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Given a set E ⊂ F3
q , where Fq is the field with q elements. Consider a set of “classifiers” 

H3
t (E) = {hy : y ∈ E}, where hy(x) = 1 if x · y = t, x ∈ E , and 0 otherwise. We are 

going to prove that if |E| ≥ Cq
11
4 , with a sufficiently large constant C > 0, then the 

Vapnik-Chervonenkis dimension of H3
t (E) is equal to 3. In particular, this means that 

for sufficiently large subsets of F3
q , the Vapnik-Chervonenkis dimension of H3

t (E) is the 
same as the Vapnik-Chervonenkis dimension of H3

t (F
3
q ). In some sense the proof leads us 

to consider the most complicated possible configuration that can always be embedded in 
subsets of F3

q of size ≥ Cq
11
4 .

© 2022 Published by Elsevier B.V.

1. Introduction

The purpose of this paper is to study the Vapnik-Chervonenkis dimension in the context of a naturally arising family 
of functions on subsets of the three-dimensional vector space over the finite field with q elements, denoted by F3

q . Let us 
begin by recalling some definitions and basic results (see e.g. [9], Chapter 6).

Definition 1.1. Let X be a set and H a collection of functions from X to {0, 1}. We say that H shatters a finite set C ⊂ X if 
the restriction of H to C yields every possible function from C to {0, 1}.

Definition 1.2. Let X and H be as above. We say that a non-negative integer n is the VC-dimension of H if there exists a 
set C ⊂ X of size n that is shattered by H, and no subset of X of size n + 1 is shattered by H.

We are going to work with a class of functions Hd
t , where t �= 0. Let X = Fd

q , and define

Hd
t = {hy : y ∈ Fd

q }, (1.1)
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where y ∈ Fd
q , and hy(x) = 1 if x · y = t , and 0 otherwise. Let Hd

t (E) be defined the same way, but with respect to a set 
E ⊂ Fd

q i.e.

Hd
t (E) = {hy : y ∈ E},

where hy(x) = 1 if x · y = t (x ∈ E), and 0 otherwise.
Our main result is the following.

Theorem 1.3. Let H3
t (E) be defined as above with respect to E ⊂ F3

q , t �= 0. If |E| ≥ Cq
11
4 , for some large enough constant C , then the 

VC-dimension of H3
t (E) is equal to 3.

Remark 1.4. Since |H3
t (E)| = |E|, it is clear that the VC-dimension of H3

t (E) is at most log2(|E|), so 3 is a clear improvement 
over this general estimate. It is not difficult to see that the VC-dimension is < 4 since three points determine a plane in 
F3
q , so the real challenge is to establish that some set of 3 points shatters. Moreover, our result says that in this sense, the 

learning complexity of subsets of F3
q of size > Cq

11
4 is the same as that of the whole vector space F3

q .

Remark 1.5. In the case when d = 2 and the dot product x · y is replaced by ||x − y|| = (x1 − y1)
2 + (x2 − y2)

2, the corre-
sponding result, with the threshold |E| ≥ Cq

15
8 was established by D. Fitzpatrick, E. Wyman and the first two listed authors 

of this paper ([2]). The techniques used to prove Theorem 1.3 are quite a bit different. On one hand, we have more room to 
roam in three dimensions. On the other, the non-translation invariant nature of the dot product requires special care.

In the case d ≥ 4, an attempt to prove that the VC dimension is equal to d with a non-trivial threshold on the size of 
E runs into the difficulties that are quite reminiscent of those the authors ran into in the process of trying to extend the 
result mentioned in Remark 1.5 to higher dimensions. The biggest difficulty is posed by degenerate configurations. However, 
we can prove in higher dimensions that the VC dimension is at least 3 with a non-trivial threshold on the size of E . We 
shall address these issues in a sequel.

Remark 1.6. The case d = 2 of Theorem 1.3 is quite simple because two points determine a line. Shattering two points can 
be accomplished by a method quite similar to that used to prove Theorem 1.9 below.

Remark 1.7. As the reader shall see, the proof of Theorem 1.3 involves a construction of a reasonably complicated point 
configuration in E . For a general theory of such configurations in the context of dot products, see e.g. [3] and [8].

Remark 1.8. The concept of the VC-dimension plays an important role in many combinatorial problems. See, for example, 
[1], [4], and the references contained therein.

We can also prove that the VC-dimension is ≥ 2 under a much weaker assumption. More precisely, we have the following 
result.

