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SIMPLICES IN THIN SUBSETS OF EUCLIDEAN SPACES

ALEX IOSEVICH AND AKOS MAGYAR

Let A be a nondegenerate simplex on k vertices. We prove that there exists a threshold s; < k such that
any set A C R* of Hausdorff dimension dim A > s; necessarily contains a similar copy of the simplex A.

1. Introduction

A classical problem of geometric Ramsey theory is to show that sufficiently large sets contain a given
geometric configuration. The underlying settings can be Euclidean space, the integer lattice or vector
spaces over finite fields. By a geometric configuration, we mean the collection of finite point sets obtained
from a given finite set F C R* via translations, rotations and dilations.

If the size is measured in terms of the positivity of the Lebesgue density, then it is known that large sets
in R* contain a translated and rotated copy of all sufficiently large dilates of any nondegenerate simplex A
with k vertices [Bourgain 1986]. However, on the scale of the Hausdorff dimension s < & this question is not
very well understood. The only affirmative result in this direction was obtained by Iosevich and Liu [2019].

In the other direction, a construction due to Keleti [2008] shows that there exists a set A C R of
full Hausdorff dimension which does not contain any nontrivial 3-term arithmetic progression. In two
dimensions an example due to Falconer [2013] and Maga [2010] shows that there exists a set A C R?
of Hausdorff dimension 2 which does not contain the vertices of an equilateral triangle, or more generally
a nontrivial similar copy of a given nondegenerate triangle. It seems plausible that examples of such sets
exist in all dimensions, but this is not currently known. See [Fraser and Pramanik 2018] for related results.

The purpose of this paper is to show that measurable sets A € R¥ of sufficiently large Hausdorff
dimension s < k contain a similar copy of any given nondegenerate k-simplex with bounded eccentricity.
Our arguments make use of and have some similarity to those of Lyall and Magyar [2020]. We also
extend our results to bounded degree distance graphs. For the special cases of a path (or chain) and,
more generally, a tree, similar but somewhat stronger results were obtained in [Bennett et al. 2016] and
[Iosevich and Taylor 2019].

2. Main results

Let V ={vy,..., v} C R be a nondegenerate k-simplex, a set of k vertices which are in general position
spanning a (k—1)-dimensional affine subspace. For 1 < j <k, let r;(V) be the distance of the vertex v;
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to the affine subspace spanned by the remaining vertices v;, i # j, and define r (V) := min<;j < r; (V).
Let d(V) denote the diameter of the simplex, which is also the maximum distance between two vertices.
Then the quantity §(V) :=r(V)/d(V), which is positive if and only if V is nondegenerate, measures how
close the simplex V is to being degenerate.

We say that a simplex V' is similar to V, if V/ = x 4+ A - U(V) for some x € R, » > 0 and U € SO(k);
that is if V'’ is obtained from V by a translation, dilation and rotation.

Theorem 1. Let k € N and § > 0. There exists so = so(k, §) < k such that if E is a compact subset of RK
of Hausdorff dimension dim E > s, then E contains the vertices of a simplex V' similar to V, for any
nondegenerate k-simplex V with (V) > 4.

Remarks. (1) Note that the dimension condition is sharp for kK = 2, as a construction due to Maga [2010]
shows the existence of a set E C R? with dim(E) = 2 that does not contain any equilateral triangle or
more generally a similar copy of any given triangle.

While we do not currently have an example showing that the dimension condition is sharp when k > 2,
we have some indications that this should be the case. In the finite field setting, one can show that [F‘; (the
d-dimensional vector space over the field with ¢ elements) contains a d-dimensional equilateral simplex
if and only if (d + 1)/2¢ is a square in [,; see the appendix in [Bennett et al. 2014]. This allows one
to construct an [F;l that does not contain a d-dimensional equilateral simplex under a suitable arithmetic
assumption on [F,. While such an assumption is not meaningful in R the Fourier analytic methods
used in this paper would likely to extend to the finite field setting. At the very least, this says that if
the dimensional assumption in Theorem 1 is not sharp, a very different approach would be required to
establish a positive result.

(2) It is also interesting to note that the proof of Theorem 1 above proves much more than just the
existence of vertices of V' similar to V inside E. The proof proceeds by constructing a natural measure
on the set of simplexes and proving an upper and a lower bound on this measure. This argument shows
that an infinite “statistically” correct “amount” of simplexes V' exist that satisfy the conclusion of the
theorem, shedding considerable light on the structure of sets of positive upper Lebesgue density.

