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Abstract Previous efforts to measure atmospheric iodine have focused on marine and coastal regions. We
report the first ground-based tropospheric iodine monoxide (IO) radical observations over the central
continental United States. Throughout April 2022, IO columns above Storm Peak Laboratory, Colorado
(3,220 m.a.s.1.) ranged from 0.7 + 0.5 t0 3.6 + 0.5 x 10'? (average: 1.9 X 10" molec cm™?). IO was consistently
elevated in air masses transported from over the Pacific Ocean. The observed IO columns were up to three times
higher and the range was larger than predicted by a global model, which warrants further investigation into
iodine sources, sinks, ozone loss, and particle formation. IO mixing ratios increased with altitude. At the
observed levels, iodine may be competitive with bromine as an oxidant of elemental mercury at cold
temperatures typical of the free troposphere. Iodine-induced mercury oxidation is missing in atmospheric
models, understudied, and helps explain model underestimation of oxidized mercury measurements.

Plain Language Summary Halogens such as chlorine, bromine, and iodine are highly reactive gases
that participate in atmospheric chemistry, including ozone destruction, particle formation, modification of
greenhouse gas lifetime (i.e., methane, dimethylsulfide), and the oxidation of elemental mercury. lodine mainly
enters the atmosphere from oceans; therefore, past measurements of atmospheric iodine have focused on marine
and polar regions. This study describes the first lower atmospheric measurements of iodine monoxide (10)
radicals at a remote mountaintop site in the central continental United States. These measurements indicate that
the concentration of IO radicals showed a large range over the course of 1 month and reached levels up to three
times higher than predicted by a global atmospheric chemistry model. These observations suggest that our
understanding of the iodine sources and sinks to the free troposphere may be incomplete. Moreover, we suggest
that iodine's contribution to ozone destruction and mercury chemistry may be underestimated; in particular,
iodine may be competitive with bromine in the oxidation of elemental mercury in the free troposphere.

1. Introduction

Atmospheric iodine destroys ozone (Koenig et al., 2020, 2021; Read et al., 2008; Saiz-Lopez et al., 2012, 2014;
Sherwen et al., 2017), forms new particles (Baccarini et al., 2020; Finkenzeller et al., 2023; Gémez Martin
etal., 2022; He et al., 2021; O’Dowd et al., 2002; Sipili et al., 2016), and modifies atmospheric oxidative capacity
(Sherwen, Evans, et al., 2016; Sherwen, Schmidt, et al., 2016). lodine mainly enters the atmosphere in inorganic
gaseous form (HOI, I,) through reaction with ozone at the ocean surface (Carpenter et al., 2013; MacDonald
et al., 2014; Wang et al., 2021), with smaller sources from organic iodine species (Bell et al., 2002; Jones
et al., 2010; Ordéiiez et al., 2012; Sive et al., 2007; Wang et al., 2021), windblown dust (Koenig et al., 2021;
Williams et al., 2007), and volcanic eruptions (Schonhardt et al., 2017). Tree ring and ice core records indicate
that atmospheric iodine has increased threefold since 1950, which is attributed to increased anthropogenic surface
ozone pollution resulting in increased marine iodine emissions (Cuevas et al., 2018; Legrand et al., 2018; Zhao
et al., 2019).
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Most of our knowledge about the global distribution of atmospheric iodine is from measurements of iodine
monoxide (IO) radicals in the marine boundary layer (Alicke et al., 1999; Allan et al., 2000; Coburn et al., 2011;
Furneaux et al., 2010; Gémez Martin et al., 2013; GroBmann et al., 2013; Inamdar et al., 2020; Mahajan
et al., 2012; Prados-Roman et al., 2015; Takashima et al., 2022; Wang et al., 2014; Whalley et al., 2007) and at
high latitudes (Frief3 et al., 2010; Mahajan et al., 2010; Schonhardt et al., 2012, 2017; Wittrock et al., 2000).
Recent evidence of 10 in the free troposphere is limited to measurements over oceans (Dix et al., 2013; Koenig
et al., 2021; Puentedura et al., 2012; Volkamer et al., 2015; Wang et al., 2015). IO in the tropical transition layer
(Volkamer et al., 2015) and lower stratosphere (Koenig et al., 2020) suggests that iodine is globally distributed.
Despite the limited spatiotemporal coverage of existing IO measurements, the ability of the GEOS-Chem model
to accurately reproduce IO vertical profile measurements over the Pacific Ocean (Volkamer et al., 2015; Wang
et al., 2021) suggests that our understanding of atmospheric iodine chemistry is well-constrained near marine
sources. However, there is a distinct lack of IO measurements over the center of continents, far from marine
sources, where 10 sinks become more important.

