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Abstract: When the available collision energy is much above the mass of the particles
involved, scattering amplitudes feature kinematic configurations that are enhanced by the
much lower virtuality of some intermediate particle. Such configurations generally factorise
in terms of a hard scattering amplitude with exactly on-shell intermediate particle, times
universal factors. In the case of real radiation emission, such factors are splitting amplitudes
that describe the creation or the annihilation — for initial or final state splittings — of the
low-virtuality particle and the creation of the real radiation particles. We compute at tree-level
the amplitudes describing all the splittings that take place in the Standard Model when the
collision energy is much above the electroweak scale. Unlike previous results, our splitting
amplitudes fully describe the low-virtuality kinematic regime, which includes the region
of collinear splitting, of soft emission, and combinations thereof. The splitting amplitudes
are compactly represented as little-group tensors in an improved bi-spinor formalism for
massive spin-1 particles that automatically incorporates the Goldstone Boson Equivalence
Theorem. Simple explicit expressions are obtained using a suitably defined infinite-momentum
helicity basis representation of the spinor variables. Our results, combined with the known
virtual contributions, could enable systematic predictions of the leading electroweak radiation
effects in high-energy scattering processes, with particularly promising phenomenological
applications to the physics of future colliders with very high energy such as a muon collider.
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1 Introduction

Motivations. Processes at multi-TeV or higher energy display novel phenomena driven
by the large separation between the collision energy E and the mass scale mew ∼ 100GeV
associated with the breaking of the Electro-Weak (EW) symmetry. The separation enhances
the emission of real and virtual particle quanta. When the enhancement is sufficient to
compensate for the small coupling factors, such emissions become an order-one component
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of the very high energy scattering phenomenology. The enhancement occurs by the same
mechanism that underlies the copious emission of hadrons when the collision energy exceeds
the QCD scale Λqcd ∼ 1GeV, or the QED emission of photons — at any energy, since
the photon is massless — or of collinear electrons at energies much above the electron
mass. Because of the analogy with QED and QCD radiation, we refer to the corresponding
phenomena in the EW sector as EW radiation effects.

Intriguing manifestations of EW radiation are for instance the emergence of a partonic
content of massive vector bosons in elementary colliding particles such as electrons or muons.
Or, conversely, the emergence of a rich content of particles inside the scattered partons from
final state radiation. For example, the neutrinos produced in the hard scattering will split
through gauge interactions into a charged W boson plus an electron with high probability,
making the neutrino detectable in the form of a neutrino jet. Our notion of “EW” radiation
includes effects that are not actually mediated by EW gauge interactions but by other SM
couplings. For instance, the top Yukawa mediates peculiar effects like Higgs radiation from top
quarks, Higgs splitting into top pairs and more. The Higgs trilinear coupling also plays a role.

There is inherent interest in the physics of the SM at very high energy and in the
quantitative theoretical comprehension and modeling of EW radiation. The interest is further
boosted by the perspective of studying EW radiation experimentally at future colliders — see
e.g. [1]—with a partonic collision energy in the range from several to 10TeV. The case for EW
radiation is particularly striking in the perspective of a muon collider [2–5]. EW radiation
will be prominent especially in the high-energy stage at 10TeV or above, but considerable
also at a possible first stage with 3TeV centre of mass energy. In contrast with possible
future hadron colliders probing comparable partonic energies, the reduced background from
QCD interactions will enable precise experimental studies of EW radiation, which will have
to be accompanied by accurate theoretical predictions. Theoretical studies of the SM in
the very high energy regime and of EW radiation effects span several decades [6–39], but
a complete understanding is still to come.

Generically, two complementary approaches can be envisaged for the study of EW
radiation. One is to start from asymptotically high energies where the scale separation is very
large and progress can be made by analogy with QED and QCD radiation, which is extensively
studied in the large scale separation regime. This approach has produced techniques for
the resummation of EW radiation effects at different orders in the log expansion [17–28].
The second approach is to start from low energy where EW radiation effects are calculable
in fixed-order perturbation theory. Logarithms of the scale separation E2/m2

ew generically
enhance higher-order contributions, but do not invalidate the perturbative expansion within
a rather wide range of energies, because the logarithmic growth is slow. This approach might
be a valid quantitative description of few-TeV energy processes, and offer at least a qualitative
guidance at 10TeV or higher energy, where resummation of the double-logarithmic effects
will be mandatory for quantitatively accurate predictions [38].

It should be stressed that EW radiation poses radically different challenges than QCD
and QED radiation, which stem from the breaking of the EW symmetry. Since the symme-
try is broken, individual particles in the EW multiplets are physically distinct and easily
distinguishable experimentally. For instance, we can tell apart a longitudinally-polarised
W or Z from a Higgs boson, in spite of the fact that they all belong to the same doublet
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of states. Unlike in QCD, the EW “color” is a detectable quantum number and therefore
the observables of interest are not color singlets. This violates the assumptions of the KLN
theorem and thus entails the non-cancellation of virtual and real EW radiation effects [18, 19].
In light of these differences, the adaptation of QCD and QED calculation methodologies to
the EW radiation problem is a delicate process. The development of a robust and systematic
fixed-order understanding is arguably a necessary intermediate step.

The fixed-order approach has produced, in particular, the complete classification of log-
enhanced virtual corrections to hard scattering amplitudes up to the two-loops order [29, 30].
These results allow us to express the log-enhanced loop contributions to a generic process
as a linear combination of the tree-level amplitude of the process under examination and of
amplitudes that belong to the same EW symmetry multiplet. The coefficients of the linear
combination are universal and process-independent. This enables to compute analytically and
systematically the (virtual) EW radiation effects on fixed-multiplicity exclusive scattering
processes, characterised by energetic and well-separated external legs.1 However, most of
the interesting effects entail on the contrary the emission of real rather than virtual EW
radiation. Additionally, real corrections must be included and combined with virtual effects
in several calculations such as semi-inclusive cross-sections [38]. The two contributions will
not cancel as previously explained.

Tree-level splitting. At the leading order in perturbation theory, real emission emerges
from tree-level diagrams. The present paper deals with a general classification of real radiation
effects at tree-level. We derive factorised formulas for generic scattering amplitudes that
describe real radiation in the enhanced kinematic configurations. These formulas could be
used to model the distribution of the radiation, or integrated over the phase space to compute
more inclusive observables. In the latter case, the integral over the enhanced configurations
will provide log-enhanced contributions which are the real counterpart of the virtual terms
in refs. [29, 30] at the one-loop order.

The kinematic configurations of interest are represented in figure 1. The left and right
panels represent Final State (FSR) and Initial State (ISR) splitting configurations, respectively.
Both topologies correspond to the splitting of a particle A into two particles, B and C. In
the case of FSR, B and C are on-shell final-state particles while A is virtual, with a virtuality
Q2 ≡ p2A − m2

A. The A particle is produced in a scattering process of hardness S = E2,
with E the collider energy. Specifically, the hard scattering is a one where all the scattered
particles — including the A particle — have order

√
S = E energy and are well-separated in

angle. In the case of ISR, A is an on-shell initial-state particle, B is also on-shell while the
C particle is virtual, with a virtuality Q2 ≡ p2C − m2

C . The C particle undergoes the hard
scattering process with a hardness of order E2. In both the FSR and ISR configurations, the
enhancement of the amplitude is controlled by the hierarchy between the absolute value of
virtuality (which is typically negative, in the case of ISR) and the hardness: |Q2| % E2.

Tree-level splittings has been studied already. Textbook results cover the region |Q2| %
m2

ew, where the only relevant splittings are those mediated by QED and QCD interactions.
1Final states with a fixed number of massive particles, such as massive vector bosons, are theoretically and

experimentally well-defined. On the contrary, observables must include the emission of extra massless states
like photons or gluons. Our notion of exclusiveness refers to the massive particles content of the final state.
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Splitting effects due to EW interactions and to other SM vertices like the top quark Yukawa
and the Higgs trilinear coupling emerge instead when Q2 is of order m2

ew or larger. Namely,
when Q2 is comparable or larger than the EW bosons, Higgs and top quark mass. The
most famous ISR splitting in the EW theory is the emission of a virtual massive vector
boson from a light fermion. The factorised treatment of this splitting leads to Effective
Vector boson Approximation (EVA) [6–8, 31], which provides the leading-order description
of the vector boson partonic content of the light fermions. All the ISR and FSR splittings
that occur in the SM have been considered as well [33, 35]. However, these studies are
limited to collinear splitting configurations where both the B and the C particles carry a
significant fraction of the energy of A. The low splitting virtuality Q2 is attained because
of the small angle between the 3-momenta of the particles. Current results do not model
instead the soft region, where Q2 is small because one of the particles has small energy. Also
the region where the emitted particles are both soft and collinear is not modelled by the
current results. This region is particularly relevant because it produces the leading double
logarithm contributions to the integrated cross-section.

Structure of the paper. In the present paper we fill this gap in the literature by studying
factorization and computing the splitting amplitudes in the whole low-virtuality phase space.
Our formulas encompass at the same time collinear and soft splitting, and the soft-collinear
region. Furthermore, we show how the amplitudes can be compactly represented as little-group
tensors by an improved bi-spinors formalism for massive spin-1 particles that automatically
incorporates the Goldstone Boson Equivalence Theorem. We also obtain simple explicit
expressions in the infinite-momentum helicity representation of the spinor variables.

In section 2 we define the splitting amplitudes by analysing the low-Q2 expansion of
the Feynman diagrams for the complete collision process, i.e., in figure 1, for the generic
X → BCY or AX → BY scatterings. The leading term is a linear combination of the
amplitudes for the hard scattering sub-process that does not involve the B and C (or A

and B, for ISR) particles and where the A (or C) particle is exactly on-shell. The splitting
amplitudes are defined as the coefficients of this linear combination.

Among the possible diagrams of the complete scattering process, the leading contribution
at low Q2 comes from the ones with a topology like in figure 1. Namely, from diagrams
where the low-virtuality momentum — i.e., pA = pB + pC and pC = pA − pB for FSR
and ISR, respectively — flows into a propagator line. We call these diagrams “resonant”
because they feature a 1/Q2 pole from the virtual particle propagator. Other diagrams do
not have propagators that are enhanced in comparison with the dimensional analysis scaling
of 1/E2. Therefore, they are naively expected not to experience an enhancement in the
splitting configuration |Q2| % E2, and be negligible in comparison with the resonant diagrams.
However, it was pointed out in ref. [31]—see also [8, 40] for earlier discussions — that this naive
expectation based on power-counting is generically violated in theories with massive particles
of spin 1 such as the SM. Non-resonant diagrams can be ignored only in specifically-designed
formulations of the theory [32, 33], which entail Feynman rules that are different from the
habitual Rξ or Unitary gauge rules. Since these findings play a major methodological role in
our calculation, and impact the final result, they are summarised more extensively below.
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Figure 1. Schematic representation of Final State Radiation (FSR, left) and Initial State Radiation
(ISR, right) splittings.

The basic issue is that power-counting is not manifest in the canonical diagrammatic
formulation of massive gauge theories. The high-energy behavior of individual diagrams is
generically enhanced by powers of E/mew — with mew the mass of the vector bosons —
with respect to the behaviour of the physical scattering amplitude. Cancellations — the
so-called gauge cancellations — occur between the leading powers of energy of the different
diagrams that contribute to the physical amplitude. It can thus happen that non-resonant
diagrams feature an enhancement of order E2/m2

ew, relative to the scaling with energy of the
physical scattering amplitude. This enhancement is comparable or larger than the E2/Q2

enhancement of the resonant diagrams, in the regime |Q2| ! m2
ew that is relevant for EW

radiation. Therefore, non-resonant diagrams are not negligible. Furthermore, the occurrence
of gauge cancellations prevents the resonant diagrams to factorise as the product of a
splitting amplitude times the on-shell amplitude for the hard scattering [31, 40]. Factorization
eventually holds true, but it emerges from a conspiracy between resonant and non-resonant
diagrams that can be only established on a case-by-case basis. An explicit example in the
context of the EVA is discussed in ref. [31].

We avoid this problem by employing an improved diagrammatic formulation of the
theory that exploits Goldstone Equivalence (GE), which was developed in refs. [32, 33] (see
also [41]). It employs (see appendix A) the regular Rξ gauge Feynman rules, but it describes
external spin-1 particles using a double line that represents the combined contribution of
gauge and Goldstone bosons external fields (see e.g. figure 4). The formalism is designed
in such a way that polarisation vectors for longitudinal (i.e., zero helicity) states have a
regular high-energy (and low-mass) limit, unlike the regular polarisation vector that grows
like E/mew. In the regular formalism, the anomalous energy behaviour is due to the energy
growth of the longitudinal polarisation. Since this is avoided, power-counting is manifest
at the level of individual Feynman diagrams in the GE formalism. No gauge cancellation
occurs and consequently only the resonant diagrams are enhanced in the low Q2 limit and
need to be retained. Clearly, these diagrams are different from the resonant diagrams in
the regular formalism, because the Feynman rules are different. We will see that these
differences leave an imprint on the results.

We find convenient to express the splitting amplitudes as tensors with indices in the
little-group of the external states, in terms of bi-spinors [42–46]. This requires an adaptation

– 5 –



J
H
E
P
1
0
(
2
0
2
4
)
2
1
5

of the bi-spinors notation that accounts for the modified Feynman rule and longitudinal
polarisation vector which we encounter in the GE formalism. We show in appendix C that
the GE rules are easily and naturally incorporated in the bi-spinors notation by allowing for
more general amplitude tensors that are not symmetric under the exchange of the little-group
indices of the spin-1 particle.

Section 3 is devoted to the explicit evaluation of the splitting amplitudes and to the
comparison with the partial results that are available in the literature. Specifically, we
recover the collinear splitting amplitudes [33, 35] and the eikonal description of the soft
radiation emission. Compact explicit formulas for the splitting amplitudes are obtained
in a specific representation of the bi-spinor variables that enjoys simple transformation
rules under rotations and Lorentz boosts performed around the direction of motion of the
A particle. These bi-spinors are a minor generalisation of the “infinite-momentum frame
helicity” spinors defined by Soper in ref. [47], based on Weinberg’s idea of studying particles’
dynamics in an infinitely boosted Lorentz frame [48]. Such “Soper-Weinberg” (SW) spinors
are constructed in appendix B and used in section 3 for the explicit evaluation of the splitting
amplitudes. The relation with regular helicity amplitudes that employ Jacob-Wick (JW)
spinors [49] is also worked out.

Our conclusions and an outlook to future work are reported in section 4. Appendix D
lists our results for the amplitudes of all splitting processes that occur in the SM theory.

2 Resonant diagrams and splitting amplitudes
The resonant diagrammatic contributions to the scattering processes under examination are
schematically represented in figure 1 in the case of FSR (left panel) and ISR (right panel)
emission. For FSR, we have in mind a generic X → BCY process, where B and C are some
specific SM particles while X and Y are unspecified multi- or single-particle states. Two
conditions need to be fulfilled in order for the X → BCY scattering amplitude to experience
a low-virtuality enhancement. First, a third SM particle A must exist featuring a 3-point
vertex with B and C, as in the figure. This vertex produces an FSR splitting A → BC. The
second condition for enhancement is the existence of the X → AY scattering process, with
A on-shell. In the kinematic regime of interest, the hardness of this process is much larger
than the virtuality of the A particle. We thus refer to X → AY as the hard scattering. The
situation is similar in the case of ISR. The generic process is AX → BY , and the conditions
for enhancement are once again the existence of the A → BC splitting and the existence
of the hard scattering, which is the process CX → Y in this case. The enhancement is
controlled by the virtuality of the C particle.

