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Abstract. Motivated by the applications of rental services in e-commerce, we consider reve-
nue maximization in online assortment of reusable resources for a stream of arriving consu-
mers with different types. We design competitive online algorithms with respect to the 
optimum online policy in the Bayesian setting in which types are drawn independently 
from known heterogeneous distributions over time. In the regime where the minimum of 
initial inventories cmin is large, our main result is a near-optimal 1ÿmin 1

2 ,
ooooooooooooooooooooooooooooo

log(cmin)=cmin

pÿ ÿ

competitive algorithm for the general case of reusable resources. Our algorithm relies on an 
expected LP benchmark for the problem, solves this LP, and simulates the solution through 
an independent randomized rounding. The main challenge is obtaining point-wise inven-
tory feasibility in a computationally efficient fashion from these simulation-based algo-
rithms. To this end, we use several technical ingredients to design discarding policies—one 
for each resource. These policies handle the trade-off between the inventory feasibility 
under reusability and the revenue loss of each of the resources. However, discarding a unit 
of a resource changes the future consumption of other resources. To handle this new chal-
lenge, we also introduce postprocessing assortment procedures that help with designing and 
analyzing our discarding policies as they run in parallel, which might be of independent 
interest. As a side result, by leveraging techniques from the literature on prophet inequal-
ity, we further show an improved near-optimal 1ÿ 1=

oooooooooooooooo

cmin + 3
:

competitive algorithm for 
the special case of nonreusable resources. We finally evaluate the performance of our algo-
rithms using the numerical simulations on the synthetic data.

Funding: R. Niazadeh’s research is partially supported by an Asness Junior Faculty Fellowship from the 
University of Chicago Booth School of Business. 

Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2020.0687. 
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1. Introduction
Assortment planning refers to the decision of a 
revenue-maximizing firm as to which subset of pro-
ducts to display to its consumers. In classic retail appli-
cations, the focus is mostly on sale; however, with the 
advent of online e-commerce platforms, several appli-
cations have emerged where the focus is on renting out 
reusable resources. A reusable resource—also referred to 
as a rental product—leaves the stock for some time 
duration after being assigned to a consumer and can be 
reassigned to a new consumer once it is back. Examples 
are virtual machines in cloud computing platforms 
such as AWS, houses in vacation rental online market-
places such as Airbnb, and local professional services 
in online labor platforms such as Thumbtack. In order 
to extract more revenue, a (personalized) assortment 

policy can decide to display a different subset of these 
resources once a new consumer interacts with the plat-
form; the task of such a policy is to manage the sequence 
of assortments in the long run given the inventory 
restrictions.

Motivated by the applications listed, we study the 
online assortment of reusable resources in which a plat-
form sequentially makes irrevocable assortment deci-
sions for a stream of arriving consumers. All consumers 
have a type that determines their choice probabilities 
given each possible assortment—referred to as the con-
sumer’s choice model. The platform collects a one-time 
personalized payment each time a consumer rents a 
product. Different products have different rental fees 
that are determined by the consumer’s type. To model 
the uncertainty about the duration of a rental, we 
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consider a stochastic model where the rental durations 
are drawn independently each time a product is 
rented. The types of arriving consumer also determine 
their rental duration distributions for different pro-
ducts. To model the platform’s prior information about 
its future consumers, which is usually formed based 
on the past consumers’ data in an online platform, we 
take a Bayesian approach. We assume the types are 
drawn independently over time from known heteroge-
neous distributions.

Once new consumers arrive, the platforms observe 
their realized type from the known type distribution, 
display a new subset of products, and allow the consu-
mers to select a product stochastically from this subset 
based on their choice models. The goal is to design an 
online assortment algorithm in order to maximize the 
expected total collected rental fees (also known as the 
revenue) during the decision-making horizon. Impor-
tantly, we consider the setting where each product has 
an initial inventory and the algorithm should always 
assort an available subset of products. Availabilities 
are determined by the current inventory levels of the 
products—quantities that decrease as a unit of the 
product is rented and increase as it is returned to the 
stock.

Given the sequence of distributions for the entire 
decision-making horizon, a revenue benchmark in our 
problem is an upper bound on the expected revenue 
of any feasible online algorithm as the platform, where 
the expectation is over the randomness in the algo-
rithm, the type sequence, and the consumers’ choices. 
We measure the performance of our online algorithms 
using the notion of competitive ratio, that is, the worst- 
case ratio between the expected revenue of the online 
algorithm and the targeted revenue benchmark.

As is common in the literature and practice of assort-
ment optimization, we assume general consumer choice 
models that are weak substitutes; that is, assorting a 
new product only weakly decreases the choice probabil-
ity of another assorted product (see Assumption 1). 
With no further assumptions, even the one-shot assort-
ment optimization can be computationally hard. To 
resolve this issue, we assume having oracle access to a 
black-box algorithm that can solve the one-shot assort-
ment optimization (see Assumption 3). Again, this is a 
common assumption in the literature to get around the 
computational issue associated with the one-shot prob-
lem when general consumer choice models are consid-
ered (Golrezaei et al. 2014, Rusmevichientong et al. 
2020). In the oracle-access computational model, we 
aim to design polynomial-time competitive online algo-
rithms with respect to an appropriate revenue bench-
mark for our problem.

In this setting, the question of finding the optimum 
online policy that maximizes the expected total reve-
nue is purely computational, and an exponential-size 

dynamic programming (DP) can formulate the opti-
mum online. Whereas no formal computational hard-
ness is known for computing the optimum online in 
our problem, it is conjectured to be computationally 
hard, even in the oracle-access model.1 Therefore, it is 
natural to consider the expected revenue of the opti-
mum online policy as a revenue benchmark and study 
whether it is amenable to polynomial time competitive 
online algorithms. More specifically, we ask the fol-
lowing question in this paper:

How close a polynomial time online algorithm can be to the 
optimum online policy in terms of expected revenue? In par-
ticular, can we obtain constant or near-optimal competitive 
online algorithms with respect to the optimum online policy 
(when initial inventories are large)?

A significant progress toward providing a compelling 
answer to this question is the result of Rusmevichientong 
et al. (2020), which establishes an approximate dynamic 
programming approach for the exponential-size opti-
mum online DP. They show that a greedy algorithm that 
uses a linear approximation of the optimal revenue to go 
function obtains at least 12 of the expected revenue of the 
optimum online. They further study the setting when 
rental durations are infinite (i.e., the resources are not 
reusable) and rental fees are type independent. In this 
setting, they show how to perform a rollout on a simple 
static policy to obtain 1ÿmin

ÿ

1
2 , 1

oooooooo

cmin
3
: ÿ

fraction of the 

expected revenue of the optimum online policy, where 
cmin is the minimum initial inventory across different 
products.2 This last result is essentially a near-optimal 
competitive algorithm when the initial inventories are 
large and the resources are nonreusable. Note that the 
large initial inventory regime is relevant in many appli-
cations of assortment optimization, and it is the main 
focus of our paper as well.

1.1. Our Contributions
The main contribution of our paper is the following 
result.

Main Result. For the general case of Bayesian online assort-
ment of reusable resources, we propose a polynomial time 
online algorithm that obtains a near-optimal competitive ratio 
of 1ÿmin 1

2 ,ε7(cmin)
ÿ ÿ

, where ε7(x) ÿO(
ooooooooooooooooo

log(x)=x
p

).
This competitive ratio guarantee holds even when 

the rental fees, consumer choices, and rental duration 
distributions are type dependent and vary arbitrarily 
across different types.