Theorem 1.9. Let H3
t (E) be defined as above with respect to E ⊂ F3

q , t �= 0. If |E| > cq
5
2 for an arbitrary c, then the VC-dimension of 

H3
t (E) is ≥ 2.

Remark 1.10. We do not know to what extent the exponent 114 in Theorem 1.3 and the exponent 52 are sharp, but we know 
that neither exponent can fall below 2 in view of sharpness examples for the distance problem in odd dimensions in [3].

From the point of view of learning theory, it is interesting to ask what the “learning task” is in the situation at hand. It 
can be described as follows. We are asked to construct a function f : E → {0, 1}, E ⊂ F3

q , that is equal to 1 when x · y∗ = t , 
but we do not know the value of y∗ . The fundamental theorem of statistical learning tells us that if the VC-dimension of 
H3

t (E) is finite, we can find an arbitrarily accurate hypothesis (element of H3
t (E) with arbitrarily high probability if we 

consider a randomly chosen sampling training set of sufficiently large size. The necessary sample size to learn effectively 
grows with the VC-dimension. For a precise, quantitative treatment of this idea, see [9].

2. Proof of Theorem 1.9

We prove Theorem 1.9 first because some of the ideas in the proof will be needed in the proof of Theorem 1.3. It is 
sufficient to prove that there exist x1, x2, y1, y2, y12, y∗ ∈ E such that

• i) x1 · y12 = x2 · y12 = t ,
• ii) x1 · y1 = t, x2 · y1 �= t ,
2
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Fig. 1. Configuration for Theorem 1.9.

• iii) x2 · y2 = t, x1 · y2 �= t ,
• iv) x1 · y∗, x2 · y∗ �= t

The reason the above suffices to establish Theorem 1.9 is because it demonstrates that a set of size two can be shattered 
by H3

t (E).
It suffices to find such a tuple (x1, x2, y12, y1, y2) under the additional assumption that for each u ∈ E , there are at most 

C |E|
q vectors v ∈ E such that u · v = t . The following lemma allows us to reduce to this case.

Lemma 2.1. Let E ⊆ F3
q such that |E| ≥ Cq

5
2 with C sufficiently large. Then there is a subset E ′ ⊆ E with |E ′| ≥ 1

2 |E|, and for any 
u ∈ E ′ ,

∑
v∈E ′

Dt(u, v) ≤ 22|E ′|
5q

,

where Dt(u, v) = 1 when u · v = t, and 0 otherwise.

Clearly if H3
t (E

′) shatters some set of 3 points, then H3
t (E) shatters the same set of 3 points. Moreover, if E satisfies the 

hypotheses of Theorem 1.3 or Theorem 1.9, then so does E ′ .

Proof. It follows immediately from the proof of the main result in [5] that

∑
u,v∈E

Dt(u, v) = |E|2
q

+ R(t),

where |R(t)| ≤ |E|q < |E|2
10q . In particular,

∑
u∈E

∑
v∈E

Dt(u, v) ≤ 11|E|2
10q

.

This implies that at most |E|
2 distinct points u ∈ E satisfy

∑
v∈E

Dt(u, v) ≥ 11|E|
5q

.

Thus, for

E ′ :=
{
u ∈ E :

∑
v∈E

Dt(u, v) ≤ 11|E|
5q

}
,

we see that E ′ satisfies the conditions of the lemma. �
With this lemma, we may assume without loss of generality that there are at most C |E|

q vectors v ∈ E with u · v = t . By 
Theorem 2.2 in [6], there exist a set P5 of ordered quintuples (x1, x2, y12, y1, y2) such that

y1 · x1 = x1 · y12 = y12 · x2 = x2 · y2 = t,

and ∣∣∣∣|P5| − |E|5
q4

∣∣∣∣ ≤ 4

log2
q2

|E|4
q4

≤ 1

2

|E|5
q4

.

In particular, |P5| ≥ 1
2

|E|5
q4

. Such a quintuple is represented in Fig. 1 as a graph with the vectors as vertices and edges 
between them if their dot product is t .
3
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Fig. 2. Degeneracy case in which x1 · y2 = t .

It remains to show that such a quintuple exists with x1 · y2 �= t and x2 · y1 �= t . We first count the number of quintuples 
(x1, x2, y12, y1, y2) in P5 with x1 · y2 = t . This case of degeneracy is displayed in Fig. 2 above.