2.1 Kinematics
The splitting kinematics is described by the 4-momenta pA, pB and pC of the particles
involved, subject to 4-momentum conservation

pB + pC − pA = 0 . (2.1)

In the case of FSR, pB and pC are physical on-shell momenta with p2B,C = m2
B,C , while

pA = pB + pC is off-shell. The virtuality parameter Q2 is defined as Q2 ≡ Q2
f = p2A − m2

A,
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where mA is the physical mass of the A particle. For FSR we have instead p2A,B = m2
A,B,

pC = pA − pB, and the virtuality is defined as Q2 ≡ Q2
i = p2C − m2

C .
For both FSR and ISR splittings, the kinematics is best represented using the following

(light-cone) coordinates. Be e3 = p̂A the direction of motion of the A particle and ei two
additional norm-one vectors that complete a right-handed Cartesian system of coordinates
(e1, e2, e3). We define a basis for the 4-vectors as

nµ
v = 1

2{1, e3}
µ , nµ

u = 1
2{1, −e3}µ , nµ

t,i = {0, ei}µ , (2.2)

and we decompose a generic 4-momentum in the lab frame as

kµ = kvn
µ
v + kun

µ
u +

∑

i

kt,in
µ
t,i . (2.3)

It is useful to define the complex combination kt = kt,1 + i kt,2 and describe the momentum
in our coordinates as a vector made of two real and one complex variable as

k = (kv, ku,kt) . (2.4)

The Lorentz product between vectors reads, in this notation

k · q = kvqu + kuqv
2 − ktq∗

t + k∗
tqt

2 , k2 = kvku − |kt|2 . (2.5)

The nv (nu) vectors can be interpreted as the 4-momentum of a massless particle with
energy 1/2 moving (anti-)parallel to the A particle. If the A particle moves along the z

axis with positive velocity, the Cartesian frame (e1, e2, e3) can be taken to coincide with
the lab coordinates (ex, ey, ez), and we recover the regular light-cone coordinates where
kv = E + kz, ku = E − kz and kt is the momentum in the x-y plane. The coordinate
system for generic A particle momentum is related by a rotation — see later eq. (2.11)—to
the regular light-cone system.

The A, B and C momentum components in our coordinates can be parametrised as

pA =
(

pv,
p2A
pv

, 0
)

,

pB =
(

(1 − x) pv ,
m2

B + |pt|2

(1 − x) pv
,pt

)

, (2.6)

pC =
(

x pv,
p2C + |pt|2

x pv
, −pt

)

,

using two real and one complex variable, pv, x and pt. The parametrisation simultaneously
accounts for FSR and ISR splitting. In the former case, p2C = m2

C , while p2A '= m2
A is

determined by the conservation of the momentum along the nu direction. Explicitly

Q2
f = p2A − m2

A = |pt|2 − x(1 − x)m2
A + xm2

B + (1 − x)m2
C

x(1 − x) . (2.7)

In the case of ISR, p2A = m2
A and momentum conservation determines p2C '= m2

C

Q2
i = p2C − m2

C = −|pt|2 + x(1 − x)m2
A − xm2

B − (1 − x)m2
C

1 − x
. (2.8)
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The pB momentum is instead on-shell in both configurations: p2B = m2
B. The transverse

momentum of A vanishes by definition in our frame. Momentum conservation along the
transverse direction is imposed explicitly, leading to a single transverse momentum parameter
pt. Momentum conservation is also imposed along the nv direction. The variable x is defined
as the fraction of nv momentum that the C particle carries away from the mother particle A

in the splitting, and a 1 − x fraction is carried away by the B particles.
The parameter pv is necessarily positive both in the FSR and in the ISR configurations,

because it is the nv component of a 4-vector (pA) which is time-like and has positive temporal
component.2 The parameter x is smaller than 1 because (1 − x) pv is the nv component of
pB, which is a physical on-shell momentum in both splitting configurations. In the case of
FSR, we also have that x > 0 because the C particle is physical, therefore

x
FSR
∈ (0, 1) . (2.9)

In the case of ISR instead, x could be negative because the pC momentum could have negative
nv component, a priori. However, the kinematic regime that is relevant for the study of
factorisation is characterised by a large scattering scale for the hard process CX → Y , which
is initiated by the C particle colliding with the X initial particle. A large collision centre
of mass energy can be attained only if x is positive and also sufficiently large. We thus
restrict our analysis to the x range

x
ISR
∈ (xmin, 1) , (2.10)

where xmin is not much smaller than 1.
We finally report, for future use, the explicit form of the rotation that connects our

coordinates with the lab coordinates. We employ the spinor representation of the Lorentz
group transformations, with the notations defined in appendix B.1, and we represent the
momentum by a 2 × 2 matrix as in eq. (B.7). In this notation, the relevant rotation reads

R = e−iϕAJ3e−iθAJ2eiϕAJ3 =
[

cos θA
2 −e−iϕA sin θA

2
eiϕA sin θA

2 cos θA
2

]

, (2.11)

where θA and ϕA are the polar and azimuthal angles of the particle A in the lab frame. The
rotation transforms the lab coordinates axes (ex, ey, ez) into (e1, e2, e3). Hence, it enables
to express the 4-momentum in the lab frame (2.3) as

k = kµσµ = R ·
[
ku −k∗

t
−kt kv

]

· R† . (2.12)

2.2 Low-virtuality expansion and factorization

Denoting as “E” the total energy of the complete scattering process in the centre of mass
frame, the kinematic regime that is relevant for factorization is the one where the hard
scattering scale is also of order E, while the virtuality is small. An order-E scale for the

2It is easy to see that pv is in fact larger than
√

p2A because the pA 3-momentum is parallel and points in
the same direction as e3.

– 8 –



J
H
E
P
1
0
(
2
0
2
4
)
2
1
5

hard scattering necessarily requires pv ∼ E and, in the case of ISR, a momentum fraction x

which is not too much smaller than 1 as previously discussed. A small virtuality Q2
f (2.7) or

Q2
i (2.8) can instead be attained by a variety of different scalings for the other variables pt

and x. For instance, low virtuality is obtained in the collinear scaling where pt % E and x is
generic and far from the extremes x = 0 and x = 1. In the soft region where x is close to one,
namely x − 1 = ε % 1, small virtuality requires (see section 3.3 for a more careful discussion)
pt " √

εE, and similarly when x is close to zero in the case of FSR. In fact, a small (exactly
vanishing) virtuality can be also obtained when x is far from the extremes if the particle A is
heavier than the sum of the masses of the B and of the C particles: mA > mB +mC . This
configuration corresponds to the on-shell decay of the A particle to B and C.

The low-virtuality expansion that we perform in the present section describes all these
different configurations at once, because it relies exclusively on the scale separation Q2 % E2

making no assumption on the scaling of pt and x by which the low virtuality is attained.
In order to proceed, we define on-shell splitting 4-momenta:

p̄A =
(

pv,
m2

A

pv
, 0
)

,

p̄B =
(

(1 − x) pv ,
m2

B + |pt|2

(1 − x) pv
,pt

)

= pB , (2.13)

p̄C =
(

x pv,
m2

C + |pt|2

x pv
, −pt

)

.

The on-shell momenta do not obey momentum conservation, but rather

p̄B + p̄C − p̄A = ∆p ≡ |pt|2 − x(1 − x)m2
A + xm2

B + (1 − x)m2
C

x(1 − x) pv
nu . (2.14)

For those particles that are physically on-shell in the splitting, the on-shell momenta
coincide with the corresponding p momenta. For the off-shell particles instead

p̄A
FSR= pA − ∆p = pA − Q2

f
pv

nu , p̄C
ISR= pC + ∆p = pC − Q2

i
x pv

nu , (2.15)

in the case of FSR and ISR, respectively. The momentum shift ∆p is proportional to the
virtuality Q2

i,f in both cases, enabling us to take ∆p = 0 at the leading order in the low-
virtuality expansion. Notice that ∆p features a factor of 1/x for ISR splitting which is absent
for FSR. This does not invalidate the expansion because we restricted x to the interval in
eq. (2.10)—which excludes zero — for ISR splittings.

The Feynman amplitude of the resonant diagrams consists of the virtual particle prop-
agator connecting the two portions of the diagram that describe the hard process and the
splitting. The hard diagrams are the amplitude of the hard scattering process, where the
virtual particle leg (A or C, for FSR or ISR) is amputated. We denote as AH this (par-
tially) amputated amplitude.3 The splitting diagrams consist of the relevant 3-points vertex,
contracted with the wave-function factors for the on-shell particles (B and C, or A and B)

3The amplitude is amputated only partially, on the A or C particle leg. It includes instead the wave-function
factors for the other external legs of the hard process, which are present in the original Feynman amplitude.
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involved in the splitting. They form the amputated splitting amplitude AS. The resonant
diagrams for FSR splitting are schematised in figure 2 in the case of a Dirac (left panel)
or a vector (right panel) intermediate state.

The momenta that flow in the hard scattering are of order E and are well-separated in
angle. Therefore, applying the momentum shift ∆p in eq. (2.15) is a small perturbation of
the hard process kinematics and the virtual particle momenta can be put on-shell in the
hard amputated amplitude up to small corrections. Since ∆p ∼ Q2/E, the corrections are
proportional to Q2 times — by dimensional analysis — a coefficient of order 1/E2. Namely

AH = ĀH(1 +Q2O(1/E2)) , (2.16)

where ĀH is the on-shell amputated amplitude.
If the intermediate particle is a scalar, ĀH is equal to the scattering amplitude MH of

the hard process. Otherwise, recovering MH requires contracting ĀH with a wave-function
factor for particle A or C. This factor emerges from the decomposition of the numerator of
the virtual particle propagator, as we discuss in details in sections 2.4 and 2.5 for, respectively,
Dirac and vector intermediate states. The decomposition takes the schematic form of∑h uhūh,
with “u” the wave functions factors with on-shell A(C) particles of momenta p̄A(C) and helicity
h. Operating this decomposition up to small low-virtuality correction is simple for a fermion
propagator, and more involved in the case of the massive vector.

Eventually, the scattering amplitude M of the complete scattering process (X → BCY ,
or AX → BY ) at the leading order in the virtuality expansion is a linear combination of
on-shell hard amplitudes. The splitting amplitudes MS are defined as the coefficients of
this combination. The factorization formula reads

M(X → BCY ) FSR= 1
Q2

f

∑

hA

MH(X → A(hA)Y )MS(A∗(hA) → BC) + ∆Moff + ∆Mpro ,

M(AX → BY ) ISR= 1
Q2

i

∑

hC

MS(A → BC∗(hC))MH(C(hC)X → Y ) + ∆Moff + ∆Mpro .

(2.17)

The sum runs over the helicity of the intermediate (A or C) particle. If relevant (like for virtual
Z or photon ISR emission from fermions), an additional summation should be considered over
the different species of intermediate particles that contribute to the same physical process.

In eq. (2.17) the terms ∆Moff and ∆Mpro represent correction to the factorised approxi-
mation that emerge, respectively, from taking the on-shell limit ∆p → 0 of the virtual particle
momenta in the hard amplitude, and from the expansion of the propagator. The estimate
of the corrections follows closely the analysis performed in [31, 33] for the collinear limit.
Because of eq. (2.16), the former off-shell term features a factor of Q2, which gets cancelled
by the denominator of the propagator, times a coefficient that scales with the appropriate
power of the hard scale E. The off-shell correction ∆Moff is thus independent of Q2 in the
low-virtuality limit and its scaling with E is dictated by dimensional analysis, given the
energy dimension of the amplitude M. Its contribution is generically small and comparable
with the contribution of the non-resonant diagrams. The propagator corrections ∆Mpro are
also small and will be discussed later in this section.
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Ab
H

C

B

Aa
S

X

Y

pC

pB

pA

A

i
Q2

F
(/pA +mA)ab

AN
H

C

B

AM
S

X

Y

pC

pB

pA

A

GMN (pA)

Figure 2. The resonant diagrams for ISR splitting when the intermediate state is a Dirac (left panel)
or a vector (right panel). The 5 × 5 propagator GMN is reported in eq. (2.26).

In eq. (2.17) we label with “ ∗ “ the virtual particle in the MS amplitude in order to
distinguish FSR from ISR splitting, because it is not obvious a priori that the splitting
amplitudes are the same in the two cases. In the next subsections we focus on FSR,
postponing to section 2.6 the discussion of ISR splitting. We will see that the ISR amplitudes
are equal to the FSR amplitudes and therefore no distinction actually needs to be made in
the factorization formulas for the two splitting configurations.

2.3 Scalar intermediate particle

It is particularly simple to prove eq. (2.17) and to compute the splitting amplitude if the
intermediate particle is a scalar. There is no sum over the helicity and no propagator
correction (i.e., ∆Mpro = 0). The only correction term, ∆Moff, comes from the on-shell limit
∆p → 0 in the hard amplitude and is small as previously discussed.

The splitting amplitudes MS is just the Feynman rule (listed in appendix D.1) of the
corresponding vertex (times −i), multiplied by the corresponding wave function factor for
the external real particles involved in the splitting. For instance, the amplitude for the final
state splitting of a virtual Higgs boson to fermion anti-fermion (e.g., top quarks) pair reads

MS(h∗ → f(hB)f̄(hC)) = − yf√
2
uhB (p̄B)vhC (p̄C) , (2.18)

with yf the Yukawa coupling, u and v the Dirac 4-spinors for the fermion and anti-fermion
with helicities hB and hC .

Rather than employing Dirac 4-spinors as in eq. (2.18), the splitting amplitudes are most
conveniently expressed using bi-spinors [42–46]. Our conventions are defined in appendices B
and C. The amplitude is represented by a tensor with 2-dimensional Latin capital indices
(e.g., I, running over I = +,−) in the SU(2) little-group of each external particle. The indices
for the different particles A, B and C are carried by the angular or squared bracket bi-spinors
associated with their on-shell momenta p̄A, p̄B and p̄C . The amplitudes for particles of a given
helicity h can be obtained from the amplitude tensor by contracting with constant tensors
τ(h) that we dub “little-group wave functions”. For particles of spin 1/2, the little-group
wave functions are 1-index tensors reported in eqs. (C.4) for incoming (τI) and outgoing (τ̄ I)
external particles. Contracting with these tensors simply identifies the I = + component
of the tensor as the h = +1/2 helicity amplitude, while I = − is the h = +1/2 helicity
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ēM,IJ

ēM,KL

h =
ēµ,IJ

ēµ,KL

h +
ēπ,IJ

ēµ,KL

h +
ēµ,IJ

ēπ,KL

h

+
ēπ,IJ

ēπ,KL

h

Figure 3. Feynman diagrams for Higgs splitting to a pair of massive bosons in the GE formalism.

amplitude. In this notation, the h∗ → ff̄ amplitude (2.18) is represented by

MS(h∗(A) → fI(B)f̄ J(C)) = − yf√
2

(
〈BICJ〉 + [BICJ ]

)
. (2.19)

The calculation of the splitting amplitudes that involve spin-1 particles is slightly less
standard because, as explained in the Introduction and in appendix A, the Goldstone-
Equivalent (GE) Feynman rules have to be employed. Consider for illustration the FSR
splitting of a Higgs boson to a pair of massive vector bosons. Each vector boson is represented
by a double external line that describes an amputated leg of the five-components gauge
and Goldstone field ΦM = (V µ,π). The free index M of the leg is contracted with a five-
components polarisation vector that we denote as Ēh

M — see eq. (A.10) and figure 4—for
final-state particles. By splitting the 5-vector into Lorentz 4-vector and scalar component we
obtain a total of 4 diagrams for the h∗ → V V splitting, like in figure 3.