To obtain the result given, our work diverges from 
Rusmevichientong et al. (2020) by considering a differ-
ent revenue benchmark. In particular, we consider a 
linear programming relaxation of the optimum online 
policy, referred to as the Bayesian expected LP. To define 
this benchmark, suppose a feasible online policy knows 
the exact realizations of future types but does not know 
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the realizations of consumer choices and rental dura-
tions. The optimum such policy, known as the clair-
voyant optimum online, clearly provides a revenue 
benchmark. Now consider a relaxation of this policy 
by only requiring the inventory feasibility constraints 
of reusable resources to hold in expectation over the 
randomness in types, consumer choices, and rental 
durations. Given the sequence of type distributions, 
this relaxation is encoded by an LP with an exponen-
tial number of variables and polynomial number of 
time-varying packing constraints to ensure the inven-
tory feasibility of reusable resources in expectation. 
See Section 2.2 for details.

It turns out that we can simply solve the Bayesian 
expected LP in polynomial time by solving its dual 
program using the ellipsoid method—given access to 
the offline assortment oracle. Given the LP solution, a 
simple but powerful technique in the Bayesian online 
optimization is to use a simulation-based rounding 
algorithm to mimic the optimal solution of this LP (for 
examples of this approach, refer to Alaei et al. 2012, 
Devanur et al. 2012, Gallego et al. 2015, Dickerson et al. 
2018, Wang et al. 2018, Ma et al. 2020, Baek and Ma 
2022). After observing the type of arriving consumer, 
this algorithm independently samples an assortment 
from a distribution over subsets of products that 
comes from the LP solution, ignoring the inventory 
constraints. This algorithm has no loss in terms of the 
expected revenue compared with the LP solution; 
however, it only respects the inventory constraints 
of each product in expectation—and not necessarily 
under every sample path of the existing randomness.

Our main technical contribution is providing techni-
ques to transform the simulation-based algorithm into a 
point-wise feasible online algorithm in polynomial time, 
with constant or negligible multiplicative loss in the 
expected revenue. To this end, we run a separate proce-
dure over time—one for each product—together with 
the simulation-based policy. After an assortment is sam-
pled at each time, each procedure decides whether to 
discard the corresponding product if it is in the sampled 
subset to maintain the inventory feasibility of this prod-
uct. This specific architecture of sampling according to 
the LP solution and then using product-specific discard-
ing rules has been explored in the past; for example, see 
Alaei et al. (2012), Gallego et al. (2015), Dickerson et al. 
(2018), Wang et al. (2018), and Baek and Ma (2022).3 Sim-
ilarly, we aim to design polynomial time online discard-
ing policies (and other necessary algorithmic constructs) 
that handle the trade-off between maintaining the in-
ventory feasibility and the discarding revenue loss for 
each product. The main new challenges specific to our 
problem is that (i) products are reusable, (ii) products 
are weak substitutes—and hence discarding a product 
increases the choice probability of other products, and 
(iii) discarding can be potentially randomized—which 

combined with reusability creates complicated correla-
tion structures among selection indicator random vari-
ables across time and makes it challenging to argue 
about point-wise feasibility of policies. In what follows, 
we sketch our main technical contributions and how 
they overcome these challenges.

1.1.1. General Rental Duration Distributions/Near-Opti-

mal Discarding (Section 3.2). The main idea behind 
our near-optimal discarding procedure is discarding 
each available sampled product independently at ran-
dom with a small probability. This is a simple yet rea-
sonable approach (cf. Hajiaghayi et al. 2007), as the 
simulation-based algorithm respects the inventory con-
straints of each product in expectation. By independent 
randomized discarding with probability γ > 0, we 
leave some slack in the inventory feasibility constraint 
by ensuring that the expected value of the number of 
units of the product under rental is at most (1ÿ γ)
times its initial inventory amount at any time. If this 
quantity as a sum of independent rental indicator ran-
dom variables concentrates around its expectation, we 
will then avoid violation of the inventory constraint 
with high probability when γ ÿO(

ooooooooooooooooooooooooooooo

log(cmin)=cmin

p

). 
Moreover, it only loses γ�fraction of the expected reve-
nue form this product, as desired.

However, this simple approach does not work as 
described because (i) the resources are reusable and 
the inventories are limited; hence, the rental indicator 
random variable of a product at some time τ < t can 
be correlated with the rental indicator random variable 
of the same product at time t if the rental duration of 
time τ�is at least tÿ τ, and the last unit of the product is 
rented at τ; (ii) once a discarding procedure drops a 
product from the sampled assortment, there will be 
less cannibalization of other products, as the consumer 
choices are weak substitutes. This, in turn, increases 
the probability of other products being chosen by the 
arriving consumer and hence increases the expected 
number of units of different products under rental in 
future for the resulting algorithm compared with what 
is expected from the simulation-based algorithm.

We fix these issues by proposing a postprocessing 
step after the independent randomized discarding, 
which we refer to as subassortment sampling. In a nut-
shell, the goal of the subassortment sampling is to find a 
distribution over available subsets so that the products 
that are not discarded will be rented with exactly the 
same probability as in the optimal solution of the Bayes-
ian expected LP. It is not even clear a priori whether 
such a distribution exists; nevertheless, we show it does 
and provide a polynomial time construction to sample 
from this distribution. Using the properties of the subas-
sortment sampling, we propose a coupling trick to 
show our desired concentration despite the fact that the 
rental indicator random variables are correlated across 
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time. Note that the task of subassortment sampling is 
quite general, and it might be of independent interest in 
other applications.4

1.1.2. General Rental Duration Distributions/1
2
-Compet-

itive Discarding (Section 3.3). As an alternative dis-
carding policy for the general case of reusable 
resources, consider an exponential-size DP that keeps 
track of the state of each unit of the product (i.e., when 
each unit returns to the inventory) and solves the dis-
carding task optimally. We introduce an approximate 
version of this DP, which we also refer to as optimistic 
DP, that can be solved in polynomial time. The goal is 
to maximize the per-unit revenue to go of the product 
when the inventory is automatically replenished by an 
exogenous process every time we make a discarding 
decision so that the entire inventory of the product is 
always available on hand. This new DP is inventory 
independent and thus is polynomial size. We then 
consider a discarding algorithm that makes the same 
decisions as the optimistic DP. The result is a nona-
daptive thresholding discarding rule; that is, an avail-
able product is only discarded if its rental fee is below 
a certain threshold. These thresholds are computed up 
front and only depend on the product, time, and real-
ized type.

The main intuition behind why the discarding algo-
rithm is a reasonable approximation is as follows. We 
can show the expected revenue to go of this algorithm 
is a concave function of the inventory level; that is, the 
higher the inventory level, the lower the per-unit 
expected revenue to go. As a result, when there is no 
replenishment in reality, it obtains at least the same 
expected per-unit revenue to go as the DP with replen-
ishment. We then analyze the worst-case ratio between 
the value of this inventory-independent DP and the 
per-unit revenue of the expected LP using a “factor 
revealing linear program” and its dual. This approach 
establishes a lower-bound of 12 for this ratio. It is worth 
noting that similar proof techniques based on dual 
fitting have been used in the literature for other pro-
blems with nonreusable resources (see, e.g., Adelman 
2007, Zhang and Adelman 2009, Alaei et al. 2012, Gal-
lego et al. 2015, Wang et al. 2018). Our work extends 
the existing analysis to prove performance guarantees 
for LP-based discarding policies when resources are 
reusable.

We highlight that our DP for designing the approxi-
mate discarding policy given the expected LP solution 
shares similar, but not completely identical, recursive 
structures with the approximate dynamic program-
ming approach in Rusmevichientong et al. (2020) for 
directly approximating the optimum online policy; in 
fact, in contrast to their approach, the Bellman update 
equation of our DP uses the solution of the expected 
LP (the optimal assortment sampling probabilities). 