We have,∑
x1,x2,y12,y1,y2∈E

Dt(y1, x1)Dt(x1, y12)Dt(y12, x2)Dt(x2, y2)Dt(y2, x1)

=
∑

x1,x2,y12,y2∈E

Dt(x1, y12)Dt(y12, x2)Dt(x2, y2)Dt(y2, x1)
∑
y1∈E

Dt(y1, x1)

≤ 22|E|
5q

∑
x1,x2,y12,y2∈E

Dt(y1, x1)Dt(x1, y12)Dt(y12, x2)Dt(x2, y2)

This sum over x1, x2, y12, y2 is the number of 4-cycles in the dot-product graph on E , denoted C prod
4 in the notation of [6]. 

By Theorem 1.2 in [6],∣∣∣∣∣∣
∑

x1,x2,y12,y2∈E

Dt(y1, x1)Dt(x1, y12)Dt(y12, x2)Dt(x2, y2) − |E|4
q4

∣∣∣∣∣∣
≤ |E|4

q4

(
12q− 1

2 + 8
q5

|E|2 + 28
q2

|E|
)

≤ |E|4
q4

(
12q− 1

2 + 8

c2
+ 28

c
q− 1

2

)

≤ 9|E|4
c2q4

.

Thus, ∑
x1,x2,y12,y2∈E

Dt(y1, x1)Dt(x1, y12)Dt(y12, x2)Dt(x2, y2) ≤
(

9

c2
+ 1

) |E|4
q4

and ∑
x1,x2,y12,y1,y2∈E

Dt(y1, x1)Dt(x1, y12)Dt(y12, x2)Dt(x2, y2)Dt(y2, x1)

≤ 22|E|
5q

(
9

c2
+ 1

) |E|4
q4

= 22

5

(
9

c2
+ 1

) |E|5
q5

<
|E|5
10q4

.

That is, the number of quintuples (x1, x2, y12, y1, y2) in P5 with x1 · y2 = t is less than |E|5
10q4

. Analogously, the num-

ber of quintuples (x1, x2, y12, y1, y2) in P5 with x2 · y1 = t is less than |E|5
10q4

. It follows that there exists a quintuple 
(x1, x2, y12, y1, y2) in P5 with x1 · y2, x2 · y1 �= t .

It only remains to construct y∗ ∈ E such that x1 · y∗ �= t and x2 · y∗ �= t . Observe that

|{x ∈ E : x · x1 = t}| = q2,

and

|{x ∈ E : x · x2 = t}| = q2,

so since |E| > 2q2, there exists y∗ with the desired properties. This completes the proof of Theorem 1.9.
4
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3. Proof of Theorem 1.3

Analogously with the proof of Theorem it suffices to find a set {x1, x2, x3} of 3 distinct points which is shattered by 
H3

t (E). This is equivalent to finding x1, x2, x3, y1, y2, y3, y12, y13, y23, y123, y∗ ∈ E with x1, x2, x3 distinct such that

• x1 · y123 = x2 · y123 = x3 · y123 = t
• x1 · y12 = x2 · y12 = t , x3 · y12 �= t , and similarly for y13 and y23
• x1 · y1 = t , x2 · y1, x3 · y1 �= t , and similarly for y1 and y2
• x1 · y∗, x2 · y∗, x3 · y∗ �= t

As in the previous section, we may assume without loss of generality that for all u ∈ E ,∑
v∈E

Dt(u, v) ≤ 22|E|
5q

.

This time we will reduce to the case where the sum is bounded below as well, which follows analogously via a counterpart 
to Lemma 2.1.

Lemma 3.1. For a set E satisfying the hypotheses of Theorem 1.3, there is a subset E0 ⊆ E with |E0| ≥ 1
6 |E|, and for any u ∈ E0 ,∑

v∈E

Dt(u, v) ≥ |E|
5q

Proof. Let

E0 :=
{
u ∈ E :

∑
v∈E

Dt(u, v) ≥ |E|
5q

}
,

so that we need only show that |E0| ≥ 1
6 |E|.∑

u,v∈E

Dt(u, v) =
∑
u∈E0

∑
v∈E

Dt(u, v) +
∑
u /∈E0

∑
v∈E

Dt(u, v)

≤ |E0|22|E|
5q

+ (|E| − |E0|) |E|
5q

= |E|2
5q

+ |E0|21|E|
5q

.

We know from the previous section that for E satisfying the hypotheses of Theorem 1.3,∣∣∣∣∣∣
∑
u,v∈E

Dt(u, v) − |E|2
q

∣∣∣∣∣∣ <
|E|2
10q

.

Thus,

9|E|2
10q

≤
∑
u,v∈E

Dt(u, v) ≤ |E|2
5q

+ |E0|21|E|
5q

,

and so

|E0| ≥ |E|
6

. �
With Lemma 2.1 and Lemma 3.1, we may assume that for all u ∈ E ,

|E|
5q

≤
∑
v∈E

Dt(u, v) ≤ 22|E|
5q

.