Also for external spin-1 particles we employ little-group tensors to represent the am-
plitude [42–46]. Our formalism, described in appendix C.2, is an extension of the standard
notation in which the GE Feynman rules are incorporated by employing amplitude tensors
that are not symmetric under the exchange of the little-group indices of the particle. The
amplitude tensors are obtained by using eq. (C.24) (see also eq. (C.21), for incoming particles)
to express the GE polarisation vectors Ēh

M as an helicity-independent 2-index tensor ēIJ,M
contracted with the little-group wave functions τ̄ IJ (h). We thus obtain the amplitude tensor
by contracting the µ index of the gauge external legs with the M = µ component of ē and by
multiplying the Goldstone external leg by the M = π component, like in figure 3. Helicity
amplitudes are obtained from the amplitude tensor by contracting with the little-group wave
functions in eqs. (C.22) and (C.25). The transverse h = ±1 helicity amplitudes are the ±±
components of the tensor and the longitudinal amplitude is the +− component.

The h∗ → V V splitting amplitude tensor contains four terms, which are in direct
correspondence with the diagrams in figure 3. Using the Feynman rules for the Higgs-gauge-
gauge, Higgs-gauge-Goldstone and Higgs-Goldstone-Goldstone vertices in appendix D.1,
we obtain

MS(h∗(A)→VIJ(B)VKL(C))= G

mV

{
〈BJCL〉[CKBI ]−

1
2εIJ(〈CLB

P 〉[BPCK ]−m2
V εKL)

− 1
2εKL(〈BJC

P 〉[CPBI ]−m2
V εIJ)+

m2
h

4 εIJεKL

}
. (2.20)
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Inverse powers of the mass of the vector, mV , arise in the formula from ēµIJ (see eq. (C.12)
and from our parametrisation of the Goldstone bosons vertices. Notice the presence of the
anti-symmetric εIJ and εKL tensors. The m2

V terms on the second line emerge from the
square of the p̄B and p̄C momenta, which are on-shell. The m2

h term on the last line comes
instead from the Feynman rule for the Higgs vertex with two Goldstones.

The GE Feynman rules are constructed such as to provide the same physical scattering
amplitudes as the standard formalism. In light of this, one might ask if a naive calculation
of the splitting amplitudes based on the standard Feynman rules would produce the same
results. In the standard formalism, only the first (Higgs-gauge-gauge) diagram of figure 3
contributes, and the amplitude tensor is provided by the first term of eq. (2.20). The tensor
has to be contracted with the symmetric tensors S1,h reported in eq. (C.15) in order to
extract the helicity amplitudes. If the vector bosons are transverse (h = ±1), it is easy to
check that one recovers the correct splitting amplitude evaluated with the GE rules, as it
must be the case since the GE Feynman rules are different from the standard ones only for
h = 0 (longitudinal) states. If instead both vectors in the final state are longitudinal, the
naive amplitude computed with the regular Feynman rules differs from the true amplitude
obtained from eq. (2.20) by an amount

Mnaive
S − MS = c

4mV
[(p̄B + p̄C)2 − m2

h] =
c

4mV
(p2A − m2

h) =
c

4mV
Q2

f . (2.21)

The naive splitting amplitude is equal to the complete one only at the kinematic point Q2
f = 0

where — if allowed by the masses — an on-shell Higgs boson decays to the two vectors.
The mismatch between the naive splitting amplitude and the correct one can be under-

stood as follows. If the Higgs is on-shell, the amplitude is a physical decay amplitude, and
hence the GE and the regular Feynman rules must give the same result. This is guaranteed
for all physical amplitudes due to the validity of Ward identities like the one in eq. (A.6)
for the amputated connected correlators of one or several ΦM fields, on physical on-shell
external states. If one of the states — the Higgs field, in the case at hand — is instead
off-shell, the Ward identity is violated by calculable extra terms from which it is possible
to recover eq. (2.21).

In the Introduction we emphasised that, using the standard formalism, the non-resonant
diagrams can contribute sizably to the low-virtuality splitting process due to the anomalous
energy-growth [31–33]. Avoiding the contribution from non-resonant diagrams is precisely the
reason for employing the GE Feynman rules. On the other hand, the scattering amplitude of
the complete physical process including both the resonant and the non-resonant diagrams
must be the same in the two formalisms. The spurious contributions from the non-resonant
diagrams must thus be accompanied and cancelled by spurious contributions from the resonant
diagrams. The emergence of such spurious contribution is what we are observing in eq. (2.21)
as a correction to the splitting amplitude.

2.4 Fermion intermediate particle

If the virtual particle has spin, establishing factorization requires a decomposition of the
numerator of the propagator in terms of on-shell wave-function factors. The decomposition
holds up to corrections, which produce the propagator correction term ∆Mpro in eq. (2.17).
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The structure of the propagator indices contraction with the amputated hard and splitting
amplitudes AH and AS is displayed in figure 2 in the case of a Dirac (left panel) and a
vector (right panel) intermediate particle A that undergoes splitting in the final state. The
opposite orientation of the Dirac propagator line has to be considered if the A particle is
an anti-fermion. The AH,S amplitudes in the figure are the sum of amputated Feynman
diagrams contracted with the wave-function factors for their on-shell external legs. Their
free indices (e.g., Dirac indices a and b) are the ones of the A particle field.

It is easy to obtain a valid decomposition in the case of a Dirac intermediate particle.
Performing the momentum shift in eq. (2.15), the numerator of the propagator becomes

/pA +mA = (/̄pA +mA) +
Q2

f
pv

/nu =
∑

hA

uhA(p̄A)ūhA(p̄A) +
Q2

f
pv

/nu , (2.22)

by the standard completeness relation for the Dirac spinors. The second term in the
decomposition, times the amputated amplitudes AH,S and 1/Q2

f, gives rise to the propagator
correction ∆Mpro in the factorization formula (2.17). Since the virtuality cancels and pv is of
order E, the scaling of ∆Mpro with E is dictated by the energy dimension of the amplitude.
It scales like the off-shell corrections ∆Moff and it is of the order of the non-resonant
diagrams contribution.

The first term in the decomposition (2.22) contains the wave function factors ūhA and
uhA to be contracted with AH and AS, respectively. The hard amputated amplitude can be
evaluated on the on-shell p̄A momentum up to small off-shell corrections like in eq. (2.16).
By contracting with ū, this produces the hard amplitude term of eq. (2.17)

MH(X → A(hA)Y ) = (ūhA)aĀa
H , (2.23)

with an on-shell fermion particles A of helicity hA in the final state.
The splitting amplitude MS is the contraction of AS with uhA . The AS amplitude

already contains the wave-function factors associated with the real B and C particles. Further
contracting with uha gives MS equal to the Feynman vertex associated with the splitting,
contracted with exactly on-shell wave functions for all the external legs. Notice however that
the on-shell momenta p̄A, p̄B and p̄C do not obey momentum conservation.

Consider for illustration the radiation of a Higgs boson from a virtual fermion (e.g., from
a top quark). The splitting amplitude reads

MS(f∗(hA) → f(hB)h(C)) = − yf√
2
uhB (p̄B)uhA(p̄A) . (2.24)

Alternatively, in the tensor notation

MS(f∗I(A)) → fJ(B)h(C)) = − yf√
2

(
〈BJA

I〉 − [BJA
I ]
)
. (2.25)

2.5 Vector intermediate particle

It is slightly harder to work out a suitable decomposition of the propagator in the case of
a massive spin-1 intermediate particles. The resonant Feynman diagrams are those where
the final state particles B and C are emitted either from a gauge or from a Goldstone boson
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propagator, because in general if the BC particle pair has a vertex with the gauge field V µ,
it has also have a vertex with the associated Goldstone boson π.4 The contributions from
the gauge and from the Goldstone are collected in a single diagram, depicted on the right
panel of figure 2, where the double line propagator denotes the 2-points vacuum correlator
of the 5-components field ΦM = (Vµ,π). This 5 × 5 propagator is

GMN (pA) =
i

Q2
f

[
−ηµν 04×1
01×4 1

]

MN

, (2.26)

with the Feynman choice ξ = 1 for the Rξ gauge-fixing parameter.
The scattering amplitude takes the form

iM = AS
{

ΦM [pA]
}
GMN [pA]AH

{
ΦN [−pA]

}
, (2.27)

where AS,H{·} denote the splitting and the hard amputated amplitudes. The amputated legs
are the 5-component fields ΦM and ΦN , and they are reported as an argument in the curly
brackets. The momentum flowing in the leg (+pA or −pA) is oriented towards the diagrams.

Since GMN is a full-rank matrix, it cannot be decomposed on a basis formed only by the
three (for helicity h = ±1, 0) polarisation vectors. Like in familiar massless gauge theories,
two additional basis vectors are needed, whose contribution to the complete scattering
amplitude (2.27) vanish because of Ward identities. We will make use of the massive gauge
theory Ward identity at tree-level [33] (see also appendix A)

KM [k]A{V M [k]} = 0 , where KM [k] = [i kµ,m]M , (2.28)

with m the mass of the vector. The identity holds for generic off-shell momentum k and
for an amplitude A with arbitrary physical external particle legs. It thus applies both to
the splitting and to the hard amplitude.

In order to operate the decomposition it is convenient to start from the completeness
relation for the on-shell 5-components polarisations, reported in eq. (A.12). This equation
can be cast in the form
[
−ηµν 04×1
01×4 1

]

MN

−
∑

h=0±1
Eh
M (p̄A)Ēh

N (p̄A)=
[
[p̄Aµε0ν(p̄A)+ε0µ(p̄A)p̄Aν ]/m iε0µ(p̄A)

−iε0µ(p̄A) 0

]

MN

=− Q2
f

mpv

[
nu,µε0ν(p̄A)+ε0µ(p̄A)nu,ν 04×1

01×4 0

]

MN

− i

m
KM [pA]

[
ε0µ(p̄A)

0

]

N

+ i

m
KN [−pA]

[
ε0ν(p̄A)

0

]

M

,

(2.29)

where we used eq. (2.15) to shift the on-shell p̄A back to the original off-shell momentum pA,
and we employed K[pA] and K[−pA] to eliminate to eliminate any explicit occurrence of pA.

4There can also be a vertex with the Higgs boson field. The associated diagrams feature a Higgs propagator
and they have been discussed in section 2.3.
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The two terms on the last line of eq. (2.29) cancel by the Ward identity when contracted
with AS and AH, respectively. In the scattering amplitude (2.27) we can thus effectively
replace the numerator of GMN with5
[
−ηµν 04×1
01×4 1

]

MN

→
Ward

∑

h=0±1
Eh
M (p̄A)Ēh

N (p̄A) − Q2
f

mpv

[
nu,µε0ν(p̄A) + ε0µ(p̄A)nu,ν 04×1

01×4 0

]

MN

.

(2.30)
This formula achieves the desired decomposition and offers the spin-1 analogous of the
Dirac propagator decomposition formula in eq. (2.22). The correction term contains the
GE longitudinal polarisation 4-vector ε0 which — unlike the standard polarisation — scales
like m/E in the high-energy limit as discussed in appendix A. The nu vector is a constant,
therefore the corrections scale as the virtuality Q2

f, times a factor of order 1/E2. The
propagator corrections ∆Mpro to the factorization formula are thus found to be small
and comparable with the non-resonant diagrams contribution like in the case of fermionic
intermediate particle studied in section 2.4.

Using eq. (2.30), the derivation of the factorization formula (2.17) and the calculation of
the splitting amplitudes proceeds very similarly to the case of Dirac particles. The on-shell
polarisations EM and ĒN contract with the splitting and the hard amputated amplitudes,
respectively. After the on-shell limit is taken in the hard amplitude, the latter contraction
produces the on-shell hard scattering amplitude MH. Notice that since this amplitude is
physical and on-shell, it does not necessarily need to be computed in the GE formalism
using the 5-dimensional description of the outgoing vector. The regular Feynman rules can
be employed instead. The splitting amplitude MS — which emerges from the contraction
of EM (p̄A) with AS — is instead not the scattering amplitude of a physical process. As
such, it cannot be equivalently computed using the standard Feynman rules and the usage
of the Goldstone Equivalent ones is mandatory and impacts the result similarly to what
we discussed at the end of section 2.3.

Eq. (2.30) decomposes the propagator in terms of the 5-dimensional GE polarisation
vectors. It is interesting to compare it with a decomposition that employs instead the
polarisations εhSt. and ε̄hSt. that describe spin-1 particles in the standard formalism. These
standard polarisation vectors are 4-dimensional, therefore in order to obtain this alternative
decomposition one must first eliminate the contribution from the Goldstone bosons propa-
gation, which corresponds to the 5-5 entry of the G propagator (2.26). This is possible by
using the Ward identity (2.28) to eliminate from eq. (2.27) the Goldstone field amputated
amplitudes AS,H{π}, substituting them with (±pA,µ/m)AS,H{V µ}. This substitution effec-
tively produces an additional contribution, equal to +pAµpAν/m2, to the 4 × 4 upper-left
block of the propagator matrix. If pA was on-shell, pA = p̄A and the 4 × 4 block would now
match the right-hand-side of the standard completeness relation in eq. (A.11). However,
the pA momentum is not on-shell. Its shift from on-shellnes (2.15) is proportional to Q2

i ,
which is much smaller than E2 but not smaller than m2. Operating the on-shell shift on
+pAµpAν/m2 thus produces large correction terms, of order Q2

i /m
2. Therefore, we can operate

the decomposition also in terms of the standard polarisation vectors, but only up to correction
5A more general — namely, in arbitrary gauge and beyond tree-level — derivation of the decomposition

formula (2.30) is given in ref. [33]. The simplified derivation is presented here for a self-contained exposition.
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terms that are not small, unlike the corrections in the GE decomposition formula (2.30).
Both decompositions become exact at the special kinematic point Q2

i = 0 that corresponds
to the pole of the amplitude for on-shell intermediate A. At this on-shell point, the two
decompositions produce identical factorization formulas because the splitting amplitudes for
Q2

i = 0 can be equivalently computed using the standard polarisation vectors.

2.6 Initial versus final state splitting

Only the case of final state (FSR) splitting has been discussed so far. A fully analogous
treatment is possible for ISR splitting. The differences stem from the extra factor of 1/x
that is present in the shift (2.15) from the off- to the on-shell momentum of the virtual
particle (i.e., of the C particle in the case of ISR). This factor appears in the decomposition
of both the Dirac propagator

/pC +mC = (/̄pC +mC) +
Q2

i
xpv

/nu =
∑

h

uh(p̄C)ūh(p̄C) +
Q2

i
xpv

/nu , (2.31)

and in the one of the vector propagator
[
−ηµν 04×1
01×4 1

]

MN

→
Ward

∑

h=0±1
Eh
M (p̄C)Ēh

N (p̄C) − Q2
i

xmpv

[
nu,µε0ν(p̄C) + ε0µ(p̄C)nu,ν 04×1

01×4 0

]

MN

.