Therefore, whereas both DPs provide the same ap-
proximation factor of 1

2, ours is with respect to the 
stronger benchmark of expected LP, versus theirs, 
which is with respect to the optimum online policy. 
This subtle difference turns out to be the key in com-
bining the performance guarantees of our two algo-
rithms in Sections 3.2 and 3.3 in order to obtain a 
simple hybrid algorithm that achieves the theoretical 
“best of both worlds” competitive ratio guarantee with 
respect to the stronger expected LP benchmark (and 
as we observe later, improved performance in numeri-
cal simulations).

1.1.3. Hybrid Simulation-Based Algorithm (Section 

3.4). Having access to the aforementioned simulation- 
based algorithms with different discarding rules, we 
aim to define a hybrid algorithm that enjoys the competi-
tive ratios of both small and large inventory regimes. 
To this end, we make an upfront decision on which dis-
carding policy to use for each product. In particular, we 
use the value function of the optimistic DP for each 
product separately to calculate the ratio Ri between the 
expected revenue to go of following the optimistic DP 
for this product and the contribution of this product to 
the expected LP’s objective. We then compare this ratio 
with 1ÿ ε7(ci) (see (1) for the definition of function 
ε7(·)) to partition the products into large inventory (i.e., 
when Ri + ε7(ci) < 1) and small inventory (i.e., when 
Ri + ε7(ci) > 1). For each large inventory product, we 
run the randomized discarding policy in Section 3.2, 
and for each small inventory product, we run the opti-
mistic DP discarding policy in Section 3.3. We also 
use the subassortment sampling procedure for postpro-
cessing to correct the resulting increase in choice pro-
babilities of nondiscarded products because of weak 
substitution. By using the facts that (i) the competitive 
ratio analyses of both algorithms decouple across pro-
ducts, (ii) both analyses compare the expected revenue 
obtained from each product with the contribution of 
that product to the expected LP’s objective, and (iii) 
subassortment sampling corrects the choice probabili-
ties of nondiscarded products, we show the resulting 
hybrid policy combines the two competitive ratios.5

Whereas this hybrid algorithm attains the best of both 
worlds competitive ratio of 1ÿmin 1

2 ,ε7(cmin)
ÿ ÿ

, it is 
also likely to outperform both policies in practical sce-
narios; the results of our numerical simulations in Sec-
tion EC8 in the Online Appendix empirically support 
this claim. We also present a second hybrid algorithm 
using the method of conditional expectations. See Sec-
tion 3.4 for more details.

We also complement our results by considering the 
special case of nonreusable resources. By leveraging 
techniques from the literature on prophet inequality 
and extending them to the Bayesian assortment optimi-
zation problem, we provide a near-optimal improved 
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competitive ratio of 
ÿ

1ÿ 1
oooooooooo

cmin+3
:

ÿ

with respect to the 

expected LP in this setting. See Section EC3 and Section 
EC7 in the Online Appendix for more details.

1.1.3.1. Numerical Simulations (Online Appendix 

Section EC8). We finally provide numerical justifica-
tion for the revenue performance of our proposed poli-
cies. Adapting the setups of the numerical experiments 
in Golrezaei et al. (2014) and Rusmevichientong et al. 
(2020) to our setting, we compare the revenue of our 
proposed policies—that is, the hybrid algorithm and 
the simulation with optimal discarding under infinite 
rental durations—with other policies in the literature. 
In our numerical simulations, we consider various sce-
narios with both general rental duration distributions 
and infinite rental durations. In all of these scenarios, 
our policies noticeably outperform the other policies in 
terms of the expected revenue.

2. Preliminaries
We first formalize our problem, the model, and all the 
required assumptions in Section 2.1. We then briefly 
explain various aspects of our expected LP benchmark 
in Section 2.2.

2.1. Model and Problem Definition
The platform offers n different rental products, in-
dexed by [n] ÿ {1, 2, : : : , n}. Each rental product i has 
an initial inventory of ci * Z+. Consumers who are 
interested in renting these products arrive sequentially 
at times t ÿ 1, 2, : : : , T. Consumer t has type zt * Zt, 
where Zt denotes the (discrete) space of possible types 
at time t. We assume types are drawn independently 
from known probability distributions Ft : Zt³ [0, 1] at 
times t ÿ 1, : : : , T.

Upon the arrival of consumer t, that consumer’s 
type zt is revealed to the platform. Given this type and 
the history up to time t, the platform offers an assort-
ment of available products St * S from its inventory, 
where S ¦ 2[n] is the collection of all feasible assort-
ments that can be offered, ignoring the inventory 
availability. Given the assortment St, the consumer 
chooses a rental product it * St, pays a rental fee to the 
platform, and keeps the product for a stochastic rental 
duration dt * Z+.

We consider the setting where the consumer choice 
behavior, rental fees of different products, and rental 
duration distributions of different products depend on 
the type zt at each time t. Formally, a consumer type z is 
defined as a tuple +φz, rz, Gz+ so that 
" The choice of a consumer with type z is modeled 

by a general choice model function φz
: S × [n] ³ [0, 1], 

where φz(S, i) is the probability that consumer with 
type z chooses product i to rent when assortment set 
S * S is offered.

" For a consumer with type z, rz ÿ (rz
1, rz

2, : : : , rz
n) *

Rn, where rz
i denotes the rental fee of product i. More-

over, Gz ÿ (Gz
1, Gz

2, : : : , Gz
n), where Gz

i denotes the cumu-
lative distribution function (cdf) of rental duration of 
product i for type z. We use gz

i : [T] ³ [0, 1] to denote 
the probability distribution function (pdf) of rental 
duration of product i for type z. Moreover, let G

z

i (·)¢ 

1ÿGz
i (·).

Note that we assume rental durations are indepen-
dent across time; that is, if, at time t, a consumer of type z 
chooses a product i, a fresh sample dt ~ Gz

i is realized as 
the rental duration of this product. We further impose 
the following assumptions on our choice models and 
feasible assortments, which are common in previous lit-
erature (cf. Golrezaei et al. 2014, Rusmevichientong et al. 
2014):

Assumption 1 (Weak Substitutability). For all t * [T], z *
Zt, and i * [n], φz(', i) ÿ 0. Moreover, for all S * S and j *
[n]={i}, φz(S, i) g φz(S * {j}, i):
Assumption 2 (Downward-Closed Feasibility). If S * S and 
S2 ¦ S, then S2 * S; that is, a feasible assortment will remain 
feasible after removing any subset of its offered products.

Remark 1. In online hospitality services such as 
Airbnb, users report the duration of their stay to the 
platform before the platform shows them a listing. In 
such a variation, the platform makes the assortment 
decision by using the exact realizations of current 
rental times for the arriving type. Indeed, this is a spe-
cial case of our model where the rental time distribu-
tions are point mass.

Given type distributions {Ft}Ttÿ1, the goal is to design 
online algorithms—playing the role of the platform— 
that maximize the expected revenue granted from rental 
fees; here, the expectation is over randomness of the 
algorithm (if randomized) and the environment, that is, 
types, consumer choices, and rental durations. A reve-
nue benchmark for this problem is defined to be any 
upper bound on the expected revenue obtained by any 
feasible online algorithm (which might or might not be 
achievable by a feasible online algorithm). Fixing a reve-
nue benchmark, we evaluate the performance of any 
online algorithm by its competitive ratio against this 
benchmark. Informally speaking, competitive ratio is 
the worst-case ratio between the expected total revenue 
of the online algorithm and the benchmark, where the 
worst case is over all possible type distributions.

Definition 1 (Competitive Ratio). An online algorithm A 

is α-competitive against a given revenue benchmark if

inf
Tg1

inf
{Ft}Ttÿ1

RevA[{Ft}Ttÿ1]
OPT[{Ft}Ttÿ1]

g α, 

where RevA[·] is the expected revenue of algorithm A, 
and OPT[·] is the given revenue benchmark.
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For a general consumer choice model, the exact or 
even approximate offline assortment optimization can 
be computationally hard (Kök et al. 2008). In order to 
avoid this obstacle when designing polynomial time 
online algorithms for general consumer choice mod-
els, we assume having access to an algorithm that 
solves the offline assortment problem. For simplicity, 
we assume the solver is exact throughout the paper, 
but all of our results still hold with a multiplicative 
degrade of β�in the competitive ratios if the solver is a 
β-approximation algorithm for some 0 < β < 1.