(3) Theorem 1 establishes a nontrivial exponent sy < k, but the proof yields sg very close to k£ and not
explicitly computable. The analogous results in the finite field setting (see e.g., [Hart and Iosevich 2008],
[losevich and Parshall 2019]) suggest that it may be possible to obtain explicit exponents, but this would
require a fundamentally different approach to certain lower bounds obtained in the proof of Theorem 1.

A distance graph is a connected finite graph embedded in Euclidean space, with a set of vertices
V ={vg, v1,...,0,} C R4 and a setof edges E C {(i, j):0<i < j <n}. Wesay that a graph I'=(V, E)
has degree at most k if |V;| <k forall 1 < j <n, where V; = {v; : (i, j) € E}. The graph I is called
proper if the sets V; U {v;} for all j are in general position, in the sense that V; U {v;} is not contained
in a subspace of dimension smaller than |V;| — 1. Let r(I") be the minimum of the distances from the
vertices v; to the corresponding affine subspace spanned by the sets V;, and note that (I') > 0 if " is
proper. Let d(I") denote the length of the longest edge of I', and let 6(I") :=r(I")/d(T").
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We say that a distance graph I = (V', E) is isometric to T' and write I'" >~ T, if there is a one-to-one
and onto mapping ¢ : V — V' so that |¢ (v;) — ¢ (v;)| = |v; — v;| for all (i, j) € E. One may picture I’
obtained from I'" by a translation followed by rotating the edges around the vertices, if possible. By A - I"
we mean the dilate of the distance graph I' by a factor A > 0, and we say that I'" is similar to T if I is
isometric to A - I.

Theorem 2. Let5 >0, n>1, 1 <k <d, and let E be a compact subset of R¥ of Hausdorff dimension s <d.
There exists so = so(n, d, 8) < d such that if s > s, then E contains a distance graph I’ similar to T, for
any proper distance graph T = (V, E) of degree at most k, with V. C R%, |V | =n and §(T") > 8.

Note that Theorem 2 implies Theorem 1, as a nondegenerate simplex is a proper distance graph of

degree k — 1.

3. Proof of Theorem 1

Let E C B(0, 1) be a compact subset of the unit ball B(0, 1) in R¥ of Hausdorff dimension s < k. It is

well known that there is a probability measure p supported on E such that u(B(x, r)) < C,r® for all

balls B(x, r). The following observation shows that we may take C,, =4 for our purposes. !

Lemma 1. There exists a set E' C B(0, 1) of the form E' = p~'(F — u) for some p > 0, u € R* and
F C E, and a probability measure ' supported on E’ which satisfies

W (B(x,r)) <4r', forall x e R r>0. (3-1)
Proof. Let K := inf(S), where
S:={CeR:u(Bx,r) <Cr’, VB(x,r)}.
By Frostman’s lemma [Mattila 1995], we have that § = @ and K > 0, moreover,
pr(B(x,r)) <2Kr’,

for all balls B(x, r). There exists a ball Q = B(v, p) of radius p such that u(Q) > %K p’. We translate E
so Q is centered at the origin, set F = E N Q and denote by wr the induced probability measure on F:

n(ANF)

A) =
wr(A) (P

Note that for all balls B = B(x, r),
(B) < 2Kr? _4(;’)‘;‘
MR = ke T\
Finally, we define the probability measure " as u'(A) := ur(pA). Itis supported on E' = p 'FCB(,1)
and satisfies

W (B(x,r)) = up(B(px, pr)) < 4r'. O

I'We would like to thank Giorgis Petridis for bringing this observation to our attention.
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Clearly E contains a similar copy of V if the same holds for E’, thus one can pass from E to E’ in
proving our main results, assuming that (3-1) holds. Given ¢ > 0, let ¥.(x) = ek (x /&) > 0, where
¥ > 0 is a Schwarz function whose Fourier transform, 1}, is a compactly supported smooth function
satisfying ¥ (0) =1 and 0 < < 1.

We define 1, := i * .. Note that u, is a continuous function satisfying |||l < Ce*~* with an
absolute constant C = Cy, > 0, by Lemma 1.

