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Abstract
Let X be a set andH a collection of functions from X to {0, 1}.We say thatH shatters a
finite set C ⊂ X if the restriction ofH yields every possible function from C to {0, 1}.
The VC-dimension of H is the largest number d such that there exists a set of size d
shattered byH, and no set of size d + 1 is shattered byH. Vapnik and Chervonenkis
introduced this idea in the early 70s in the context of learning theory, and this idea has
also had a significant impact on other areas of mathematics. In this paper we study
the VC-dimension of a class of functions H defined on F

d
q , the d-dimensional vector

space over the finite field with q elements. Define

Hd
t = {hy(x) : y ∈ F

d
q },

where for x ∈ F
d
q , hy(x) = 1 if ‖x − y‖ = t , and 0 otherwise, where here, and

throughout, ‖x‖ = x21 + x22 + · · · + x2d . Here t ∈ Fq , t �= 0. Define Hd
t (E) the same

way with respect to E ⊂ F
d
q . The learning task here is to find a sphere of radius t
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centered at some point y ∈ E unknown to the learner. The learning process consists
of taking random samples of elements of E of sufficiently large size. We are going to
prove that when d = 2, and |E | ≥ Cq15/8, the VC-dimension ofH2

t (E) is equal to 3.
This leads to an intricate configuration problem which is interesting in its own right
and requires a new approach.

Keywords Point configurations · Erdős–Falconer distance problem · Learning theory

Mathematics Subject Classification 68Q32 · 52C10

1 Introduction

The purpose of this paper is to study the Vapnik–Chervonenkis dimension in the
context of a naturally arising family of functions on subsets of the two-dimensional
vector space over the finite field with q elements, denoted by F

d
q . Let us begin by

recalling some definitions and basic results (see e.g. [5, Chap. 6]).

Definition 1.1 Let X be a set andH a collection of functions from X to {0, 1}. We say
that H shatters a finite set C ⊂ X if the restriction of H to C yields every possible
function from C to {0, 1}.
Definition 1.2 Let X and H be as above. We say that a non-negative integer n is the
VC-dimension of H if there exists a set C ⊂ X of size n that is shattered by H, and
no subset of X of size n + 1 is shattered by H.

We are going to work with a class of functions H2
t , where t �= 0. Let X = F

2
q , and

define

H2
t = {hy : y ∈ F

2
q},

where y ∈ F
2
q , and hy(x) = 1 if ‖x − y‖ = t , and 0 otherwise, where here, and

throughout, ‖x‖ = x21 + x22 . Let H2
t (E) be defined the same way, but with respect to

a set E ⊂ F
2
q , i.e.,

H2
t (E) = {hy : y ∈ E},

where hy(x) = 1 if ‖x − y‖ = t (x ∈ E), and 0 otherwise. Our main result is the
following.

Theorem 1.3 Let H2
t (E) be defined as above with respect to E ⊂ F

2
q , t �= 0. If

|E | ≥ Cq15/8, with a sufficiently large constant C, then the VC-dimension of H2
t (E)

is equal to 3.

Remark 1.4 It is interesting to note since |H2
t (E)| = |E |, it is clear that the VC-

dimension of H2
t (E) ≤ log2(|E |), so 3 is a clear improvement over this general

estimate. It is not difficult to see that the VC-dimension is < 4, so the real challenge
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to establish the 3 bound. Moreover, our result says that in this sense, the learning
complexity of subsets of F2

q of size > Cq15/8 is the same as that of the whole vector
space F2

q .

Remark 1.5 The higher dimensional case of this problem is somewhat easier from the
point of view of the underlying Fourier analytic techniques, but is more complex in
terms of geometry. We shall address this issue in a sequel [2].

We can prove that the VC-dimension is at least 2 under a much weaker assumption.

Theorem 1.6 Let H2
t (E) be defined as above with respect to E ⊂ F

2
q , t �= 0. If

|E | ≥ Cq3/2, with a sufficiently large constant C, then the VC-dimension of H2
t (E)

is at least 2 and no more than 3.

Remark 1.7 The discrepancy between the size thresholds in Theorems 1.3 and 1.6
raises the question of whether the VC-dimension is, in general, < 3, if |E | is much
smaller than Cq15/8. We do not know the answer to this question and hope to resolve
it in the sequel.