To our knowledge, there is no previous ground-based measurement of tropospheric IO over the continental United
States. The only previous attempt to measure IO from the continental U.S. was by Wennberg et al. (1997), who
measured IO slant column densities (SCDs) during three sunrises at Kitt Peak, Arizona, with a solar geometry that
maximized sensitivity to stratospheric 10 but minimized sensitivity to tropospheric 10; they did not attempt to
quantify tropospheric I0. Therefore, tropospheric 10 over the center of the continental U.S. is unconstrained by
ground-based measurements.

Mountaintop Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) is well-suited for
tropospheric IO measurements because it maximizes measurement sensitivity by minimizing aerosol scattering
effects, provides access to the free troposphere due to the extended spatial scale (tens of kilometers) of the
measurement light path, and enables cost-effective long-term measurements compared to airborne campaigns.
Mountaintop MAX-DOAS has been successfully employed for IO measurements in the marine free troposphere
(Puentedura et al., 2012).

The role of iodine radicals as oxidants of atmospheric mercury is understudied. Mercury enters the atmosphere
mainly in gaseous elemental form, Hgo(g), where it is oxidized into short-lived HgI(X)(g) species (X = Br, OH, CI)
and then stabilized through secondary oxidation reactions to form HgH(g) species, including Hg"(Br)(OH) and
HgH(OH)2 (Castro et al., 2022; Dibble et al., 2020; Shah et al., 2021). The oxidation of Hgo(g) by atmospheric
iodine radicals has been deemed unimportant due to the low amounts of tropospheric iodine and the much faster
thermal decomposition of Hgl(I)(g) compared to HgI(Br)(g) (Cremer et al., 2008; Goodsite et al., 2004, 2012;
Shepler et al., 2005). Accordingly, the latest implementation of atmospheric mercury chemistry in the GEOS-
Chem model does not include reactions involving iodine (Shah et al., 2021). However, mercury measurements
in aerosols are empirically correlated with iodine (Murphy et al., 2006). Additionally, the fast, barrierless reaction
of HgI species with ozone (Saiz-Lopez et al., 2020) can compete with the thermal decomposition of HgI(I)(g),
prompting us to re-evaluate the importance of iodine as an Hgo(g) oxidant.

Here we present one month (April 1-30, 2022) of MAX-DOAS measurements of 10, H,O, NO,, and HCHO

tropospheric vertical column densities (VCDy,,,) and volume mixing ratios at instrument altitude (VMR

troj mslr)

alongside co-located in-situ measurements of Hgo(g) and HgH(g +p) 4t @ remote mountaintop observatory in the
central continental U.S. Section 2 describes the measurement site and methods. Section 3 presents the first
ground-based observational constraint on tropospheric IO over the central continental U.S., explores correlations,
and compares observations with a global model. Section 4 uses the observations to constrain a box model of gas-
phase mercury chemistry to investigate the relevance of iodine radicals for Hgo(g) oxidation and discusses at-
mospheric implications.

2. Methods
2.1. Storm Peak Laboratory

Storm Peak Laboratory (SPL) is a mountaintop observatory on top of the continental divide in the Rocky
Mountains in northwestern Colorado (3,220 m.a.s.l, 40.455°N, 106.745°W). SPL has been an atmospheric
research station since the 1980s (Borys & Wetzel, 1997; Hallar et al., 2016) and has been previously used for
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atmospheric mercury measurements (Fain et al., 2009; Obrist et al., 2008). All measurements presented here were
conducted at SPL from April 1-30, 2022.