Let V={vg=0, ..., vr_1} be a given nondegenerate simplex and note that in proving Theorem 1 we
may assume that d(V) = 1, and hence §(V) =r(V). A simplex V' ={xo =0, x1, ..., xx_1} is isometric

to V if for every 1 < j < k one has that x; € Sy, X1 where

.....

Sergyr =1y RNy —xi| = v; —vil, 0<i < j}

is a sphere of dimension k — j and of radius r; =r;(V) > r(V) > 0. Let oy, x,_, denote its normalized
surface area measure.
Given 0 < A and ¢ < 1, define the multilinear expression

T}LV(M&) ZZ/MS(X)MS(X —)\.XI) "'Ms(x_)‘xkfl)doi(xl)do'xl (x2) daxl ..... )Ck,z(-xkfl)dxs (3_2)
which may be viewed as a weighted count of the isometric copies of LA.

3.1. Upper bounds. A crucial part of our approach is to show that the averages Ty (it.) have a limit
as ¢ — 0, for which one needs the following upper bound.
Lemma 2. There exists a constant Cy, > 0, depending only on k, such that
|Tov (2e) = Ty (ke)| < Cir (V) ™/ 120 1DEm0FA, (3-3)
As an immediate corollary we have the following:

ﬁ < s < k. There exists

T (w) = ;E)T(l) Tov (ue), (3-4)

Lemma 3. Let k —

and moreover,
| Ty () — Ty (e)| < Cr (V) ™12 7120126 =0F1/4, (3-5)

Indeed, the left side of (3-5) can be written as a telescopic sum:

> Ty (uae) — Ty (pey).  with ; =27z,
j=0

Proof of Lemma 2. Write Apte := o, — (te. Then
k—1 k—1 k
[TroeGe=rx) = [T rex = axp) =D A o),
j=1 j=1 j=1

where

Aj(pte) = [Tty (6 = Ao Apee (x — 1xy), (3-6)
i#]
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and where ¢;; = 2¢ fori < j and ¢;; = ¢ for i > j. Since the arguments below are the same for all
1 <j<k—1,assume j =k — 1 for simplicity of notations. Writing f ;, g(x) := [ f(x —Ay)g(y) dy,
and using || e |loo < Ce*~ % we have for AT (u,) := Toy (te) — Tov (u2e) that

|AT ()| S e*726=D /

where dw(x1, ..., xx—2) =do(x1) - doy,

/ /’LS (X)A/’L{S *}\. O.)Cl,...,xk,Z (x) d-x d(l)(XI, R ] xk—Z)a (3_7)

xi_3 (xk—2) for k > 3, and where for k = 3 we have that

.....

dw(x1) = do (x1), which is the normalized surface area measure on the sphere S = {y : |y| = |v1]}.
The inner integral is of the form

s—d
|<:u“€’ AMS *)» le,...,xk,2>| 5 8Y “A/’LS *)\ O'xl,“.,xkfz ||2

Thus by Cauchy—Schwarz and Plancherel’s identity,

Aft T ()P < 2k D6 f INRGRGY
where

5(§) = / 16212 G deo(x1,, xk2).

Since Sy, ... x._, 1S a one-dimensional circle of radius ry_; > (V) > 0 contained in an affine subspace
orthogonal to My, . ., =span{xy, ..., xx—2}, we have that

1621 s QO S (L r(VIAdistE, My, )"

Since the measure w(x, ..., xx—p) is invariant with respect to the change of variables (x, ..., xy—3) —
(Uxy, ..., Uxg_p) for any rotation U € SO(k), one estimates

=/ (A 4+r(V)Adist(Ug, My, ..., xk_z))*lda)(xl,...,xk_g)dU

=/ 1+ r(V)AELdist(n, My, )" doo(x1, ... xk—2) dox_2() S (1+r(VIAED T,

where we have written 1 := |£|"!U& and oy_; denotes the surface area measure on the unit sphere
Sk=1 C R,

Note that A//Z;(é‘) = /fc(é)(lﬁ(Zsé) — 1&(85)), which is supported on [§] < e~ ! and is essentially
supported on |£| &~ ¢~ !, Indeed, writing

J = / Apc@PLEds= | 1AREPLE)ds+ f |Ape@P L) d =t I+

|§|<e~! e712<|g|<e!

and using |1ﬁ(2£§) — 1/7(85)| < el/2 for || < &7/, we estimate

Ji ,Sgl/zf |E) 2 (268) + Y (s8)) dE < ' /25,

/ )PP (e8) dE = / e () du(x) < &8k,
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On the other hand, as I, (§) < &!'/2r(V)~'A~! for |€] > ¢~!/2, we have
LS Prvy=h! / |0E)*P(e&) dE Sr(V)~IaT e P,

where we have written ¢ (&) = (1 (26) — ¥/ (£))2 Plugging these estimates into (3-7), we obtain
IAT (1) |2 < r(V) A 1gl/2+@k=DG—d)
and (3-5) follows. .