2 Learning Theory Perspective on Theorem 1.3

From the point of view of learning theory, it is interesting to ask what the “learning
task" is in the situation at hand. It can be described as follows. We are asked to
construct a function f : E → {0, 1}, E ⊂ F

2
q , that is equal to 1 on a sphere of radius

t centered at some y∗ ∈ E , but we do not know the value of y∗. The fundamental
theorem of statistical learning (see Theorem 2.4) tells us that if the VC-dimension of
H2

t (E) is finite, we can find an arbitrarily accurate hypothesis (element of H2
t (E))

with arbitrarily high probability if we consider a randomly chosen sampling training
set of sufficiently large size. We shall now make these concepts precise (see [5] and
the references contained therein for more information). Let us recall some more basic
notions.

Definition 2.1 Given a set X , a probability distribution D and a labeling function
f : X → {0, 1}, let h be a hypothesis, i.e., h : X → {0, 1}, and define

LD, f (h) = Px∼D(h(x) �= f (x)),

wherePx∼D means that x is being sampled according to the probability distribution D.

Definition 2.2 We say that the realizability assumption is satisfied if there is h∗ ∈ H
such that LD, f (h∗) = 0.

Definition 2.3 A hypothesis class H is PAC learnable if there exist a function

mH : (0, 1)2→ N

and a learning algorithm with the following property: For every ε, δ ∈ (0, 1), for
every distribution D over X , and for every labeling function f : X → {0, 1}, if the
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realizability assumption holds with respect to X , D, f , thenwhen running the learning
algorithm on m ≥ mH(ε, δ) i.i.d. examples generated by D, and labeled by f , the
algorithm returns a hypothesis h such that, with probability of at least 1− δ (over the
choice of the examples),

LD, f (h) ≤ ε.

The following theorem is a quantitative version of the fundamental theoremofmachine
learning, and provides the link between VC-dimension and learnability (see [5]).

Theorem 2.4 Let H be a collection of hypotheses on a set X. Then H has a finite
VC-dimension if and only ifH is PAC learnable. Moreover, if the VC-dimension ofH
is equal to n, then H is PAC learnable and there exist constants C1,C2 such that

C1
n + log(1/δ)

ε
≤ mH(ε, δ) ≤ C2

n log(1/ε) + log(1/δ)

ε
.

Going back to the learning task associated with H2
t (E), as in Theorem 1.3, suppose

that hy is a “wrong” hypothesis, i.e., y �= y∗, where f = hy∗ is the true labeling
function. Moreover, assume that

{z ∈ F
2
q : ‖z − y‖ = t} ∩ {z ∈ F

d
q : ‖z − y∗‖ = t} = ∅.

Since the size of a sphere of non-zero radius in F2
q is q plus lower order terms, and D

is the uniform probability distribution on Fd
q ,

LD, f (h) ≤ 1 + o(1)

q
,

so one must choose ε just slightly less than 1/q to make the results meaningful. It
follows by taking δ = ε that we need to consider random samples of size≈ Cq log(q)

with sufficiently large C to execute the desired algorithm. Moreover, since three
points determine a circle effectively means that if ε is just slightly less than 1/q,
then LD, f (h) = 0.

3 Proof of Theorem 1.6

Wewarm up to Theorem 1.6 by first showing the VC-dimension ofH2
t (E) is at least 1.

The existence of a set of size 1 that is shattered byH2
t (E)means that there exists x ∈ E

with the property that there exist y ∈ E such that ‖x − y‖ = t , and y′ ∈ E such that
‖x− y‖ �= t . To find x and y, we require a result of the second listed author andMisha
Rudnev [4], stated below for convenience.

Theorem 3.1 Let E ⊂ F
d
q , d ≥ 2. Then if t �= 0,

|{(x, y) ∈ E : ‖x − y‖ = t}| = |E |2q−1 + Dt (E), (3.1)
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Fig. 1 Points adjoined by a solid line are separated by a distance t , and those joined by a dotted line are
separated by a distance �= t

where

|Dt (E)| ≤ 2q(d−1)/2|E |.

In particular, if |E | > 2q(d+1)/2, the left-hand side of (3.1) is positive. Moreover, if
|E | ≥ 4q(d+1)/2, then the left-hand side of (3.1) is ≥ |E |2/(2q).

