe dry seasons. In contrast, trees are more abundant and speciose in wetter areas. The Seasonal Growth Advantage (SGA) hypothesis postulates that such contrasting distributions are produced by higher liana growth relative to trees during seasonal droughts. The SGA has been investigated for larger size classes (e.g., ≥5 cm diameter at 1.3m, DBH), but rarely for seedlings. Using eight annual censuses of >12,000 seedlings of 483 tree and liana species conducted at eight 1-ha plots spanning a strong rainfall gradient in central Panama, we evaluated whether liana seedlings had higher growth and/or survival rates than tree seedlings at sites with stronger droughts. We also tested whether an extreme El Niño drought during the study period had a more negative effect on tree compared to liana seedlings. The absolute density of liana seedlings was similar across the rainfall gradient, ranging from 0.32 individuals / m² (0.20 to 0.49, 95% credible interval [CI]) at the driest end of the gradient and 0.27 individuals / m² (0.13 to 0.51 95% CI) at the wettest end of the gradient. The relative density of liana seedlings compared to tree seedlings was higher at sites with stronger dry seasons (0.27, 0.21 to 0.33, 95% CI), compared to wetter sites (0.12, 0.04) to 0.20 95% CI), due to lower tree seedling densities at drier sites. However, liana seedlings did not grow or survive better than tree seedlings in drier sites compared to wetter sites. Tree seedlings were more negatively impacted in terms of mortality by the extreme El Niño drought compared to liana seedlings, with an increase in annual mortality rate of 0.013 (0.003 to 0.025 95% CI) compared to lianas of -0.009 (-0.028 to 0.008 95% CI), but not growth. Our results indicate that lianas do not have a seasonal growth advantage over trees at the seedling stage. Instead, higher survival of liana vs tree seedlings during severe droughts or differences in liana

- 40 vs tree fecundity or germination across the rainfall gradient, likely explain why liana seedlings
- 41 have higher relative densities at drier sites.

Page 5 of 33 Ecosphere

INTRODUCTION

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

In tropical forests, lianas (i.e., woody vines) are a crucial component of forest structure and diversity (Schnitzer et al., 2012) and are involved in many ecological interactions and ecosystem processes (Arroyo-Rodríguez et al., 2015; di Porcia e Brugnera et al., 2019). For example, lianas reduce biomass growth and reproductive output of trees (Estrada-Villegas et al., 2022), and increasing liana density is associated with decreases in forest carbon stocks (Durán & Gianoli, 2013). Trees and lianas, however, show marked and opposite patterns in their distributions across lowland tropical forests. While trees are more abundant and speciose in wetter areas (Gentry, 1982; DeWalt et al., 2010), lianas reach higher diversity and greater relative and absolute abundance in sites that experience longer dry seasons (Schnitzer, 2005; DeWalt et al., 2010; Parolari et al., 2020). Such contrasting distributional patterns, plus the fact that liana abundance has been increasing in recent decades in many tropical forests (Schnitzer et al., 2021), make it essential to investigate the mechanisms that regulate liana and tree abundance. The seasonal growth advantage (SGA) hypothesis (Schnitzer, 2005) may explain the opposing patterns of tree and liana distributions. The SGA hypothesis postulates that lianas are able to grow more than trees during seasonal droughts because lianas take greater advantage of high solar radiation in the canopy (due to low cloud cover) and better tolerate the low water availability in the soil, in part due to increased water use efficiency (Schnitzer, 2005; Maréchaux et al., 2017; Schnitzer, 2018; Schnitzer & van der Heijden, 2019). In comparison, trees grow very little, if at all, during seasonal or extreme droughts due to low tolerance for water limitation (Schnitzer, 2018; Schnitzer & van der Heijden, 2019). Over time, these small differences in growth are expected to increase liana size and survival, resulting in higher liana relative

Page 6 of 33

abundance at sites with increasingly severe dry seasons relative to sites with mild or no dry seasons (Schnitzer, 2005).

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

To date, most studies investigating the SGA have focused on larger size classes (e.g., ≥5 cm DBH) rather than seedlings. Ignoring whether the SGA also occurs at early life stages hinders our understanding of the mechanisms that explain tropical forest diversity and composition because the seedling stage is one of the strongest bottlenecks in the plant life cycle, and seedling growth and survival play a crucial role in shaping the diversity, abundance, and distribution of tropical plant species (Comita & Engelbrecht, 2009; Green et al., 2014). We currently do not know whether the SGA of lianas occurs at the seedling stage or whether it only emerges at later life stages. If liana seedlings possess the same traits that confer an advantage to liana adults under dry conditions, then we would expect to find evidence of the SGA at the seedling stage as well. However, like trees, lianas start their life as free-standing seedlings in the forest understory and both life forms show almost identical life history trade-offs in terms of growth and survival (Gilbert et al., 2006). Although liana and tree seedlings show differences in some morphological and physiological traits (Pasquini et al., 2015; van der Sande et al., 2019), they are similar in other key traits (van der Sande et al., 2013; Manzané-Pinzón et al., 2018), which may partially explain why the trade-off between growth and survival between the two life forms is so similar. Therefore, liana and tree species may show similar patterns of growth and mortality with respect to water availability at the seedling stage, such that the SGA would only be evident at later ontogenetic stages.

Here, we use a long-term data set on seedling dynamics including >12,000 individuals of 483 tree and liana species collected at eight sites along a pronounced rainfall gradient spanning the Isthmus of Panama to test the SGA hypothesis in both space and time. We evaluated whether

liana seedlings have an advantage (e.g., higher growth and/or lower mortality) relative to tree seedlings at sites that experience more severe dry seasons compared to sites with milder dry seasons. Additionally, we compared the growth and mortality response of tree vs. liana seedlings to a severe supra-annual drought associated with the extreme 2015-16 El Niño event (Browne et al., 2021). Given that previous studies have found that adult lianas have an advantage compared to adult trees under drier conditions (Schnitzer & van der Heijden, 2019), we predicted (1) that liana seedlings would have higher growth rates and/or lower mortality rates than tree seedlings at sites that experience stronger annual drought, leading to a pattern of increasing relative density of liana versus tree seedlings as dry season severity increases across the precipitation gradient and (2) that the extreme El Niño drought event that occurred during our study would have a more negative effect on growth and survival for tree seedlings compared to liana seedlings.