The support of 1. is not compact, however, as it is a rapidly decreasing function, it can be made to
be supported in a small neighborhood of the support of © without changing our main estimates. Let
¢ (x) := ¢ (ce~/?x) with some small absolute constant ¢ > 0, where 0 < ¢ (x) < 1 is a smooth cut-off,
which equals one for |x| < % and is zero for |x| > 2. Define 1}8 =Y., and 1, = u * 1/78. It is easy to
see that i, < u, and [ fi, > % if ¢ > 0 is chosen sufficiently small. Using the trivial upper bound, for
k—1/(4k) <s < k we have

1 Tov (e) — Tav (o) | < Crllpe 55 e — fielloo < Cre'/?,

and it follows that estimate (3-5) remains true with u, replaced with fi,.

3.2. Lower bounds. Let f, := ce*~*[i,, where ¢ = ¢y > 0 is a constant such that 0 < f; < 1 and
[ fedx = c'ek5. Let o := ¢’¢¥~% and note that the set A, := {x D fe(x) > %a} has measure |A.| > %a.
If one defines the averages

Tv(Ag) = / 14, 00)1a, (x —Axy) -+ - 14, (x —Axg—1) do(xy) - - - doy,. e, (Xk—1) dx,
then clearly
Tov (ite) = ca* Toy (Ap).

The averages T,y (A.) represent the density of isometric copies of the simplex AA in a set A, of measure
|A¢| = 5 > 0, which was studied in [Lyall and Magyar 2020] in the more general context of k-degenerate
distance graphs. We recall one of the main results of the aforementioned paper; see Theorem 2 (ii) together
with Estimate (18):

Theorem 3 [Lyall and Magyar 2020]. Let A C [0, 11¥ and |A| = o > 0. Then there exists an interval I of
length |1| > exp(—Ca~C%), such that for all » € I, one has

| Tov (A)] = ca.

Thus for all A € 1,
Ty (jig) =c>0 (3-8)

for a constant ¢ = c(k, ¥, r(V)) > 0. Now, let

1
Ty (i) = f ATy (i) .
0
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For k — - < <k, by (3-5) we have that
| Toy () — Tav (jie)| < Cer (V) 120712618
it follows that

1
/ M2\ Ty (W) — Tov (fie) | dh < Crr (V) ™V261/8) (3-9)
0

and in particular fol AM72T v (1) dh < 0o. On the other hand, by (3-8), one has that

1
| ¥ PTG = expr—em€it ), (3-10)
0
Assume that # (V) > §, fix a small € = g; 5 > 0 and then choose s = s (¢, §) < k such that

Cid~ 12618 < % exp(—e‘ck(k_s)),

which ensures that

1
f A2 Ty (w) da > 0.
0

Thus there exists A > 0 such that 7y (1) > 0. Fix such a A, and assume indirectly that EF=Ex..-xE
does not contain any simplex isometric to AV, i.e., any point of the compact configuration space S,y C RK*
of such simplexes. By compactness, this implies that there is some 1 > 0 such that the n-neighborhood
of EX also does not contain any simplex isometric to A V. Since the support of i, is contained in the
Ckel/z-neighborhood of E, as E = supp u, it follows that Ty y (fi,) = O for all ¢ < cxn? and hence
T,.v () =0, contradicting our choice of A. This proves Theorem 1.

4. The configuration space of isometric distance graphs

Let 'y = (Vy, E) be a fixed proper distance graph, with vertex set Vo = {vg =0, vy, ..., v,} C RY of
degree k <d. Let t;; =|v; —vj|2 for (i, j) € E. A distance graph ' =(V, E) with V ={xo =0, x1, ..., x,,}
is isometric to I'g if and only if x = (x1, ..., x,) € Sr,, where

Sty ={(x1, ., ) €RY :x —xj|* =1;;, VO<i < j<n, (i, j) € E}.