2.1.1. CU MAX-DOAS

The University of Colorado MAX-DOAS (CU MAX-DOAS) instrument (Coburn et al., 2011, 2016) measured
ultraviolet-visible scattered-light solar spectra at different elevation angles in a single azimuthal viewing direc-
tion. Trace gas differential slant column densities (dSCDs) were retrieved from solar spectra using the DOAS
method (Platt & Stutz, 2008). A cloud-free zenith reference spectrum (Gielen et al., 2014; Wagner et al., 2014) on
6 April 2022 at 18:00 UTC was used for all DOAS retrievals; fit settings are in Tables S1 & S2 in Supporting
Information S1. IO, H,0, HCHO, and O,-O, dSCDs were converted into SCDs by adding the trace gas SCD in
the reference spectrum (SCD,.¢); past studies have shown that accounting for SCD,., maximizes sensitivity in the
free troposphere (Coburn et al., 2016; Hendrick et al., 2007) and avoids bias in the retrieval of columns and
profiles (Volkamer et al., 2015). For NO,, the stratospheric signal was removed by subtracting the zenith dSCDs
from the off-axis dSCDs. A linear optimal estimation algorithm (Rodgers, 2000) was used to retrieve 10, NO,,
H,0, and HCHO VCD,,,, and VMR, from the measured SCDs (zenith-subtracted dSCDs for NO,). Instrument
and retrieval details are in Text S1 in Supporting Information S1.

2.1.2. Dual-Channel Mercury System

A cation-exchange membrane-based dual-channel system to measure total gaseous elemental mercury, Hgo(g),
and total gas- and particle-phase oxidized mercury, HgII(g+p) (Derry et al., 2024; Elgiar et al., 2024; Lyman
et al., 2020), pulled sample air through a heated PTFE Teflon-coated inlet with an elutriator and particle impactor
(2.5 pm cut point), 50 cm of heated PFA Teflon line, to two separate measurement channels. A Tekran 2537X Hg
vapor analyzer sampled from each channel sequentially. One channel included a series of two in-series cation
exchange-membranes that have been shown to pass Hgo(g) and retain Hg“(g +py Miller et al., 2019); the other
channel included a thermal converter that converted total atmospheric Hg to HgO(g). HgH(gﬂ,) was calculated as the
difference between the two channels every 10 minutes. The dual-channel system had a 1-hr HgH(g +p) detection
limit less than 15 pg m™>; total Hg and Hgo(g) are assumed to be similar. A NIST-traceable permeation tube-based
calibrator was used to add Hgo(g) and HgBr, to the inlet of the dual-channel system while it sampled ambient air,
and the system recovered 97 + 4% and 100 = 9%, respectively (mean + standard deviation). The dual-channel
system is described in detail in Elgiar et al. (2024).

2.2. Model Tools
2.2.1. GEOS-Chem

The GEOS-Chem 3-D atmospheric chemistry model was used to simulate (a) oxidant fields at 0.5° X 0.625° and
(b) mercury chemistry as described in Shah et al. (2021) at 2.0° X 2.5°. The GEOS-Chem halogen chemistry,
including iodine, is implemented according to Wang et al. (2021), which represents emissions of HOI and I, from
the ocean surface, as well as emissions of organic iodine. The chemistry of fourteen gas-phase inorganic and three
organic iodine species are explicitly represented. The main sinks of iodine in the model are dry deposition, wet
deposition, and uptake onto particles. Details are in Text S2 in Supporting Information S1. April 2022 daytime
averages of GEOS-Chem oxidant fields and Hg® were used to constrain the gas-phase mercury box model
described in Section 2.2.3.