MATERIALS AND METHODS

Study area

In this study, we censused free-standing, woody seedlings in eight previously established 1-ha forest plots across the Isthmus of Panama (Fig. 1) (Browne et al., 2021). We selected accessible lowland sites in mature, protected, seasonal tropical moist forest that spanned the rainfall gradient between the Pacific and Caribbean coasts. Across this 65-km gradient, mean annual precipitation ranges from ~1,600 mm to ~3,200 mm (Condit et al., 2013; Umaña et al., 2021). Plant-available soil phosphorus co-varies across this gradient, with higher values at drier sites (Condit et al., 2013). Drier sites along the gradient also tend to have high understory light availability (Gaviria & Engelbrecht, 2015). There is high turnover in tree species composition across the gradient, although many tree species occur at multiple sites along the gradient (Pyke et

Page 8 of 33

al., 2001; Umaña et al., 2021). The species composition of lianas shows relatively high overlap across sites: Manzané-Pinzón et al. (2018) reported that 45 out of the 63 liana species encountered in their study were present in all six of the sites where they surveyed liana seedlings.

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

111

112

113

Seedling censuses

We established 400 1-m² seedling plots within each 1-ha plot from September-December 2013 (Browne et al., 2021). The seedling plots were spaced every 5 m to maximize spatial coverage over the 1-ha plot and facilitate long-term monitoring. Within each 1-m² seedling plot, we tagged, identified, and measured all woody seedlings ≥ 200 mm in height and < 1 cm DBH (diameter at 1.3m above ground) following the protocol of Comita et al. (2007). We then recensused seedling plots annually at the beginning of the annual dry season (November-February). For this analysis, we include census data from 2013-2022, which encompasses eight annual census intervals. During each census, we measured the stem height of woody seedlings and evaluated if they were dead or alive, as well as marking and measuring newly recruited seedlings \geq 200 mm tall. The seedling census included tree and shrub seedlings (hereafter referred to simply as 'trees'), but not palm seedlings. Liana seedlings were included in the seedling census if they were not yet twining or climbing on other plants or along the ground. Once tagged, we continued to record the status of liana seedlings that later began twining/climbing but did not remeasure their height. We did not census the sites Oleoducto in 2019 and 2020 and Panamá Pacifico in 2018 due to limited site access.

We included census observations that met the following criteria: the seedling had a known survival status, known height in the prior census ≥ 200 mm and $\leq 1,300$ mm, had a species-level identification, that liana seedlings were free-standing, and ≤ 3.5 year interval

between census observations for the seedling. After filtering for these criteria, the overall dataset contained 45,070 observations from 12,641 individuals across 483 different species (381 tree and shrub species and 102 liana species).

Dry season severity

To estimate the degree of annual drought at each 1-ha plot, we estimated dry season severity, which is defined as the most extreme cumulative rainfall deficit of evapotranspiration exceeding precipitation reached during the annual dry season (Condit et al., 2013). Lower values indicate more severe drought conditions during the dry season (Condit et al., 2013). We used two metrics of dry season severity from Browne et al. (2021): long-term dry season severity estimates (1961-1990 average) at each site (Fig. 1), and dry season severity during the 2015-16 El Niño (Fig. S1), which represented one of the most severe droughts in Panama's recent history (Spinoni et al., 2019). Across sites, the estimates of long-term dry season severity and dry season severity during the 2015-16 El Niño were strongly correlated with each other (Pearson's r = 0.98, p < 0.0001).

Seedling density

We calculated seedling densities separately for lianas and trees per 1-m² seedling plot for each census and included zeroes for plots not containing any seedlings and only counting alive seedlings. To produce a site-level estimate of seedling density, we first averaged across the 400 seedling plots within each 1-ha site and then averaged across the 8 censuses. We calculated liana relative density by dividing liana absolute density by total seedling density.

To test the hypothesis that tree and liana seedling absolute densities show differing patterns in response to long-term dry season severity across sites, we used a linear regression to

model average tree and liana seedling densities (averaged across all censuses) at each site as a function of long-term dry season severity, growth form (*i.e.*, whether the seedling density estimate was for lianas or trees), and the interaction between growth form (liana/tree) and dry season severity. We used a lognormal error distribution to ensure that predicted density estimates did not go below zero. To assess the relationship between liana relative densities and long-term dry season severity, we fit a linear regression with liana relative density at each site as the response variable and long-term dry season severity as the predictor variable.

Growth and mortality models

To estimate how growth and mortality rates varied between tree seedlings and liana seedlings, we fit hierarchical Bayesian models separately for growth and mortality, similar in form to the models presented in Browne et al. (2021). We used relative growth rates (RGR) (cm cm⁻¹ yr⁻¹) as our metric of growth following the equation:

170
$$Eq. (1): RGR = \frac{ln(Height_2) - ln(Height_1)}{(t_2 - t_1)}$$

where t_2 = time two, t_1 = time one, $Height_2$ = height at time 2, $Height_1$ = height at time 1. We ran analyses with RGR calculated in two forms: 1) only positive growth rates, and 2) all growth rates, including positive, zero, and negative growth rates. To normalize the distribution of growth rates and aid in model convergence, we used a Box-Cox transformation (lambda = 0.15) when only positive growth rates were included and a modulus transformation when all growth rates were included (Condit et al., 2017; Browne et al., 2022). We then back-transformed RGR values to their original scale for presentation in all figures. For growth models, we assumed transformed RGR to be normally distributed for each individual observation i:

Page 11 of 33 **Ecosphere**

Eq. (2): $RGR_i \sim Normal(\hat{y}_i, \sigma)$ 180 181 182 For mortality models, we assumed the response variable (1 = dead, 0 = alive) to be Bernoulli

distributed and adjusted to account for varying census interval lengths (time):

184

183

185
$$Eq. (3): Mortality_i \sim Bernoulli(logit(\hat{y}_i)^{time})$$

186

187

188

189

Model 1: Overall growth and mortality rates

To estimate overall (i.e., for all sites combined) growth and mortality rates for tree and liana seedlings, we fit a model with the following form:

190

191
$$Eq. (4): \hat{y}_i \sim \alpha 0 + \alpha 1_{spp} + \alpha 2_{c,s} + \alpha 3_p + \beta 1 \cdot InitialHeight_i + \beta 2 \cdot Liana_i$$
192
$$Eq. (5): \alpha 1_{spp} \sim Normal(0, \sigma^2)$$
193
$$Eq. (6): \alpha 2_{c,s} \sim Normal(0, \sigma^2)$$
194
$$Eq. (7): \alpha 3_p \sim Normal(0, \sigma^2)$$
195

195

196

197

198

199

200

201

where \hat{y}_i is either Box-cox-transformed RGR or mortality status (1 = dead, 0 = alive) for observation i, $\alpha 0$ is the overall intercept, $\alpha 1_{spp}$ is a species-level (spp) random intercept to control for inherent differences in vital rates across species, $\alpha 2_{c,s}$ is a random effect predicted separately for each census-site combination, $\alpha 3_p$ is a plot-level random effect for each 1x1 m seedling plot p to control for spatial autocorrelation at small scales, $\beta 1$ estimates the effect of height at the previous census on either RGR or mortality, and β 2 estimates the overall difference in growth or mortality rates for lianas vs. tree seedlings where $Liana_i = 1$ if a species is a liana and $Liana_i = 0$ when a species is not a liana. We did not explicitly account for repeated measures of the same individual because including an individual-level random effect prevented model convergence, but by including random effects for species and plot and including seedling height, we account for the majority of factors that would lead to non-independence of measurements taken on the same individual. To account for differences in mean seedling height across species, we log-transformed and standardized (mean = 0 and standard deviation = 1) initial seedling height within each species following Browne et al. (2021). We found similar results when using an upper height cutoff of 400 mm to confirm that results were similar when looking at only smaller seedlings (Fig. S1, S2).

Model 2: Site-level growth and mortality rates predicted by long-term dry season severity

To estimate whether growth and mortality rates at a site for tree and liana seedlings were dependent on dry season severity, we fit a model where site-level random intercepts varied separately for tree seedlings vs. lianas:

218
$$Eq. (8): \hat{y}_i \sim \alpha 0 + \alpha 1_{spp} + \alpha 2_c + \alpha 3_p + \alpha 4_{s,l} + \beta 1 \cdot InitialHeight_i$$

where parameters are the same as in Model 1, except $\alpha 2_c$ is a census-level (c) random intercept and $\alpha 4_{s,l}$ is a site-level (s) random intercept estimated separately based on whether an individual is a liana or tree seedling (l).

To determine whether dry season severity at a site could explain variation in overall growth and mortality rates for either tree or liana seedlings, we fit a second-level regression within each growth and mortality model where:

228
$$Eq. (9): \alpha 4_{s,l} \sim Normal(\alpha_l + \beta 2_l \cdot DSS_s, \sigma_l)$$

Under this formulation, $\beta 2_l$ estimates the slope of the relationship between dry season severity (*DSS*, average from 1961-1990, lower numbers indicate more severe dry seasons) and overall growth or mortality rates at a site (depending on the model), estimated separately for tree and liana seedlings. We then compared whether $\beta 2$ for tree seedlings was higher or lower than $\beta 2$ for liana seedlings using draws from the posterior distribution.

Model 3: Growth and mortality response to El Niño

To estimate how growth and mortality responses to the extreme 2015-16 El Niño differed for tree seedlings and liana seedlings, we fit a model of the following form:

240
$$Eq. (10): \hat{y}_i \sim \alpha 0 + \alpha 1_{spp} + \alpha 2_{c,l} + \alpha 3_p + \alpha 4_s + \beta 1 \cdot InitialHeight_i$$

where parameters were similar to those in Model 2 above, but $\alpha 2_{c,l}$ is a random effect predicted separately for tree seedlings and liana seedlings for each census. We then estimated the impacts of the 2015-16 El Niño on growth and mortality separately for tree and liana seedlings (l) as a derived parameter where the El Niño growth or mortality response was the difference between

Page 14 of 33

the growth or mortality estimate in the census interval including the El Niño compared to the average growth or mortality estimates of the remaining non-El Niño census intervals:

Eq. (11): $NinoMortResponse_l = \alpha 2_{NinoYear,l} - mean(\alpha 2_{NonNinoYears,l})$

Using this estimate, for model visualization, we present the absolute change in annual relative growth rate (RGR) in units of cm cm⁻¹ yr⁻¹ and annual mortality rate, respectively, between the El Niño census interval compared to the remaining non-El Niño census intervals.

For El Niño models only, we excluded the site Oleoducto because a localized storm unrelated to the El Niño caused a large amount of tree falls during the census interval covering the El Niño. As a result, we observed an abnormally high rate of seedling growth in Oleoducto following the El Niño. To avoid falsely ascribing this phenomenon to the impacts of El Niño related drought, we excluded Oleoducto from the El Niño analysis. We present results including Oleoducto in the El Niño analysis in the supplement (Fig. S4).

We fit models with Stan (Carpenter et al., 2017) using the 'brms' package (Bürkner, 2017) for seeding density models and the 'rstan' package v. 2.21.2 (Stan Development Team, 2017) for growth and mortality models. We used weakly-informative priors of Half-Normal (0,1) for variance parameters, Student_t(5, 0, 2.5) for coefficients in mortality models, and Normal(0,1) for coefficients in growth models following the Stan prior choice recommendations (Stan Development Team, 2017). For all models, we ran four independent chains for 1,500 iterations, with 750 iterations of burn in, for a total of 3,000 post-burn in samples. We checked chain convergence visually and by ensuring the potential scale reduction factor statistic ('rhat') was < 1.10 (Kéry, 2010).

For parameter estimates of interest, we calculated the Probability of Direction (Pd), which is the probability that a parameter estimate is strictly positive or negative, whichever is most probable. Probability of direction varies between 50% and 100% and is calculated based on the posterior distribution of the parameter estimate, such that it is the proportion of the posterior distribution that is of the median's sign (Makowski et al., 2019). Pd values are strongly correlated with frequentist p-values such that $p_{one-sided} = 1 - p_d$ and $p_{two-sided} = 2 * (1 - p_d)$. We used the 'language of evidence' (Muff et al., 2022) to interpret Pd values (see Appendix S1 for details).