We call the algebraic set St, the configuration space of isometric copies of I'g. Note that Sr, is the
zero set of the family 7 = {f;; : (i, j) € E} with f;;(x) = |x; — xj|2 — 1;;, thus it is a special case of the
general situation described in Section 5.

If ' >~ 'y with vertex set V = {xo = 0, xq, ..., x,} is proper, then x = (xy, ..., x,) is a nonsin-
gular point of Sr,. Indeed, for a fixed 1 < j < n, let I'; be the distance graph obtained from I' by
removing the vertex x; together with all edges emanating from it. By induction we may assume that
x"=(x1,...,Xj_1,Xj41, ..., X,) is a nonsingular point, i.e., the gradient vectors Vy fjx(x), (i, k) € E,
i # ], k # j, are linearly independent. Since I" is proper, the gradient vectors V, fi;(x) = 2(x; — x;),
(i, j) € E, are also linearly independent, hence x is a nonsingular point. In fact we have shown that the
partition of coordinates x = (y, z) with y = x; and z = x’ is admissible and hence (6-4) holds.
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Let ro =r(Ig) > 0. Itis clear that if I' ~I"g and |x; —v;| < ng for all 1 < j <n, for a sufficiently small
no = n(rg) > 0, then I' is proper and r(I") > %ro. Foragivenl1 <j<n,let X; :={x; € V:(, j) € E}
and define

Sx, :=f{x e Rt |x —x; > =1, ¥x; € X;}.

As explained in Section 6, S X; is a sphere of dimension d — | X;| > 1 with radius r(X;) > %ro. Let o,
denote the surface area measure on Sx; and write vx; ‘= ¢;0x;, where ¢; is a smooth cut-off function
supported in an n-neighborhood of v; with ¢;(v;) = 1.

Write x = (x1,...,x,) and ¢ (x) := ]_[']’.:1 ¢;j(x;j). Then by (6-4) and (6-5) one has

/g(X)¢(x)dwf(x)=cj(Fo) // g§(x)p(x") dvx; (x;) dwr (x'), (4-1)

where X’ = (x1, ..., Xj—1, Xj41,...,%,) and Fj = {fi; : (i,]) € E, | # j}. The constant c;(I'g) > 0 is the
reciprocal of the volume of the parallelotope with sides x; — x;, (i, j) € E, which is easily shown to be at
least ckr(',‘ , as the distance of each vertex to the opposite face is at least %ro on the support of ¢.

5. Proof of Theorem 2

Let d > k and again, without loss of generality, assume that d(I") = 1 and hence §(I") = r(I"). Given
A, & > 0, define the multilinear expression

Tyry (e) = / : / e () e (X = Ax1) -+ - e (X = AX0)P (X1, .., Xp) dwp(xy, ..., xn)dx.  (5-1)
Given a proper distance graph I'g = (V, E) on |V | = n vertices of degree k < n, one has the following
upper bound.

Lemma 4. There exists a constant C = C,, 4 x(ro) > 0 such that
| Trg (i) — Tory (pe)| < CAT1/20H/DO=DFLA, (5-2)

This implies again that in dimensions d — 1/(4n 4-2) <s <d, the limit T, (u) := limg_ Thr,(e)
exists. Also, the lower bound (3-8) holds for distance graphs of degree k, as was shown for a large class
of graphs, the so-called k-degenerate distance graphs; see [Lyall and Magyar 2020]. Thus one may argue
exactly as in Section 3 to prove that there exists a A > 0 for which

Thry(n) >0, (5-3)

and Theorem 2 follows from the compactness of the configuration space Sy, € R?". It remains to prove
Lemma 4.