(2.32)
The extra 1/x enhances, for small x, both the propagator and the off-shell corrections to

factorization in comparison with the FSR estimate of these corrections. However, a small
value of x in the ISR configuration reduces the scattering scale of the hard process CX → Y

and therefore it is excluded from our analysis as explained in section 2.1. In the relevant
region of x, defined by a lower threshold xmin (2.10), the scaling of the corrections to the
factorised treatment of the ISR splitting is the same as for FSR splitting.

The splitting amplitudes for ISR splitting are given, like for FSR, by the wave-function
factors for the particles involved in the splitting — with on-shell momenta p̄A, p̄B and p̄C —
times the 3-point A → BC Feynman vertex. However, the Feynman vertex, if it depends on
the momenta, is evaluated on the true momenta pA,B,C that flow in the vertex. In the case
of FSR, the splitting amplitude is thus obtained by substituting in the vertex pA = p̄B + p̄C ,
pB = p̄B and pC = p̄C . By operating this substitution we obtain the amplitude tensors
listed in appendix D.2 for all the splitting processes of the SM. These results are thus
valid only in the case of FSR.

In the case of ISR, the amplitude tensor should be obtained using instead pC = p̄A − p̄B ,
pA = p̄A and pB = p̄B . The difference between the pA,C and p̄A,C momenta is small, of order
∆p ∼ Q2/pv (2.15), but this does not imply that the ISR amplitudes are approximately equal
to the FSR ones. Dimensional analysis does not prevent the emergence of an order pv/m

factor of enhancement in front of ∆p. In fact, we checked that the ISR amplitude tensors are
different from the FSR tensors reported in appendix D.2. However, one finds that the pv/m

enhancement cancels when the amplitude tensors are contracted with the little-group wave
functions in order to obtain the helicity amplitudes. The ISR helicity splitting amplitudes
are thus equal to the FSR one up to small corrections. Furthermore, the corrections happen
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to vanish exactly with the SW bi-spinors basis that we will employ in the next section for
the explicit evaluation of the splitting amplitudes.

With this disclaimer, the ISR and FSR splitting amplitudes are effectively equal
MS(A(hA)→B(hB)C∗(hC))=MS(A∗(hA)→B(hB)C(hC))≡MS(A(hA)→B(hB)C(hC)) .

(2.33)

3 Splitting amplitudes computed
We turn now to the explicit evaluation of the splitting amplitudes. Very compact expressions
are obtained, in section 3.1, by employing an explicit representation of the bi-spinor variables
constructed in appendix B.2 as a generalisation of the Soper-Weinberg (SW) bi-spinors [47].
Regular (i.e., Jacob-Wick [49]) helicity amplitudes are considered in section 3.2. In the same
section, we also compare our results with the literature by verifying that the collinear splitting
amplitudes are recovered in the appropriate limit. In section 3.3 we study the soft limit and
we recover the eikonal approximation for the emission of soft vector particles.

3.1 Soper-Weinberg amplitudes
With the generalised SW definition of the single-particle states illustrated in appendix B.2,
the bi-spinor of a particle with momentum k reads

|kI〉α = R β
α

[
m/

√
kv −k∗

t/
√
kv

0
√
kv

] I

β

, [kI |α̇ = (|kI〉α̇)∗ , (3.1)

where kv and kt are the coordinates defined by eq. (2.3), m is the particle mass and R is the
rotation in eq. (2.11) that relates our reference frame to the regular light-cone frame. Notice
that the explicit form of R will not be needed, because R acts as a Lorentz transformation
and the splitting amplitudes are Lorentz singlets. The bi-spinor index I assumes the values
of + or −, and I = + represents the first column of the matrix.

The SW single-particles states enjoy — see section B.4—simple transformation properties
under a boost (K3) or a rotation (J3) performed along the spacial direction, called ê3, that is
employed in the definition of the states. The kv and kt coordinates also transform simply:
kv → eζkv under K3, while kt is invariant; kt → eiφkt under J3, while kv is invariant. The
simple transformation rule of the states is reflected in a simple transformation rule for the
spinors (3.1) under the transformation of the momentum coordinates. It is easy to check that

|k±〉α
kv→eζkv−→

[

R ·
[
e−ζ/2 0
0 eζ/2

]

· R−1
] β

α

|k±〉β =
[
e−iζK3

] β

α
|k±〉β , (3.2)

|k±〉α
kt→eiφkt−→ e±iφ/2

[

R ·
[
e−iφ/2 0

0 eiφ/2

]

· R−1
] β

α

|k±〉β = e±iφ/2
[
e−iφJ3

] β

α
|k±〉β ,

where J3 and K3 denote the J3 and K3 representation matrices in the spinor representation.
Under K3, the bi-spinor is invariant up to a Lorentz transformation. The I = + and
I = − spinors transform as charge +1/2 and −1/2 objects under J3, again up to a Lorentz
transformation. Since the Lorentz transformation cancels out in the amplitude, which is a
Lorentz scalar, these rules entail strong selection rules for the dependence of the amplitudes
on the kinematic variables that describe the splitting.
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The evaluation of the splitting amplitudes proceeds straightforwardly. The bi-spinors
|AI〉, |BI〉 and |CI〉 are obtained by substituting in eq. (3.1) the p̄A,B,C momenta components,
parametrised as in eq. (2.13). The rotation R in eq. (3.1) identifies the direction along
which the SW states are defined. The same direction — i.e., the one of the A particle, as in
eq. (2.11)—is employed for all the three particles involved in the splitting. The amplitudes
are tensors in the little-group space, but they are Lorentz scalars constructed by the invariant
contractions of the spinors. The R matrix drops in these contractions, which read

〈AIBJ〉 =
[

0 −mA
√
1 − x

mB/
√
1 − x −p∗

t/
√
1 − x

]

IJ

= [BJAI ]∗ ,

〈AICJ〉 =
[

0 −mA
√
x

mC/
√
x p∗

t/
√
x

]

IJ

= [CJAI ]∗ , (3.3)

〈BICJ〉 =
[

0 −mB
√
x/(1 − x)

mC
√
(1 − x)/x p∗

t/
√
(1 − x)x

]

IJ

= [CJBI ]∗ .

The simplicity of the result stems from the selection rules associated with the K3 and
J3 symmetries. Among the variables that describe the splitting (pv, pt and x), only pv
transforms under K3, like pv → eζpv. The spinor products are invariant, hence pv cannot
appear in the result. Notice that pv ∼ E is the largest energy scale in the low-virtuality
splitting configuration. The K3 symmetry forbids the splitting amplitudes to scale with pv
and makes them proportional to pT or to the masses.

The only variable that transforms under J3 is pt → eiφpt. The (2, 2) — i.e., (−,−) —
entry of the bi-spinor products matrix has charge −1 under J3, hence it is proportional to
p∗
t. The off-diagonal entries have charge zero, while the (1, 1) entry should have charge plus

and therefore it vanishes because the spinors depend on p∗
t and not on pt. The splitting

variable x is invariant under K3 and J3 because it is defined as the fraction of momentum
along the direction nv. The dependence of the bi-spinor products on x is thus not determined
by symmetries.

Interestingly enough, the dependence on the masses mA,B,C of the particles is also
dictated by selection rules. The “+” and “−” spinors (3.1) are respectively odd and even
under the replacement m → −m. This means, for instance, that the first line of the 〈AIBJ〉
bi-spinor product matrix should be odd under the sign flip of the A particle mass, and the
first column must be odd under mB → −mB , and similarly for the other matrices. This latter
selection rule, plus the polynomial dependence of the spinors on p∗

t and the masses, and
dimensional analysis, determines the dependence of eq. (3.3) on all the variables apart from x.

The last step for the determination of the helicity amplitudes in the SW basis is to
substitute eq. (3.3) in the amplitude tensors of appendix D.2, and to project the little-group
indices along the components that correspond to the helicity eigenstates. The results are
reported in appendix D.3 for all splittings that occur in the Standard Model.

3.2 Jacob-Wick amplitudes

A priori, the splitting amplitudes in the SW representation of the bi-spinors are not useful
for calculations. The SW bi-spinors correspond to a definition of the scattering states that is
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adapted to the direction of the emitter (i.e., the particle A) for the specific splitting process
under consideration. However, the complete scattering process might receive contributions
from multiple splitting topologies. For instance, the process µ+µ− → e−ν̄eW+ at a muon
collider receives contributions from resonant diagrams where the W is emitted from a virtual
νe, by the νe → e−W+ FSR splitting, as well as contributions from the e+ → ν̄eW+ splitting,
and from the ISR splitting µ+ → W+ν̄µ. If the W is emitted with a small angular separation
from one of the other legs — i.e., in the collinear region — one specific splitting gives the
dominant contribution to the amplitude and it can be reasonable to employ a definition of the
states that is adapted to the direction of that specific splitting. In the soft region instead, the
W is not necessarily close in angle to any other particle and the low-virtuality enhancement
is due to the small W energy. In this case, all the different splitting topologies contribute
and there is no way to single out a special direction to define SW states.

It is of course straightforward to compute the splitting amplitudes in any explicit
representation of the bi-spinors. The most commonly employed basis for the single-particle
states is the Jacob-Wick (JW) helicity basis. As reviewed in appendix B.2, the corresponding
bi-spinors are

|kIjw〉α =




√
k0−|k|cos θ

2 −
√
k0+|k|sin θ

2e
−iϕ

√
k0−|k|sin θ

2e
iϕ

√
k0+|k|cos θ

2




I

α

, (3.4)

where k0 is the energy, k the 3-momentum and (θ,φ) the polar and azimuthal angles of the
particle momentum. By evaluating the amplitude tensors in appendix D.2 using this explicit
representation for the A, B and C bi-spinors, and contracting with the little-group wave
functions, we could easily obtain the splitting amplitudes in the JW helicity basis.

The explicit form of the JW splitting amplitudes is complicated. Therefore, in order
to study their properties it is convenient to consider their relation with the amplitudes
computed on the SW bi-spinors. Bi-spinors in different representations are related by some
SU(2) transformation that acts on the little-group indices. The transformation that relates
JW with SW spinors

|kIjw〉 = UI
J |kJsw〉 , (3.5)

is operated by a matrix U that depends on the particle’s momentum and that can be expressed
as in eq. (B.38), in terms of the bi-spinors in the two representations. The amplitude tensor
evaluated with the JW bi-spinors can thus be obtained by rotating with U the little-group
indices of the tensors computed with the SW bi-spinors. Since the matrix U depends on the
momentum, 3 different little-group rotations have to be performed on the indices associated
to the A, B or C external states. This rotated amplitude tensor can be eventually contracted
with the little-group wave functions in order to obtain the helicity amplitudes, or the rotation
can be equivalently applied to the little-group wave functions indices like in eq. (C.26).
Notice that, as explained in appendix C.3, in the case of spin-1 particles this little-group
rotation does not correspond to rotating the helicity index in the triplet of SU(2). This
is because the splitting amplitudes are not physical amplitudes and they do not obey the
Ward identity. The little-group rotation must be then performed on the amplitude tensors
and not on the helicity amplitudes.
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We show in section B.5 that the U transformation simplifies in two limits. One is
the massless limit, in which U is diagonal. The other limit is when the particle, either
massless or massive, has 3-momentum k parallel to the direction, e3, that is employed for the
definition of SW states. In this case, U = 1 because the JW and the SW states definitions
coincide. One can also verify directly that the bi-spinors in eqs. (3.4) and (3.1) are equal
when k is parallel to e3.6

By this observation we immediately conclude that the JW amplitudes are in fact equal
to the SW amplitudes in the case of a collinear splitting, where all particles are emitted in
the same direction and therefore the U matrices are trivial. The SW splitting amplitudes in
appendix D.3 can thus be directly compared with the collinear splitting amplitudes computed
in [33, 35]. More precisely, the configuration studied in [33, 35] is the one where the hard
scattering scale E is much larger than the EW scale — and so much larger than the mass
of the particles involved in the splitting — and much larger than pt. The variable x is
far from the extreme configurations x = 0 or x = 1. Since pv is of the order of the hard
scale E, the momenta of particles B and C in eq. (2.13) align with the direction of the
A particle and therefore the splitting is collinear. Furthermore, the splitting particles are
ultra-relativistic. Hence, the fraction x of momentum in the nv direction that we used to
characterise the splitting is equal to the fraction of energy, which is the variable employed
in refs. [33, 35]. Consistently, our results for the splitting amplitudes in appendix D.3 are
equal in form to the ones of refs. [33, 35].

In a generic non-collinear kinematic configuration, JW and SW splitting amplitudes
differ by non-trivial U rotations performed on the B and C external legs. The rotation of
the A particle is instead always trivial, because the A particle momentum is parallel by
construction to e3. The non-trivial rotations are important in particular in the enhanced
low-virtuality configuration that corresponds to a soft splitting where x , 0 or x , 1. We
will see in the following section that the amplitudes in the soft limit can be compactly
represented by the so-called eikonal formula.

3.3 The soft limit
We emphasised in section 2.2 that a low-virtuality enhancement can be attained by many
different kinematic configurations, several of which — like decay configurations — are
extensively studied and not directly relevant for EW radiation. Our motivation is to study
the new regime where the virtuality is comparable or larger than the EW scale, |Q2| ! m2

ew,
with much larger hard scale E2 - |Q2|. We will show now that, if |Q2| ! m2

ew, the only
enhanced kinematic configurations are the collinear configuration previously described, and
the soft configuration. This result follows from the fact that SM particles have a mass that
is either comparable or much smaller than mew.

Consider for definiteness the virtuality of an FSR splitting. This was obtained in
eq. (2.7), and can be written as

Q2 = |pt|2

x(1 − x) − (1 − x)m2
A − m2

B

1 − x
+ m2

C

x
. (3.6)

6If k is parallel to e3, kt = 0 and kv = k0 + |k|. Furthermore, the (θ,ϕ) angles are those that define the e3
direction and in turn the R rotation.
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For any value of x far from the extremes x = 0 or x = 1, the second and the third terms are
of order m2

ew, if some heavy SM particle is involved in the splitting, or much smaller. The
sum of the two terms can be negative, but it is in any case of order m2

ew or less in absolute
value. Therefore, it would be impossible to obtain a virtuality Q2 that is comparable or larger
than m2

ew if the first term was much above Q2 because the other terms cannot be large and
negative in order to cancel the first one. This implies the upper bound |pt|2 " |Q2|.

Let λ be the small parameter associated with |Q2| measured in units of the hard scale E2.
Since |pt|2 is bounded by |Q2|, and the masses are also bounded by |Q2| ! m2

ew, we can take
the limit that corresponds to this configuration by counting the parameters with the rules

pt ∼
√

λ , mA,B,C ∼
√

λ , pv ∼ E ∼ λ0 . (3.7)

This counting corresponds to the collinear configuration with ultra-relativistic splitting
particles and small emission angle.

