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Abstract. Motivated by the applications of rental services in e-commerce, we consider reve-
nue maximization in online assortment of reusable resources for a stream of arriving consu-
mers with different types. We design competitive online algorithms with respect to the
optimum online policy in the Bayesian setting in which types are drawn independently
from known heterogeneous distributions over time. In the regime where the minimum of
initial inventories cmin is large, our main result is a near-optimal 1 — min (3, \/10g(cmin) /Cmin )
competitive algorithm for the general case of reusable resources. Our algorithm relies on an
expected LP benchmark for the problem, solves this LP, and simulates the solution through
an independent randomized rounding. The main challenge is obtaining point-wise inven-
tory feasibility in a computationally efficient fashion from these simulation-based algo-
rithms. To this end, we use several technical ingredients to design discarding policies—one
for each resource. These policies handle the trade-off between the inventory feasibility
under reusability and the revenue loss of each of the resources. However, discarding a unit
of a resource changes the future consumption of other resources. To handle this new chal-
lenge, we also introduce postprocessing assortment procedures that help with designing and
analyzing our discarding policies as they run in parallel, which might be of independent
interest. As a side result, by leveraging techniques from the literature on prophet inequal-
ity, we further show an improved near-optimal 1 — 1/4/cmin + 3 competitive algorithm for
the special case of nonreusable resources. We finally evaluate the performance of our algo-
rithms using the numerical simulations on the synthetic data.
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1. Introduction

policy can decide to display a different subset of these
resources once a new consumer interacts with the plat-

Assortment planning refers to the decision of a
revenue-maximizing firm as to which subset of pro-
ducts to display to its consumers. In classic retail appli-
cations, the focus is mostly on sale; however, with the
advent of online e-commerce platforms, several appli-
cations have emerged where the focus is on renting out
reusable resources. A reusable resource—also referred to
as a rental product—leaves the stock for some time
duration after being assigned to a consumer and can be
reassigned to a new consumer once it is back. Examples
are virtual machines in cloud computing platforms
such as AWS, houses in vacation rental online market-
places such as Airbnb, and local professional services
in online labor platforms such as Thumbtack. In order
to extract more revenue, a (personalized) assortment
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form; the task of such a policy is to manage the sequence
of assortments in the long run given the inventory
restrictions.

Motivated by the applications listed, we study the
online assortment of reusable resources in which a plat-
form sequentially makes irrevocable assortment deci-
sions for a stream of arriving consumers. All consumers
have a type that determines their choice probabilities
given each possible assortment—referred to as the con-
sumet’s choice model. The platform collects a one-time
personalized payment each time a consumer rents a
product. Different products have different rental fees
that are determined by the consumer’s type. To model
the uncertainty about the duration of a rental, we


mailto:yiding.feng@chicagobooth.edu
https://orcid.org/0000-0002-8258-6994
mailto:rad.niazadeh@chicagobooth.edu
https://orcid.org/0000-0002-5880-6221
mailto:saberi@stanford.edu
https://doi.org/10.1287/opre.2020.0687
https://doi.org/10.1287/opre.2020.0687

Downloaded from informs.org by [171.66.13.123] on 06 June 2025, at 14:14 . For personal use only, all rights reserved.

Feng, Niazadeh, and Saberi: Near-Optimal Bayesian Online Assortment of Reusable Resources

1862

Operations Research, 2024, vol. 72, no. 5, pp. 1861-1873, © 2024 INFORMS

consider a stochastic model where the rental durations
are drawn independently each time a product is
rented. The types of arriving consumer also determine
their rental duration distributions for different pro-
ducts. To model the platform’s prior information about
its future consumers, which is usually formed based
on the past consumers’ data in an online platform, we
take a Bayesian approach. We assume the types are
drawn independently over time from known heteroge-
neous distributions.

Once new consumers arrive, the platforms observe
their realized type from the known type distribution,
display a new subset of products, and allow the consu-
mers to select a product stochastically from this subset
based on their choice models. The goal is to design an
online assortment algorithm in order to maximize the
expected total collected rental fees (also known as the
revenue) during the decision-making horizon. Impor-
tantly, we consider the setting where each product has
an initial inventory and the algorithm should always
assort an available subset of products. Availabilities
are determined by the current inventory levels of the
products—quantities that decrease as a unit of the
product is rented and increase as it is returned to the
stock.

Given the sequence of distributions for the entire
decision-making horizon, a revenue benchmark in our
problem is an upper bound on the expected revenue
of any feasible online algorithm as the platform, where
the expectation is over the randomness in the algo-
rithm, the type sequence, and the consumers’ choices.
We measure the performance of our online algorithms
using the notion of competitive ratio, that is, the worst-
case ratio between the expected revenue of the online
algorithm and the targeted revenue benchmark.

As is common in the literature and practice of assort-
ment optimization, we assume general consumer choice
models that are weak substitutes; that is, assorting a
new product only weakly decreases the choice probabil-
ity of another assorted product (see Assumption 1).
With no further assumptions, even the one-shot assort-
ment optimization can be computationally hard. To
resolve this issue, we assume having oracle access to a
black-box algorithm that can solve the one-shot assort-
ment optimization (see Assumption 3). Again, this is a
common assumption in the literature to get around the
computational issue associated with the one-shot prob-
lem when general consumer choice models are consid-
ered (Golrezaei et al. 2014, Rusmevichientong et al.
2020). In the oracle-access computational model, we
aim to design polynomial-time competitive online algo-
rithms with respect to an appropriate revenue bench-
mark for our problem.

In this setting, the question of finding the optimum
online policy that maximizes the expected total reve-
nue is purely computational, and an exponential-size

dynamic programming (DP) can formulate the opti-
mum online. Whereas no formal computational hard-
ness is known for computing the optimum online in
our problem, it is conjectured to be computationally
hard, even in the oracle-access model.! Therefore, it is
natural to consider the expected revenue of the opti-
mum online policy as a revenue benchmark and study
whether it is amenable to polynomial time competitive
online algorithms. More specifically, we ask the fol-
lowing question in this paper:

How close a polynomial time online algorithm can be to the
optimum online policy in terms of expected revenue? In par-
ticular, can we obtain constant or near-optimal competitive
online algorithms with respect to the optimum online policy
(when initial inventories are large)?

A significant progress toward providing a compelling
answer to this question is the result of Rusmevichientong
et al. (2020), which establishes an approximate dynamic
programming approach for the exponential-size opti-
mum online DP. They show that a greedy algorithm that
uses a linear approximation of the optimal revenue to go
function obtains at least § of the expected revenue of the
optimum online. They further study the setting when
rental durations are infinite (i.e., the resources are not
reusable) and rental fees are type independent. In this
setting, they show how to perform a rollout on a simple
static policy to obtain 1 —min(3, x‘/%_) fraction of the
expected revenue of the optimum online policy, where
Cmin 15 the minimum initial inventory across different
products.” This last result is essentially a near-optimal
competitive algorithm when the initial inventories are
large and the resources are nonreusable. Note that the
large initial inventory regime is relevant in many appli-
cations of assortment optimization, and it is the main
focus of our paper as well.