RESULTS

We found moderate evidence that densities of tree seedlings and liana seedlings responded differently to long-term dry season severity across the gradient (Fig. 2a, Pd = 0.95 of liana by dry season severity interaction term). Densities of tree seedlings increased at sites with less severe dry seasons, while densities of liana seedlings remained relatively constant across the gradient (Fig. 2a). Specifically, liana seedling density was predicted to be 0.32 individuals / m^2 (0.20 to 0.49, 95% credible interval [CI]) at the driest end of the gradient and 0.27 individuals / m^2 (0.13 to 0.51 95% CI) at the wettest end of the gradient. In contrast, tree seedling density was predicted to more than double across the gradient from 0.85 individuals / m^2 (0.52 to 1.32 95% CI) at the driest end of the gradient and 2.03 individuals / m^2 (0.99 to 3.64 95% CI) at the wettest end of the gradient. As a result, we found strong evidence that the relative density of liana seedlings was higher at sites with more severe dry seasons compared to sites with less severe dry seasons (Fig. 2b, Pd = 0.99). At the driest end of the gradient, relative density of lianas was predicted to be

0.27 (0.21 to 0.33 95% CI), compared to 0.12 (0.04 to 0.20 95% CI) at the wettest end of the gradient.

For both tree and liana seedlings, there was a trend of decreasing seedling growth and mortality with decreasing long-term dry season severity across the gradient (Fig. 2cd). However, contrary to expectation, we found little to no evidence that liana and tree seedlings differed in the slope of the relationship for either growth rates ($Pd\ tree > liana = 0.53$, Fig. 2c) or mortality rates ($Pd\ tree > liana = 0.68$, Fig. 2d). Including negative growth rates did not change qualitative results (Fig. S3).

We found strong evidence that tree seedlings showed a stronger mortality response during El Niño than liana seedlings (Pd tree response > liana response = 0.99; Fig. 3cd), with tree seedlings showing an average increase in annual mortality rate of 0.013 (0.003 to 0.025 95% CI) compared to lianas of -0.009 (-0.028 to 0.008 95% CI). We found moderate to strong evidence that the growth response to the 2015-16 El Niño was more positive in tree seedlings than liana seedlings when only positive growth rates were included (Pd tree response > liana response = 0.97; Fig. 3ab), with annual relative growth rates increasing in tree seedlings by 0.012 (-0.010 to 0.041 95% CI) and in liana seedlings by 0.003 (-0.009 to 0.016 95% CI). When negative growth rates were included alongside positive growth rates, there was no evidence that growth response during El Niño was stronger for tree seedlings than liana seedlings (Pd tree response > liana response = 0.11, Fig. 3b).

DISCUSSION

We found little support for the prediction that liana seedlings exhibit higher growth rates or lower mortality rates than tree seedlings in sites that experience stronger annual droughts

across a gradient of dry season severity. While growth rates and mortality rates tended to be higher in drier sites compared to wetter sites for both liana and tree seedlings, there were no strong differences in growth and mortality between liana and tree seedlings across sites. Yet, the relative density of liana seedlings was higher in sites that experience stronger annual droughts, although the absolute density of liana seedlings remained almost the same across the precipitation gradient. Our results suggest liana seedlings might have an advantage over tree seedlings, but not from the expected higher growth and lower mortality predicted by the SGA hypothesis. Other processes, such as lower liana seedling mortality during extreme droughts (observed in this study), higher adult liana fecundity, or higher liana germination success could potentially drive the observed patterns. This suggests that the SGA hypothesis might not be applicable to early life stages in the plant life cycle, but that greater differences in liana growth and survival relative to trees occur at later life stages.

A potential explanation of this unexpected result is that liana and tree seedlings are likely facing similar trade-offs when growing in the understory as freestanding individuals despite some differences in morphology and physiology. Liana and tree seedlings are, in some respects, different in terms of morphology (e.g., internode length) and physiology (e.g., capacity to power photosynthetic reactions) (Pasquini et al., 2015). Yet, seedlings of the two life forms are indistinguishable in terms of other morphological (e.g., wood density) and physiological traits (e.g., stomatal conductance) (van der Sande et al., 2013). Despite some differences as freestanding seedlings, lianas and trees show similar life history trade-offs in terms of growth and survival at this early life stage (Gilbert et al., 2006). Moreover, lianas occur as freestanding seedlings across the precipitation gradient (Manzané-Pinzón, 2012), and many liana species only start to exhibit their climbing habits well after the seedling stage (Campanello et al., 2016).

Page 18 of 33

Higher liana growth rates at sites with greater dry season severity probably occur at later life stages, when lianas exhibit more acquisitive traits than trees (Medina-Vega et al., 2021). In fact, the benefit of higher water-use efficiency of lianas compared to trees may be smaller at the seedling stage due to lower water demand relative to large individuals in the canopy.

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

We found mixed support for the prediction that the extreme drought associated with the 2015-16 El Niño would lead to stronger negative effects on tree seedlings compared to liana seedlings. Consistent with our expectations, tree seedlings showed increased mortality during the El Niño drought, while lianas did not show a mortality response to the El Niño. Increased mortality during El Niño for tree seedlings, as previously shown in Browne et al. (2021), is likely caused by drought stress. The lack of mortality response to El Niño in liana seedlings is likely due to their higher tolerance and resistance to drought stress (Zhu & Cao, 2010; Maréchaux et al., 2017). Contrary to our expectations, however, liana seedlings showed no response to the El Niño in terms of growth, while tree seedling showed increased growth in the El Niño year compared to other years, but only when relative growth rates were calculated for seedlings with positive growth. This suggests that a subset of tree seedlings are able to avoid stem breakage or dieback and take advantage of factors that promote growth during El Niño events, such as decreased cloud cover and higher understory light availability (Wright et al., 1999; Browne et al., 2021). However, as a whole, when negative and zero growth rates are included, tree seedlings do not show a positive growth response, as ~22% of tree seedlings experienced zero or negative growth during the El Niño, presumably due to the indirect and direct effects of drought stress. The lack of growth response in liana seedlings was unexpected, especially because the SGA hypothesis theorizes that lianas gain an advantage during dry periods through higher growth. Perhaps liana seedlings were unable to profit from higher availability of understory light because

young lianas allocate less biomass to roots compared to young trees (Smith-Martin et al., 2020), and so were probably not as effective as tree seedlings at acquiring the little soil moisture that was available during the extreme drought. Therefore, the tree seedlings that did not have access to sufficient water died because of their low drought resistance, but those that had access to water were able to take advantage of the higher understory light availability to grow more.