By Theorem 3.1, since |E | ≥ 4q3/2, there exist x, y ∈ E such that ‖x − y‖ = t . Since
|E | is much greater than q, there also exists y′ such that ‖x − y′‖ �= t . Hence, the
VC-dimension of H2

t (E) is at least 1.
To prove Theorem 1.6, wemust show that there exists {x1, x2} ⊂ E that is shattered

byH2
t (E). Thismeans that there exist y1, y2, y12, y0 ∈ E such that the following hold:

– ‖x1 − y12‖ = ‖x2 − y12‖ = t ;
– ‖x1 − y1‖ = t , ‖x2 − y1‖ �= t ;
– ‖x2 − y2‖ = t , ‖x1 − y2‖ �= t ;
– ‖x1 − y0‖ �= t , ‖x2 − y0‖ �= t .

Thus proving the existence of a set {x1, x2} that is shattered by H2
t (E) amounts to

establishing the existence of a chain z1, z2, z3, z4, z5 ∈ E , such that ‖z j+1 − z j‖ = t ,
j = 1, 2, 3, 4, ‖z1 − z4‖ �= t , ‖z2 − z5‖ �= t . Here, x1 = z2, x2 = z4, y12 = z3,
y1 = z1, and y2 = z5 (see Fig. 1). Since |E | � q, we may select y0 from E outside
the union of the circles of radius t centered at x1 and x2.

We shall need the following result due to Bennett et al. [1, Thm. 1.1].

Theorem 3.2 Let E ⊂ F
d
q , d ≥ 2, and

|E | >
2kq(d+1)/2

log 2
.

Suppose that ti �= 0, 1 ≤ i ≤ k, and let �t = (t1, . . . , tk). Define

Ck(�t) = ∣
∣
{

(x1, . . . , xk+1) ∈ Ek+1 : ‖xi − xi+1‖ = ti , 1 ≤ i ≤ k
}∣
∣.

Then

Ck(�t) = |E |k+1

qk
+ Dk(�t),
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where

|Dk(�t)| ≤ 2k

log 2
q(d+1)/2 |E |k

qk
.

The existence of a chain of length 4 (four edges and five vertices) with gap t �= 0
follows from this immediately, provided that |E | ≥ Cq3/2, but we need to work a
bit to make sure that we can find such a chain with ‖z j+1 − z j‖ = t , j = 1, 2, 3, 4,
‖z1 − z4‖ �= t , ‖z2 − z5‖ �= t . To this end, we are going to show that

∣
∣
{

(z1, z2, z3, z4, z5) ∈ E5 : ‖zi+1 − zi‖ = t, 1 ≤ i ≤ 4, ‖z1 − z4‖ = t
}∣
∣

≤ C ′|E |3q−1
(3.2)

if |E | ≥ Cq3/2. This suffices since by Theorem 3.2,

∣
∣
{

(z1, z2, z3, z4, z5) ∈ E5 : ‖zi+1 − zi‖ = t, 1 ≤ i ≤ 4
}∣
∣ ≥ C ′′|E |5q−4,

and by |E | ≥ Cq3/2. To prove (3.2), observe that the left-hand side of (3.2) is equal
to

∑

x,y,z

E(x)E(y)

(
∑

u

E(u)St (x − u)St (y − u)

)2

E(z)St (y − z)

=
∑

x,y,z
x �=y

E(x)E(y)

(
∑

u

E(u)St (x − u)St (y − u)

)2

E(z)St (y − z)

+
∑

x,u,v,z

E(x)E(u)E(v)E(z)St (x − u)St (x − v)St (x − z) = I + II.

It is not difficult to see that

I ≤ 2
∑

x,y,u,z

E(x)E(y)E(u)E(z)St (x − u)St (y − u)St (y − z) (3.3)

since x �= y and two circles intersect at at most two points. On the other hand,

II ≤ (q + 1)
∑

x,u,v

E(x)E(u)E(v)St (x − u)St (x − v) (3.4)

since

∑

z

E(z)St (y − z) ≤ |St | ≤ q + 1.
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The expression (3.3) is ≤ C ′|E |4q−3 ≤ C ′|E |3q−1 if |E | ≥ Cq3/2 by Theorem 3.2,
and the expression (3.4) is ≤ C ′′|E |3q−1 if |E | ≥ Cq3/2, also by Theorem 3.2, so the
claim is proved and we have established that the VC-dimension is at least two.

To show the VC-dimension is at most 3, we claim no subset {x1, x2, x3, x4} of size
4 can be shattered by H2

t (F
2
q), let alone H2

t (E). If there were, all four points would
be forced to live on the same circle centered at y1234, say, and at the same time, there
must exist y123 such that x1, x2, x3 live on a circle of radius t centered at y123, while
x4 does not. This is impossible since three points determine a circle.