1.1. Our Contributions
The main contribution of our paper is the following
result.

Main Result. For the general case of Bayesian online assort-
ment of reusable resources, we propose a polynomial time
online algorithm that obtains a near-optimal competitive ratio

of 1 —min(}, & (cmin)), where e*(x) = O(y/log(x) /x).

This competitive ratio guarantee holds even when
the rental fees, consumer choices, and rental duration
distributions are type dependent and vary arbitrarily
across different types.

To obtain the result given, our work diverges from
Rusmevichientong et al. (2020) by considering a differ-
ent revenue benchmark. In particular, we consider a
linear programming relaxation of the optimum online
policy, referred to as the Bayesian expected LP. To define
this benchmark, suppose a feasible online policy knows
the exact realizations of future types but does not know
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the realizations of consumer choices and rental dura-
tions. The optimum such policy, known as the clair-
voyant optimum online, clearly provides a revenue
benchmark. Now consider a relaxation of this policy
by only requiring the inventory feasibility constraints
of reusable resources to hold in expectation over the
randomness in types, consumer choices, and rental
durations. Given the sequence of type distributions,
this relaxation is encoded by an LP with an exponen-
tial number of variables and polynomial number of
time-varying packing constraints to ensure the inven-
tory feasibility of reusable resources in expectation.
See Section 2.2 for details.

It turns out that we can simply solve the Bayesian
expected LP in polynomial time by solving its dual
program using the ellipsoid method—given access to
the offline assortment oracle. Given the LP solution, a
simple but powerful technique in the Bayesian online
optimization is to use a simulation-based rounding
algorithm to mimic the optimal solution of this LP (for
examples of this approach, refer to Alaei et al. 2012,
Devanur et al. 2012, Gallego et al. 2015, Dickerson et al.
2018, Wang et al. 2018, Ma et al. 2020, Baek and Ma
2022). After observing the type of arriving consumer,
this algorithm independently samples an assortment
from a distribution over subsets of products that
comes from the LP solution, ignoring the inventory
constraints. This algorithm has no loss in terms of the
expected revenue compared with the LP solution;
however, it only respects the inventory constraints
of each product in expectation—and not necessarily
under every sample path of the existing randomness.

Our main technical contribution is providing techni-
ques to transform the simulation-based algorithm into a
point-wise feasible online algorithm in polynomial time,
with constant or negligible multiplicative loss in the
expected revenue. To this end, we run a separate proce-
dure over time—one for each product—together with
the simulation-based policy. After an assortment is sam-
pled at each time, each procedure decides whether to
discard the corresponding product if it is in the sampled
subset to maintain the inventory feasibility of this prod-
uct. This specific architecture of sampling according to
the LP solution and then using product-specific discard-
ing rules has been explored in the past; for example, see
Alaei et al. (2012), Gallego et al. (2015), Dickerson et al.
(2018), Wang et al. (2018), and Baek and Ma (2022).% Sim-
ilarly, we aim to design polynomial time online discard-
ing policies (and other necessary algorithmic constructs)
that handle the trade-off between maintaining the in-
ventory feasibility and the discarding revenue loss for
each product. The main new challenges specific to our
problem is that (i) products are reusable, (ii) products
are weak substitutes—and hence discarding a product
increases the choice probability of other products, and
(ili) discarding can be potentially randomized—which

combined with reusability creates complicated correla-
tion structures among selection indicator random vari-
ables across time and makes it challenging to argue
about point-wise feasibility of policies. In what follows,
we sketch our main technical contributions and how
they overcome these challenges.

1.1.1. General Rental Duration Distributions/Near-Opti-
mal Discarding (Section 3.2). The main idea behind
our near-optimal discarding procedure is discarding
each available sampled product independently at ran-
dom with a small probability. This is a simple yet rea-
sonable approach (cf. Hajiaghayi et al. 2007), as the
simulation-based algorithm respects the inventory con-
straints of each product in expectation. By independent
randomized discarding with probability y >0, we
leave some slack in the inventory feasibility constraint
by ensuring that the expected value of the number of
units of the product under rental is at most (1 —y)
times its initial inventory amount at any time. If this
quantity as a sum of independent rental indicator ran-
dom variables concentrates around its expectation, we
will then avoid violation of the inventory constraint
with high probability when y = O(1/10g(cmin)/Cmin)-
Moreover, it only loses y fraction of the expected reve-
nue form this product, as desired.

However, this simple approach does not work as
described because (i) the resources are reusable and
the inventories are limited; hence, the rental indicator
random variable of a product at some time 7 < t can
be correlated with the rental indicator random variable
of the same product at time ¢ if the rental duration of
time 7 is at least t — 7, and the last unit of the product is
rented at 7; (ii) once a discarding procedure drops a
product from the sampled assortment, there will be
less cannibalization of other products, as the consumer
choices are weak substitutes. This, in turn, increases
the probability of other products being chosen by the
arriving consumer and hence increases the expected
number of units of different products under rental in
future for the resulting algorithm compared with what
is expected from the simulation-based algorithm.

We fix these issues by proposing a postprocessing
step after the independent randomized discarding,
which we refer to as subassortment sampling. In a nut-
shell, the goal of the subassortment sampling is to find a
distribution over available subsets so that the products
that are not discarded will be rented with exactly the
same probability as in the optimal solution of the Bayes-
ian expected LP. It is not even clear a priori whether
such a distribution exists; nevertheless, we show it does
and provide a polynomial time construction to sample
from this distribution. Using the properties of the subas-
sortment sampling, we propose a coupling trick to
show our desired concentration despite the fact that the
rental indicator random variables are correlated across
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time. Note that the task of subassortment sampling is
quite general, and it might be of independent interest in
other applications.*

1.1.2. General Rental Duration Distributions/}-Compet-
itive Discarding (Section 3.3). As an alternative dis-
carding policy for the general case of reusable
resources, consider an exponential-size DP that keeps
track of the state of each unit of the product (i.e., when
each unit returns to the inventory) and solves the dis-
carding task optimally. We introduce an approximate
version of this DP, which we also refer to as optimistic
DP, that can be solved in polynomial time. The goal is
to maximize the per-unit revenue to go of the product
when the inventory is automatically replenished by an
exogenous process every time we make a discarding
decision so that the entire inventory of the product is
always available on hand. This new DP is inventory
independent and thus is polynomial size. We then
consider a discarding algorithm that makes the same
decisions as the optimistic DP. The result is a nona-
daptive thresholding discarding rule; that is, an avail-
able product is only discarded if its rental fee is below
a certain threshold. These thresholds are computed up
front and only depend on the product, time, and real-
ized type.

The main intuition behind why the discarding algo-
rithm is a reasonable approximation is as follows. We
can show the expected revenue to go of this algorithm
is a concave function of the inventory level; that is, the
higher the inventory level, the lower the per-unit
expected revenue to go. As a result, when there is no
replenishment in reality, it obtains at least the same
expected per-unit revenue to go as the DP with replen-
ishment. We then analyze the worst-case ratio between
the value of this inventory-independent DP and the
per-unit revenue of the expected LP using a “factor
revealing linear program” and its dual. This approach
establishes a lower-bound of 1 for this ratio. It is worth
noting that similar proof techniques based on dual
fitting have been used in the literature for other pro-
blems with nonreusable resources (see, e.g., Adelman
2007, Zhang and Adelman 2009, Alaei et al. 2012, Gal-
lego et al. 2015, Wang et al. 2018). Our work extends
the existing analysis to prove performance guarantees
for LP-based discarding policies when resources are
reusable.