Assumption 3 (Offline Oracle). For all t * [T], z * Zt, and 
R̂ * Rn

+, we have oracle access to an algorithm that finds a 
subset Ŝ * S such that

Ŝ * argmax
S*S

X

n

iÿ1

R̂iφ
z(S, i):

2.2. Bayesian Expected LP Benchmark
A key ingredient in all of our algorithms is the Bayesian 
expected LP benchmark—a concept commonly used in 
previous literature on online allocations, mechanism 
design, and assortment optimization to remedy issues 
of the benchmarks given (e.g., see Chawla et al. 2010, 
Alaei 2014, Gallego et al. 2015, Wang et al. 2018, Anari 
et al. 2019, Ma et al. 2020). This benchmark, denoted by 
Expected-LP[{Ft}Ttÿ1], uses linear programming to cap-
ture the optimum algorithm that only requires satisfying 
the inventory constraints in expectation, where expecta-
tion is taken over randomness in rental durations and 
consumer types given type distributions {Ft}Ttÿ1:

max
yg0

X

T

tÿ1

X

zt*Zt

X

S*S

X

n

iÿ1

Ft(zt)rzt

i φ
zt(S, i)yS, t, zt

s:t:

X

t

τÿ1

X

zτ*Zτ

X

S*S
Fτ(zτ)G

zτ
i (tÿ τ)φzτ(S, i)yS,τ, zτ f ci

i * [n], t * [T]
X

S*S
yS, t, zt

f 1 t * [T], zt * Zt:

(Expected-LP[{Ft}Ttÿ1]) 

Here, variables {yS, t, zt}t*[T], S*S, zt*Zt 
correspond to prob-

abilities that assortment S is offered to consumer t 
given type zt is realized, and first constraint shows 
inventory feasibility in expectation.

A few explanations are in order. First, the optimal 
objective value of this LP is an upper bound on the 
expected revenue of the clairvoyant optimum online 
benchmark and, hence, the weaker nonclairvoyant opti-
mum online (Proposition 1; see Section EC4 in the Online 
Appendix for the proof). Second, Expected-LP[{Ft}Ttÿ1]
can be solved efficiently using an oracle for the offline 

assortment (Proposition 2; see Section EC4 in the Online 
Appendix for the proof). We use this computational 
block as a preprocessing step in all of our algorithms.6

Proposition 1. For any type distributions {Ft}Ttÿ1, the 
expected total revenue of the clairvoyant optimum online 
benchmark is upper bounded by Expected-LP[{Ft}Ttÿ1].
Proposition 2. Given an algorithm for offline assortment 
(Assumption 3), an optimal assignment {y7S, t, zt

} of 
Expected-LP[{Ft}Ttÿ1] can be computed efficiently in time 
Poly(n, T,

P

t*[T] |Zt | ). Moreover, {y7S, t, zt
} has no more 

than Poly(n, T,
P

t*[T] |Zt | ) nonzero entries.

In Section EC2 in the Online Appendix, we compare 
the Bayesian expected LP benchmark with other bench-
marks considered in the literature.

3. Near-Optimal Algorithm for General 
Rental Durations

In this section, we present our main result—a near- 
optimal online simulation-based algorithm with competi-
tive ratio at least max 1

2 , 1ÿ ε7(cmin)
ÿ ÿ

against the Bayes-
ian expected LP benchmark, where

ε7(x)¢ min
γ*[0,1]

1ÿ (1ÿ γ) 1ÿ exp ÿ

γ2x

2ÿ γ

ÿ ÿÿ ÿ

: (1) 

Let γ7(cmin) be the optimal assignment of γ�in Equation (1). 
It is not hard to verify that ε7(cmin) ÿO(

oooooooooooooooooooooooooooo

log(cmin)=cmin

p

)
and is achieved at γ7(cmin) ÿO(

oooooooooooooooooooooooooooo

log(cmin)=cmin

p

). We first 
sketch our approach in Section 3.1. We then introduce a 
simulation-based algorithm with competitive ratio 1ÿ
ε7(cmin) in Section 3.2 and a different simulation-based 
algorithm to guarantee a competitive ratio of at least 1

2 
(even for small cmin) in Section 3.3. We finally present two 
simple hybrid algorithms that can obtain the best of two 
competitive ratios in Section 3.4.

3.1. High-Level Sketch of Our Approach
Let {y7S, t, zt

} be the optimal assignment of Expected-LP 

[{Ft}Ttÿ1]. As ' * S, without loss of generality, we can 
only consider optimal assignments, where

X

S*S
y7S, t, zt

ÿ 1 ∀t * [T], zt * Zt:

All of our simulation-based online algorithms in this 
paper follow four steps: 
" At time tÿ 0 (before starting): 

(i) Preprocessing: Compute an optimal assign-
ment {y7S, t, zt

} of Expected-LP[{Ft}Ttÿ1] by invoking 
the offline oracle described in Assumption 3. Also, 
compute any other offline parameters that are 
occasionally needed by the algorithm.
" At each time t ÿ 1, 2, : : : , T: 

(ii) Simulation: Upon realizing consumer type 
zt at time t, an outer procedure suggests Ŝ * S to 
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be assorted by sampling Ŝ from the distribution 
{y7S, t, zt

}S*S over S.
(iii) Discarding: For each product i * Ŝ, a sepa-

rate inner discarding procedure decides whether to 
remove this product from the final assortment 
given the history up to time t and realized type zt. 
If no units of product i are available on hand, it is 
discarded automatically to guarantee inventory 
feasibility. Otherwise, the inner procedure of prod-
uct i decides to discard or not. Let S ¦ Ŝ be the set 
of undiscarded products.

(iv) Postprocessing: Given zt, Ŝ, and S, pick a 
probability distribution F zt, Ŝ, S over all subsets of 
S. Then, sample an assortment S̃ ~ F zt, Ŝ, S and offer 
it to the consumer.

In this four-step layout, Step (ii) is a loss-less random-
ized rounding for the optimal solution of Expected-LP 
[{Ft}Ttÿ1]; however, the resulting assortment only guar-
antees inventory feasibility of each product in expecta-
tion. The role of Step (iii) and Step (iv) is to identify 
a (randomized) subset of this feasible in expectation 
assortment to not only guarantee inventory feasibility 
in each sample path but to also guarantee that the 
expected loss because of discarded products is small.

3.2. Large Initial Inventory: Toward Competitive 
Ratio 12«

7(cmin)
The main idea behind the algorithm of this subsection 
is discarding each product independently at random 
with probability γ ÿO(

ooooooooooooooooooooooooooooo

log(cmin)=cmin

p

) in Step (iii) at 
each time t. Intuitively speaking, this discarding tries to 
leave enough probability for not violating any of the 
inventory constraints at each time t. To see this, if dis-
carding a product does not change the choice probabil-
ity of another assorted product, the expected number 
of unavailable units of each product i at each time t is at 
most (1ÿ γ)ci because of the feasibility in expectation 
of sampled sets in Step (ii). Now consider the rental 
indicator random variables of product i, that is, random 
variables indicating whether this product is rented at 
each time or not. If these random variables are mutu-
ally independent across time, then we can use simple 
concentration bounds for the sum of independent ran-
dom variables to prove our claim.

There are two major issues with this approach: 
(i) Under weak substitutability (Assumption 1), dis-

carding product i weakly increases the choice probabil-
ity of another assorted product j ≠ i. Therefore, the 
probability of an available unit of product j being 
rented at each time τ < t becomes larger than expected, 
which, in turn, increases the expected number of una-
vailable units of this product at time t if we only simu-
late the expected LP’s optimal solution and discard 
each product independently with probability γ.