Previous observational and experimental studies in Panama have also found that the effects of severe supra-annual droughts on liana and tree seedlings were not as strong as predicted. Umaña et al. (2020) analyzed changes in liana and tree seedling abundance in seasonal moist forest in the BCI 50-ha plot in Panama over a 16-year study that also spanned the 2015-16 El Niño. They found only a small increase in liana relative abundance during the extreme drought of 2016. In comparison, there were larger increases in liana relative abundance in previous years with less severe dry seasons (Umaña et al., 2020). In a water addition experiment during the 1997-1998 El Niño dry season in an old-growth forest in central Panama, Bunker & Carson (2005) found no evidence for differential growth or mortality responses to irrigation of liana vs tree seedlings. In fact, and in line with our results, they found that liana seedlings grew significantly less than tree seedlings during the dry season (Bunker & Carson, 2005).

In contrast to the aforementioned results, stronger effects of El Niño-related droughts have been reported at other tropical forest sites. Abundance of liana seedlings showed a sharp increase after the 2015-16 El Niño in a seasonally dry forest in Brazil (Marimon et al., 2020) and a wet forest in Puerto Rico (Umaña et al., 2019). Interestingly, liana seedlings showed higher survival than tree seedlings in Puerto Rico during seasonal droughts, but lianas and trees showed no difference in growth rates (Umaña et al., 2019). Studies across more sites will determine

Page 20 of 33

whether higher liana seedling growth occurs during supra-annual droughts and translates into increases in liana seedling density.

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

Finally, we found support for the prediction that the abundance of liana seedlings relative to tree seedlings increases in sites with more severe annual dry seasons (Manzané-Pinzón et al., 2018). While the absolute density of lianas in the community did not vary based on dry season severity, their relative abundance in the community was higher in drier sites than in wetter sites. This pattern could be driven directly by water availability or by other factors that co-vary across the rainfall gradient, namely soil phosphorous and understory light availability. However, in a nutrient addition experiment, also in central Panama, Schnitzer et al. (2020) found that neither phosphorus, nitrogen, nor potassium addition significantly increased liana relative growth or mortality rates relative to controls. This suggests that the higher relative densities of liana seedlings at the drier sites are unlikely to be due to enhanced liana performance under higher phosphorous levels at those sites. Drier sites along the gradient also tend to be more open and have more deciduous canopies, leading to higher understory light levels (Gaviria & Engelbrecht, 2015). If liana seedlings benefit more from increased light availability at the drier sites compared to tree seedlings, we would expect to see liana growth and mortality responding more strongly to changing long-term dry season severity across the gradient. Instead, both tree and liana seedlings showed a similar trend of decreasing seedling growth and mortality with decreasing long-term dry season severity across the gradient (Fig. 2cd). More generally, the higher relative density of liana seedlings at drier sites does not appear to be driven by differences in average growth or mortality rates between tree and liana seedlings. Instead, such a pattern could potentially be explained by higher growth and survival of adult trees in wetter sites, leading to differences in adult abundance and fecundity, resulting in higher tree seed availability and more trees seedlings

recruiting at wetter than at drier sites. Additional data on seed production are needed to determine whether fecundity of adult lianas and trees contribute to patterns of liana and tree seedling densities across the gradient.

In conclusion, we found mixed support for the hypothesis that lianas should outperform tree seedlings in drier conditions, with tree and liana seedlings showing similar spatial patterns of growth and mortality across the dry season severity gradient, and tree seedlings showing higher growth but also higher mortality in response to the extreme drought associated with the 2015-2016 El Niño. The SGA has been detected by comparing liana and tree growth on adult individuals between seasons (Schnitzer & van der Heijden, 2019). Our results suggest that the SGA hypothesis does not appear to apply to the seedling stage. Further studies assessing the fecundity of adult trees and lianas between sites that differ in dry season severity, and examining the transition between the freestanding mode to the climbing mode in liana seedlings across species (e.g., Campanello et al., 2016) will help us circumscribe the limits of the SGA hypothesis. Liana abundance is expected to increase in areas where dry seasons will become longer and more severe. Therefore, improved understanding of the mechanisms that explain plant abundance and performance across ontogenetic stages will help predict the future of tropical forests.

AUTHOR CONTRIBUTIONS: SE-V, LSC, EM-P and LB conceived the study. LSC, EM-P, and LB participated in data collection. LB performed data analysis with input from SEV and LSC. SEV and LB wrote the first draft of the manuscript, and all authors contributed to interpretation and writing. All authors approve of the submitted version of the manuscript.

Page 22 of 33

ACKNOWLEDGEMENTS: This work was supported by funding from UK Natural
Environment Research Council grant NE/J011169/1, US National Science Foundation grants
1623775 and 1845403, Yale University and the Ohio State University. SE-V was supported by
the Cullman Fellowship from the Yale School of the Environment and the New York Botanical
Garden. We are grateful for the tireless efforts of Lourdes Hernández Hassán, Luis Aguilar,
Guillermo Aguilar, Mitzila Gaitan, Roni Saenz, Osmar Agrazal, Biancolini Castro, Moises
Perez, and others who have made the yearly censuses possible. We thank the Comita and
Queenborough labs for helpful feedback on the manuscript. We thank the Yale Center for
Research Computing for use of the research computing infrastructure. The research was
conducted in Panama under permits from the Ministry of Environment (MiAmbiente) and the
Agencia Panama Pacífico (APP).
CONFLICT OF INTEREST STATEMENT: The authors declare no competing interests.
DATA AVAILABILITY STATEMENT: Data and model code will be deposited in a public
figshare repository upon publication. For the review process, a private link to the associated code
and data is available here: https://figshare.com/s/4773d143d63527e304ea
ORCID:
Sergio Estrada-Villegas
https://orcid.org/0000-0002-1072-4921
Luke Browne