Note that the bound |pt|2 " |Q2| can be violated if |Q2| is much smaller than the EW
scale m2

ew. An arbitrarily small or even vanishing |Q2| could be obtained in eq. (3.6) by a
cancellation between the first (positive) term — which is much larger than |Q2| if |pt|2 is
large — and the sum of the other terms, which can be negative if mA > mB +mC . This
enhanced configuration corresponds to the decay of the A particle to B and C. However, we
have seen that it cannot be realised in the region of interest |Q2| ! m2

ew within the SM.
Let us now take x close to the extremes. We consider for definiteness x % 1, but a fully

analogous treatment is possible if x is instead close to 1. The second term in eq. (3.6) is, once
again, of order m2

ew or less in absolute value and therefore the sum of the first and the third
term is bounded by |Q2| if we want |Q2| ! m2

ew, as previously discussed. The two terms are
positive, hence the bound applies to each of them individually and we have

|pt|2 " x |Q2| , m2
C " x |Q2| . (3.8)

Notice that the C particle is the one that becomes soft — see eq. (2.13)—in the limit x → 0.
The upper bound on its mass is equivalent to a lower bound on x: x ! m2

C/|Q2|. This bounds
acts as a cutoff for the singularity at x = 0 that would be encountered for massless C particle.

The soft limit can be thus be taken with the counting rule

pt ∼
√
x

√
λ , mC ∼

√
x

√
λ , pv ∼ λ0 , (3.9)

where λ is — like before — the low-virtuality parameter, and the momentum fraction x

is treated as an independent small expansion parameter. As a particular case of the two-
parameters expansion, one could count x as an order-λ parameter. In this combined counting,
all the components of the C particle 4-momentum in eq. (2.13) would count as λ. However,
counting powers of λ and x separately is more convenient for our purposes.

The masses mA and mB of the other particles involved in the splitting must be counted
differently depending on whether the soft C particle is one of the heavy SM particles such
as the massive W and Z bosons or much lighter such as the massless photon. In the first
case, since no SM particle is much heavier that the W and the Z, mA and mB are either
comparable or much smaller than mC . Therefore, the upper bound in eq. (3.8) applies to
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mA and mB as well, and the counting rule becomes

pt ∼
√
x

√
λ , mA,B,C ∼

√
x

√
λ , pv ∼ λ0 . (3.10)

If instead the C particle is light, mA and mB are in general only bounded by |Q2|, and we have

pt ∼
√
x

√
λ , mC ∼

√
x

√
λ , mB,C ∼

√
λ , pv ∼ λ0 . (3.11)

By applying the power-counting rules we will now analyse the soft limit of the splitting
amplitude tensors computed on the SW spinors. The scaling with λ is trivial and universal,
because it is dictated by dimensional analysis: all dimensionful quantities count as

√
λ with

the exception of pv, however we have seen that the SW amplitude tensors do not depend
on pv. The amplitude tensor has energy dimension 1, hence it scales like

√
λ.

The rules for counting x powers depends on whether C is a heavy (3.10) or a light (3.11)
SM particle. However, a result that holds true in both cases is that a scaling with a negative
power of x — specifically, with 1/√

x — is possible only for amplitudes where the soft C

particle has spin 1. This can be established by recalling that the amplitude tensors build
up as products of the bi-spinor contractions reported in eq. (3.3), and by noticing that
all these contractions are finite in the low-x limit. A divergent behaviour is found only in
amplitudes where the soft C particle has spin 1, due to the 1/mC ∼ 1/√

x factor from the
normalisation of the ē polarisation tensor in eq. (C.11).7 This result corresponds, in our
more general context, to the well-known fact that soft singularities in massless gauge theories
arise only from the emission of gauge bosons.

By inspecting the splitting processes where the C particle is a vector, one can show that
the leading (order

√
λ/

√
x) contributions to the amplitude are given by the eikonal formula

M(e)
S (A(hA) → B(hB)VIJ(C)) = 2GC

AB δhA
hB

p̄A,µ ē
µ
IJ(C) . (3.12)

In the formula we employ a mixed representation of the external states, where A and B

are helicity eigenstates and their little-group indices are contracted with the little-group
wave functions. The C particle indices are not contracted and they are carried by the ē

polarisation tensor defined in eq. (C.12).
The structure of the eikonal formula (3.12) matches the regular eikonal approximation in

massless gauge theories, adapted to the SM in the massless limit (see e.g. [17]). We collect
in G the gauge coupling and the non-Abelian charge associated with the C gauge field in
the representation of the particles A and B. If A and B are fermions, the representation
depends on the helicity of the particles because the SM is a chiral gauge theory. If A and B

are spin-1 particles and transversely polarised, the G matrices are the SM group generators in
the Adjoint representation. If instead A and B are longitudinal vector bosons or the Higgs,
the generators are the ones of the Higgs doublet field. This follows from the correspondence
between longitudinal vectors and Goldstone bosons in the massless limit of the SM. Note

7If particles A or B are vectors, divergent 1/mA,B ∼ 1/√
x factors also arise from the normalisation of

the corresponding polarisation tensors. However, these factors are compensated by the scaling with x of the
A and B bi-spinors, and they cancel out in the polarisation vectors for physical A and B particle helicity.
The amplitudes with physical A and B helicity such as those in eq. (3.12) are thus insensitive to these
low-x enhancements.
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that the eikonal formula is diagonal in the helicities hA,B: the soft enhancement is only
in helicity-preserving transitions.

It is interesting to illustrate how the eikonal formula (3.12) emerges as the soft limit of
the amplitude tensors in some example. Let us first consider the case in which the C particle
is one of the massive SM vector bosons W or Z. Their masses are of the order of the EW
scale, therefore in order to take the soft limit we must apply the counting of eq. (3.10) in
which mA and mB count as small order √

x parameters. With this counting, particle A and
B are effectively massless in the limit. Furthermore, since pt ∼

√
x is also small, the B

particle 4-momentum (2.13) approaches the momentum of the A particle. We can thus take
the soft limit in the amplitude tensor by replacing the B particle bi-spinor with

|BI〉 → |AI〉 , |ÂI〉 , (3.13)

where |ÂI〉 denotes the massless limit of the A particle bi-spinor. Only the minus component
of |ÂI〉 is non-vanishing, and |ÂI〉 is related to the momentum as

|ÂN 〉α[ÂM |α̇ = (p̄A)αα̇ δN− δ−
M . (3.14)

Consider for instance the vector emission from a fermion. The amplitude tensor is
reported in eq. (D.7). By taking the massless limit for the A and B particles, operating the
replacement in eq. (3.13) and using eq. (3.14), we obtain

MS(fN (A)→ fM (B)VIJ(C)),
√
2 GR

mC
〈ÂMCJ〉[CIÂ

N ]−
√
2 GL

mC
[ÂMCI ]〈CJ Â

N 〉 .

=2GR p̄A,µē
µ
IJ(C)δN+ δ+M+2GL p̄A,µē

µ
IJ(C)δN− δ−

M . (3.15)

This expression matches the eikonal formula (3.12). The coupling factor for A and B

fermions with positive helicity (N = M = +) is provided by the right-handed coupling, GR,
while the left-handed coupling GL is present when the helicities are negative. There are
no helicity-flipping transitions with M '= N .

It is even simpler to verify the validity of the eikonal formula if the C vector particle is a
massless photon or gluon. The parameters counting in eq. (3.11) does not allow us to take the
massless limit for the A and B particles, however we have that mA = mB because massless
gauge fields only couple particles with the same mass. The transverse momentum pt ∼

√
x

is small, therefore B particle 3-momentum becomes equal to the one of the A particle. Since
the masses are also equal, the B particle bi-spinor coincides with the one of the A particle,
in the limit. Therefore, we can still perform the replacement in eq. (3.13), but we can not
take the massless limit. Further simplifications emerge in the amplitude tensors involving
the photon or the gluon, due to gauge invariance. For instance, the coupling to fermions is
vector-like: GR = GL = G. The fermion amplitude tensor of eq. (D.7) becomes

MS(fN (A) → fM (B)VIJ(C)) ,
√
2 G

mC

(
〈AMCJ〉[CIA

N ] − [AMCI ]〈CJA
N 〉
)
. (3.16)

We can check that it matches the eikonal formula (3.12) by employing the relation

|AI〉α[AJ |α̇ − |AJ〉α[AI |α̇ = (p̄A)αα̇ δIJ . (3.17)
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It should be emphasised that the eikonal approximation holds — as stated in eq. (3.12)—
for the amplitude tensor with free indices I and J in the little-group of the soft particle C,
and not only for the components of the tensor that correspond to physical C particle helicities.
This is important because it guarantees that the approximation is valid independently of the
explicit representation of the bi-spinors, in spite of the fact that the SW spinors are most
convenient in order to take the soft limit and to establish the formula. In fact, we stressed
in section 3.2 that the splitting amplitude tensors in different bi-spinor representations are
related by little-group transformations, but that these transformations do not corresponds to
SU(2) rotations in the space of physical helicities. However, since it holds for the entire tensor,
we could start from eq. (3.12) written with SW bi-spinors and safely rotate it to any other
bi-spinors representation such as the JW basis. The rotation acts on the indices of ēIJ , which
becomes the wave-function tensor in the new basis. Notice that the rotation from the SW to
the JW bi-spinors also requires a little-group rotation on the B particle indices. However,
this rotation is trivial in the soft limit because the B particle 3-momentum becomes parallel
(in fact, equal) to the one of the particle A. Therefore, it is not an issue that the validity of
eq. (3.12) is restricted to the physical helicity-eigenstate components of the B particle indices.

Our formula (3.12) extends to massive gauge theories the eikonal approximation of the
soft splitting amplitudes for massless theories. The result could have been guessed by analogy
with the massless eikonal formula, apart from one aspect. The amplitudes for emitting
transversly-polarised (the ±± components (C.22) of the tensor) or longitudinally-polarised
(the +− component) vector bosons are of the same order (

√
λ/

√
x) in the soft power-counting.

Longitudinal vector bosons thus experience a soft enhancement, like transverse vectors.
Notice however that the soft amplitudes for the emission of transverse vectors (which we can
compute either by eq. (3.12), or by taking the soft limit of the amplitudes in appendix D.3) are
proportional to pt and therefore they feature a double logarithmic singularity and contribute
as Sudakov double-logs to the integral of the cross-section over the phase space of the radiation.
Longitudinal amplitudes are instead proportional to the mass and thus they are expected
to contribute only with single logarithms.

4 Conclusions

We have studied the real emission of radiation in the factorisable regime where the virtuality
is much smaller than the scale of the hard collision process. We obtained factorisation
formulas and splitting amplitudes (section 2) that describe the radiation emission in the
entire low-virtuality phase space and for all splittings that occur in the SM. Apart from QED
or QCD radiation, and unstable SM particles decays, the formulas encompass a large variety
of splitting phenomena that arise at the EW scale, whose investigation is the motivation of
the present paper. We also outlined (section 3) a strategy for the explicit analytic evaluation
of the splitting amplitudes that exploits the simplicity of the amplitude tensors in a suitably
designed representation of the bi-spinor variables.

A natural continuation of this work would be to square the amplitude and to integrate
over the phase space of the radiation, targeting analytic factorised expression for the log-
enhanced real radiation effects in inclusive observables. We did not attack this problem,
however the results of section 3 should provide all the required ingredients. In this context,
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the eikonal description (section 3.3) of the amplitudes in the soft limit assumes particular
significance. The soft region is the most problematic region of integration because it receives
contributions from many different splitting configurations, where the soft particle is emitted
from any of the external legs of the hard process, and it is sensitive to the interference between
different splitting amplitudes. By the eikonal formula it should be possible to subtract the
soft enhancement from the splitting amplitudes and to treat the soft terms in analogy with
massless gauge theory calculations.

Our study required some methodological advances, which could be of use also in different
contexts. In appendix B we constructed a basis for the bi-spinors that is particularly suited for
the study of the splitting amplitudes. This is a simple generalisation of the Soper-Weinberg
construction of single-particle states in the infinite-momentum frame. In appendix C we
introduced a description of amplitudes as little-group tensors that automatically accounts
for the correspondence between ultra-relativistic longitudinal spin-1 particles and Goldstone
bosons. At variance with the more standard tensorial formalism, our tensors are not symmetric
under the exchange of the little-group indices. The advantage that made this formalism
essential for our calculation is the absence of gauge cancellation and the smoothness of the
high-energy (or, low-mass) limit of individual Feynman diagrams.

A related question that might be subject of future work is whether and how our splitting
amplitudes could be re-derived without using Feynman diagrams. One possible approach
based on constructive methods, similar to [50], could be to try to relate a generic n+ 1 point
amplitude with low-virtuality radiation emission to the hard n point amplitude. As far as we
can tell, this program has not been carried out not even in massless theories, and furthermore
constructive amplitude methods are not yet fully developed in the massive case [46, 51, 52].
An alternative direction could be to use dispersion relations in order to relate the residue
of the zero-virtuality pole — which is provided by the on-shell physical amplitudes — to
the amplitude with real kinematics in the low-virtuality regime.
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A Goldstone Equivalence

Given a certain gauge-invariant Lagrangian such as the one of the SM, a number of ambiguous
steps are needed to obtain a practical formalism for calculations using Feynman diagrams.
The ambiguities do not affect the results for physical quantities, but they allow for multiple
formulations of the same theory that are equivalent in terms of physical results and yet feature
different Feynman rules. The choice of the gauge is a typical example of such ambiguities. In
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this appendix we summarise the basic aspects of the Goldstone-Equivalent (GE) formulation
of massive gauge theories [33] that is employed throughout the paper. Ref. [33] reports the
complete study of the formalism dealing with all orders in perturbation theory and with the
fact that the massive vector bosons are (in the SM) unstable particles rather than Asymptotic
States. An on-shell treatment for stable vector bosons is discussed in ref. [32].

The GE formalism employs the regular Rξ gauge-fixing functional, therefore the Feynman
rules for vertices and propagators are just the same ones of the regular diagrammatic
formulation.8 What changes with respect to the regular formalism is the Feynman rule for
external massive spin 1 particles, specifically the one for zero-helicity (longitudinal) states.
In the regular formalism, a spin-1 particle is described by an external line of the 4-vector
gauge field, V µ(x). Namely, it is associated with the amputated connected amplitude with
external field V µ — which we denote as A{V µ} — contracted with the standard polarisation
4-vectors. If the particles is incoming and has helicity h = ±1, 0, the Feynman amplitude is

Mh = εhSt.µ(k)A{V µ[k]} , (A.1)

where k is the particle’s momentum flowing in the diagram. The well-known limitation of
this formalism is that when the energy E of the particle is much larger than its mass, the
longitudinal (h = 0) polarisation vector scales like

ε0St.,µ(k) , kµ
m

∼ E

m
. (A.2)

The high-energy scaling with E is problematic because it is stronger than the naive expectation
based on dimensional analysis, namely ε ∼ 1. This anomalous behaviour invalidates naive
power-counting, making the standard formalism not suited for our analysis as explained
in the Introduction.