Proof of Lemma 4. Write AT (i) := Tor,(te) — Thr, (t2¢). Then we have AT (u,) = ijl AT (ue),
where A;T (u,) is given by (5-1) with u.(x — Ax;) replaced by Au,(x — Ax;) given in (3-6), and
e (x — Ax;) by poe(x — Ax;) for i > j. Then by (4-1) we have the analogue of estimate (3-7):

|AT ()| S @~ D6=D / ‘ / 1e () Apte 3 vx, (x) dx|p (x') dog, (x'), (5-4)
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where ¢ (x") =[], £ ¢ (x;). Thus by Cauchy—Schwarz and Plancherel’s identity,

8P £ [ IK©r @ ds
where

1{(%‘)2/Iﬁx,()»é)l%(x/)dwﬁ(x/)-

Recall that on the support of ¢ (x’) we have that Sx; is a sphere of dimension at least 1 and of radius

r> %ro > 0, contained in an affine subspace orthogonal to span X;. Thus,

1Dx, (A&)1> S (1 + roA dist(&, span X;)) ™",
Let U : R — R? be a rotation, and for x’ = (x;)ixj write Ux" = (Ux;);2;. As explained in Section 6,
the measure WF; is invariant under the transformation x’ — Ux’, hence
L) < //(1 + roA dist(&, span UXJ-))_1 dor, (x)dU

_ / f (1 + ror|€] dist(n, span X))~ dog_i (n) dwF; (x') < (1 4+ rohlE)

where we have written again 7 := |£|71U& € §9~1,
Then we argue as in Lemma 2, noting that as A/Eg (£) is essentially supported on |£] &~ ¢, we have
that

|AT(M8)|2 5 ro—l)\‘—lgzn(s—d)-i-l/Z/ |ﬁ(€)|2($(8§)d§ S ro—l)\’—lg(Zn-‘rl)(S—d)—Fl/z’
with i = e or fie = p * ¢.. This proves Lemma 4. Il

6. Measures on real algebraic sets

Let 7 = {fi1,..., f,} be a family of polynomials f; : RY — R. We will describe certain measures
supported on the algebraic set

Sri={xeR?: fix) =--- = fo(x) =0} &)

A point x € Sr is called nonsingular if the gradient vectors

Vfl(X), cee vfn(x)

are linearly independent. Let S% denote the set of nonsingular points. It is well known that if S% #* O,
then it is a relative open, dense subset of Sz, and moreover it is an (d —n)-dimensional submanifold of R4
If x e S(}, then there exists a set of coordinates J = {ji, ..., j,}, with 1 < j; <--- < j, <d, such that
: dfi
JF,s(x) :=det (—l (X)) # 0. (6-2)
1<i<n,jeJ

8Xj
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Accordingly, we will call a set of coordinates J admissible if (6-2) holds for at least one point x € S?E and
will denote by Sz, ; the set of such points. For a given set of coordinates x; let Vy, f(x) := (3, f (%)) jes
and note that J is admissible if and only if the gradient vectors

v)wfl(-x)a ---aVXan(-x)

are linearly independent for at least one point x € Sr. It is clear that, unless Sr ; = &, it is a relative
open and dense subset of Sr and is also a (d —n)-dimensional submanifold, moreover S?r is the union of
the sets Sx ; for all admissible J.

We define a measure, near a point xo € Sr s, as follows. For simplicity of notation assume that
J={l,...,n}and let

CD()C) = (fl, ...,fn,an, .. .,xd).

Then ® : U — V is a diffeomorphism on some open set xo € U € R? to its image V = ®(U), moreover
Sr=® 1 (VNRI™). Indeed, x € SFrNU if and only if ®(x) = (0,...,0, Xpq1,...,xg) € V. Let

I ={n-+1,...,d} and write x; ;= (Xp4+1,...,xq). Let U(xy) = ®~1(0, x;) and in local coordinates
let x; define the measure wr via
/ gdor = / g(W(xp)) Jacg (W(xp)) day. (6-3)

for a continuous function g supported on U. Note that Jace(x) = jr j(x), i.e., the Jacobian of the
mapping ¢ at x € U is equal to the expression given in (6-2), and that the measure dwr is supported
on Sx. Define the local coordinates y; = f;(x) for 1 < j <n and y; = x; forn < j <d. Then

dyiA---ANdyg=dfin---ANdfy Adxppi N ANdxg =Jace(x)dxy A - - Adxy,

and thus
dx; /\---/\dxd=JaC¢(x)*1df1 A Adfp ANdxpii AN ANdxg=dfi n---Ndfy ANdor.

This shows that the measure dw £ (given as a differential (d—n)-form on SN U) is independent of the
choice of local coordinates x;. Then wr is defined on S% and moreover the set S%\S 7.7 1s of measure
zero with respect to wp, as it is a proper analytic subset on RY~" in any other admissible local coordinates.