We highlight that our DP for designing the approxi-
mate discarding policy given the expected LP solution
shares similar, but not completely identical, recursive
structures with the approximate dynamic program-
ming approach in Rusmevichientong et al. (2020) for
directly approximating the optimum online policy; in
fact, in contrast to their approach, the Bellman update
equation of our DP uses the solution of the expected
LP (the optimal assortment sampling probabilities).

Therefore, whereas both DPs provide the same ap-
proximation factor of }, ours is with respect to the
stronger benchmark of expected LP, versus theirs,
which is with respect to the optimum online policy.
This subtle difference turns out to be the key in com-
bining the performance guarantees of our two algo-
rithms in Sections 3.2 and 3.3 in order to obtain a
simple hybrid algorithm that achieves the theoretical
“best of both worlds” competitive ratio guarantee with
respect to the stronger expected LP benchmark (and
as we observe later, improved performance in numeri-
cal simulations).

1.1.3. Hybrid Simulation-Based Algorithm (Section
3.4). Having access to the aforementioned simulation-
based algorithms with different discarding rules, we
aim to define a hybrid algorithm that enjoys the competi-
tive ratios of both small and large inventory regimes.
To this end, we make an upfront decision on which dis-
carding policy to use for each product. In particular, we
use the value function of the optimistic DP for each
product separately to calculate the ratio R; between the
expected revenue to go of following the optimistic DP
for this product and the contribution of this product to
the expected LP’s objective. We then compare this ratio
with 1—&*(c;) (see (1) for the definition of function
€*(+)) to partition the products into large inventory (i.e.,
when R;+¢*(c;) < 1) and small inventory (i.e., when
Ri+¢*(ci) > 1). For each large inventory product, we
run the randomized discarding policy in Section 3.2,
and for each small inventory product, we run the opti-
mistic DP discarding policy in Section 3.3. We also
use the subassortment sampling procedure for postpro-
cessing to correct the resulting increase in choice pro-
babilities of nondiscarded products because of weak
substitution. By using the facts that (i) the competitive
ratio analyses of both algorithms decouple across pro-
ducts, (ii) both analyses compare the expected revenue
obtained from each product with the contribution of
that product to the expected LP’s objective, and (iii)
subassortment sampling corrects the choice probabili-
ties of nondiscarded products, we show the resulting
hybrid policy combines the two competitive ratios.”
Whereas this hybrid algorithm attains the best of both
worlds competitive ratio of 1—min(}, e (cmin)), it is
also likely to outperform both policies in practical sce-
narios; the results of our numerical simulations in Sec-
tion EC8 in the Online Appendix empirically support
this claim. We also present a second hybrid algorithm
using the method of conditional expectations. See Sec-
tion 3.4 for more details.

We also complement our results by considering the
special case of nonreusable resources. By leveraging
techniques from the literature on prophet inequality
and extending them to the Bayesian assortment optimi-
zation problem, we provide a near-optimal improved
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competitive ratio of (1— \/cmlm—+3) with respect to the

expected LP in this setting. See Section EC3 and Section
EC7 in the Online Appendix for more details.

1.1.3.1. Numerical Simulations (Online Appendix
Section EC8). We finally provide numerical justifica-
tion for the revenue performance of our proposed poli-
cies. Adapting the setups of the numerical experiments
in Golrezaei et al. (2014) and Rusmevichientong et al.
(2020) to our setting, we compare the revenue of our
proposed policies—that is, the hybrid algorithm and
the simulation with optimal discarding under infinite
rental durations—with other policies in the literature.
In our numerical simulations, we consider various sce-
narios with both general rental duration distributions
and infinite rental durations. In all of these scenarios,
our policies noticeably outperform the other policies in
terms of the expected revenue.

2. Preliminaries

We first formalize our problem, the model, and all the
required assumptions in Section 2.1. We then briefly
explain various aspects of our expected LP benchmark
in Section 2.2.

2.1. Model and Problem Definition

The platform offers n different rental products, in-
dexed by [n] ={1,2,...,n}. Each rental product i has
an initial inventory of c; € Z,. Consumers who are
interested in renting these products arrive sequentially
at times t=1,2,...,T. Consumer t has type z; € Z,,
where Z; denotes the (discrete) space of possible types
at time £. We assume types are drawn independently
from known probability distributions F, : Z; — [0,1] at
timest=1,...,T.

Upon the arrival of consumer t, that consumer’s
type z; is revealed to the platform. Given this type and
the history up to time ¢, the platform offers an assort-
ment of available products S; € S from its inventory,
where S 2" is the collection of all feasible assort-
ments that can be offered, ignoring the inventory
availability. Given the assortment S;, the consumer
chooses a rental product i; € S;, pays a rental fee to the
platform, and keeps the product for a stochastic rental
duration d; € Z..

We consider the setting where the consumer choice
behavior, rental fees of different products, and rental
duration distributions of different products depend on
the type z; at each time ¢. Formally, a consumer type z is
defined as a tuple (¢*, r*, G*) so that

e The choice of a consumer with type z is modeled
by a general choice model function ¢* : S x [n] — [0,1],
where ¢*(S,i) is the probability that consumer with
type z chooses product i to rent when assortment set
S € Sis offered.

e For a consumer with type z, ©¥* = (r{,73,...,77) €
R", where r; denotes the rental fee of product i. More-
over, G* = (G5, G35, ...,G%), where G} denotes the cumu-
lative distribution function (cdf) of rental duration of
product i for type z. We use g7 : [T] — [0, 1] to denote
the probability distribution function (pdf) of rental
duration of product i for type z. Moreover, let G, (-) £
1-G().

Note that we assume rental durations are indepen-
dent across time; that is, if, at time ¢, a consumer of type z
chooses a product i, a fresh sample d; ~ G; is realized as
the rental duration of this product. We further impose
the following assumptions on our choice models and
feasible assortments, which are common in previous lit-
erature (cf. Golrezaei et al. 2014, Rusmevichientong et al.
2014):

Assumption 1 (Weak Substitutability). For all t € [T],z €
Zy, and i € [n], $*(0,1i) = 0. Moreover, for all S€ S and j €

[n]/{i}, ¢7(S,1) = ¢*(S U {j}, ).

Assumption 2 (Downward-Closed Feasibility). If S € S and
S' CS, then S" € S; that is, a feasible assortment will remain
feasible after removing any subset of its offered products.

Remark 1. In online hospitality services such as
Airbnb, users report the duration of their stay to the
platform before the platform shows them a listing. In
such a variation, the platform makes the assortment
decision by using the exact realizations of current
rental times for the arriving type. Indeed, this is a spe-
cial case of our model where the rental time distribu-
tions are point mass.