In the GE formalism instead, the diagrammatic description of external spin-1 states
involves both the gauge field V µ(x) and the associated Goldstone scalar field, π(x). In
the case of the SM, the Goldstones associated to the neutral Z and to the charged W are
specific components of the Higgs doublet. The gauge and the Goldstone are conveniently
collected in a single 5-components field

ΦM (x) = [V µ(x),π(x)]M . (A.3)

A double gauge-plus-scalar line is employed to represent the Φ field as in figure 4. The
scattering amplitude for an incoming spin-1 particle reads

Mh = Eh
M (k)A{ΦM [k]} , (A.4)

where A{ΦM [k]} is the connected amputated amplitude for the Φ field, and

Eh
M (k) = [εhµ(k), δh0 επ]M , (A.5)

is a five-components polarisation vector. Notice that the fifth (i.e., the Goldstone) component
of E is different from zero only for h = 0 helicity states.

8The Feynman choice ξ = 1 of the gauge-fixing parameter is employed in the paper (see eq. (2.26)). A
manifestly gauge-independent derivation of the results in section 2.5 is possible, but slightly more involved.
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Eh
M (k) εhµ(k) δh0 επ

k

M

k

µ

k
= +

Figure 4. Feynman rule for initial state vector particles. For helicity h = 0, the scattering amplitude
of the vector with polarization ε0µ(k) is summed to the one of the corresponding Goldstone boson with
wave function επ. At tree-level, επ = +i.

The GE polarisation vectors in eq. (A.5) are easily related to the standard 4-components
polarisations by exploiting the Ward identity that connects — in a massive gauge theory
— gauge and Goldstone connected amputated amplitudes. If the k momentum is on-shell,
and at the tree-level order, the Ward identity reads9

KM [k]A{V M [k]} = 0 , with KM [k] = [i kµ,m]M . (A.6)

We will thus obtain the exact same scattering amplitudes as in the standard formalism (A.1)
if we take E equal to standard polarisations — with vanishing fifth component — plus a shift
term proportional to K. The right choice of the proportionality factor is the one that cancels
the energy growth (A.2) of the longitudinal polarisation, and this choice is

Eh
M (k) = [εhSt.,µ(k), 0]M + i

m
δh0KM [k] =

[
εhSt.,µ − δh0

kµ
m

, i δh0

]

M
. (A.7)

By comparing with eq. (A.5), we find

ε0µ = ε0St.,µ − kµ
m

, ε±µ = ε±St.,µ , επ = i . (A.8)

The GE longitudinal polarisation 4-vector, ε0µ, does not grow with the energy unlike the
standard polarisation ε0St.,µ. It is easy to show that it instead decreases with energy, namely

ε0µ(k) ∼ m

E
. (A.9)

The transverse polarisations ε± are equal to the standard vectors and have a constant high-
energy scaling. The Goldstone wave-function factor is a constant επ = i. All the components
of the GE polarisation 5-vectors Eh

M (k) are thus well-behaved with energy as anticipated.
We can similarly derive the GE Feynman rule for outgoing particles

Ēh
M (k) = [ε̄hSt.,µ(k), 0]M − i

m
δh0KM [−k] = (Eh

M (k))∗ = [ε̄hµ(k),−i δh0 ]M ,

ε̄hµ = ε̄hSt.,µ − δh0
kµ
m

= (εhSt.,µ)∗ − δh0
kµ
m

= (ε̄hµ)∗ . (A.10)

The shift by KM [−k] takes into account that the momentum is now outgoing.
9More generally, the K vector features a non-trivial fifth component Kπ(k2). This eventually produces,

beyond tree-level, a non-trivial Goldstone wave-function factor επ #= i in eq. (A.5). Also notice that a
more general Ward identity K1,M1K2,M2 . . .A{V M1 [k1]V M2 [k2] . . .} = 0 holds for amplitudes with several
amputated legs.
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If the standard polarisation vectors are normalised canonically and obey the canonical
completeness relation

ε̄h,µSt. (k)ε
g
St.,µ(k) = −δh g ,

∑

h=0,±1
εhSt.,µ(k)ε̄hSt.,ν(k) = −ηµν + kµkν

m2 , (A.11)

the E and Ē 5-vectors satisfy the following completeness relation

∑

h=0,±1
Eh
M (p)Ēh

N (p) =
[
−ηµν − (kµε0ν(k) + ε0µ(k)kν)/m −i ε0µ(k)

i ε0µ(k) 1

]

MN

. (A.12)

B Single-particle states and bi-spinors

After setting the notation, this appendix reviews the definition of single-particle states by
the method of induced representations [53, 54], and the direct connection between such
definition — encoded in the choice of the standard Lorentz transformation Λst

k — and the
explicit representation of the particle’s bi-spinors. The Jacob-Wick (JW) and Soper-Weinberg
(SW) bi-spinors are derived. Only massive particles are considered in the appendix and
throughout the paper. The massless limit can be taken smoothly in the final results.

B.1 Two-component spinor notation

The Lorentz group SL(2,C) admits two bi-dimensional representations: the spinor represen-
tation and its conjugate. The three rotation (Ja) and boost (Ka) generators, in the spinor
representation, are the matrices

Ja = 1
2σa , Ka = i

2σa , (B.1)

where σ are the Pauli matrices and a = (x, y, z) runs over the three coordinates axes. A
lower Greek index α = 1, 2 labels the objects that transform in the spinor representation. A
generic Lorentz transformation, consisting of a counterclockwise rotation around a vector θa

(of angle |θ|) and of a boost with rapidity vector ya, is represented by a 2 × 2 matrix

Λ β
α = exp

[
− iθaJa + iηaKa

] β
α

= exp
[

− (iθa + ηa)σa

2
] β
α
. (B.2)

The conjugate-spinor generators are J̇a = −(Ja)∗ and K̇a = −(Ka)∗. Objects transforming
in this representation are labeled with a lower dotted index α̇ = 1, 2. The invariant tensors
with lower indices are the antisymmetric tensors

εαβ , εα̇β̇, with ε12 = −1 . (B.3)

Invariant contractions and upper-index objects are formed using the tensors

εαβ , εα̇β̇, with ε12 = +1 .

It is also useful to define

σµ = (1, /σ) , σ̄µ = (1, −/σ) . (B.4)
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The irreducible linear representations of the Lorentz group transform as tensors

Tα1...αn; α̇1...α̇n̄ → Λ β1
α1 . . .Λ βn

αn
Tβ1...βn; β̇1...β̇n̄

(Λ†)β̇1
α̇1 . . . (Λ

†)β̇n̄
α̇n̄

, (B.5)

with n un-dotted and n̄ dotted indices. The tensor is fully symmetric under the permutation
of dotted or of un-dotted indices and, if n = n̄, it also obeys the Hermiticity condition

T ∗
α̇1...α̇n̄;α1...αn

= Tα1...αn; α̇1...α̇n̄ . (B.6)

The 4-vector is the n = n̄ = 1 tensor representation. Therefore, a 4-momentum kµ can be
represented as a 2 × 2 Hermitian matrix

kαα̇ = kµσµ
αα̇ =

[
k0 − k3 −k1 + i k2

−k1 − i k2 k0 + k3

]

αα̇

. (B.7)

Under a Lorentz transformation Λ, the momentum matrix transforms as

k → Λ · k · Λ† . (B.8)

B.2 Single particle states and the wave-function of the tensor fields

A basis for the states that describe a single particle with non-vanishing mass m and spin s

can be constructed as follows. In the particle’s rest frame, where the momentum in the matrix
notation is equal to m times the identity, the states |m1, h〉 form a spin-s representation of
the SU(2) group of rotations. They are labelled by the integer or semi-integer eigenvalue
h = −s, . . . ,+s of the angular momentum operator Jz along the z-axis.10 The other rotation
operators Jx,y act on the h index by the standard SU(2) matrices in the spin-s representation.
The state with generic momentum k is obtained by acting on the states at rest with a
standard Lorentz transformation Λst

k . Namely

|k, h〉 = U(Λst
k ) |m1, h〉 , (B.9)

where U is the (unitary) representation of the Lorentz group on the space of states.
The standard Lorentz transformation transforms the rest-frame momentum m1 into

the particle’s momentum k, i.e., using eq. (B.8)

k = mΛst
k (Λst

k )† . (B.10)

This condition does not determine Λst
k uniquely, but only up to the right-multiplication with

an SU(2) matrix, resulting in different definition of the states in eq. (B.9). These choices are
related by an SU(2) rotation U which is called a little-group transformation:

Λst′
k = Λst

k · U . (B.11)

If Λst
k is changed into Λst′

k , the state in eq. (B.9) transforms by the little-group rotation
acting on the h index in the spin-s representation.

10We refer to the h quantum number as the helicity, even if it will correspond to the regular helicity — i.e.,
the projection of the angular momentum along the direction of motion — only with the Jacob-Wick choice
Λst

p = Λjw
p in eq. (B.22). With a different standard transformation, h is the eigenvalue of a different operator.
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The notion of bi-spinors naturally emerges if we consider the wave-function factor
associated with an interpolating field T (x) in an irreducible tensorial representation of the
Lorentz group. The wave function is defined as the matrix element

Ψk,h
α1...αn; α̇1...α̇n̄

= 〈0| Tα1...αn; α̇1...α̇n̄(0) |k, h〉 . (B.12)

If the particle is at rest, the form of Ψ is strongly constrained by the invariance under the
rotational symmetry. The un-dotted spinor indices transform in the doublet representation of
the SU(2) rotation group, and dotted indices transform in the (equivalent) conjugate-doublet
representation, for a total of n+n̄ doublet (or conjugate-doublet) indices. The particle state at
rest is in the spin-s representation, therefore a non-vanishing invariant Ψ can be obtained only
if n+ n̄ ≥ 2s. If in particular n+ n̄ is equal to 2s, rotational symmetry determines Ψ up to a
normalisation constant, because there is a single spin-s representation in the decomposition
of the tensor product of n+ n̄ = 2s doublets. The result is conveniently expressed as

Ψm1,h
α1...αn; α̇1...α̇n̄

∝ δI1α1 . . . δ
In
αn

εIn+1J1(δJ1α̇1)
∗ . . . εI2sJn̄(δJn̄α̇n̄

)∗ Ss,h
I1...I2s , (B.13)

where Ss,h are the fully-symmetric tensors that projects the tensor product of 2s doublets
onto the spin-s representation. The need for the anti-symmetric ε tensors in the previous
equation emerges from the fact that the dotted indices are in the conjugate-doublet rather
than in the doublet representation.

The states with generic momentum k are obtained by the standard transformation Λst
k

acting on the state at rest. Therefore, in order to obtain the wave-function Ψk,h we just
need to Lorentz-transform eq. (B.13), given the transformation property of the tensor field in
eq. (B.5). We thus define the angular bi-spinor |kI〉α as the action of Λst

k on the tensorial
structure — i.e., the δ tensors — that carries the un-dotted indices in eq. (B.13)

|kI〉α =
√
mΛst

k
β

α δIβ =
√
m [Λst

k ] I
α , (B.14)

with a convenient normalisation factor of √
m. We also define the square bracket bi-spinors as

[ kI |α̇ = (|kI〉∗)α̇ =
√
m [(Λst

k )†]I α̇ . (B.15)

Using bi-spinors, the wave function reads

Ψk,h
α1...αn; α̇1...α̇n̄

∝ |kI1〉α1 . . . |k
In〉αn

[ kIn+1 |α̇1 . . . [ kI2s |α̇n̄ S
s,h
I1...I2s , (B.16)

where the upper-index square brackets bi-spinor is defined in eq. (B.18).
The Latin index of the bi-spinor is called a little-group index because it transforms as

an SU(2) doublet if the little-group transformation (B.11) is operated on Λst. The index is
taken to run over I = (+,−), and I = + in eq. (B.14) means the first column of the matrix
Λst
k . little-group indices are lowered and raised with the SU(2) invariant tensors

εIJ , εIJ , with ε+− = −ε+− = 1 . (B.17)

Using the ε tensors we define

[ kI |α̇ ≡ εIJ [ kJ |α̇ , |kI〉α ≡ εIJ |kJ〉α . (B.18)
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A number of useful bi-spinors properties follow from their definition (B.14) in terms of
the standard Lorentz transformation. Since the determinant of the SL(2,C) matrix Λst

k is 1

εαβ |kI〉α |kJ〉β ≡ 〈kJ kI〉 = m εIJ = [kI kJ ] ≡ εα̇β̇[kI |α̇[kJ |β̇ . (B.19)

From eq. (B.10) it follows that

|kI〉α [ kI |α̇ = kαα̇ , (B.20)

which also implies

|kI〉α [ kJ |α̇ − |kJ〉α [ kI |α̇ = εIJkαα̇ . (B.21)

B.3 The JW bi-spinors

The most common definition of the single-particle states basis was given by Jacob and Wick
(JW) in [49], using the standard Lorentz transformation

Λst
k = Λjw

k = e−iϕJze−iθJyeiϕJzeiηKz , (B.22)

where θ and ϕ are the polar and azimuthal angles of the particle and η is the absolute rapidity
tanh η = |k|/

√
|k|2 +m2. Explicitly, the particle’s 4-momentum is

kµ = m(cosh η, sinh η cosφ sin θ, sinh η sinφ sin θ, sinh η cos θ)µ . (B.23)

The JW standard transformation first operates a boost along the z-axis, which puts the
rest-frame state in motion along a direction parallel to the spin. With this first transformation
we obtain an eigenstate of the helicity operator, defined as the projection of the angular
momentum along the direction of the 3-momentum, with eigenvalue h. The subsequent
transformations are rotations, which leave the helicity invariant. The JW states are thus
eigenstates of the helicity operator and therefore — again because the helicity is rotational
invariant — the rotation SU(2) subgroup of the Lorentz group acts as a diagonal phase on these
states. On the contrary, the states feature complicated non-diagonal boost transformation
properties because the helicity is not boost-invariant.

The JW standard transformation in the spinor representation can be evaluated using
the generators in eq. (B.1), obtaining by eq. (B.14) the explicit form of the bi-spinors for
the single-particle states in the JW basis

|kIjw〉α =
√
m [Λjw

k ] Iα =




√
me−η/2 cos θ

2 −
√
me+η/2 sin θ

2e
−iϕ

√
me−η/2 sin θ

2e
iϕ √

me+η/2 cos θ
2




I

α

. (B.24)

This expression can be written as in eq. (3.4) by trading the mass and the rapidity for |k|
and the energy k0 =

√
|k|2 +m2. The explicit form of the Λjw

k matrix can be readily checked
to respect the consistency condition in eq. (B.10).
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B.4 The SW bi-spinors
The Soper-Weinber (SW) definition [47] of the single-particle states is designed in such a
way that the states feature extremely simple transformation properties under a rotation
performed around a “special” direction in space, e3, and under a boost performed along the
same direction. We call J3 and K3 the corresponding generators

J3 = ea3Ja , K3 = ea3Ka , (B.25)

and we denote as Λ3 a finite Lorentz transformation along J3 or K3

Λ3 = e−iφJ3+i yK3 . (B.26)

The special direction is taken to coincide with the z-axis in ref. [47], namely e3 = ez = (0, 0, 1).
The generalisation to arbitrary direction is simply obtained via the rotation R rotating the
z-axis ez to the e3 direction:

J3 = RJzR
−1 , K3 = RKzR

−1 ⇒ Λ3 = Re−iφJz+i yKzR−1 . (B.27)

In the main text, we identify the special direction e3 as the direction of the A particle. The
spinor representation of the rotation as a 2 × 2 matrix R is reported in eq. (2.11).