451	Eric Manzané-Pinzón
452	https://orcid.org/0000-0001-8153-786X
453	Liza S. Comita
454	https://orcid.org/0000-0002-9169-1331
455	
456	
457	References
458	
459	Arroyo-Rodríguez, V., N. Asensio, J. C. Dunn, J. Cristóbal-Azkarate, and A. Gonzalez-Zamora.
460	2015. "Use of lianas by primates: more than a food source". In Ecology of Lianas, edited
461	by S. A. Schnitzer, F. Bongers, R. J. Burnham, and F. E. Putz, 407-426. Oxford: John
462	Wiley & Sons, Ltd.
463	Browne, L., L. Markesteijn, B. M. J. Engelbrecht, F. A. Jones, O. T. Lewis, E. Manzané-Pinzón,
464	S. J. Wright, and L. S. Comita. 2021. "Increased mortality of tropical tree seedlings
465	during the extreme 2015–16 El Niño". Global Change Biology 27: 5043-5053.
466	Browne, L., L. Markesteijn, E. Manzané-Pinzón, S. J. Wright, R. Bagchi, B. M. J. Engelbrecht,
467	F. A. Jones, and L. S. Comita. 2022. "Widespread variation in functional trait-vital rate
468	relationships in tropical tree seedlings across a precipitation and soil phosphorus
469	gradient". Functional Ecology n/a.
470	Bunker, D. E., and W. P. Carson. 2005. "Drought stress and tropical forest woody seedlings:
471	effect on community structure and composition". Journal of Ecology 93: 794-806.
472	Bürkner, PC. 2017. "brms: An R Package for Bayesian Multilevel Models Using Stan". <i>Journal</i>
473	of Statistical Software 80: 1 - 28.

Page 24 of 33

474	Campanello, P. I., E. Manzané, M. Villagra, YJ. Zhang, A. M. Panizza, D. di Francescantonio,
475	S. A. Rodriguez, YJ. Chen, L. S. Santiago, and G. Goldstein. 2016. "Carbon Allocation
476	and Water Relations of Lianas Versus Trees". In Tropical Tree Physiology: Adaptations
477	and Responses in a Changing Environment, edited by G. Goldstein and L. S. Santiago,
478	103-124. Cham: Springer International Publishing.
479	Carpenter, B., A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker, J.
480	Guo, P. Li, and A. Riddell. 2017. "Stan: A probabilistic programming language". Journal
481	of Statistical Software 76.
482	Comita, L. S., S. Aguilar, R. Pérez, S. Lao, and S. P. Hubbell. 2007. "Patterns of Woody Plant
483	Species Abundance and Diversity in the Seedling Layer of a Tropical Forest". Journal of
484	Vegetation Science 18: 163-174.
485	Comita, L. S., and B. M. J. Engelbrecht. 2009. "Seasonal and spatial variation in water
486	availability drive habitat associations in a tropical forest". Ecology 90: 2755-2765.
487	Condit, R., B. M. J. Engelbrecht, D. Pino, R. Pérez, and B. L. Turner. 2013. "Species
488	distributions in response to individual soil nutrients and seasonal drought across a
489	community of tropical trees". Proceedings of the National Academy of Sciences of the
490	United States of America 110: 5064-5068.
491	Condit, R., R. Pérez, S. Lao, S. Aguilar, and S. P. Hubbell. 2017. "Demographic trends and
492	climate over 35 years in the Barro Colorado 50 ha plot". Forest Ecosystems 4: 17.
493	DeWalt, S. J., S. A. Schnitzer, J. Chave, F. Bongers, R. J. Burnham, Z. Cai, G. Chuyong, D. B.
494	Clark, C. E. N. Ewango, J. J. Gerwing, E. Gortaire, T. Hart, G. Ibarra-Manríquez, K.
495	Ickes, D. Kenfack, M. J. Macía, JR. Makana, M. Martínez-Ramos, J. Mascaro, S.
496	Moses, H. C. Muller-Landau, M. P. E. Parren, N. Parthasarathy, D. R. Pérez-Salicrup, F.

497	E. Putz, H. Romero-Saltos, and D. Thomas. 2010. "Annual Rainfall and Seasonality
498	Predict Pan-tropical Patterns of Liana Density and Basal Area". Biotropica 42: 309-317.
499	di Porcia e Brugnera, M., F. Meunier, M. Longo, S. M. Krishna Moorthy, H. De Deurwaerder, S.
500	A. Schnitzer, D. Bonal, B. Faybishenko, and H. Verbeeck. 2019. "Modeling the impact of
501	liana infestation on the demography and carbon cycle of tropical forests". Global Change
502	Biology 25: 3767-3780.
503	Durán, S. M., and E. Gianoli. 2013. "Carbon stocks in tropical forests decrease with liana
504	density". Biology Letters 9: 20130301.
505	Estrada-Villegas, S., S. S. Pedraza Narvaez, A. Sanchez, and S. A. Schnitzer. 2022. "Lianas
506	Significantly Reduce Tree Performance and Biomass Accumulation Across Tropical
507	Forests: A Global Meta-Analysis". Frontiers in Forests and Global Change 4.
508	Gaviria, J., and B. M. J. Engelbrecht. 2015. "Effects of Drought, Pest Pressure and Light
509	Availability on Seedling Establishment and Growth: Their Role for Distribution of Tree
510	Species across a Tropical Rainfall Gradient". PLoS ONE 10: e0143955.
511	Gentry, A. H. 1982. "Patterns of Neotropical plant species diversity". In Evolutionary Biology,
512	edited by M. K. Hecht, B. Wallace, and G. T. Prance, 1–84. New York: Plenum.
513	Gilbert, B., S. J. Wright, H. C. Muller-Landau, K. Kitajima, and A. Hernandez. 2006. "Life
514	history trade-offs in tropical trees and lianas". Ecology 87: 1281-1288.
515	Green, P. T., K. E. Harms, and J. H. Connell. 2014. "Nonrandom, diversifying processes are
516	disproportionately strong in the smallest size classes of a tropical forest". Proceedings of
517	the National Academy of Sciences 111: 18649-18654.
518	Kéry, M. 2010. Introduction to WinBUGS for ecologists: Bayesian approach to regression,
519	ANOVA, mixed models and related analyses. Academic Press.