Given type distributions {F;},,, the goal is to design
online algorithms—playing the role of the platform—
that maximize the expected revenue granted from rental
fees; here, the expectation is over randomness of the
algorithm (if randomized) and the environment, that is,
types, consumer choices, and rental durations. A reve-
nue benchmark for this problem is defined to be any
upper bound on the expected revenue obtained by any
feasible online algorithm (which might or might not be
achievable by a feasible online algorithm). Fixing a reve-
nue benchmark, we evaluate the performance of any
online algorithm by its competitive ratio against this
benchmark. Informally speaking, competitive ratio is
the worst-case ratio between the expected total revenue
of the online algorithm and the benchmark, where the
worst case is over all possible type distributions.

Definition 1 (Competitive Ratio). An online algorithm A4
is a-competitive against a given revenue benchmark if

T
inf inf 7RevA[{Ft};:l] >
T=1 {Ft}tT:1 OPT[{Ft}tzl]

7

where Rev 4[] is the expected revenue of algorithm A,
and OPT(:] is the given revenue benchmark.
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For a general consumer choice model, the exact or
even approximate offline assortment optimization can
be computationally hard (Kok et al. 2008). In order to
avoid this obstacle when designing polynomial time
online algorithms for general consumer choice mod-
els, we assume having access to an algorithm that
solves the offline assortment problem. For simplicity,
we assume the solver is exact throughout the paper,
but all of our results still hold with a multiplicative
degrade of f in the competitive ratios if the solver is a
B-approximation algorithm for some 0 < < 1.

Assumption 3 (Offline Oracle). For allt € [T),z € Z;, and
R € R, we have oracle access to an algorithm that finds a
subset S € S such that

$ € argmax ZR@Z(S, ).

SeS i=1

2.2. Bayesian Expected LP Benchmark

A key ingredient in all of our algorithms is the Bayesian
expected LP benchmark—a concept commonly used in
previous literature on online allocations, mechanism
design, and assortment optimization to remedy issues
of the benchmarks given (e.g., see Chawla et al. 2010,
Alaei 2014, Gallego et al. 2015, Wang et al. 2018, Anari
et al. 2019, Ma et al. 2020). This benchmark, denoted by
Expected-LP[{F,},], uses linear programming to cap-
ture the optimum algorithm that only requires satisfying
the inventory constraints in expectation, where expecta-
tion is taken over randomness in rental durations and
consumer types given type distributions {F;}/_,:

T n
T SN N R ¢t (S, iYys iz sit.

t=1z;€2Z; Se§ i=1

YD D F)G (= (S, Dys e,z < G

t=12z.€Z; SeS
€[n], te[T]

€ [T], Zy € Zt.

Z]/Stz, hS

SeS
(Expected-LP[{F; }thl D

Here, variables {ys 1,2 }te[1), ses, z,c 2, correspond to prob-
abilities that assortment S is offered to consumer ¢
given type z; is realized, and first constraint shows
inventory feasibility in expectation.

A few explanations are in order. First, the optimal
objective value of this LP is an upper bound on the
expected revenue of the clairvoyant optimum online
benchmark and, hence, the weaker nonclairvoyant opti-
mum online (Proposition 1; see Section EC4 in the Online
Appendix for the proof). Second, Expected- LP[{Ft}t 1]
can be solved efficiently using an oracle for the offline

assortment (Proposition 2; see Section EC4 in the Online
Appendix for the proof). We use this computational
block as a preprocessing step in all of our algorithms.®

Proposition 1. For any type distributions {F;},_,, the
expected total revenue of the clairvoyant optlmum online
benchmark is upper bounded by Expected-LP[{F;},].

Proposition 2. Given an algorithm for offline assortment
(Assumption 3), an optimal assignment {ys,.} of
Expected-LP[{F;}|_,] can be computed efficiently in time
Poly(n, T, Zte[T]|Zf|) Moreover, {ys, .} has no more
than Poly(n, T, | Zt|) nonzero entries.

In Section EC2 in the Online Appendix, we compare
the Bayesian expected LP benchmark with other bench-
marks considered in the literature.

3. Near-Optimal Algorithm for General

Rental Durations
In this section, we present our main result—a near-
optimal online simulation-based algorithm with competi-
tive ratio at least max (3,1 — €*(cmin)) against the Bayes-
ian expected LP benchmark, where

A yix

&x) = renén1J 1-(1 —y)(l —exp<—2_7/>>. (1)
Let 9" (Cmin) be the optimal assignment of ) in Equation (1).
It is not hard to verify that &*(cmin) = O(1/108(Cmin)/Cmin)
and is achieved at y*(cmin) = O(1/108(Cmin)/Cmin). We first
sketch our approach in Section 3.1. We then introduce a
simulation-based algorithm with competitive ratio 1 —
&*(cmin) In Section 3.2 and a different simulation-based
algorithm to guarantee a competitive ratio of at least §
(even for small ciin) in Section 3.3. We finally present two
simple hybrid algorithms that can obtain the best of two
competitive ratios in Section 3.4.

3.1. High-Level Sketch of Our Approach

Let {y5, .} be the optimal assignment of Expected-LP
[{F}_,]. As 0 € S, without loss of generality, we can
only consider optimal assignments, where

Zyg,t,z, =1 Vte[T], z €2,
Se§S

All of our simulation-based online algorithms in this
paper follow four steps:
o Attime t =0 (before starting):

(i) Preprocessing: Compute an optlmal assign-
ment {y5 , . } of Expected- LP[{F;}._,] by invoking
the offline oracle described in Assumption 3. Also,
compute any other offline parameters that are
occasionally needed by the algorithm.

e Ateachtimet=1,2,...,T:

(ii) Simulation: Upon realizing consumer type

z; at time t, an outer procedure suggests SeSto
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be assorted by sampling $ from the distribution
(V51,2 yses over S.

(iii) Discarding: For each product i € 5, a sepa-
rate inner discarding procedure decides whether to
remove this product from the final assortment
given the history up to time t and realized type z;.
If no units of product i are available on hand, it is
discarded automatically to guarantee inventory
feasibility. Otherwise, the inner procedure of prod-
uct i decides to discard or not. Let 5 € § be the set
of undiscarded products.

(iv) Postprocessing: Given z, S, and S, pick a
probability distribution 7 ¢ ¢ over all subsets of
S. Then, sample an assortment 5 ~ F, ¢ 5 and offer
it to the consumer.

In this four-step layout, Step (ii) is a loss-less random-
ized roundmg for the optimal solution of Expected-LP
[{F;}/_,]; however, the resulting assortment only guar-
antees inventory feasibility of each product in expecta-
tion. The role of Step (iii) and Step (iv) is to identify
a (randomized) subset of this feasible in expectation
assortment to not only guarantee inventory feasibility
in each sample path but to also guarantee that the
expected loss because of discarded products is small.