2.2.2. HYSPLIT-STILT

The Hybrid Single-Particle Lagrangian Integrated Trajectory model coupled to the Stochastic Time-Inverted
Lagrangian Transport Model (STILT; Lin et al., 2003; Loughner et al., 2021) was used to simulate air mass
origin at SPL. One thousand 24-hr back trajectories were initiated at each of multiple altitudes (5 m, 2 km, 4 km,
6 km, 10 km above ground level) at SPL every 3 hr from April 1-30, 2022. At each initial altitude, the one
thousand back-trajectories were averaged in three dimensions (latitude, longitude, altitude) to calculate a single
back trajectory every three hours (Figure 1). Details are in Text S5 in Supporting Information S1.
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Figure 1. Detection of iodine monoxide (10) radicals above Storm Peak Laboratory during April 2022. (a) IO spectral proof for a “low I0” case on April 6 at 19:20:32
UTC corresponding to (0.6 % 0.1) x 10" molec cm™2 IO differential slant column densitie (dSCD). (b) IO spectral proof for a “high I0” case on April 16 at 17:36:51
UTC corresponding to (1.6 = 0.1) x 10" molec cm™2 IO dSCD. (c) Average STILT 24-hr back trajectories for April 6 at 18:00 UTC and April 16 at 18:00 UTC.

2.2.3. Mercury Box Model

The Framework for 0-D Atmospheric Modeling (FOAM; Wolfe et al., 2016) version 4.2.2 was used to simulate
gas-phase mercury chemistry in 1 km layers from the surface at 2—12 km. GEOS-Chem April 2022 daytime
averages were used to constrain oxidant fields and Hg®; iodine radicals were scaled to the average observed IO
column (I atom VCDy, = 9.9 X 107 molec cm™2; Text S4 in Supporting Information S1). The reaction mech-
anism used is based on Shah et al. (2021) with three significant differences; first, reactions involving I & 10 were
added analogously to reactions involving Br & BrO (Saiz-Lopez et al., 2018); second, the reaction coefficient
used for Hg'X 4+ O; — Hg"(X)(0) + O, was the value for a barrierless reaction reported in Saiz-Lopez
et al. (2020); third, only gas-phase reactions are treated here, as the goal is to examine the relative contribu-
tions of Br, OH, and I to Hgo(g) oxidation rates. HgH(g) deposition and particle-phase partitioning is not the focus
of this study and deemed independent of Hg”(g) chemical identity (Shah et al., 2021). Sensitivity studies were
performed varying the rate for Hgo +I1+M— HgI(I) + M, where (a) HgI(I) forms at half the rate as Hgl(Br); (b)
Hgl(I) forms at the same rate as Hgl(Br); and (c) Hgl(I) forms at twice the rate as Hgl(Br). The bond strength of
HgI(I) is uncertain (Cremer et al., 2008; Goodsite et al., 2004; Shepler et al., 2005); sensitivity studies were
performed varying the Hg-I bond energy (8, 9.5, 11 kcal mol™") using Hg-Br and Hg-OH as references. Box
model output was extracted at 15 minutes, after gas-phase equilibrium was reached (Figure S5 in Supporting
Information S1). Results from a subset of sensitivity studies are presented in Figure 3; results from all sensitivity
studies are in Figure S6 in Supporting Information S1. The complete reaction mechanism is in Tables S5 and S6 in
Supporting Information S1.

2.2.4. Radiative Transfer Model

The 3D Monte Carlo Atmospheric Radiative Transfer Inversion Model (McArtim3; Deutschmann et al., 2011)
was used to calculate weighting functions for trace gas profile inversions. Model settings are in Table S2 in
Supporting Information S1. Weighting functions were calculated in a Rayleigh atmosphere using April 2022
average daytime temperature and pressure profiles from ECMWEF CAMS reanalysis (Inness et al., 2019) and
empirically scaled to match the measured O,-O, SCD for each spectrum. This approach uses the known O,-O,
vertical profile to account for the effects of terrain and temporal atmospheric state variability (temperature,
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pressure, weak aerosols) on the measured photon path distribution (Ortega et al., 2016; Spinei et al., 2015; Tirpitz
et al., 2021; Wagner et al., 2019; see Text S1 in Supporting Information S1).

3. Results

Here, observations of 10, Hgo(g), and Hg”(g +p) are described and compared with GEOS-Chem simulations.
Pearson correlation coefficients (R) of less than 0.20 are referred to as having no correlation; R is reported
alongside its standard error. Averages are reported alongside standard deviations.