(ii) As resources are reusable and inventories are 
limited, the rental indicator random variable of product 

i at time τ < t is possibly positively correlated with the 
rental indicator random variable of the same product 
at time t; in fact, the first indicator forces the second 
indicator to be zero when the realized rental duration 
dτ�at time t is no smaller than tÿ τ, the last unit of the 
product is rented at time τ, and no units of the product 
return during [τ+ 1, t].

We address the first issue in Section 3.2.1 by chang-
ing the algorithm and address the second issue in Sec-
tion 3.2.2 by modifying the analysis.

3.2.1. Subassortment Sampling. To fix the first issue, 
we propose the subassortment sampling procedure—a 
postprocessing procedure to be used in Step (iv). This 
procedure ensures that products that were not dis-
carded in Step (ii) are rented by the arriving consumer 
with exactly the same probability as in the optimal solu-
tion of the expected LP benchmark. More formally, the 
subassortment sampling induces a distribution F zt, Ŝ, S 
over subsets of S at each time t so that

∀i * S : ES̃~F
zt, Ŝ,S
[φzt(S̃, i)] ÿ φzt(Ŝ, i): (2) 

It is not clear a priori whether such a distribution 
F zt, Ŝ , S exists yet alone can be sampled from in polyno-
mial time (polynomial in number of products n); never-
theless, for any general choice model satisfying weak 
substitutability (Assumption 1) and downward-closed 
feasibility (Assumption 2), we show such a distribution 
F zt, Ŝ , S exists, and we introduce Procedure 1, which 
recursively samples a set from F zt, Ŝ, S in polynomial 
time.7

Procedure 1 (Subassortment Sampling)
Input: choice model φ, assortment S ÿ {1, 2, : : : , m}, 
target probabilities {pi}i*S 

1 Let σ : [m] ³ [m] be a permutation such that 1 g
pσ(1)

φ(S,σ(1)) g
pσ(2)

φ(S,σ(2)) g⋯g pσ(m)
φ(S,σ(m)) g 0

/* Define 
pσ(j)

φ(S,σ(j)) ÿ 1 if φ(S,σ(j)) ÿ 0 or S ÿ '. */
2 If 

pσ(m)
φ(S,σ(m)) ÿ 1 then

3 return S̃± S
4 else

5 Let q0 ÿ 1ÿ
pσ(1)

φ(S,σ(1)) , qm ÿ pσ(m)
φ(S,σ(m)), and qj ÿ pσ(j)

φ(S,σ(j))

ÿ

pσ(j+1)
φ(S,σ(j+1)) for j ÿ 1, : : : , mÿ 1

/* Note that 
Pm

jÿ0 qj ÿ 1 */

6 Sample j7 ~ {qj}mjÿ0

7 If j7 ÿ 0 then
8 return '
9 if j7 ÿm then

10 return S
11 Let S2±{σÿ1(j)}j

7

jÿ1

12 return S̃± SUB-ASSORTMENT SAMPLING(φ, S2, {φ(S, 

i)}i*S2)
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Proposition 3. For any weak substitutable and downward- 
closed feasible choice model φ, any assortment S * S, and any 
target probabilities {pi}i*S such that pi f φ(S, i) for all i * S, 
Procedure 1 outputs a randomized assortment S̃ that satisfies 
(i) S̃ ¦ S, and (ii) ES̃[φ(S̃, i)] ÿ pi for all i * S. Moreover, it 
runs in time Poly(n).
Remark 2. To guarantee Equation (2), given any (zt, Ŝ, 
S) at Step (iv), we invoke Proposition 3 by setting φ±
φzt , S± S, and pi± φzt(Ŝ, i) for all i * S. Note that pi ÿ
φzt(Ŝ, i) f φzt(S, i) for all i * S, simply because of weak 

substitutability and the fact that S ¦ Ŝ.

Proof of Proposition 3. Without loss of generality, we 
assume σ�is the identity permutation, that is, σ(i) ÿ i 
for i * [m]. To show the polynomial running time, 
observe that (a) the running time in each recursion is 
Poly(n), and (b) the number of iterations of this recur-
sive algorithm is at most n because |S | f n at the 
beginning and the size of the S2 that is the input of the 
next recursive call shrinks by one at each iteration; 
that is, |S2 | f |S | ÿ 1.

Property (i) holds by construction. We show prop-
erty (ii) by induction on m ÿ |S | , that is, size of assort-
ment S. In this induction, we use another simple 
property (iii) that φ(S, i)(Pm

jÿi qj) ÿ pi for all i * S, which 
immediately hold by construction.

Base case (mÿ 1). In this case, Procedure 1 randomly 
outputs ' or S. By property (iii), the induction state-
ment holds.

Inductive step (m> 1). Fix an arbitrary product i * S. 
Notice that, by construction, ES̃[φ(S̃, i) | j7 < i] ÿ 0, and 
ES̃[φ(S̃, i) | j7 ÿm] ÿ φ(S, i). For any realized value, j7 ÿ
i, : : : , mÿ 1, and its corresponding S2 ÿ {1, : : : , j7}, we 
can use the induction hypothesis for the assortment S2

with probabilities p2i ÿ φ(S, i) for each i * S2. This is 
true simply because |S2 | f mÿ 1 and that φ(S, i) f
φ(S2, i) for each i * S2, as the choice model φ�is 
weak substitute. By invoking the induction hypothesis 
when we use S2 in the next recursive call, we have 
ES̃[φ(S̃, i) | j7 ÿ j] ÿ φ(S, i) for all j ÿ i, : : : , mÿ 1. Thus, 
invoking property (iii),

ES̃[φ(S̃, i)] ÿ
X

m

jÿ0

qjES̃[φ(S̃, i) | j7 ÿ j]

ÿ
X

m

jÿi

qj

 !

φ(S, i) ÿ pi, 

which completes the inductive step and finishes the 
proof. w

3.2.2. The Algorithm and Analysis. Now, we present 
our first simulation-based algorithm (Algorithm 2) with 
its competitive ratio guarantee (Theorem 1). We defer 
the formal proof of Theorem 1 to Section EC5 in the 
Online Appendix.

Algorithm 2 (Simulation-Based Algorithm with Random 
Discarding)

Input: discarding probability γ * [0, 1]
1 Preprocessing: Compute the optimal assignment 

{y7S, t, zt
} of Expected-LP[{Ft}Ttÿ1] by invoking the 

offline assortment oracle (Assumption 3)
2 for tÿ 1 to T do

/* consumer t with type zt ~ Ft arrives */

3 Simulation: Upon realizing consumer type zt, 

sample Ŝt ~ {y7S, t, zt
}S*S

4 Discarding: Initialize St± Ŝt

5 for each product i * Ŝt do
6 Flip an independent coin and remove i from 

St with probability γ
7 if there is no available unit of product i then
8 Remove i from St

9 Postprocessing: Let S̃t± SUB-ASSORTMENT SAMPLING 

(φzt , St, {φ(Ŝt, i)}i*S t
)

/* Send a query call to Procedure 1 with 

appropriate input arguments */

10 Offer assortment S̃t to consumer t

Theorem 1. By setting γ ÿ γ7(cmin), the competitive ratio 
of Algorithm 2 against the Bayesian expected LP bench-
mark Expected-LP[{Ft}Ttÿ1] is at least 1ÿ ε7(cmin) ÿ 1 ÿ

O(
oooooooooooooooooooooooooooo

log(cmin)=cmin

p

). Moreover, it runs in time Poly(n, T, 
P

t*[T] |Zt | ) given oracle access to an offline algorithm for 
assortment optimization (Assumption 3).