As we noted in the beginning of this section, in order to conclude that H3
t (E) has VC-dimension 3, we need to find 

x1, x2, x3, y1, y2, y3, y12, y13, y23, y123, y∗ ∈ E with x1, x2, x3 distinct such that

• x1 · y123 = x2 · y123 = x3 · y123 = t
5
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Fig. 3. Configuration for shattering a set of three points.

Fig. 4. Initial configuration used to build up to full shattering configuration.

• x1 · y12 = x2 · y12 = t , x3 · y12 �= t , and similarly for y13 and y23
• x1 · y1 = t , x2 · y1, x3 · y1 �= t , and similarly for y1 and y2
• x1 · y∗, x2 · y∗, x3 · y∗ �= t

This configuration is displayed above in Fig. 3.
Let

A = {
(x, y, z,u, v) ∈ E5 : x · y = y · z = z · u = u · x = v · u = t

}
(3.1)

For (x, y, z, u, v) ∈ A, by identifying x = y12, y = x2, z = y123, u = x1, and v = y13, this configuration corresponds to the 
graph shown in Fig. 4 above, which is a subgraph of the graph shown in Fig. 3. Our strategy is to use the symmetry of the 
larger configuration, in the sense that by removing y1, y2, y3 and then identifying x1 = x3 and y12 = y23, we obtain the 
smaller configuration.

We need the following result follows from [7], Chapter 2).

Lemma 3.2. Let E ⊂ F3
q with |E| ≥ Cq

5
2 , C sufficiently large. Then for A as in equation (3.1),

1

2
|E|5q−5 ≤ |A| ≤ 2|E|5q−5.

Since the definition of the set A did not require that x �= z, y �= u, and y · v �= t , all of which will be necessary for 
our construction, we will find an upper bound for the number of elements of A which do not have these properties. The 
following lemma implies that these make up a small proportion of A.

Lemma 3.3. Let E ⊂ F3
q with |E| ≥ Cq

5
2 , C sufficiently large. Then

|{(x, y, z, v,u) ∈ A : y · v = t, or x = z, or y = u}| ≤ 5|E|2q3.

Proof. There are at most |E|2 ways to produce a pair of distinct points u, y in E . Then, the intersection of the planes defined 
by a ·u = t and a · y = t is at most a line since these planes are distinct. There are at most q3 ways to choose 3 points on that 
line, x, z, u ∈ E . So, there are at most |E|2q3 quintuples (x, y, z, v, u) ∈ A with y · v = t . For the case when y = u, by Corollary 
4.5 in [6] there are at most 2 |E|4

q3
≤ 2|E|2q3 such quadruples of points (x, y, z, v) such that x · y = z · y = v · y = t . For the case 

when x = z, by Theorem 2.2 in [6], there are at most 2 |E|4
q3

such quadruples of points (x, y, u, v) with x · y = x · u = u · v = t . 
The conclusion follows. �

Let

A′ = {(x, y, z, v,u) ∈ A : y · v �= t, x �= z, y �= u}.

6
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Fig. 5. Result of using Cauchy Schwarz.

If |E| ≥ Cq
11
4 , then

|A \ A′| ≤ 5|E|2q3 ≤ 5

C3

|E|5
q5

,

and thus |A′| ≥
(
1
2 − 5

C3

) |E|5
q5

, in particular |A′| ≥ |E|5
4q5

.

Remark 3.4. We are now ready to take advantage of the symmetry of the configuration in Fig. 3. Ignoring y1, y2, y3 for 
now, we can realize the rest of the configuration by taking a pair of quintuples (x, y, z, u, v), (x′, y, z, u′, v) ∈ A′ sharing the 
points y, z, and v .

For ease of notation we let A′ denote both the set and its indicator function. Let

f (y, z, v) =
∑
x,u∈E

A′(x, y, z,u, v).

Then

|E|10
16q10

≤ |A′|2 =
⎛
⎝ ∑

y,z,v∈E

f (y, z, v)

⎞
⎠

2

By Cauchy-Schwarz, and noting that Dt(y, z) = 1 whenever f (y, z, v) �= 0, this is bounded by( ∑
y,z,v

f (y, z, v)2

)( ∑
y,z,v

Dt(y, z)

)

But for y ∈ E , 
∑

z Dt(y, z) ≤ 5|E|
q , so

|E|7
80q9

≤
∑
y,z,v

f (y, z, v)2 =
∑
y,z,v,

(∑
x,u

A(x, y, z,u, v)

)2

=
∑

x,x′,y,z,u,u′,v
A(x, y, z,u, v)A(x′, y, z,u′, v).