3.1. Detection of IO in the Continental Free Troposphere

IO concentrations above the detection limit were consistently observed throughout the month; spectral proofs are
shown in Figure 1. On April 16, the day with the highest IO signal, IO dSCDs of up to (2.2 + 0.4) x 10" and
(1.6 = 0.1) x 10" molec cm™2 were observed in the limb (EA = 0°) and zenith (EA = 90°) geometries,
respectively. On April 6, the day with the lowest IO signal, IO dSCDs of up to (1.4 + 0.4) x 10" and
(0.6 + 0.1) x 10" molec cm™ were observed in the limb and zenith geometries, respectively.

Sensitivity studies varying the a priori profile used for the IO column retrieval indicate that IO VMR increased
with altitude. Two a priori profiles were tested: a “flat” profile with a constant 0.10 pptv IO throughout the at-
mosphere, and the GEOS-Chem April 2022 daytime average 1O profile. The GEOS-Chem profile, in which 10
VMR increases with altitude, consistently resulted in better agreement between measured and a posteriori
simulated IO SCDs than the “flat” profile (Figure S2 in Supporting Information S1). Therefore, the GEOS-Chem
profile was used in the IO retrieval as it is more physically representative of the measurements.

10 VCDyp, was 0.7-3.6 X 10'? molec cm™2, averaging (1.9 + 0.6) X 10'* molec cm™2. 10 VCDy,, error is
0.5 x 10"* molec cm™2, with contributions from choice of a priori settings (0.3 X 10'? molec cm™?), uncertainty in
SCD, (0.1 x 10" molec cm™), and method error (spectral fitting, radiative transfer modeling, optimal esti-
mation; 0.1 X 10'? molec cm™2). I0 VMR,;,,, was 0.00-0.16 pptv, averaging 0.08 =+ 0.03 pptv. IO VMR, error
is 0.03 pptv, with contributions from choice of a priori settings (0.01 pptv), uncertainty in SCD,; (<0.01 pptv),
and method error (spectral fitting, radiative transfer modeling, optimal estimation; 0.02 pptv). Uncertainty in the
IO absorption cross section is 2%, and negligible (Spietz et al., 2005).

Twenty four-hour STILT back trajectories indicated that the observed air masses consistently originated from
over the Pacific Ocean. The air mass observed during the day with the highest IO signal (April 16) originated from
the southwest, toward the tropics (Figure 1c). The air mass observed during the day with the lowest 1O signal
(April 6) originated from the northwest, toward mid-latitudes. However, not all tropical air masses contained
higher IO; on April 28, for example, the back-trajectories indicated an air mass originating even further south than
on April 16, yet the IO VCD was significantly larger on April 16 than on April 28. While air mass origin alone
cannot account for the observed IO variability, we consistently found higher IO in air masses with less than 24-hr
transport time from the Pacific Ocean. This indicated that IO variability also depended on the strength of 10 sinks
along the transport path, which are not constrained in our analysis.

IO VCDy,, and VMR, were up to three times larger, and the range of IO VCDy,,,, and VMR, was larger than
predicted by GEOS-Chem (Figure 2). GEOS-Chem daytime 10 VCDy,,, was 0.3-1.5 X 10'? molec cm™2,
averaging 0.8 + 0.2 x 10" molec cm ™2, two times smaller than observed. GEOS-Chem daytime IO VMR, ., was
0.0007-0.10 pptv, averaging 0.04 £ 0.02 pptv, also two times smaller than observed. There was no correlation
between measured and modeled 10 VCDy,,,,. There was a very weak but statistically significant anti-correlation
between measured and modeled IO VMR, (R: —0.20 % 0.05; p < 1 x 10™*). The two days with the lowest IO
VCDy,p, April 6 and 26, showed reasonable agreement with GEOS-Chem. However, on all other days, 10
VCD,,,, was significantly larger than predicted. The GEOS-Chem horizontal grid cell size (0.5° X 0.625°) is
comparable to the tens of kilometers sampled by the MAX-DOAS light path. The similar magnitude of under-
estimation of IO VCD, and VMR, by GEOS-Chem provides evidence that IO VMR increased with altitude,