Page 26 of 33

520	Makowski, D., M. Ben-Shachar, and D. Ludecke. 2019. "bayestestR: Describing Effects and
521	their Uncertainty, Existence and Significance within the Bayesian Framework". Journal
522	of Open Source Software 4: 1541.
523	Manzané-Pinzón, E., G. Goldstein, and S. A. Schnitzer. 2018. "Does soil moisture availability
524	explain liana seedling distribution across a tropical rainfall gradient?". Biotropica 50:
525	215-224.
526	Manzané-Pinzón, E. J. 2012. Freestanding and support-seeker liana seedlings: Spatial
527	distribution, life history and physiological traits in tropical forests of central Panama.
528	University of Miami.
529	Maréchaux, I., M. K. Bartlett, A. Iribar, L. Sack, and J. Chave. 2017. "Stronger seasonal
530	adjustment in leaf turgor loss point in lianas than trees in an Amazonian forest". Biology
531	Letters 13: 20160819.
532	Marimon, B. S., C. Oliveira-Santos, B. H. Marimon-Junior, F. Elias, E. A. de Oliveira, P. S.
533	Morandi, N. C. C. d. S. Prestes, L. H. Mariano, O. R. Pereira, T. R. Feldpausch, and O. L.
534	Phillips. 2020. "Drought generates large, long-term changes in tree and liana regeneration
535	in a monodominant Amazon forest". Plant Ecology 221: 733-747.
536	Medina-Vega, J. A., F. Bongers, L. Poorter, S. A. Schnitzer, and F. J. Sterck. 2021. "Lianas have
537	more acquisitive traits than trees in a dry but not in a wet forest". Journal of Ecology 109
538	2367-2384.
539	Muff, S., E. B. Nilsen, R. B. O'Hara, and C. R. Nater. 2022. "Rewriting results sections in the
540	language of evidence". Trends in Ecology & Evolution 37: 203-210.

541	Parolari, A. J., K. Paul, A. Griffing, R. Condit, R. Perez, S. Aguilar, and S. A. Schnitzer. 2020.
542	"Liana abundance and diversity increase with rainfall seasonality along a precipitation
543	gradient in Panama". Ecography 43: 25-33.
544	Pasquini, S. C., S. J. Wright, and L. S. Santiago. 2015. "Lianas always outperform tree seedlings
545	regardless of soil nutrients: results from a long-term fertilization experiment". Ecology
546	96: 1866-1876.
547	Schnitzer, S. A. 2005. "A mechanistic explanation for global patterns of liana abundance and
548	distribution". The American Naturalist 166: 262-276.
549	Schnitzer, S. A. 2018. "Testing ecological theory with lianas". New Phytologist 220: 366-380.
550	Schnitzer, S. A., D. M. DeFilippis, M. Visser, S. Estrada-Villegas, R. Rivera-Camaña, B. Bernal,
551	S. Peréz, A. Valdéz, S. Valdéz, A. Aguilar, J. W. Dalling, E. N. Broadbent, A. M.
552	Almeyda Zambrano, S. P. Hubbell, and M. Garcia-Leon. 2021. "Local canopy
553	disturbance as an explanation for long-term increases in liana abundance". Ecology
554	Letters: 1-13.
555	Schnitzer, S. A., S. Estrada-Villegas, and S. J. Wright. 2020. "The response of lianas to 20 yr of
556	nutrient addition in a Panamanian forest". Ecology 101: e03190.
557	Schnitzer, S. A., S. A. Mangan, J. W. Dalling, C. A. Baldeck, S. P. Hubbell, A. Ledo, H. Muller-
558	Landau, M. F. Tobin, S. Aguilar, D. Brassfield, A. Hernandez, S. Lao, R. Perez, O.
559	Valdes, and S. R. Yorke. 2012. "Liana abundance, diversity, and distribution on Barro
560	Colorado Island, Panama". PLoS ONE 7: e52114.
561	Schnitzer, S. A., and G. M. F. van der Heijden. 2019. "Lianas have a seasonal growth advantage
562	over co-occurring trees". Ecology 100: e02655.

Page 28 of 33

563	Smith-Martin, C. M., X. Xu, D. Medvigy, S. A. Schnitzer, and J. S. Powers. 2020. "Allometric
564	scaling laws linking biomass and rooting depth vary across ontogeny and functional
565	groups in tropical dry forest lianas and trees". New Phytologist 226: 714-726.
566	Spinoni, J., P. Barbosa, A. De Jager, N. McCormick, G. Naumann, J. V. Vogt, D. Magni, D.
567	Masante, and M. Mazzeschi. 2019. "A new global database of meteorological drought
568	events from 1951 to 2016". Journal of hydrology. Regional studies 22: 100593.
569	Stan Development Team. 2017. "Prior choice recommendations". Stan Wiki.
570	https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations.
571	Umaña, M. N., R. Condit, R. Pérez, B. L. Turner, S. J. Wright, and L. S. Comita. 2021. "Shifts in
572	taxonomic and functional composition of trees along rainfall and phosphorus gradients in
573	central Panama". Journal of Ecology 109: 51-61.
574	Umaña, M. N., J. Forero-Montaña, C. J. Nytch, J. Thompson, M. Uriarte, J. Zimmerman, and N.
575	G. Swenson. 2019. "Dry conditions and disturbance promote liana seedling survival and
576	abundance". Ecology 100: e02556.
577	Umaña, M. N., E. Manzané-Pinzón, and L. S. Comita. 2020. "Long-term dynamics of liana
578	seedlings suggest decelerating increases in liana relative abundance over time". Journal
579	of Ecology 108: 460-469.
580	van der Sande, M., L. Poorter, S. A. Schnitzer, and L. Markesteijn. 2013. "Are lianas more
581	drought-tolerant than trees? A test for the role of hydraulic architecture and other stem
582	and leaf traits". Oecologia 172: 961-972.
583	van der Sande, M. T., L. Poorter, S. A. Schnitzer, B. M. J. Engelbrecht, and L. Markesteijn.
584	2019. "The hydraulic efficiency-safety trade-off differs between lianas and trees".
585	Ecology 100: e02666.