The coordinates that we define in section 2.1 to describe the 4-momentum — see in
particular eq. (2.12)—transform very simply under Λ3. By recalling that Jz and Kz are
diagonal matrices in the spinor representation, one easily finds

k = R ·
[
ku −k∗

t
−kt kv

]

· R† → k′ = Λ3 · k · Λ†
3 = R ·

[
e−yku −e−iφk∗

t
−eiφkt eykv

]

· R† . (B.28)

The kv and ku = (m2 + |k∗
t|2)/kv coordinates scale under K3 with opposite weights. The

complex kt coordinate transforms as unit-charge object under J3.
We define the following generators

T1 = R(Kx − Jy)R−1 , T2 = R(Ky + Jx)R−1 , (B.29)

which are simply the “transverse boost” generators defined in [47], rotated by R. We can
also consider the complex combinations of the tranverse boosts

T = T1 − i T2 , T = T1 + i T2 . (B.30)

The transverse boosts transform simply under J3 and K3. The Lorentz Algebra gives

[J3, T ] = −T , [K3, T ] = i T , ⇒ Λ3TΛ−1
3 = e−y+iφ T ,

[J3, T ] = +T , [K3, T ] = i T , ⇒ Λ3TΛ−1
3 = e−y−iφ T . (B.31)

The standard Lorentz transformation that defines the SW states is the following

Λst
k = Λsw

k = e
i
2 (vtT+v∗

tT )ei ζv K3 R , (B.32)

where vt = kt/kv and ζv = log(kv/m). Consider now operating a Λ3 transformation k → k′

on the momentum as in eq. (B.28). The ζ parameter shifts to ζ + y. The parameter vt
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becomes e−y+iφvt, which matches the transformation of the T generator in eq. (B.31). The
Λsw
k transformation evaluated on the transformed momentum k′ can thus be written as

Λsw
k′ = Λ3Λsw

k R−1Λ−1
3 ei y K3R = Λ3Λsw

k eiφ Jz . (B.33)

If we then act with Λ3 on the SW states, which are defined by eq. (B.9) using the standard
SW transformation, we obtain

U(Λ3) |k, h〉 = U(Λ3Λsw
k ) |m1, h〉 = U(Λsw

k′ ) e−iφ Jz |m1, h〉 = e−ihφ |k′, h〉 , (B.34)

because Jz is diagonal and equal to h on the rest-frame states. Up to the transformation
of the momentum, the SW states are simply invariant under boosts in the special direction,
and pick up a phase equal to minus the helicity under J rotations.

For the explicit evaluation of Λsw
k in the spinor representation it is convenient to use

eq. (B.27) and express Λsw
k as R times the exponential of the un-rotated transverse boosts

and of Kz, which are very simple matrices in the spinor representation (B.1). We obtain

Λsw
k = 1√

m
R ·

[
m/

√
kv −k∗

t/
√
kv

0
√
kv

]

, (B.35)

and, in turn, we derive the bi-spinors in the SW basis reported in eq. (3.1). By the explicit
form of Λsw

k we can also verify its consistency as a valid standard transformation that obeys
the condition in eq. (B.10). Indeed

mΛsw
k (Λsw

k )† = R ·
[
ku −k∗

t
−kt kv

]

· R† , (B.36)

which is equal to the momentum k in eq. (2.12).

B.5 Relation between the JW and the SW bi-spinors
Different bases for the single-particle states are related by a little-group transformation, as
previously discussed. On the bi-spinor index, the transformation acts as a 2 × 2 matrix U .
The relation between the JW and SW bi-spinors thus takes the form

|kIjw〉 = UI
J |kJsw〉 . (B.37)

Since the bi-spinors are normalised as in eq. (B.19), we have that

UI
J = 1

m
〈ksw J k

I
jw〉 , (B.38)

which can be computed directly from the explicit spinors in the two bases.
For generic momenta, the explicit form of U is not particularly insightful. However, U

simplifies in two particular limits. In the ultra-relativistic limit m → 0, only one of the two
bi-spinors (for I = −) is non-zero, both in the JW (3.4) and in the SW (3.1) bases. The
off-diagonal entries of U therefore must vanish in the limit, while the diagonal entries must
be opposite phases as U ∈ SU(2). Indeed, we find

UI
J = ei I ∆ δIJ , ∆ = tan−1

( sin(φ − β)
cot α

2 cot θ
2 + cos(φ − β)

)
, (B.39)
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where α and β are the polar and azimuthal angles of the e3 vector, or equivalently the
Euler angles of the R rotation

R =
[

cos α
2 −e−iβ sin α

2
eiβ sin α

2 cos α
2

]

. (B.40)

Another interesting configuration is when the particle’s 3-momentum k is parallel to e3.
In this case, the tranverse momentum kt vanishes and the light-cone rapidity ζv coincides with
the total rapidity ζ. The α and β angles that define the rotation are equal to the θ and ϕ angles,
so that R becomes equal to the rotation that appears in the JW standard transformation. By
comparing eq. (B.32) with eq. (B.22), we see that the two standard transformations becomes
equal. Consistently, the bi-spinors in the two bases become equal and U = 1.

C Dirac wave functions and polarisation vectors

In this appendix we summarise the relation between the bi-spinors and the wave-function
factors associated with the on-shell external legs of Feynman diagrams for spin-1/2 particles
and anti-particles, and for spin-1 particles. The interpolating fields are the composition of
tensorial irreducible representations of the Lorentz group and therefore the wave-functions
can be expressed in terms of bi-spinors using eq. (B.16). The 4-components Dirac field that
interpolates for spin-1/2 particles has two (Weyl) components (n = 1, n̄ = 0) and (n = 0, n̄ =
1). The corresponding Dirac wave-functions are reported in section C.1. Spin-1 particles
are interpolated by the (possibly complex, for charged W bosons) vector representation
(n = 1, n̄ = 1), but the scalar (n = 0, n̄ = 0) is also involved in the GE formalism of
appendix A. We will see in section C.2 how to express the GE polarisation vectors in terms of
tensors with little-group indices using bi-spinors. In section C.3 we summarise our results and
describe the simple rules to turn Feynman diagrams into a little-group tensor representation
of the corresponding amplitude.

C.1 Wave functions of Dirac particles

The 4-components wave functions that describe respectively the annihilation and the creation
of a Dirac particle are conveniently expressed in terms of the u and ū Dirac spinors, defined as

uI(k) =
(
|kI〉α

|kI ]α̇

)

, ūI(k) = (− 〈kI |α [kI |α̇) . (C.1)

They satisfy normalisation and completeness relations

ūI(k)uJ(k) = 2mδJI , uI(k)ūI(k) = /k +m, (C.2)

where /k = kµγµ and the γ matrices are

γµ =
(

0 σµ

σ̄µ 0

)

. (C.3)

The wave functions for an incoming (or outgoing) particle with helicity h = ±1/2 particle are
obtained by contracting the little-group indices of u (or of ū) with little-group wave-function
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tensors τ(h) and τ̄(h)

τI(+1/2) = δ+I , τ̄ I(+1/2) = δI+ ,

τI(−1/2) = δ−
I , τ̄ I(−1/2) = δI− .

(C.4)

Namely, we have

uh(k) = τI(h)uI(k) , ūh(k) = τ̄ I(h)ūI(k) , (C.5)

for incoming and outgoing fermion-respectively.
For Dirac anti-particles we define instead the v spinors

vI(k) =
(

− |kI〉α

|kI ]α̇

)

, v̄I(k) = (〈kI |α [kI |α̇) , (C.6)

that satisfy

v̄I(k)vJ(k) = −2mδIJ , vI(k)v̄I(k) = /k − m. (C.7)

The wave functions for outgoing and incoming anti-fermions are

vh(k) = τ̄ I(h)vI(k) , v̄h(k) = τI(h)v̄I(k) . (C.8)

Notice that the anti-fermion annihilation is described by v̄, which has an upper little-group
index like the u spinor that describes the annihilation of the fermions. Hence, both incoming
particles and anti-particles lead to an upper-index amplitude tensor compatibly with eq. (B.16).
A lower little-group index emerges instead for outgoing particles, from taking the conjugate
of eq. (B.16). The little-group wave functions τ and τ̄ are the same tensors in eq. (C.4)
for both particles and anti-particles. Finally, notice that our wave functions are related
by the charge conjugation relation

vh(k) = −iγ2(uh(k))∗ . (C.9)

C.2 Polarisation vectors
Standard polarisations. In the standard formalism (see appendix A) the interpolating
field for particles of spin-1 is the vector field Vµ. We can equivalently express Vµ as a tensor
field Vαα̇, and vice versa, by the relations

Vαα̇ = Vµσµ
αα̇ , Vµ = 1

2Vαα̇σ̄α̇α
µ . (C.10)

The polarisation vectors are proportional to eq. (B.16)—with n = n̄ = 1 — in the case of
incoming particles, and to its complex conjugate if the particle is outgoing. We can thus
express them in terms of the little-group and Lorentz tensors

eIJαα̇(k) =
√
2

m
|kI〉α [ kJ |α̇ , ēα̇α

IJ (k) = −
√
2

m
|kI ]α̇〈kJ |α , (C.11)

or, equivalently, of the little-group tensors with 4-vector index

eIJµ (k) = 1
2e

IJ
αα̇(k)σ̄α̇α

µ , ēµIJ(k) =
1
2 ē

α̇α
IJ (k)σµ

αα̇ . (C.12)
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Notice that

ēα̇α
IJ = εα̇β̇εαβ [(eIJ)∗]β̇β , ēµIJ = ηµν(eIJν )∗ . (C.13)

Using eq. (B.16) we can readily express the standard spin-1 polarisation vectors —
denoted as εhSt. in appendix A—in terms of the e and ē tensors, up to a multiplicative constant
that can be fixed by the normalisation of the polarisations. The canonically-normalised
polarisation vectors for incoming and outgoing particles are, respectively

εhSt.,µ(k) = S1,h
IJ eIJµ (k) , ε̄h,µSt. (k) = [εh,µSt. (k)]∗ = (S1,h

IJ )∗ ēµIJ(k) , (C.14)

where S1,h
IJ are the symmetric SU(2) 2-tensors associated with the spin-1 representation, for

h = ±1, 0. The explicit components of these tensors are

S1,−1
IJ = δ−

I δ−
J ,

S1,+1
IJ = δ+I δ+J ,

S1,0 = 1√
2
(δ−

I δ+J + δ+I δ−
J ) .

(C.15)

The polarisation vectors in eq. (C.14) are canonically normalised and obey the standard
completeness relation in eq. (A.11). This can be verified by employing the relations

eIJαα̇(k) ēα̇α
MN (k) = −2δIMδJN , eIJαα̇(k)ēβ̇β

IJ (k) = 2δβ
αδβ̇

α̇ . (C.16)

GE polarisations. The GE polarisation vectors described in appendix A, Eh
M (k), have 5

components rather than 4, and their fifth component is a wave-function factor for the scalar
Goldstone boson field π(x). In order to express it as a little-group 2-tensor we will thus also
need a Lorentz scalar, on top of the Lorentz vector tensor eIJµ in eq. (C.11). We take this
tensor to be proportional to the anti-symmetric tensor

eIJπ (k) = i√
2

εIJ , (C.17)

and we define a 5-component object

eIJM (k) = [eIJµ , eIJπ ]M . (C.18)

It is simple to express Eh
M in terms of the eIJM tensor. We notice that, owing to eq. (B.21)

kαα̇ = m√
2

εIJe
IJ
αα̇(k) . (C.19)

The shift that relates the GE polarisations with the standard ones (A.7) can thus be written as
i

m
KM [k] = 1√

2
εIJe

IJ
M (k) . (C.20)

By combining with eq. (C.14) we obtain

Eh
M (k) =

[
S1,h
IJ − δh0

1√
2

εIJ

]
eIJM ≡ τIJ(h)eIJM , (C.21)

where the τ(0) tensor has been defined as the symmetric S1,0 minus the anti-symmetric tensor.
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We can thus express the GE polarisation vectors in terms of little-group 2-tensors, but
only by employing little-group wave functions that are not symmetric

τIJ(−1) = δ−
I δ−

J , τIJ(0) =
√
2 δ+I δ−

J , τIJ(+1) = δ+I δ+J . (C.22)

We can proceed similarly for the polarisation 5-vectors of outgoing particles. By defining

ēπ,IJ(k) =
i√
2

εIJ , ēM,IJ(k) = [ēIJ,µ, ēπ,IJ ]M , (C.23)

we have

− i

m
KM [−k] = 1√

2
εIJ ēIJ,M (k) ⇒ Ēh

M (k) = τ̄ IJ(h)ēIJ,M , (C.24)

where the little-group wave functions for outgoing particles are

τ̄ IJ(h) = [τIJ(h)]∗ . (C.25)

The tensor notation offers a simple understanding of the different scaling at high-energy
(or at low-mass) of the GE polarisation vectors in comparison with the standard ones. The
bi-spinors in eqs. (3.1) and (3.4) scale with energy as follows. The upper-index angular bracket
bi-spinors scale like |k+〉 ∼ m/E1/2 and |k−〉 ∼ E1/2, while |k+] ∼ E1/2 and |k−] ∼ m/E1/2

due to the contraction with ε in the definition of upper-index square bracket bi-spinors.
Therefore, the components of eIJµ scale like e++

µ ∼ e−−
µ ∼ 1, e+−

µ ∼ m/E and e−+
µ ∼ E/m.

The Goldstone component of eIJM , eIJπ , is a constant. The little-group wave functions associated
with h = ±1 particles, τIJ(±1), pick up the diagonal ±± entries of eIJM , and thus they scale
like a constant. The longitudinal wave function τIJ(0) picks up the +− entry of eIJM , which
is suppressed as m/E in the vector M = µ component, and of order 1 for M = π. The GE
longitudinal polarisation vector is thus well-behaved in the high-energy limit. In contrast,
the standard h = 0 little-group wave function in eq. (C.15) is symmetric, and therefore it
picks up also the −+ entry of eIJµ , which grows like E/m. This is responsible for the energy
growth of the standard longitudinal polarisation vector.

C.3 Amplitude tensors
With the results of the previous sections we can express Feynman diagrams as little-group
tensors, by proceeding as follows. Each external particle leg is associated with that tensor
that produces the corresponding wave function or polarisation vector by the contraction with
the little-group wave functions τ and τ̄ in eqs. (C.4), (C.22) and (C.25). For instance, the
external leg of an incoming spin-1/2 particle is associated with the uI Dirac 4-spinor, while
ūI corresponds to an outgoing fermion. The Lorentz index of the tensor, e.g. the Dirac index
in the case of uI , contracts with the tensors from the other external states and with the
rest of the diagram in order to form a Lorentz singlet. In the final result, all the Lorentz
indices are contracted and the free indices of the amplitude tensor are the indices in the
little-group of each external particle. The tensor has one upper index for each incoming
fermion or anti-fermion, and one lower index for each outgoing fermion. Spin-1 particles bring
two indices from the eIJ and ēIJ tensors. Example applications of these rules to construct
amplitude tensors are discussed in section 2. See in particular figure 3 for a diagrammatic
representation of the amplitude tensor associated with the h∗ → V V splitting.
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Helicity amplitudes are obtained from the amplitude tensors by contracting the free
indices of each particle with the little-group wave function of the desired helicity. One chooses
whether to employ the standard polarisation vectors for spin-1 particles or the GE ones
by using either the symmetric wave-functions in eq. (C.15) or the non-symmetric ones in
eq. (C.22). The Ward identity in eq. (A.6) ensures that exactly identical physical scattering
amplitudes are obtained with the standard and with the GE polarisation vectors. In the
tensor notation, this can be seen by noticing that the 5-vector KM [±k] which appears in
the Ward identity (for incoming or outgoing particle momentum) is proportional to the
contraction of eM or ēM with the anti-symmetric ε tensor, as shown in eqs. (C.20) and (C.24).
Therefore, the Ward identity ensures that the amplitude tensors that correspond to physical
scattering processes have an exactly vanishing anti-symmetric component. When dealing
with such amplitudes, the non-symmetric GE little-group wave function in eq. (C.22) are
fully equivalent to the symmetric ones in eq. (C.15).