3.2. Large Initial Inventory: Toward Competitive
Ratio 7—&*(Cmin)

The main idea behind the algorithm of this subsection
is discarding each product independently at random
with probability ¥ = O(y/10g(cmin)/cmin) in Step (iii) at
each time ¢. Intuitively speaking, this discarding tries to
leave enough probability for not violating any of the
inventory constraints at each time t. To see this, if dis-
carding a product does not change the choice probabil-
ity of another assorted product, the expected number
of unavailable units of each product i at each time ¢ is at
most (1 —y)c; because of the feasibility in expectation
of sampled sets in Step (ii). Now consider the rental
indicator random variables of product i, that is, random
variables indicating whether this product is rented at
each time or not. If these random variables are mutu-
ally independent across time, then we can use simple
concentration bounds for the sum of independent ran-
dom variables to prove our claim.

There are two major issues with this approach:

(i) Under weak substitutability (Assumption 1), dis-
carding product i weakly increases the choice probabil-
ity of another assorted product j#i. Therefore, the
probability of an available unit of product j being
rented at each time 7 < f becomes larger than expected,
which, in turn, increases the expected number of una-
vailable units of this product at time ¢ if we only simu-
late the expected LP’s optimal solution and discard
each product independently with probability ).

(ii) As resources are reusable and inventories are
limited, the rental indicator random variable of product

i at time 7 < t is possibly positively correlated with the
rental indicator random variable of the same product
at time t; in fact, the first indicator forces the second
indicator to be zero when the realized rental duration
d. at time t is no smaller than t — 7, the last unit of the
product is rented at time 7, and no units of the product
return during [7 + 1,¢].

We address the first issue in Section 3.2.1 by chang-
ing the algorithm and address the second issue in Sec-
tion 3.2.2 by modifying the analysis.

3.2.1. Subassortment Sampling. To fix the first issue,
we propose the subassortment sampling procedure—a
postprocessing procedure to be used in Step (iv). This
procedure ensures that products that were not dis-
carded in Step (ii) are rented by the arriving consumer
with exactly the same probability as in the optimal solu-
tion of the expected LP benchmark. More formally, the
subassortment sampling induces a distribution F_
over subsets of S at each time ¢ so that

Vies: EngZt,§/§[¢zf(§,i)]:¢Zf(§,i). )

It is not clear a priori whether such a distribution
F ¢ 5 exists yet alone can be sampled from in polyno-
mial time (polynomial in number of products #); never-
theless, for any general choice model satisfying weak
substitutability (Assumption 1) and downward-closed
feasibility (Assumption 2), we show such a distribution
.7-'2 ¢ 5 exists, and we introduce Procedure 1, which
recurswely samples a set from F_ ¢z in polynomial
time.”

Procedure 1 (Subassortment Sampling)
Input: choice model ¢, assortment S={1,2,...,m},
target probabilities {p;};cs

1 Leto: [m] [m] be a permutation such that 1>
pa 1) > po (m) > 0
(S, 0(1)) (’)(S 0(2)) = = ¢(S,0(m) =
/* Dpeﬁne (P(ST‘C]T(])) =1if¢(S,0(j))=00rS=0.
2 If e "g'zn)) =1 then
3 | returnS « S
4 else
— Po Po(m Po(j)
5 | Letqo =1~ g smy In = gts,otmy A9 = 515,05
Po(j+1) R
—mfor]—l,...,m—l

/* Note that 3 7 q;=1*/

6 | Samplej ~{g;}}.,
7 | Ifj* =0 then
8

|\return 0
9 | ifj*=mthen
10 \\retum S

11 | LetS {0~ 1(;)}§ 1
12 | return S « SUB-ASSORTMENT SamMpLING(¢, S, {9(S,

| D}iesr)
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Proposition 3. For any weak substitutable and downward-
closed feasible choice model ¢, any assortment S € S, and any
target probabilities {p;};cs such that p; < ¢(S,1) forall i € S,
Procedure 1 outputs a randomized assortment S that satisfies
(i) S CS, and (ii) E; [¢(§,i)] =p; for all i € S. Moreover, it
runs in time Poly(n).

Remark 2. To guarantee Equation (2), given any (z;, 5,
S) at Step (iv), we invoke * Proposition 3 by setting ¢ «
$*,S S, and p; — ¢*(S, i) for all i € S. Note that p; =
¢Z‘(S i) < ¢*(S,i) foralli€§, sunply because of weak
substitutability and the fact that S C S.

Proof of Proposition 3. Without loss of generality, we
assume o is the identity permutation, that is, o(i) =i
for i€ [m]. To show the polynomial running time,
observe that (a) the running time in each recursion is
Poly(n), and (b) the number of iterations of this recur-
sive algorithm is at most n because |S| < n at the
beginning and the size of the S’ that is the input of the
next recursive call shrinks by one at each iteration;
thatis, |S’| < |S] —1.

Property (i) holds by construction. We show prop-
erty (ii) by induction on m = |S|, that is, size of assort-
ment S. In this induction, we use another simple
property (iii) that ¢(S, i)(erii g;) = pi for all i € S, which
immediately hold by construction.

Base case (m=1). In this case, Procedure 1 randomly
outputs @ or S. By property (iii), the induction state-
ment holds.

Inductz’ve step (m>1). Fix an arbitrary product i € S.

/] =0, and
E: [¢(S i) |] =m] = ¢(S,i). For any realized value, j* =
i, ...,m—1, and its corresponding S’ ={1,...,/'}, we

can use the induction hypothesis for the assortment 5’
with probabilities p; = ¢(S,i) for each i€ S’. This is
true simply because |S'| < m—1 and that ¢(S,i) <
¢(S’,i) for each i€ S, as the choice model ¢ is
weak substitute. By invoking the induction hypothesis
when we use S’ in the next recursive call, we have
Eg[({)(g,i) l7"=7]1=¢(S,i) for all j=i,...,m—1. Thus,
invoking property (iii),

Eg[¢(S,)] =) giE
j=0

= <Z qf> O(S,i) = pi,

=i

s[o(S, D) =

which completes the inductive step and finishes the
proof. O

3.2.2. The Algorithm and Analysis. Now, we present
our first simulation-based algorithm (Algorithm 2) with
its competitive ratio guarantee (Theorem 1). We defer
the formal proof of Theorem 1 to Section EC5 in the
Online Appendix.

Algorithm 2 (Simulation-Based Algorithm with Random
Discarding)

Input: discarding probability y € [0,1]

1 Preprocessing: Compute the optimal assignment
{5, .} of Expected-LP[{F;}]_,] by invoking the
offline assortment oracle (Assumption 3)

2 fort=1toT do

/* consumer t with typez; ~F; arrives */
3 | Simulation: Upon realizing consumer type z,
sample S; ~ {yg,t,z,}SES

4 | Discarding: Initialize S; « S;

5 | foreach productie S, do

6 Flip an independent coin and remove i from
S with probability y

7 if there is no available unit of product i then

8 Remove i from S;

9 | Postprocessing: Let S; <— SUB-ASSORTMENT SAMPLING

(", St {p(51)},5)

/* Send a query call to Procedure 1 with
appropriate input arguments */

10 | Offer assortment S, to consumer ¢

Theorem 1. By setting y = y*(cmin), the competitive ratio
of Algorithm 2 agumst the Bayesian expected LP bench-
mark Expected- LP[{Ft}t 1] is at least 1 —&*(cmin) =1 —
O(y/10g(Ccmin)/Cmin). Moreover, it runs in time Poly(n, T,
> ierry| 2t 1) given oracle access to an offline algorithm for
assortment optimization (Assumption 3).