Before presenting the Proof Sketch of Theorem 1, we 
first discuss how to use a simple concentration argu-
ment to obtain a competitive ratio upper bound of 1ÿ
O(

oooooooooooooooooooooooooooooooooo

log(cminnT)=cmin

p

) for a slightly modified version 
of Algorithm 2. The simple concentration argument 
works as follows: consider a modified version of Algo-
rithm 2 where the random discarding step is fully cor-
related. Namely, instead of flipping an independent 
coin for each product i * St, we flip a single coin and 
set St as all available products in Ŝt with probability γ, 
and empty set otherwise. Consider this modified Algo-
rithm 2 until the first time that one of the sampled pro-
ducts is not available. Note that before such a bad event 
happens, all allocations are independent over consu-
mers, and the subassortment sampling step is trivial 
(i.e., return S̃t ÿ St deterministically). We can bound the 
probability of this bad event at each time and for each 
product by an exponentially small probability in cmin 

because of the Chernoff bound. Applying union bound 
for every time t * [T] and every i * [n], and using the 
fact that when such a bad event happens, we have no 
control over the revenue, the resulting competitive ratio 
can be upper bounded by 1ÿO(

oooooooooooooooooooooooooooooooooo

log(cminnT)=cmin

p

). 
Note that this competitive ratio has an extra 

oooooooooooooooo

log(nT)
p

dependence and, thus, is strictly worse than the com-
petitive ratio 1ÿ ε7(cmin) stated in Theorem 1, which is 
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independent of the number of products n and the num-
ber of consumers T.

To prove Theorem 1 with the competitive ratio 1ÿ
ε7(cmin) that is independent of the number of products 
n and the number of consumers T, we use a careful 
coupling argument in our analysis of Algorithm 2 that 
couples the rental indicator random variables of our 
algorithm with an alternative hypothetical algorithm. 
This hypothetical algorithm ignores inventory con-
straints of all the products and only simulates the 
expected LP’s optimal solution combined with inde-
pendent discarding of each product with probability 
γ. This algorithm generates an independent sequence 
of rental indicator random variables, allowing us to 
use simple concentration bounds. Importantly, this 
coupling trick is only possible because of the guaran-
tee of the subassortment sampling procedure in Equa-
tion (2) (see the formal proof in Section EC5 in the 
Online Appendix).

Remark 3. Our analysis in this section mainly focuses 
on the asymptotic regime where cmin is large; how-
ever, we can still plot the competitive ratio 1ÿ ε7(cmin)
of Algorithm 2 for small values of cmin by numerically 
evaluating ε7(cmin) using Equation (1). See the black 
solid curve in Figure 1.

3.3. Small Initial Inventory: Toward Competitive 

Ratio 1
2

In this subsection, we propose our second simulation- 
based algorithm. The main difference between this 
algorithm and Algorithm 2 is in the discarding step: if 
no units of product i are available on hand, it is dis-
carded automatically to guarantee inventory feasibility; 
otherwise, it is only selected in the final assortment if 
rzt

i g Pzt

i, t, where Pzt

i, t are nonadaptive thresholds com-
puted by the algorithm up front (this will be discussed 

later). The aim of this discarding procedure is to guar-
antee that only available products with high enough 
rental fees are assorted.

Technically speaking, for each product I, one can 
consider a separate DP to optimally make discarding 
decisions. This DP will maximize per-unit revenue to 
go of assorted units of product i over the finite time 
horizon [1 : T], given the randomized suggestion of 
Step (ii) (recall Section 3.1). The drawback is the need 
for a high-dimensional state variable that keeps track of 
the on-hand product inventories as well the inventory 
of units of the product that are in use (and will return to 
inventory at different times). A major ingredient of our 
algorithm is to replace this high-dimensional DP with a 
simple one that is inventory independent and uses an 
optimistic upper bound of ci on the actual inventory in 
the Bellman equation for updating optimal per-unit 
revenue to go of product i.

3.3.1. Dynamic Programming for Per-Unit Revenue To 

Go with Replenishment. In the rest of this subsection, 
let XS, t, zt

¢y7S, t, zt
Ft(zt) for every S,t and zt. Suppose at 

each time t, a new independent consumer type zt ~ Ft is 
realized. Let Ŝ ~ XS, t, zt 

denote the randomized subset 
sampled in Step (ii) (simulation step). Fix a product i *
[n] with initial inventory of ci units. Now, consider 
a hypothetical scenario where an exogenous process 
replenishes the inventory at each time to guarantee we 
always have ci units of the product on hand, no matter 
how many units are currently under rental. In this new 
problem, the goal is to design an online policy to dis-
card or accept units of the reusable product once sug-
gested in Step (ii) in order to maximize the per-unit 
revenue to go of renting this product. We can formulate 
this problem using a simple dynamic programming 
where Vi, t is the optimal per-unit revenue to go of prod-
uct i during time interval [t : T]. Compared with the 
original high-dimensional DP for solving the optimum 
discarding, this DP is optimistic in that it “imagines” the 
deficiency in inventory is replenished every period.

As a convention, let Vi, T+1 ÿ 0. To write the Bellman 
update equation of the optimistic DP at time t using 
backward induction, suppose type zt is realized and 
Ŝ ÿ S (which happens w.p. XS, t, zt

). If optimal policy 
decides to discard product i, then per-unit revenue to 
go will be Vi, t+1. If optimal policy decides to not discard 
i, then, with probability (1ÿφzt(S, i)), the per-unit reve-
nue to go will still be Vi, t+1.8 However, with probability 
φzt(S, i), the consumer rents one of the ci units (remem-
ber that inventory will always be full) and therefore 
generates a total revenue to go of (ci ÿ 1)Vi, t+1 (i.e., 
because of contribution of units not rented at time t; 
these units will transfer to the inventory at time t+1) 
plus rzt

i +Vi, t+d upon realization of rental time d ~ Gzt

i 

(i.e., because of the contribution of the rented unit). To 
summarize, we will have the following Bellman update 

Figure 1. (Color online) Competitive Ratio of Simulation- 
Based Algorithms 

Note. The black solid curve corresponds to Algorithm 2; the blue 
dashed curve corresponds to the hybrid between Algorithms 2 and 3
(see Section 3.4).

Feng, Niazadeh, and Saberi: Near-Optimal Bayesian Online Assortment of Reusable Resources 
Operations Research, 2024, vol. 72, no. 5, pp. 1861–1873, © 2024 INFORMS 1869 

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

1
7
1
.6

6
.1

3
.1

2
3
] 

o
n
 0

6
 J

u
n
e 

2
0
2
5
, 
at

 1
4
:1

4
 .
 F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

, 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



equation:

Vi, t ÿ
X

zt*Zt

X

S*S
XS, t, zt

×max

(

Vi, t+1, (1ÿφzt(S, i))Vi, t+1

+φzt(S, i)
 

1

ci

X

d

gzt

i (d)(rzt

i +Vi, t+d) +
ci ÿ 1

ci
Vi, t+1

!)

:

(3) 

Note the update rule of the aforementioned dynamic 
programming can be simplified by rearranging the 
terms. Interestingly, the rule will be independent of ci 

and φzt(S, i), as they cancel out:

[At time t with type zt, i * Ŝ will be accepted]
� rzt

i g Vi, t+1 ÿ

X

d

gzt

i (d)Vi, t+d: (4) 

Remark 4. Later, in Sections EC3 and EC7 in the 
Online Appendix, we will replace this simple DP with 
a slightly modified one that has an inventory-dependent 
state but is still low-dimensional when rental times 
are infinite. This allows us to obtain (an almost) opti-
mal competitive ratio for this special case.