However, the validity of the Ward identity (A.6) is restricted to physical scattering
amplitudes. The splitting amplitudes are not physical amplitudes, they do not obey the
Ward identity and their representation in terms of tensors is not symmetric. For this reason,
the standard and the GE polarisation vectors are not equivalent in the calculation of the
splitting amplitudes as verified explicitly in the main text.

Dealing with amplitude tensors that are not symmetric under the exchange of the little-
group indices of the spin-1 states can led to confusions related to how the SU(2) little-group
symmetry is implemented in the formalism. It should thus be stressed that the amplitude
tensors do transform, by construction, as regular tensors under the little group. For instance,
if we operate the transformation in eq. (B.37) that corresponds to a change of basis for the
bi-spinors, upper indices of the tensor transform as they should with the U matrix, and lower
indices transform with the conjugate U∗ matrix. If we operate a Lorentz transformation, the
associated SU(2) little-group matrix acts like U does. From the viewpoint of Lorentz and
little-group transformations of the tensor, it is immaterial if the indices are symmetrised or not.

The situation is different if we consider instead the transformation of the helicity ampli-
tudes. The little-group transformation of the tensor indices is equivalent to the transformation
of the little-group wave functions. In the case of incoming spin-1 particles

τIJ(h) → τ ′
IJ(h) = τKL(h)UK

I UL
J . (C.26)

If the τ ’s were symmetric, the SU(2)-rotated τ ′ would be a linear combination of the τ ’s
with coefficients provided by the Wigner-D matrix representation of U in the spin-one
representation. Consequently, the helicity amplitudes would transform as triplets under the
little-group. On the contrary, the zero-helicity τ(0) wave function has also an anti-symmetric
component, which is invariant under SU(2). Therefore, the transformed τ ′ is given by a
rotation of the helicity indices, plus a shift. Namely

τ ′
IJ(h) =

∑

g

τIJ(g)[D1(U)] hg + 1√
2
{
[D1(U)] h0 − δh0

}
εIJ . (C.27)

The shift term proportional to ε has no effect on physical amplitudes that obey the Ward
identity. On such amplitudes, the little-group (and in turn the Lorentz) transformation is
provided by the regular Wigner rotation. The shift term is instead relevant for non-physical
amplitudes like the splitting amplitudes.
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In our formalism, the little-group and Lorentz symmetries are realised like in theories
with massless spin-1 particles: the unwanted shift of the wave-functions is cancelled on the
physical scattering amplitudes by the Ward identity. The analogy can be illustrated more
clearly by computing the effect of a little-group transformation on the GE polarisation vectors
Eh
M (k). Using their definition (C.21), eq. (C.20) and eq. (C.27), we find

Eh
M →

∑

g

Eg
M [D1(U)] hg + i

m

{
[D1(U)] h0 − δh0

}
KM . (C.28)

This result is fully analogous to the shift, by an amount that is proportional to the particle’s
4-momentum kµ, of the massless polarisation vectors. In the massive case, one could avoid
the shift by employing the regular polarisation vectors with symmetric little-group wave
functions. On the other hand, it is not surprising that the polarisation vectors that are
most suited to describe the massless (or, high-energy) limit — the GE polarisations — do
instead feature a shift like the massless polarisations.

D Standard Model splitting amplitudes
In this appendix, we summarise our results for the SM splitting amplitudes. In section D.1
we list the relevant Feynman rules. In section D.2 we report the general expressions for
the splitting amplitudes tensors. In section D.3 we report the explicit expressions for the
helicity amplitudes for SW bi-spinors.

D.1 Standard Model Feynman rules
Fermionic vertices. The Feynman rules between two fermions fa,b of masses ma,b and a
(vector or Goldstone) boson of mass mV are expressed in terms of the general coupling GL,
GR, the chirality projectors PL/R = (1 ∓ γ5)/2 and the Yukawa couplings. The latter are
diagonal in the Standard Model and related to the fermion masses through the Higgs VEV
mf =

√
2vyf . The two couplings GL and GR read

V W− (fa = d, f b = u) Z (fa = f b) γ (fa = f b) G (fa = f b)
GL

gVud√
2

g
cw
(T 3 − s2wqf ) eqf gstαibia

GR 0 g
cw
(−s2wqf ) eqf gstαibia

where TA and tα are respectively the color SU(3) and the weak SU(2) generators. The gauge
couplings are gs and g; e = gsw is the QED coupling constant and qf is the electric charge.

π

fb

fa

= mb−ma
mV

(GLPL +GRPR),

V µ

fb

fa

= iγµ(GLPL +GRPR), h

fb

fa

= −iδab
yf√
2 .
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Boson-scalar vertices. We now collect the Feynman rules between three bosons, with
at least one Higgs field. The rules for the Higgs coupling to vectors and Goldstones are
parameterized in terms of a coupling G

V aV b W−W+ ZZ γγ GG

G g g/cw 0 0

where ma and mb are the masses of the vector/scalar.

h

h

h

= −i32g
m2

h
mW

, h

V µ

V ν

= iGmV ηµν ,

h

π

π

= −iG
m2

h
2mV

, h

π

V µ

k1
k2 = G

2 (k2 − k1)µ.

Vector and Goldstone vertices. We finally report the Feynman rules between three bosons,
vectors or Goldstones, of masses ma, mb and mc. We express them in terms of a coupling Gabc

V aV bV c W−W+γ W−W+Z GaGbGc

Gabc e gcw −igsfabc

where fabc are the SU(3) structure constants.

V ρ
c

V µ
a

V ν
b

kc

ka

kb = iGabc[ηµν(ka − kb)ρ + ηνρ(kb − kc)µ + ηρµ(kc − ka)ν ],

πc

V µ
a

V ν
b

= Gabc ηµν
m2

b−m2
a

mc
, V µ

c

πa

πb

ka

kb = − i
2Gabc

m2
a+m2

b−m2
c

mamb
(ka − kb)µ.

D.2 Amplitude tensors
Higgs splitting into two Higgs particles:

MS(h(A) → h(B)h(C)) = −3
2g

m2
h

mW
. (D.1)
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Higgs splitting into two fermions:

MS(h(A) → fI(B)f̄ J(C)) = − yf√
2

(
〈BICJ〉 + [BICJ ]

)
. (D.2)

Fermion splitting into a Higgs and a fermion:

MS(f I(A) → f J(B)h(C)) = − yf√
2

(
〈AIBJ〉 − [AIBJ ]

)
, . (D.3)

Higgs splitting into two vectors:

MS(h(A)→VIJ(B)VMN (C))= G

mV

{
〈BJCN 〉[CMBI ]+

1
2εIJ(〈CNBK〉[BKCM ]− 1

2m
2
V εMN )

+ 1
2εMN (〈BJC

K〉[CKBI ]−
1
2m

2
V εIJ)+

m2
h

4 εIJεMN

}
.

(D.4)

Vector splitting into a Higgs and a vector:

MS(V IJ(A) → h(B)VMN (C)) = G

mV

{
− 〈CNAI〉[AJCM ] + 1

4m
2
h εIJεMN

+ 1
4εMN [AJ |pB − pC |AI〉 − 1

4εIJ〈CN |2pB + pC |CM ]
}
.

(D.5)

Vector splitting into two fermions:

MS(V IJ(A)→ fM (B)f̄N (C))=

−
√
2GR

mA

(
〈BMAI〉[AJCN ]+ 1

2mCεIJ〈BMCN 〉− 1
2mBεIJ [BMCN ]

)
+

−
√
2GL

mA

(
[BMAJ ]〈AICN 〉+1

2mCεIJ [BMCN ]− 1
2mBεIJ〈BMCN 〉

)
.

(D.6)

Fermion splitting into a fermion and a vector:

MS(fN (A)→ fM (B)VIJ(C))=

+
√
2GR

mC

(
〈BMCJ〉[CIA

N ]+ 1
2mAεIJ〈BMAN 〉+1

2mBεIJ [BMAN ]
)
+

−
√
2GL

mC

(
[BMCI ]〈CJA

N 〉+1
2mBεIJ〈BMAN 〉+1

2mAεIJ [BMAN ]
)
.

(D.7)

– 42 –



J
H
E
P
1
0
(
2
0
2
4
)
2
1
5

Vector splitting into two vectors:

MS(V IJ(A))→VKL(B)VMN (C))=

GABC√
2mAmBmC

{
+〈CNBL〉[BKCM ](〈AI |pC−pB|AJ ]+εIJ(m2

C−m2
B))

+ 1
4εMN εKL(m2

B+m2
C−m2

A)〈AI |pC−pB|AJ ]+2〈BLA
I〉[AJBK ](〈CN |pB|CM ]

+ 1
2εMN (m2

A−m2
B−m2

C))+
1
2εIJεKL(m2

C−m2
A−m2

B)〈CN |pB|CM ]

−2〈CNAI〉[AJCM ](〈BL|pC |BK ]+ 1
2εKL(m2

A−m2
B−m2

C))

− 1
2εIJεMN (m2

B−m2
A−m2

C)〈BL|pC |BK ]

+ 1
4εIJεMN εKL((m2

A+m2
B−m2

C)m2
C−(m2

A+m2
C−m2

B)m2
B)
}
.

(D.8)

D.3 Splitting amplitudes in the SW basis

We now list the SM splitting amplitudes in the Soper-Weinberg basis. We report a minimal set
of splitting amplitudes, the missing ones can be obtained according to the two following rules:

• the kinematic configuration where the particles B and C are exchanged (see eq. (2.13))
is obtained via the replacement

x → 1 − x , pT → −pT , mB → mC , mC → mB .

• splitting amplitudes involving anti-particles are obtained form the ones involving
particles through CP conjugation via the following relation

MS(Ā(−hA)→ B̄(−hB) C̄(−hC))=
∏

k=A,B,C

(−1)jk−hkMS(A(hA)→B(hB)C(hC))
∣∣∣∣
pT →p∗

T

,

(D.9)
where jk and hk are, respectively, the spin and the helicity of the particle k (see
appendix B of [33] for more details).

Scalar-Fermions splitting:

→ f+(B) + h(C) f−(B) + h(C)
f+(A) − yf√

2
(1−x)mA+mB√

1−x

yf√
2

pT√
1−x

f−(A) − yf√
2

p∗
T√

1−x
− yf√

2
(1−x)mA+mB√

1−x

→ f−(B) + f̄+(C) f−(B) + f̄−(C)
h(A) − yf√

2
mBx−mC(1−x)√

x(1−x)
yf√
2

pT√
x(1−x)

Vector-Fermions splitting:

→ f+(B) + f̄+(C) f+(B) + f̄−(C) f−(B) + f̄+(C) f−(B) + f̄−(C)
V +(A) −

√
2(GLmBx+GRmC(1−x))√

x(1−x)
−

√
2GR pT

√
1−x
x

√
2GLpT

√
x

1−x 0

V −(A) 0 −
√
2GR p∗

T

√
x

1−x

√
2GL p∗

T

√
1−x
x −

√
2(GRmBx+GLmC(1−x))√

x(1−x)
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→ f+(B) + f̄+(C) f+(B) + f̄−(C)
V 0(A)

(mB
mA

GL − mC
mA

GR
) p∗

T√
x(1−x)

(1−x)m2
C+xm2

B−2m2
Ax(1−x)

mA

√
x(1−x)

GR − mBmC

mA

√
x(1−x)

GL

→ f+(B) + V +(C) f−(B) + V +(C)
f+(A)

√
2GR

p∗
T

x
√
1−x

√
2GR

mB√
1−x

−
√
2GLmA

√
1 − x

f−(A) 0
√
2GLp∗

T

√
1−x
x

→ f+(B) + V −(C) f−(B) + V −(C)
f+(A) −

√
2GRpT

√
1−x
x 0

f−(A)
√
2GL

mB√
1−x

−
√
2GRmA

√
1 − x −

√
2GL

pT

x
√
1−x

→ f+(B) + V 0(C) f−(B) + V 0(C)
f+(A) GR

m2
Ax(1−x)−m2

Bx−2m2
C(1−x)

mCx
√
1−x

+GL
xmAmB

mC
√
1−x

pT√
1−x

(
GR

mB
mC

− GL
mA
mC

)

f−(A) p∗
T√

1−x

(
GR

mA
mC

− GL
mB
mC

)
GL

m2
Ax(1−x)−m2

Bx−2m2
C(1−x)

mCx
√
1−x

+GR
xmAmB

mC
√
1−x

Scalar-Vectors splitting:

→ V +(B) + V +(C) V +(B) + V −(C) V +(B) + V 0(C)
h(A) 0 GmV −G

p∗
T√

2(1−x)

→ V 0(B) + V 0(C) h(B) + h(C)
h(A) G

2
(m2

h
mV

− mV
1+x
1−x − mV

2−x
x

)
−3

2gmV

→ h(B) + V +(C) h(B) + V −(C) h(B) + V 0(C)
V +(A) −GmV 0 − G√

2pT

→ h(B) + V +(C) h(B) + V −(C) h(B) + V 0(C)
V 0(A) G√

2
p∗
T√
x

− G√
2
pT√
x

G
2
(

− m2
h

mV
+mV (1 − 2x) − mV

2−x
x

)

Vectors splitting:

→ V +(B) + V +(C) V +(B) + V −(C) V −(B) + V +(C) V −(B) + V −(C)
V +(A) −

√
2GABC

p∗
T

x(1−x)
√
2GABC pT

1−x
x

√
2GABC pT

x
1−x 0

V 0(A) 0 GABC
m2

A(1−2x)−m2
B+m2

C
mA

GABC
m2

A(1−2x)−m2
B+m2

C
mA

0

→ V +(B) + V 0(C) V −(B) + V 0(C)
V +(A) GABC

(
mC

2−x
x + m2

B−m2
A

mC

)
0

V 0(A) GABC
m2

B−m2
A−m2

C√
2mAmC

p∗
T

1−x −GABC
m2

B−m2
A−m2

C√
2mAmC

pT
1−x

→ V 0(B) + V 0(C)
V +(A) GABC

m2
A−m2

B−m2
C√

2mBmC
pT

V 0(A) GABC
2
(mA(m2

B+m2
C−m2

A)
mBmC

(1 − 2x) − mB(m2
A+m2

C−m2
B)

mAmC

1+x
1−x + mC(m2

A+m2
B−m2

C)
mAmB

2−x
x

)
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