Page 29 of 33 Ecosphere

Wright, S. J., C. Carrasco, O. Calderón, and S. Paton. 1999. "The el niño southern oscillation,
variable fruit production, and famine in a tropical forest". Ecology 80: 1632-1647.
Zhu, SD., and KF. Cao. 2010. "Contrasting cost-benefit strategy between lianas and trees in a
tropical seasonal rain forest in southwestern China". Oecologia 163: 591-599.

591 **Figures** 592 Figure 1 593 Map of study area showing eight census sites across the Isthmus of Panama (grey rectangles). 594 Red to blue shading indicates long-term dry season severity (1961-1990 average), with redder 595 shades showing more intense dry seasons compared to bluer shades. 596 597 Figure 2 598 (a) Relationship between long-term dry season severity (mm) and seedling density (individuals / 599 m²) for tree seedlings (blue) and liana seedlings (green). Points show the mean seedling density 600 averaged across censuses. Solid line shows the line of best fit from a linear regression and 601 shaded area shows the 95% credible interval. (b) Relationship between long-term dry season 602 severity (mm) and relative density of lianas. Solid line shows the line of best fit from a linear 603 regression and shaded area shows the 95% credible interval. (c) and (d) show the relationship 604 between long-term dry season severity at a site (1961-1990 average, mm) and the annual relative 605 growth rates and mortality rates, respectively, for tree seedlings (blue) and liana seedlings 606 (green). Points show the mean growth or mortality rate at a site, along with the 95% credible 607 interval. Points are slightly jittered along x-axis to reduce overlap for presentation purposes only. 608 609 Figure 3 610 (a) Annual relative growth rates (RGR) and (c) annual mortality rates for tree seedlings (blue) 611 and liana seedlings (green) during each census interval, with the census period covering the 612 2015-16 El Niño shaded in grey. RGR estimates including only positive growth rates are shown 613 with solid lines and estimate with negative growth rates included are shown with dashed lines.

Page 31 of 33 Ecosphere

614

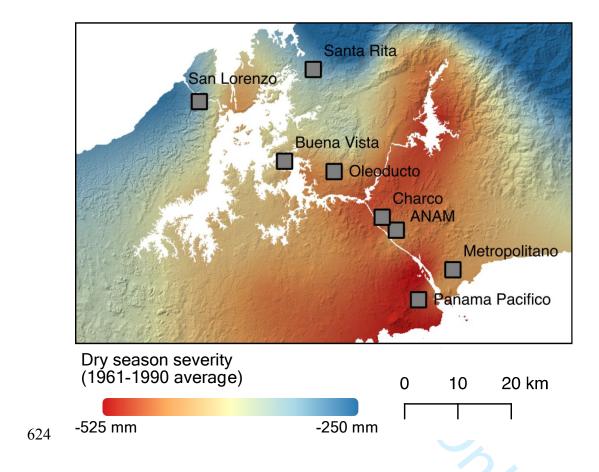
615

616

617

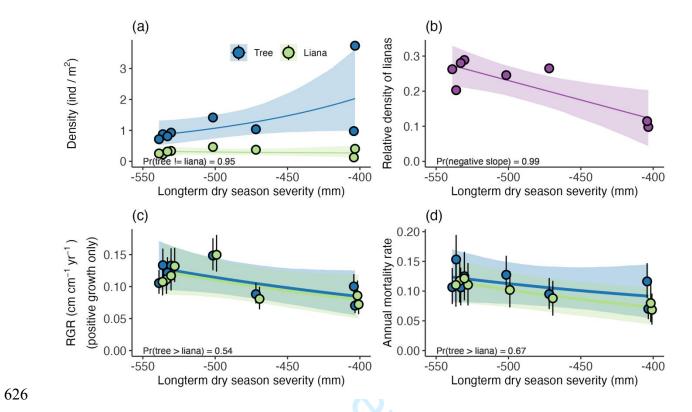
618

619

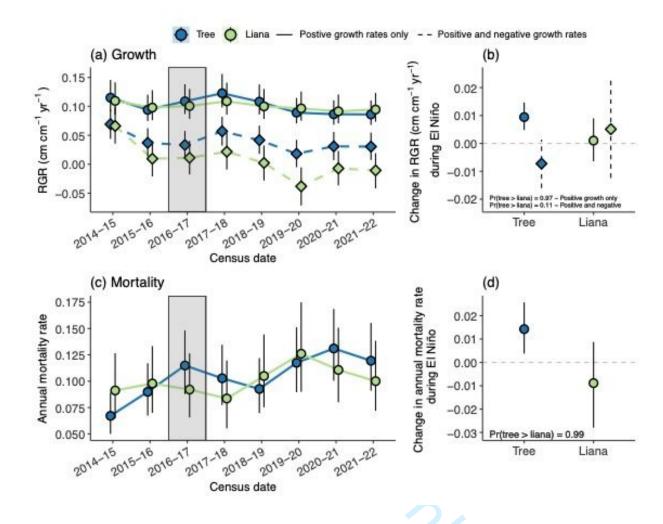

620

621

622


For each panel, points indicate the mean estimate and vertical lines indicate the 95% credible interval. We excluded Oleoducto because it suffered a localized storm unrelated to the El Niño, which caused many tree falls that subsequently increased seedling growth. Failing to exclude Oleoducto from our analyses would have erroneously assigned an effect of El Niño on seedling growth. (b) Overall percent change in annual relative growth rates (RGR estimates with only positive growth rates included shown with solid lines and filled circles, and RGR estimates both positive and negative growth rates included shown with dashed lines and filled diamonds) and dec.
.dlings anc. (d) annual mortality rates for tree seedlings and liana seedlings during the El Niño compared to other census intervals.

623 Figure 1



Page 33 of 33 Ecosphere

Figure 2

627 Figure 3