since GEOS-Chem consistently simulated increasing IO VMR with altitude. One would expect the GEOS-Chem
and VMR, ., if the measured profile shape was very different

underestimation to be different between 10 VCD, instr

trop
than modeled.
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Figure 2. Measurements of iodine monoxide, Hgo(g), ng(g +py H20, NO,, and HCHO at Storm Peak Laboratory are compared with GEOS-Chem during April 2022.

VCD

trop

was calculated from the surface to 12 km.

3.2. BrO

A measurement constraint on bromine was not possible during the study period. The amount of tropospheric BrO
observed at SPL was consistently below the detection limit of ~0.5 pptv VMR, .. The GEOS-Chem April 2022
daytime average BrO VMR, . at SPL was 0.15 pptv, consistent with the observations and too low to be
observable even with the state-of-the-art MAX-DOAS instrument used here. We therefore used the GEOS-Chem
BrO profile without modifications to constrain the mercury box model.

3.3. Mercury

Hgo(g) was 0.90-1.70 ng m~>, averaging 1.28 + 0.11 ng m™>. Hg”(g+p) was 0-211 pg m™>, averaging
68 + 34 pg m~°. Interestingly, there was a weak anti-correlation between Hgo(g) and HCHO VMR, (R:
—0.35 £ 0.05; p < 1 x 107%), and a moderately strong correlation between Hgn(g +p) and HCHO VMR, ., (R:
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Figure 3. Iodine-initiated Hg® oxidation compared with other oxidation pathways above Storm Peak Laboratory (SPL).
(a) GEOS-Chem temperature and ozone profiles used in the box model, alongside SPL ozone measurements. (b) Mercury
oxidant profiles used in the box model. Br, OH, and Cl are from GEOS-Chem. The I atom profile (I

VCDyp = 9.9 X 107 molec cm™) is calculated from the measured monthly average iodine monoxide (I0) VCDyqp,

(1.9 x 10'? molec cm™?) using the GEOS-Chem /IO ratio profile. (c) Box model results showing the fraction of Hgn(g)
produced via each oxidation pathway, varying the Hg+I«<Hg'(I) kinetics. Hg"(Br)(OH), Hg"(OH),, and Hg"(C1)(OH) are
shown for the case assuming that ky;,,; = ky,,p, and that the Hg-I bond energy is 9.5 keal mol ™.

0.64 + 0.04; p < 1 x 107; Figure S4 in Supporting Information S1), indicating a possible connection between
mercury oxidation and total atmospheric oxidative capacity.

Oxidized mercury at SPL coincided with warm air masses at low relative humidity, consistent with past work
(Derry et al., 2024; Fain et al., 2009), but also at high absolute humidity. There was a weak anti-correlation
between Hgo(g) and measured temperature (R: —0.37 + 0.02; p < 1 X 107°), a strong correlation between
Hg“(g +p) and measured temperature (R: 0.70 = 0.01; p < 1 X 107>; Figure S4 in Supporting Information S1), a
weak correlation between Hgo(g) and measured relative humidity (R: 0.39 £ 0.02; p < 1 X 1073 ), a moderate anti-
correlation between HgII(g+p) and measured relative humidity (R: —0.43 + 0.01; p < 1 x 107>; Figure S4 in
Supporting Information S1), and a weak correlation between HgH(g +py and H,O VMR, (R: 0.37 £ 0.04;
p < 1x107°). This is consistent with the idea that mercury survives longer in air masses with less wet deposition,
providing more time for oxidation to occur.