3.3.2. The Algorithm and Analysis. We now present 
our second simulation-based algorithm (Algorithm 3), 
with its competitive ratio guarantee (Theorem 2).9

Algorithm 3 (Simulation-Based Algorithm with Nonadap-
tive Per-Unit Revenue Thresholds) 

1 Preprocessing: 

" Compute the optimal assignment {y7S, t, zt
} of 

Expected-LP[{Ft}Ttÿ1] by invoking the offline 
assortment oracle (Assumption 3)
" Set XS, t, zt

¢y7S, t, zt
Ft(zt) for every S,t and zt 

where optimal assignment has a nonzero entry
" Solve the dynamic programming with Bell-

man update described in Equation (3) and 
boundary condition Vi, T+1 ÿ 0 for every prod-
uct i to obtain {Vi, t}i*[n], t*[T]
" Let Pzt

i, t ¢Vi, t+1 ÿ
P

dgzt

i (d)Vi, t+d, for all i * [n], 
t * [T], zt * Zt.

for tÿ 1 to T do
/* consumer t with type zt ~ Ft arrives */

2 Simulation: Upon realizing consumer type zt, 

sample Ŝt ~ {y7S, t, zt
}S*S

3 Discarding: Initialize St± Ŝt

4 for each product i * Ŝt do
5 if rzt

i < Pzt

i, t or there is no available unit of product 
i then

6 Remove i from St

/* Per-unit revenue thresholds {Pzt

i, t} are 
computed once, i.e., are nonadaptive */

7 Postprocessing: Let S̃t± SUB-ASSORTMENT SAMPLING 

(φzt , St, {φ(Ŝt, i)}i*S t
)

/* Send a query call to Procedure 1 with 

appropriate input arguments */

8 Offer assortment S̃t to consumer t

Theorem 2. The competitive ratio of Algorithm 3 against off-
line Bayesian expected LP benchmark, that is, Expected-LP 
[{Ft}Ttÿ1], is at least 1/2. Moreover, it runs in time Poly(n, 
T,
P

t*[T] |Zt | ) given oracle access to an offline algorithm for 
assortment optimization (Assumption 3).

Proof Sketch of Theorem 2. The running time is 
proved by Proposition 2 and the fact that the simple 
DP in Section 3.3.1 can be solved in polynomial time. 
The analysis of the competitive ratio can be decoupled 
across products. For each fixed product i, we do the 
analysis in two parts, each sketched as follows (see 
full details in Section EC6 in the Online Appendix): 
" Part (i), Section EC6.1: we first compare Algo-

rithm 3 with the simple optimistic dynamic program-
ming described in Section 3.3.1 and show the total 
expected revenue of Algorithm 3 because of rentals of 
product i is at least ciVi, 1. We prove this claim using 
induction and the fact that showing a subset S̃t of sam-
pled assortment Ŝt can only increase the revenue to go 
of the discarding policy that follows the thresholds of 
the optimistic DP (as in the algorithm).
" Part (ii), Section EC6.2: We then compare this 

simple dynamic programming with expected LP bench-
mark and show for each product i, ciVi, 1 is at least 1/2 
of the contribution of product i to the optimal objective 
value of Expected-LP[{Ft}Ttÿ1] (part (ii)). In order to 
prove this part, we use the connection between the opti-
mistic DP of Section 3.3.1 and a related factor–revealing 
LP that characterizes the competitive ratio of the opti-
mistic DP. This connections leads us to apply duality 
arguments to find a lower bound on the ratio of ciVi, 1 

and the contribution of product i to the optimal objec-
tive value of Expected-LP[{Ft}Ttÿ1].

3.4. Hybrid Between Algorithm 2 and Algorithm 3
3.4.1. Best of Both Worlds Discarding. In both Algo-
rithms 2 and 3, we have discarding policies (one for 
each of the products) that run independently from each 
other. Also, both competitive ratio analyses essentially 
decouple across different products, as we analyze the 
revenue performances of these discarding policies for 
each product separately. Moreover, in both analyses, we 
compare the expected revenue of each product i with 
the contribution of that product in the expected LP.

Considering all of these design and analysis aspects 
of our two algorithms, we can propose a hybrid algo-
rithm where we decide on the choice of the discarding 
policy for each product i based on its initial inventory ci 

upfront. Once we finalize these choices, we run the 
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(possibly different) discarding algorithms in parallel 
and separately for different products during the dis-
carding step of our final hybrid algorithm. In order to 
achieve the best of both worlds revenue performance 
guarantees of small and large inventory regimes, we 
partition the set of products into those with large initial 
inventory and those with small initial inventory (will 
be formally defined later) at the beginning. Given this 
partition, we assign a “randomized discarding” policy 
(as described in in Algorithm 2) to make discarding 
decisions of product i across times t * [T] if ci is large, 
and we use a “discarding with per-unit revenue thresh-
olds” (as described in in Algorithm 3) if ci is small.

To distinguish between large and small ci, we first 
solve the dynamic programming of the optimistic DP 
discarding policy in Section 3.3 for each product i * [n]
by using its Bellman update equation (described in 
Equation (3)). We then use the value function Vi, 1 of 
the optimistic DP for product i to label this product as 
either large or small inventory. In particular, define Ri 

to be the ratio between the expected revenue to go of 
the optimistic DP for product i and the contribution of 
this product to the expected-LP’s objective; that is,

Ri ¢
ciVi, 1

PT
tÿ1

P

zt*Zt

P

S*SXS, t, zt
φzt(S, i)rzt

i

:

Note that Ri * [0:5, 1] from Theorem 2. Also note that 
ε7(c) is continuous and monotone increasing in c, ε7(0)
ÿ 1, and ε7(+>) ÿ 0—see Equation (1) for the definition 
of ε7(·). We next compare the ratio Ri with 1ÿ ε7(ci). In 
fact, if Ri + ε7(ci) < 1, we then except the competitive 
ratio of randomized discarding to be no smaller than 
that of the optimistic DP, and hence, we label the prod-
uct as “large inventory.” Otherwise, we expect the opti-
mistic DP to beat the randomized discarding in terms 
of the competitive ratio, and hence, we label the prod-
uct as “small inventory.” Finally, we perform the sub-
assortment sampling as a postprocessing step in order 
to correct the choice probabilities of nondiscarded pro-
ducts (which might have been increased because of 
weak substitution and that other products are either 
discarded or not even selected in the assortment as 
they were not available at the first place). We denote 
the resulting algorithm by Sim+Hybrid(i).

Theorem 3. The competitive ratio of Sim+Hybrid(i) 

against offline Bayesian expected LP benchmark, that is, 

Expected-LP[{Ft}Ttÿ1], is at least 1ÿmin 1
2 ,ε7(cmin)
ÿ ÿ

(see 
Figure 1).

Proof Sketch. As it can be seen by following the lines 
of both the proof of Theorem 1 in Section 3.2.2 and 
the Proof of Theorem 2 in Section EC6 in the Online 
Appendix, the arguments for the revenue perfor-
mance of the corresponding discarding policies for 
each product i (and also the resulting competitive 

ratio) are independent of how discarding of another 
product i2 is handled, and therefore, the competitive ratio 
guarantees of the randomized discarding and the opti-
mistic DP from these theorems still hold for the hybrid 
algorithm. For brevity, we do not repeat these proofs. 
We conclude that the proposed hybrid algorithm has a 
competitive ratio of at least max 1

2 , 1ÿ ε7(cmin)
ÿ ÿ

. w

3.4.2. Monte Carlo Simulation to Help. In principle, 
given the sequence of type distributions {Ft}Ttÿ1, one 
can simulate both Algorithms 2 and 3 and estimate 
their expected future revenues using Monte Carlo sim-
ulation, starting at any time t * [T] (given any history 
up to time t). Now, a simple hybrid algorithm can 
switch to the algorithm with the higher expected reve-
nue and runs this algorithm for the next time step given 
the current history of rental products. By repeatedly 
applying this method at each time t given the history 
up to this time—a techniques known as the method of 
conditional expectation—we end up with an alternative 
hybrid algorithm that essentially is the be-the-leader 
policy among the two policies at each time, meaning 
that its expected future revenue at each time is at least 
the expected future revenue of each of the two policies 
(which can be proved using induction). Hence, this 
hybrid algorithm clearly obtains the best of both worlds 
competitive ratio of 1ÿmin 1

2 ,ε7(cmin)
ÿ ÿ

, similar to our 
previous hybrid algorithm. Such a policy can also 
choose to switch at a lower frequency, but no matter 
what frequency it picks, it is expected to outperform 
both policies in expectation, both in theory and prac-
tice. We use this alternative hybrid algorithm, which is 
denoted by Sim+Hybrid(ii), in our numerical simu-
lations in Section EC8 in the Online Appendix as well.