Before presenting the Proof Sketch of Theorem 1, we
first discuss how to use a simple concentration argu-
ment to obtain a competitive ratio upper bound of 1 —
O(y/1log(cminT)/cmin) for a slightly modified version
of Algorithm 2. The simple concentration argument
works as follows: consider a modified version of Algo-
rithm 2 where the random discarding step is fully cor-
related. Namely, instead of flipping an independent
coin for each product i € S;, we flip a single coin and
set S, as all available products in $; with probability y,
and empty set otherwise. Consider this modified Algo-
rithm 2 until the first time that one of the sampled pro-
ducts is not available. Note that before such a bad event
happens, all allocations are independent over consu-
mers, and the subassortment sampling step is trivial
(ie., return S; = S; deterministically). We can bound the
probability of this bad event at each time and for each
product by an exponentially small probability in cmin
because of the Chernoff bound. Applying union bound
for every time t € [T] and every i € [n], and using the
fact that when such a bad event happens, we have no
control over the revenue, the resulting competitive ratio
can be upper bounded by 1— O(y/log(cmin”T)/Cmin)-
Note that this competitive ratio has an extra /log(nT)
dependence and, thus, is strictly worse than the com-
petitive ratio 1 — €*(cmin) stated in Theorem 1, which is
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independent of the number of products 7 and the num-
ber of consumers T.

To prove Theorem 1 with the competitive ratio 1 —
€*(Cmin) that is independent of the number of products
n and the number of consumers T, we use a careful
coupling argument in our analysis of Algorithm 2 that
couples the rental indicator random variables of our
algorithm with an alternative hypothetical algorithm.
This hypothetical algorithm ignores inventory con-
straints of all the products and only simulates the
expected LP’s optimal solution combined with inde-
pendent discarding of each product with probability
y. This algorithm generates an independent sequence
of rental indicator random variables, allowing us to
use simple concentration bounds. Importantly, this
coupling trick is only possible because of the guaran-
tee of the subassortment sampling procedure in Equa-
tion (2) (see the formal proof in Section EC5 in the
Online Appendix).

Remark 3. Our analysis in this section mainly focuses
on the asymptotic regime where cmin is large; how-
ever, we can still plot the competitive ratio 1 — &*(cmin)
of Algorithm 2 for small values of ciin by numerically
evaluating &*(cmin) using Equation (1). See the black
solid curve in Figure 1.

3.3. Small Initial Inventory: Toward Competitive
Ratio }
In this subsection, we propose our second simulation-
based algorithm. The main difference between this
algorithm and Algorithm 2 is in the discarding step: if
no units of product i are available on hand, it is dis-
carded automatically to guarantee inventory feasibility;
otherwise, it is only selected in the final assortment if
1 > P}, where P}, are nonadaptive thresholds com-
puted by the algorithm up front (this will be discussed

Figure 1. (Color online) Competitive Ratio of Simulation-
Based Algorithms

1 —
2 0.75
g
£
Z 05
5]
o
g
2 0.25
1

J
1 50 100
Cmin
Note. The black solid curve corresponds to Algorithm 2; the blue

dashed curve corresponds to the hybrid between Algorithms 2 and 3
(see Section 3.4).

later). The aim of this discarding procedure is to guar-
antee that only available products with high enough
rental fees are assorted.

Technically speaking, for each product I, one can
consider a separate DP to optimally make discarding
decisions. This DP will maximize per-unit revenue to
go of assorted units of product i over the finite time
horizon [1:T], given the randomized suggestion of
Step (ii) (recall Section 3.1). The drawback is the need
for a high-dimensional state variable that keeps track of
the on-hand product inventories as well the inventory
of units of the product that are in use (and will return to
inventory at different times). A major ingredient of our
algorithm is to replace this high-dimensional DP with a
simple one that is inventory independent and uses an
optimistic upper bound of ¢; on the actual inventory in
the Bellman equation for updating optimal per-unit
revenue to go of product i.

3.3.1. Dynamic Programming for Per-Unit Revenue To
Go with Replenishment. In the rest of this subsection,
let Xs,1 ., £y, . Fi(z) for every St and z;. Suppose at
each timet, a new independent consumer type z; ~ F; is
realized. Let S ~ ~ Xs,1,z denote the randomized subset
sampled in Step (ii) (simulation step). Fix a product i €
[n] with initial inventory of c¢; units. Now, consider
a hypothetical scenario where an exogenous process
replenishes the inventory at each time to guarantee we
always have ¢; units of the product on hand, no matter
how many units are currently under rental. In this new
problem, the goal is to design an online policy to dis-
card or accept units of the reusable product once sug-
gested in Step (ii) in order to maximize the per-unit
revenue to go of renting this product. We can formulate
this problem using a simple dynamic programming
where V; ; is the optimal per-unit revenue to go of prod-
uct i during time interval [t:T]. Compared with the
original high-dimensional DP for solving the optimum
discarding, this DP is optimistic in that it “imagines” the
deficiency in inventory is replenished every period.

As a convention, let V; 741 = 0. To write the Bellman
update equation of the optimistic DP at time ¢ using
backward induction, suppose type z; is realized and
$ =S (which happens w.p. Xs,; .,). If optimal policy
decides to discard product i, then per-unit revenue to
go will be V; 1,1. If optimal policy decides to not discard
i, then, with probability (1 — ¢*(S, 1)), the per-unit reve-
nue to go will still be V; 441 8 However, with probability
¢*(S, 1), the consumer rents one of the ¢; units (remem-
ber that inventory will always be full) and therefore
generates a total revenue to go of (c; —1)V;; (e,
because of contribution of units not rented at time ¢;
these units will transfer to the inventory at time f+1)
plus ;' +V; 114 upon realization of rental time d ~ G;*
(i.e., because of the contribution of the rented unit). To
summarize, we will have the following Bellman update
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equation: 7 | Postprocessing: Let Sy <= SUB-ASSORTMENT SAMPLING
Zr Q &
L, = ). &
’ b4t 4 t
Vie=> > Xsu: (@, SeAd(Sehics,)
z€Z; S€S /* Send a query call to Procedure 1 with

X max{V,-,m, (1 —¢™*(S,0)Vin

+¢™(S, 1)( Z ()T + Vi ira) 1 i,t+1> }

®)

Note the update rule of the aforementioned dynamic
programming can be simplified by rearranging the
terms. Interestingly, the rule will be independent of ¢;
and ¢ (S, 1), as they cancel out:

[At time ¢ with type z;,i € § will be accepted]
=172 Vi — ng*(d)Vi,Hd- (4)
d

Remark 4. Later, in Sections EC3 and EC7 in the
Online Appendix, we will replace this simple DP with
a slightly modified one that has an inventory-dependent
state but is still low-dimensional when rental times
are infinite. This allows us to obtain (an almost) opti-
mal competitive ratio for this special case.

3.3.2. The Algorithm and Analysis. We now present
our second simulation-based algorithm (Algorithm 3),
with its competitive ratio guarantee (Theorem 2).”