4 Proofs of Theorem 1.3

We know already the VC-dimension of H2
t (E) is at most 3 from the argument

in the previous paragraph. Now we must show that there exists C of size 3
that is shattered by H2

t (E). This leads to the following question. Do there exist
x1, x2, x3, y123, y12, y13, y23, y1, y2, y3, y0 ∈ E , such that ‖xi−y123‖ = ‖xi−yi j‖ =
‖xi − yi‖ = t , i, j = 1, 2, 3, and all the remaining pair-wise distances between x’s
and y’s do not equal t?

There are several results in literature that prove the existence of a general point
configurations in F

d
q inside sufficiently large sets. Let G be a graph and let t �= 0 be

given. We say that G can be embedded in E ⊂ F
d
q , if there exist x

1, . . . , xk+1 ∈ E

such that ‖xi − x j‖ = t for (i, j) corresponding to the pairs of vertices connected
by edges in G. The second listed author and Hans Parshall proved in [3] that if the
maximum vertex multiplicity in G is equal to t and |E | ≥ Cq(d−1)/2+t , E ⊂ F

d
q ,

d ≥ 2, then G can be embedded in E . In the case of the configuration above, t = 4, so
the threshold exponent in [3] is 1/2 + 4 > 2, so very different methods are required
in this situation.

We shall need the following existence lemma for rhombi.

Lemma 4.1 Suppose that |E | ≥ 4q7/4, t �= 0, and v is a non-zero vector in F
2
q . Then

there exist distinct x, y, z, w ∈ E such that

‖x − y‖ = ‖y − z‖ = ‖z − w‖ = ‖w − x‖ = t,

and neither x − y nor y − z is equal to ±v.

Proof We first claim that less than half the pairs in {(x, y) ∈ E×E : ‖x − y‖ = t}
satisfy x − y = ±v. This follows from

|{(x, y) ∈ E×E : x − y = ±v}|

≤ 2|E | <
|E |2
4q

≤ |{(x, y) ∈ E×E : ‖x − y‖ = t}|
2

,

where the second inequality follows from |E | > 8q, and the third follows from
|E | ≥ 4q3/2 and Theorem 3.1. By pigeon-holing on the remaining directions, there
exists u with ‖u‖ = t and u �= ±v for which
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|{(x, y) ∈ E×E : x − y = u}| ≥ |E |2
4q2

.

Let E ′ denote the collection of x’s from the set above. The hypothesis |E | ≥ 4q7/4

ensures

|E ′| ≥ |E |2
4q2

≥ 4q3/2,

and so Theorem 3.1 guarantees there are at least |E ′|2/(2q2) pairs (x, w) ∈ E ′ × E ′
with ‖x − w‖ = t . Next, we must ensure x − w �= ±v nor ±u. By proceeding as
above, we find

|{(x, w) ∈ E ′×E ′ : x − w = ±v,±u}|

≤ 4|E ′| <
|E ′|2
2q

≤ |{(x, w) ∈ E ′×E ′ : ‖x − w‖ = t}|,

where the second inequality follows since |E ′| > 8q, and the third follows again from
Theorem 3.1. Hence, there exists some pair (x, w) in the right-hand set but not the
left-hand set.

To summarize, we have found (x, y, w, z) ∈ E4 for which ‖x − y‖ = ‖x − w‖ =
‖w−z‖ = ‖y−z‖ = t , a rhombus. Furthermore, none of these four sides are parallel to
v by construction. Finally, all four points are distinct sincew−y = (x−y)−(x−w) =
u − (x − w) �= 0 and x − z = (x − w) + (w − z) = (x − w) + u �= 0. ��
We shall also need the following pigeon-holing observation.

Lemma 4.2 Let E be as in the statement of Theorem 1.3. Then for any nonzero t ∈ Fq ,
there exists v ∈ F

2
q , ‖v‖ = t , such that

|E ∩ (E − v)| ≥ |E |2
2q2

.

Proof Using Theorem 3.1 once again, we see that if |E | ≥ Cq15/8, then

|{(x, y) ∈ E×E : ‖x − y‖ = t}| ≥ |E |2
2q

.