Theorem 4. The competitive ratio of Sim+Hybrid(ii) 

against offline Bayesian expected LP benchmark, that is, 

Expected-LP[{Ft}Ttÿ1], is at least 1ÿmin 1
2 ,ε7(cmin)
ÿ ÿ

(see 
Figure 1).

Proof Sketch. Consider the following backward induc-
tion. The induction hypothesis is that given current 
state J (i.e., the number of available units of each prod-
uct in the inventory, as well as the return time of each 
allocated unit of every product), and time period t, the 
expected revenue from time t to time T in Hybrid- 
Sim(ii) is weakly higher than Algorithms 2 and 3. 
Base case tÿT is straightforward. Suppose the induc-
tion hypothesis is correct for t+ 1, : : : , T. Consider the 
inductive step for time t and current state J. Suppose 
Monte Carlo simulation suggests that given state J, 
Algorithm 2 achieves higher expected revenue from 
time t to time T, and its induced new state is J2 (the 
analysis for the other case is similar). In this case, we 
know that the expected revenue in Hybrid-Sim(ii) 
from time t to time T can be decomposed into the 
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following two terms: (i) the expected revenue in 
Hybrid-Sim(ii) at time t, and (ii) the expected rev-
enue in Hybrid-Sim(ii) from time t+1 to time T 
under state J2. By construction, term (i) equals to the 
expected revenue in Algorithm 2 at time t. By our 
induction hypothesis for time t+1 with state J2, term 
(ii) is weakly higher than the expected revenue in 
Algorithm 2 from time t+1 to time T given state J2. 
Hence, the expected revenue in Hybrid-Sim(ii) 
from time t to time T given state J is weakly higher 
than Algorithms 2 and 3 as well, which concludes the 
backward induction. w

Remark 5. We would like to highlight that whereas 
both Sim+Hybrid(i) and Sim+Hybrid(ii) attain 
the theoretical best of both worlds competitive ratio that 
was mentioned earlier, and as we see in our numerical 
simulations in Section EC8 in the Online Appendix, 
they both outperform other existing policies in practical 
scenarios of our problem; they differ in terms of compu-
tational requirements. In fact, Sim+Hybrid(i) can eas-
ily make upfront decisions for the choice of discarding 
policy of each product i with almost no extra computa-
tion compared with Algorithms 2 and 3; nevertheless, 
Sim+Hybrid(ii) needs to run Monte Carlo simula-
tions several times (depending on the switching fre-
quency) by sampling from future types, which makes it 
less practically appealing.

4. Conclusion
We studied designing near-optimal algorithms for the 
online assortment of reusable resources in the Bayesian 
setting. We proposed an algorithmic framework based 
on four modular steps: (i) solving the expected LP, (ii) 
simulating the solution, (iii) running a separate discard-
ing procedure for each product to maintain point-wise 
inventory feasibility (while only losing a negligible frac-
tion of the revenue of each product), and (iv) performing 
a postprocessing step to adjust choice probabilities of 
nondiscarded items. Using this framework, we designed 
an algorithm that is 1ÿmin

ÿ

1
2 , O

ÿ oooooooooooooooooooooooooooo

log(cmin)=cmin

p ÿÿ

under the general rental duration distributions and an 
improved near-optimal algorithm with competitive ratio 

1ÿ 1=
ooooooooooooooooooo

(cmin + 3)
p

under infinite rental durations. Not 
only do our algorithms outperform the existing algo-
rithms in the literature theoretically, we further verified 
their revenue performance advantages through numeri-
cal simulations.

As a roadmap for future, it is interesting to study 
what other practical aspects of a real-world assortment 
problem beyond reusable resources can be modeled 
and to what extent mathematical programming techni-
ques can be used to design competitive algorithms 
there. On the technical side, the most immediate open 
problem stemming from our work is finding the opti-
mal competitive ratio for the case of general rental 

duration distributions. In particular, can one shave the 
logarithmic factor in our competitive ratio and obtain a 
1ÿO(1= oooooooo

cmin
: ) competitive algorithm, similar to the 

best known competitive ratio in the nonreusable case? 
As a different yet more ambitious future direction, it 
would be interesting to study classes of stochastic online 
optimization similar to the Bayesian online assortment 
further in order to discover the computational hardness 
of computing or approximating the optimum online pol-
icy, that is, the DP policy. An interesting discovery here 
would be obtaining improved approximations against 
the optimum online benchmark versus the expected LP 
benchmark through polynomial time policies, such as 
Anari et al. (2019), or proving its impossibility.
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Endnotes
1 For example, see Papadimitriou and Tsitsiklis (1987) for PSPACE- 

hardness of finding the optimum policy in partially observable Mar-
kov decision processes, and see related discussions in Anari et al. 
(2019) and Rusmevichientong et al. (2020).
2 If rental fees are type dependent, Rusmevichientong et al. (2020) 

show the same policy obtains 1ÿmin
ÿ

1
2 , R
oooooo

cmin
3
:

ÿ

competitive ratio 
guarantee, where R is the ratio between maximum and minimum 
rentals fees across different types.
3 See specifically the primal routing algorithm in section 7 of Gallego 
et al. (2015) and the separation algorithm in section 4.2 of Wang et al. 
(2018).
4 We would like to highlight that after appearance of an online ver-

sion of our paper, through a personal communication with authors of 
Goyal et al. (2020), we were informed that this paper (which was not 
available online at the time) independently and concurrently discov-
ered a procedure similar to our subassortment sampling for settings 
with adversarial arrival and reusable resources.
5 It is worth noting that the 12-competitive approximate DP algorithm 
of Rusmevichientong et al. (2020) cannot be combined using this 
approach with our near-optimal discarding policy, as this approxi-

mate DP algorithm competes with the optimum online policy and 
not the expected LP.
6 In fact, one needs to run the ellipsoid method for the dual of this LP 
using the offline assortment solver as the separation oracle in order to 

find the optimal solution. In practice, to obtain a faster algorithm, one 
can use cutting plane methods such as Vaidya (1996) or even faster 
almost-linear-time cutting plane methods such as Lee et al. (2015) 
that use the separation oracle more efficiently.
7 It is noteworthy that Goyal et al. (2020) independently and concur-
rently discovered an idea similar to our subassortment sampling for 
settings with adversarial arrival and reusable resources.
8 In this hypothetical scenario, we assume that the probability that 
the consumer select product i equals φzt (S, i) regardless of whether 
another product i2 is discarded from S.
9 The competitive ratio in Theorem 2 is optimal even if rental times 

are infinite. Consider the following example: there is a single nonreu-
sable product with a single unit. There are two time periods, Tÿ 2. 
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Consumer 1 has a deterministic type that deterministically purchases 
this item with fee 1. With probability [, consumer 2 has a type that 
deterministically purchases this item with fee 1=[. Otherwise (i.e., 
with probability 1ÿ [), consumer 2 has a type that purchases nothing. 
In this example, the expected revenue of the Bayesian expected LP 
benchmark, as well as the clairvoyant policy, is 2ÿ [, whereas the 
expected revenue of any online policy is, at most, one.
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