Algorithm 3 (Simulation-Based Algorithm with Nonadap-
tive Per-Unit Revenue Thresholds)
1 Preprocessing:

o Compute the optimal assignment {y , .} of
Expected-LP[{F;}/_,] by invoking the offline
assortment oracle (Assumption 3)

o Set X5 £, Fi(z:) for every St and z
where optimal assignment has a nonzero entry

e Solve the dynamic programming with Bell-
man update described in Equation (3) and
boundary condition V; 141 = 0 for every prod-
uct i to obtain {V; t }ieu) reqr]

e Let P?t £ Vi1 — ng? (d)Vi,t+d/ foralli € [n],
Le [T],Zt € Z;.

fort=1toTdo
/* consumer twith type z; ~ F; arrives */
2 | Simulation: Upon realizing consumer type z,

sample Si~ W51 2 tses
3 | Discarding: Initialize S, « $;
4 | foreach productie Sy do

5 if r7* < P}, or there is no available unit of product
i then B
6 Remove i from S;

/* Per-unit revenue thresholds {P},} are
computed once, i.e., arenonadaptive */

appropriate iriput arguments */
8 | Offer assortment S; to consumer t

Theorem 2. The competitive ratio of Algorithm 3 against off-
line Bayeszan expected LP benchmark, that is, Expected-LP
[{Ft}t 11, is at least 1/2. Moreover, it runs in time Poly(n,

T, ierry | 2t 1) given oracle access to an offline algorithm for
assortment optimization (Assumption 3).

Proof Sketch of Theorem 2. The running time is
proved by Proposition 2 and the fact that the simple
DP in Section 3.3.1 can be solved in polynomial time.
The analysis of the competitive ratio can be decoupled
across products. For each fixed product i, we do the
analysis in two parts, each sketched as follows (see
full details in Section EC6 in the Online Appendix):

e Part (i), Section EC6.1: we first compare Algo-
rithm 3 with the simple optimistic dynamic program-
ming described in Section 3.3.1 and show the total
expected revenue of Algorithm 3 because of rentals of
product i is at least ¢;V; 1. We prove this claim using
induction and the fact that showing a subset S; of sam-
pled assortment S; can only increase the revenue to go
of the discarding policy that follows the thresholds of
the optimistic DP (as in the algorithm).

e Part (ii), Section EC6.2: We then compare this
simple dynamic programming with expected LP bench-
mark and show for each product i, ¢;V; 1 is at least 1/2
of the contribution of product i to the optimal objective
value of Expected- LP[{F,}}t 1] (part (ii)). In order to
prove this part, we use the connection between the opti-
mistic DP of Section 3.3.1 and a related factor-revealing
LP that characterizes the competitive ratio of the opti-
mistic DP. This connections leads us to apply duality
arguments to find a lower bound on the ratio of ¢;V; 1
and the contribution of product i to the optimal objec-
tive value of Expected- LP[{F,}t 1]

3.4. Hybrid Between Algorithm 2 and Algorithm 3
3.4.1. Best of Both Worlds Discarding. In both Algo-
rithms 2 and 3, we have discarding policies (one for
each of the products) that run independently from each
other. Also, both competitive ratio analyses essentially
decouple across different products, as we analyze the
revenue performances of these discarding policies for
each product separately. Moreover, in both analyses, we
compare the expected revenue of each product i with
the contribution of that product in the expected LP.
Considering all of these design and analysis aspects
of our two algorithms, we can propose a hybrid algo-
rithm where we decide on the choice of the discarding
policy for each product i based on its initial inventory c;
upfront. Once we finalize these choices, we run the
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(possibly different) discarding algorithms in parallel
and separately for different products during the dis-
carding step of our final hybrid algorithm. In order to
achieve the best of both worlds revenue performance
guarantees of small and large inventory regimes, we
partition the set of products into those with large initial
inventory and those with small initial inventory (will
be formally defined later) at the beginning. Given this
partition, we assign a “randomized discarding” policy
(as described in in Algorithm 2) to make discarding
decisions of product i across times t € [T] if ¢; is large,
and we use a “discarding with per-unit revenue thresh-
olds” (as described in in Algorithm 3) if c; is small.

To distinguish between large and small c¢;, we first
solve the dynamic programming of the optimistic DP
discarding policy in Section 3.3 for each product i € [#]
by using its Bellman update equation (described in
Equation (3)). We then use the value function V;; of
the optimistic DP for product i to label this product as
either large or small inventory. In particular, define R;
to be the ratio between the expected revenue to go of
the optimistic DP for product i and the contribution of
this product to the expected-LP’s objective; that is,

A ciVia
L —
D1 ZztEZtZSESXS:t:Zt (S, )

Note that R; € [0.5,1] from Theorem 2. Also note that
€*(c) is continuous and monotone increasing in ¢, €*(0)
=1, and ¢*(4+00) = 0—see Equation (1) for the definition
of £*(-). We next compare the ratio R; with 1 — €*(¢;). In
fact, if R; +¢*(c;) < 1, we then except the competitive
ratio of randomized discarding to be no smaller than
that of the optimistic DP, and hence, we label the prod-
uct as “large inventory.” Otherwise, we expect the opti-
mistic DP to beat the randomized discarding in terms
of the competitive ratio, and hence, we label the prod-
uct as “small inventory.” Finally, we perform the sub-
assortment sampling as a postprocessing step in order
to correct the choice probabilities of nondiscarded pro-
ducts (which might have been increased because of
weak substitution and that other products are either
discarded or not even selected in the assortment as
they were not available at the first place). We denote
the resulting algorithm by Sim+Hybrid (i).

i

Theorem 3. The competitive ratio of Sim+Hybrid (i)
against offline Bayesian expected LP benchmark, that is,
Expected-LP[{F,},_,], is at least 1 —min(}, " (Cmin)) (see
Figqure 1).

Proof Sketch. As it can be seen by following the lines
of both the proof of Theorem 1 in Section 3.2.2 and
the Proof of Theorem 2 in Section EC6 in the Online
Appendix, the arguments for the revenue perfor-
mance of the corresponding discarding policies for
each product i (and also the resulting competitive

ratio) are independent of how discarding of another
product i’ is handled, and therefore, the competitive ratio
guarantees of the randomized discarding and the opti-
mistic DP from these theorems still hold for the hybrid
algorithm. For brevity, we do not repeat these proofs.
We conclude that the proposed hybrid algorithm has a
competitive ratio of at least max (3,1 — &*(cmin)). O

3.4.2. Monte Carlo Simulation to Help. In principle,
given the sequence of type distributions {F};, one
can simulate both Algorithms 2 and 3 and estimate
their expected future revenues using Monte Carlo sim-
ulation, starting at any time ¢ € [T] (given any history
up to time f). Now, a simple hybrid algorithm can
switch to the algorithm with the higher expected reve-
nue and runs this algorithm for the next time step given
the current history of rental products. By repeatedly
applying this method at each time t given the history
up to this time—a techniques known as the method of
conditional expectation—we end up with an alternative
hybrid algorithm that essentially is the be-the-leader
policy among the two policies at each time, meaning
that its expected future revenue at each time is at least
the expected future revenue of each of the two policies
(which can be proved using induction). Hence, this
hybrid algorithm clearly obtains the best of both worlds
competitive ratio of 1 —min(}, &*(cmin)), similar to our
previous hybrid algorithm. Such a policy can also
choose to switch at a lower frequency, but no matter
what frequency it picks, it is expected to outperform
both policies in expectation, both in theory and prac-
tice. We use this alternative hybrid algorithm, which is
denoted by Sim+Hybrid (ii), in our numerical simu-
lations in Section EC8 in the Online Appendix as well.