GEOS-Chem Hgo(g) was 1.06-1.26 ng m™>, averaging 1.18 + 0.05 ng m~>. GEOS-Chem HgH(g +p) Was 4—
22 pg m™>, averaging 12 + 4 pg m™>. While measured and modeled Hgo(g) concentrations agreed reasonably
well, there was no correlation in Hgo(g) temporal variability. Moreover, the measured HgH(g +p) concentration
was up to 10 times larger and more variable (i.e., a six times larger standard deviation) than modeled (Figure 2).
Despite these differences, measured and modeled Hg“(g +py Were moderately correlated (R: 0.47 = 0.01;
p < 1 x 107>; Figure S4 in Supporting Information S1), indicating that GEOS-Chem had some skill in pre-
dicting Hgn(gﬂ,) variability at SPL but not the magnitude. Increased HgII(g+p) sources (i.e., iodine-induced
oxidation) and/or decreased Hgn(g +p) Sinks in the model are needed to explain this model-measurement
disagreement.
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4. Discussion
4.1. Literature Comparison

The observed 10 VCD,,,, monthly average of 1.9 + 0.6 X 10'? molec cm™ over the central continental U.S. is
consistent with the few previous airborne measurements. Dix et al. (2013) reported an I0 VCD,,,, of 2.49 and
2.91 x 102 molec cm™2 over the central Pacific and Volkamer et al. (2015) found 2.1 and 2.5 x 10'? molec cm™2
over the eastern Pacific; both studies probed tropical air in the northern hemisphere winter. The average 10

VCD,,,, above SPL demonstrates that iodine is widespread in the free troposphere, including over continents.

trop

The significant day-to-day temporal variability in 10 VCDy,,,, over the central continental U.S. (0.7 £ 0.5 to
3.6 + 0.5 x 10" molec cm™2) has not been previously observed. Our measurements also characterize IO VCDyop
for the first time in the spring. Information about iodine spatiotemporal variability in the free troposphere is
extremely scarce. Two sources affecting free tropospheric 1O variability are marine convection (Dix et al., 2013)
and dust (Koenig et al., 2021; Puentedura et al., 2012). Regional-scale 10 variability over the Eastern Pacific
Ocean was systematically probed by Wang et al. (2015), who reported 10 VCDy,,, of 2.6-3.5 X 10"? molec cm™
and 5.1 x 10'? molec cm™2 in the southern hemisphere tropical and subtropical Pacific, respectively, during
Austral summer. Some of this variability could be attributed to dust sources of iodine from the Sechura and
Atacama deserts (Koenig et al., 2021), with regional impacts on ozone in the marine boundary layer and free
troposphere. Puentedura et al. (2012) reported variability in IO dSCDs related to Saharan dust impacts in the free
troposphere over Tenerife Island in the Eastern Atlantic; they did not attempt to retrieve I0 VCD,,,,. Elevated 10
VCD,,, over SPL is related to rapid transport from the Pacific Ocean, consistent with marine convection upwind,
and unrelated to immediate dust impacts.

trop*

Schonhardt et al. (2008) reported global satellite measurements of IO SCDs. Their analysis used a reference
spectrum over the tropical Pacific, where airborne measurements indicate that there is a significant I0 VCDy,,,
(Dix et al., 2013; Volkamer et al., 2015). Therefore, the satellite IO SCDs are lower limits and not directly
comparable to our measurements.

4.2. Ozone Relevance

Iodine is responsible for a ~9% reduction in the total tropospheric ozone burden, and model-measurement
agreement for IO profiles over the eastern tropical Pacific indicates that marine sources for IO are reasonably
well-constrained (Wang et al., 2021). The consistent low bias in modeled IO compared to our observations,
combined with the observed fast transport from over the Pacific Ocean, suggests that sinks for IO along the
transport path may be overestimated. Additionally, iodine's contribution to tropospheric ozone destruction may be
higher than currently estimated over continents. GEOS-Chem iodine chemistry has not been significantly updated
since version 11-02-rc, with the implementation of Wang et al. (2021) in version 12.9 leaving the mechanism of
Sherwen, Evans, et al. (2016) largely unchanged.