Let x = (z, y) be a partition of coordinates in R4, with y=xj,, 2=X,,and assume thatfori=1,...,m
the functions f; depend only on the z-variables. We say that the partition of coordinates is admissible if
there is a point x = (z, ¥) € Sr such that both the gradient vectors V, fi(x), ..., V, f(x) and the vectors
Vy fms1(x), ..., V, fu(x) form a linearly independent system. Partition the system F = F; U F, with
Fr={f1,..., fm}and 7 = {fin+1, - .., fn}. Then there is a set Jl’ C J; for which

. , afi
R = det( -2 (2) £0,
dx I<i<m,jeJ]

j
and also a set J; € J, such that

dfi

Jr.p@ y) = det(g(z, y #0.

J )m-ﬁ-lfifn,je]z/
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Since V,, f; =0 for 1 <i < m, it follows that the set of coordinates J' = J{ U J; is admissible, moreover,

JF0 (v, 2) = jr 5@ Jjr 50, 2).

For fixed z, let f; .(y) := fi(z,y) and let 5 ; = {fu+1z ---, fnz}. Then clearly jfLsz(y,z) =
JF,..2;(y) as it only involves partial derivatives with respect to the y-variable. Thus we have an analogue
of Fubini’s theorem, namely,

fg(X)dwf(X)=// 8(z,y) dor, (y)dor,(2). (6-4)

Consider now algebraic sets given as the intersection of spheres. Let xq, ..., x,, € RY ty, ...ty >0
and F={fi,..., fu}), where fi(x)=|x—x;|>—t; fori =1, ..., m. Then Sr is the intersection of spheres
centered at the points x; of radius r; = til/ 2 If the set of points X = {x1, ..., x,;} is in general position
(i.e., they span an (m—1)-dimensional affine subspace), then a point x € S is nonsingular if x ¢ span X,
i.e., if x cannot be written as linear combination of xi, ..., x,,. Indeed, since Vf;(x) = 2(x — x;), we
have that

m m m
Y avix) =0 < Y ax=) ax,
i=1 i=1

i=1

which implies that > @; = 0 and Y ", a;x; = 0. By replacing the equations |x — x;|?> = #; with
|x —x1|> — |x —x;|*> = #; — t;, which is of the form x - (x; —x;) =¢;, fori =2, ..., m, it follows that S
is the intersection of the sphere with an (n—1)-codimensional affine subspace Y, perpendicular to the
affine subspace spanned by the points x;. Thus Sz is an m-codimensional sphere of R? if S has one
point x ¢ span{xy, ..., x,} and all of its points are nonsingular. Let x’ be the orthogonal projection of x
to span X. If y € Y is a point with |y — x| = |x — x| then by the Pythagorean theorem we have that
|y — xi| = |x — x;| and hence y € Sx. It follows that S is a sphere centered at x” and contained in Y.

Let T' = Tx be the inner product matrix with entries #;; := (x — x;) - (x — x;) for x € Sr. Since
(x—x;) - (x —x) = 3t + 15 — |x; — x; ),

the matrix 7 is independent of x. We will show that dwr = cr dos,., where dos, denotes the surface

area measure on the sphere Sr and cr =27" det(T)~/2 > 0, i.e., for a function g € Co(R?),
/ gx)dwr(x) =cr / g(x) dog, (x). (6-5)
S}- S}'
Let x € Sr be fixed and let ey, . .., es be an orthonormal basis so that the tangent space T, Sr equals
span{e,;+1, ..., eq}, and moreover we have that span{Vfi, ..., Vf,,} =span{ey, ..., en}. Letxy, ..., x,

be the corresponding coordinates on RY and note that in these coordinates the surface area measure, as a
(d—m)-form at x, is

dos,(x) =dxpmp1 N--- Ndxy.
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On the other hand, in local coordinates x; = (x;;41, ..., X4), it is easy to see from (6-2)—(6-3) that
Jjr.y(x)=2"vol(x —x1,...,x — x;), and hence

dor(x) =27""vol(x — X1, ..., X —Xp) " dXpme1 A+ Adxq,
where vol(x — xy, ..., x —x;,) is the volume of the parallelotope with side vectors x — x;. Finally, it is a

well-known fact from linear algebra that
vol(x —x1,...,x — xm)2 =det(T),

1.e., the volume of a parallelotope is the square root of the Gram matrix formed by the inner products of
its side vectors.
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