Theorem 4. The competitive ratio of Sim+Hybrid (ii)
against offline Bayesian expected LP benchmark, that is,
Expected—LP[{Ft}thl], is at least 1 —min (2, ¢*(cmin)) (see
Figure 1).

Proof Sketch. Consider the following backward induc-
tion. The induction hypothesis is that given current
state J (i.e., the number of available units of each prod-
uct in the inventory, as well as the return time of each
allocated unit of every product), and time period ¢, the
expected revenue from time t to time T in Hybrid-
Sim(ii) is weakly higher than Algorithms 2 and 3.
Base case t=T is straightforward. Suppose the induc-
tion hypothesis is correct for t+1,...,T. Consider the
inductive step for time t and current state J. Suppose
Monte Carlo simulation suggests that given state J,
Algorithm 2 achieves higher expected revenue from
time t to time T, and its induced new state is J' (the
analysis for the other case is similar). In this case, we
know that the expected revenue in Hybrid-Sim(ii)
from time t to time T can be decomposed into the
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following two terms: (i) the expected revenue in
Hybrid-Sim(ii) attime t, and (ii) the expected rev-
enue in Hybrid-Sim(ii) from time t+1 to time T
under state J'. By construction, term (i) equals to the
expected revenue in Algorithm 2 at time t. By our
induction hypothesis for time t+1 with state J', term
(ii) is weakly higher than the expected revenue in
Algorithm 2 from time f+1 to time T given state J'.
Hence, the expected revenue in Hybrid-Sim(ii)
from time t to time T given state J is weakly higher
than Algorithms 2 and 3 as well, which concludes the
backward induction. O

Remark 5. We would like to highlight that whereas
both Sim+Hybrid (i) and Sim+Hybrid(ii) attain
the theoretical best of both worlds competitive ratio that
was mentioned earlier, and as we see in our numerical
simulations in Section EC8 in the Online Appendix,
they both outperform other existing policies in practical
scenarios of our problem; they differ in terms of compu-
tational requirements. In fact, Sim+Hybrid (i) can eas-
ily make upfront decisions for the choice of discarding
policy of each product i with almost no extra computa-
tion compared with Algorithms 2 and 3; nevertheless,
Sim+Hybrid(ii) needs to run Monte Carlo simula-
tions several times (depending on the switching fre-
quency) by sampling from future types, which makes it
less practically appealing.

4. Conclusion

We studied designing near-optimal algorithms for the
online assortment of reusable resources in the Bayesian
setting. We proposed an algorithmic framework based
on four modular steps: (i) solving the expected LP, (ii)
simulating the solution, (iii) running a separate discard-
ing procedure for each product to maintain point-wise
inventory feasibility (while only losing a negligible frac-
tion of the revenue of each product), and (iv) performing
a postprocessing step to adjust choice probabilities of
nondiscarded items. Using this framework, we designed
an algorithm that is 1 —min(3,O0(\/10g(cmin)/cmin))
under the general rental duration distributions and an
improved near-optimal algorithm with competitive ratio
1—1/+/(Cmin +3) under infinite rental durations. Not
only do our algorithms outperform the existing algo-
rithms in the literature theoretically, we further verified
their revenue performance advantages through numeri-
cal simulations.

As a roadmap for future, it is interesting to study
what other practical aspects of a real-world assortment
problem beyond reusable resources can be modeled
and to what extent mathematical programming techni-
ques can be used to design competitive algorithms
there. On the technical side, the most immediate open
problem stemming from our work is finding the opti-
mal competitive ratio for the case of general rental

duration distributions. In particular, can one shave the
logarithmic factor in our competitive ratio and obtain a
1—0O(1/+/cmin) competitive algorithm, similar to the
best known competitive ratio in the nonreusable case?
As a different yet more ambitious future direction, it
would be interesting to study classes of stochastic online
optimization similar to the Bayesian online assortment
further in order to discover the computational hardness
of computing or approximating the optimum online pol-
icy, that is, the DP policy. An interesting discovery here
would be obtaining improved approximations against
the optimum online benchmark versus the expected LP
benchmark through polynomial time policies, such as
Anari et al. (2019), or proving its impossibility.
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Endnotes

! For example, see Papadimitriou and Tsitsiklis (1987) for PSPACE-
hardness of finding the optimum policy in partially observable Mar-
kov decision processes, and see related discussions in Anari et al.
(2019) and Rusmevichientong et al. (2020).

21f rental fees are type dependent, Rusmevichientong et al. (2020)
show the same policy obtains 1 7mm(%,\7%) competitive ratio

guarantee, where R is the ratio between maximum and minimum
rentals fees across different types.

3 See specifically the primal routing algorithm in section 7 of Gallego
et al. (2015) and the separation algorithm in section 4.2 of Wang et al.
(2018).

4 We would like to highlight that after appearance of an online ver-
sion of our paper, through a personal communication with authors of
Goyal et al. (2020), we were informed that this paper (which was not
available online at the time) independently and concurrently discov-
ered a procedure similar to our subassortment sampling for settings
with adversarial arrival and reusable resources.

5 Tt is worth noting that the 1-competitive approximate DP algorithm
of Rusmevichientong et al. (2020) cannot be combined using this
approach with our near-optimal discarding policy, as this approxi-
mate DP algorithm competes with the optimum online policy and
not the expected LP.

8 In fact, one needs to run the ellipsoid method for the dual of this LP
using the offline assortment solver as the separation oracle in order to
find the optimal solution. In practice, to obtain a faster algorithm, one
can use cutting plane methods such as Vaidya (1996) or even faster
almost-linear-time cutting plane methods such as Lee et al. (2015)
that use the separation oracle more efficiently.

"tis noteworthy that Goyal et al. (2020) independently and concur-
rently discovered an idea similar to our subassortment sampling for
settings with adversarial arrival and reusable resources.

8 In this hypothetical scenario, we assume that the probability that
the consumer select product i equals ¢™(S,i) regardless of whether
another product i’ is discarded from S.

9 The competitive ratio in Theorem 2 is optimal even if rental times
are infinite. Consider the following example: there is a single nonreu-
sable product with a single unit. There are two time periods, T=2.
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Consumer 1 has a deterministic type that deterministically purchases
this item with fee 1. With probability €, consumer 2 has a type that
deterministically purchases this item with fee 1/e. Otherwise (i.e.,
with probability 1 — €), consumer 2 has a type that purchases nothing.
In this example, the expected revenue of the Bayesian expected LP
benchmark, as well as the clairvoyant policy, is 2 — €, whereas the
expected revenue of any online policy is, at most, one.
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