4.3. Implications for Atmospheric Mercury Oxidation

Iodine oxidation of mercury is deemed unimportant, and is therefore missing in atmospheric models, in part due to
the lower Hg-I bond strength (7.8-10.9 kcal mol™"; Salter et al., 1986; Shepler et al., 2005; Cremer et al., 2008)
compared to Hg-Br (15.8 kcal mol™"; Tellinghuisen & Ashmore, 1983) and Hg-OH (11.0 kcal mol™"; Dibble
et al., 2020). The Hg-OH bond strength was previously thought to be too weak to lead to Hg" formation, but the
discovery that the reaction of Hg' species with ozone is kinetically barrierless (Saiz-Lopez et al., 2020) has
resulted in a re-evaluation of the global relevance of OH radicals to Hgo(g) oxidation (Castro et al., 2022; Shah
etal.,2021). There is evidence suggesting that the reaction of Hgo(g) with I atom proceeds faster than with Br atom
(Goodsite et al., 2004, 2012). In light of the larger than predicted amounts of tropospheric iodine over continents,
the Hg-I bond strength and HgI(I)(g) dissociation rate warrant re-evaluation.

Our box model results (Figure 3) show that I atoms may oxidize Hg? at rates rivaling Br atoms and OH radicals at
cold temperatures typical of the free troposphere. This finding depends on the assumed reaction kinetics and Hg-I
bond strength, both of which are highly uncertain. Our most conservative estimate, which uses a rate constant half
as fast as the ky,, 5, measured by Donohoue et al. (2006) for ky,,; and assumes an Hg-I bond strength of
8.0 kcal mol™', places iodine atoms at a contribution of 0.3%-19.6% to Hg”(g) formation below 12 km (Br:
17.5%—-81.9%; OH: 10.9%—-81.8%; Cl: <0.7%). Our least conservative estimate, which uses a rate constant twice
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as fast as the ky,,p, measured by Donohoue et al. (2006) for ky,,; and assumes an Hg-I bond strength of
11.0 keal mol™, places iodine atoms at a contribution of 34.6%-63.1% to HgH(g) formation below 12 km (Br:
11.5%-32.8%; OH: 4.4%-53.6%; Cl: <0.4%). These results are consistent with the observed correlation between
mercury and iodine in aerosols in the lower stratosphere (Murphy et al., 2006), and suggest these correlations
might have a mechanistic causal relationship. The inclusion of iodine radical oxidation of Hgo(g) to Hg" in at-
mospheric models is desirable, as is better knowledge of the reaction kinetics and better constraints on the
tropospheric iodine distribution.

Data Availability Statement

All CU MAX-DOAS and dual-channel mercury system measurement data at SPL during April 2022 (measured
trace gas SCD; and measured and GEOS-Chem simulated trace gas VCD,,,, VMR measured and GEOS-
Chem simulated Hg® & Hg"™) as well as the gas-phase mercury chemical box model constraints & output
described in this study are publicly available at zenodo with a Creative Commons Attribution 4.0 license (Lee,
Elgiar, et al., 2024). The HYSPLIT-STILT back trajectory simulations at SPL during April 2022 described in this
study are publicly available at zenodo with a Creative Commons Attribution 4.0 license (Lee, Wilmot,

instr>

et al., 2024). The long-term measurements of Hg®, Hg", trace gases, and meteorology at SPL, a subset of which
are used in this study, are publicly available at zenodo with a Creative Commons Attribution 4.0 license (Gratz
et al., 2024). Version 13.2.1 of the GEOS-Chem model was used to simulate atmospheric oxidant fields and is
available via an MIT license (The International GEOS-Chem User Community, 2021). Version 12.8.0 of the
GEOS-Chem model was used to simulate atmospheric mercury chemistry is available via an MIT license (The
International GEOS-Chem User Community, 2020). Version 3.4.5 of the QDOAS spectral analysis software
developed by the DOAS UV-VIS team at the Royal Belgian Institute for Space Aeronomy (BIRA-IASB) was
used for all DOAS spectral analysis and is available via a BSD 3-clause type license (https://uv-vis.aeronomie.be/
software/QDOAS/index.php). Version 8.0.4.2 of the IGOR Pro software developed by WaveMetrics, Inc. was
used for data analysis and is available via a commercial license (https://www.wavemetrics.com/products/

igorpro).
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