By the one-to-one correspondence noted in Remark 3.4, the number of ordered tuples of vectors (x1, x2, x3, y12, y13, y23,
y123) ∈ E7 such that

• x1 · y123 = x2 · y123 = x3 · y123 = t
• x1 · y12 = x2 · y12 = t
• x1 · y13 = x3 · y13 = t
• x2 · y23 = x3 · y23 = t
• x2 · y13 �= t
• x1 �= x2, x3 �= x2
• y123 �= y12, y123 �= y23

is at least |E|7
80q9

. Fig. 5 above represents such a tuple.
We give a lower bound for the number of these tuples where x1 �= x3. Suppose x1 = x3. Then we have six points 

x1, x2, y12, y13, y23, y123 ∈ E where
7



A. Iosevich, B. McDonald and M. Sun Discrete Mathematics 346 (2023) 113096
• x1 · y123 = x2 · y123 = t
• x1 · y12 = x2 · y12 = t
• x1 · y23 = x2 · y23 = t
• x1 · y13 = t
• x2 · y13 �= t
• x1 �= x2
• y123 �= y12, y123 �= y23

We count the number of such tuples, summing first in y13 and then handling the remaining sum with Lemma 3.3. In 
the notation of Lemma 3.3, the sum in the second line of the following calculation corresponds to the case when y · v = t .

∑
x1,x2,y12,y13,y23,y123∈E

Dt(x1, y123)Dt(x1, y12)Dt(x1, y23)Dt(x2, y123)Dt(x2, y12)Dt(x2, y23)

Dt(x1, y13)

≤ 5|E|
q

∑
x1,x2,y12,y23,y123∈E

Dt(x1, y123)Dt(x1, y12)Dt(x1, y23)Dt(x2, y123)Dt(x2, y12)Dt(x2, y23)

≤ 5|E|
q

· |E|2q3 = 5|E|3q2 ≤ |E|7
800q9

.

It follows that there exist at least

|E|7
80q9

− |E|7
800q9

≥ 9|E|7
800q9

distinct tuples of vectors (x1, x2, x3, y12, y13, y23, y123) ∈ E7 such that

• x1 · y123 = x2 · y123 = x3 · y123 = t
• x1 · y12 = x2 · y12 = t
• x1 · y13 = x3 · y13 = t
• x2 · y23 = x3 · y23 = t
• x2 · y13 �= t
• x1 �= x2, x3 �= x2, x1 �= x3
• y123 �= y12, y123 �= y23

Furthermore, for any such tuple, y12 · x3 �= t . To see why, suppose otherwise. Then, both y12 and y123 lie on the inter-
section of the planes defined by x1 · y = t , x2 · y = t , and x3 · y = t . The intersection of two of these planes is either a line or 
the null set, since they are distinct. So, the intersection of all three is either a line, point, or the null set. Since two distinct 
points lie on the intersection, it must be a line. Furthermore, it must be the same line that is the intersection of any two 
of these planes. That is, if y13 · x1 = t and y13 · x3 = t , then y13 · x2 = t as well, a contradiction. By analogous reasoning 
y23 · x1 �= t .

Now, fix one such tuple and observe that there are at least |E|
5q vectors y1 ∈ E such that x1 · y1 = t . However, there are at 

most q such y1 where x2 · y1 = t , since the intersection of the planes corresponding to x1 and x2 is at most a line. Likewise, 
there are at most q such y1 where x3 · y1 = t . Since |E|

5q > 2q, there exist a y1 with x1 · y1 = t , x2 · y1 �= t , and x3 · y1 �= t . We 
can also produce y2 and y3 in E with analogous properties. Since there are at most 3y2 vectors y ∈ E such that y · xi = t
for some i = 1, 2, 3, we can also obtain a y∗ ∈ E where y∗ · xi �= t for all i = 1, 2, 3.

We have obtained a sequence of vectors in E , {x1, x2, x3, y1, y2, y3, y12, y13, y23, y123, y∗} such that

• x1 · y123 = x2 · y123 = x3 · y123 = t
• x1 · y12 = x2 · y12 = t , x3 · y12 �= t , and similarly for y13 and y23
• x1 · y1 = t , x2 · y1, x3 · y1 �= t , and similarly for y1 and y2
• x1 · y∗, x2 · y∗, x3 · y∗ �= t ,

as desired.
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