Since the circle of non-zero radius has at most q + 1 points, the conclusion follows. ��
It follows from the assumptions of Theorem 1.3 and Lemma 4.2 that there exists
v ∈ F

d
q , ‖v‖ = t �= 0, such that

|E ∩ (E − v)| ≥ 4q7/4. (4.1)
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Fig. 2 Points adjoined by a solid line are separated by a distance t , and those joined by a dotted line are
separated by a distance �= t . It is not marked by a dotted line, but the distances between points yi and x j

for i �= j are �= t . The vertical lines decorated by arrows denote the vector v in the construction

Using Lemmas 4.2 and 4.1, we see that there exist distinct x, y, z, w ∈ E ∩ (E − v),
with v from (4.1) such that

‖x − y‖ = ‖y − z‖ = ‖z − w‖ = ‖x − w‖ = t,

where

±v �= x − y, y − z, z − w, x − w.

We are now ready to move into the final phase of the proof of Theorem 1.3. Let
y123 = y, x1 = x , x2 = y + v, x3 = z, y12 = x + v, y23 = z+ v, and y13 = w. Note
that

‖y123 − xi‖ = t, i = 1, 2, 3,

‖y12 − xi‖ = t, i = 1, 2,

‖y13 − xi‖ = t, i = 1, 3,

‖y23 − xi‖ = t, i = 2, 3.

See Fig. 2 for reference. To see that ‖yi j − xk‖ �= t when k �= i, j , note that otherwise
the circles of radius t centered at yi jk and yi j would intersect at x1, x2, and x3, implying
that yi j = yi jk , contradicting the construction. Since |E | � q, we may also select y0

for which ‖y0 − xi‖ �= t for each i = 1, 2, 3.
We are almost there, but we still need to come up with y1, y2, y3 such that ‖xi − yi‖

= t , and we need to make sure that ‖xi − y j‖ �= t , i �= j . This is where we now
turn our attention. E ∗ St (x) = |{y ∈ E : ‖x − y‖ = t}|, and so by Theorem 3.1, if
|E | > 4q3/2 then
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∑

x∈E
E ∗ St (x) ≥ |E |2

2q
.

Moreover, if |E | > 4q3/2 then |E | > 4 · 99q for q ≥ 992, and thus 99|E | ≤
|E |2q−1/4. Therefore,

∑

x∈E
E ∗ St (x) ≤ 99 |{x ∈ E : E ∗ St (x) ≤ 99}| +

∑

x∈E
E∗St (x)≥100

E ∗ St (x)

≤ |E |2
4q

+
∑

x∈E
E∗St (x)≥100

E ∗ St (x),

and so

∑

x∈E
E∗St (x)≥100

E ∗ St (x) ≥ |E |2
4q

.

By Cauchy–Schwarz,

|E |4
16q2

≤

⎛

⎜
⎜
⎝

∑

x∈E
E∗St (x)≥100

E ∗ St (x)

⎞

⎟
⎟
⎠

2

≤ |{x ∈ E : E ∗ St (x) ≥ 100}|
∑

x∈E
(E ∗ St (x))2.

But

∑

x∈E
(E ∗ St (x))2 =

∑

x,y,z

E(y)E(z)St (x − y)St (x − z)

is the number of paths of length 2 (two edges and three vertices) in the distance graph
of E . By Theorem 3.2, if |E | > 4q3/2/log 2 then the number of paths of length 2 is
≤ 2|E |3/q2. Therefore,

|E |4
16q2

≤ 2|E |3
q2

|{x ∈ E : E ∗ St (x) ≥ 100}|,

and

|{x ∈ E : E ∗ St (x) ≥ 100}| ≥ |E |
32

.
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Recall that whenever |E | ≥ Cq15/8, we have constructed a configuration

{x1, x2, x3, y123, y12, y13, y23, y0}

with the desired edges in the distance graph (see Fig. 2). In particular, provided the
constant C is large enough, we can construct such a configuration in E ′ := |{x ∈ E :
E ∗ St (x) ≥ 100}|, a subset of E in which every vertex has degree at least 100 in the
distance graph on E . In particular, x1, x2, x3 each have degree at least 100, so they
each have at least one neighbor in addition to the ones listed, i.e., there exist distinct
y1, y2, y3 with

y1, y2, y3 /∈ {x1, x2, x3, y12, y13, y23, y123},

and ‖yi − xi‖ = t for i = 1, 2, 3, and ‖yi − x j‖ �= t for i �= j .
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