. 1EEE

IEEE CONTROL SYSTEMS LETTERS, VOL. 8, 2024 ///

e css

Approximate Controllability of Continuity
Equation of Transformers

Daniel Owusu Adu

Abstract—Building on the recent work by Geshkovski
et al. (2023) which provides an interacting particle system
interpretation of Transformers with a continuous-time
evolution, we study the controllability attributes of the
corresponding continuity equation across the landscape
of probability space curves. In particular, we consider the
parameters of the Transformer’s continuous-time evolu-
tion as control inputs. We prove that given an absolutely
continuous probability measure and a non-local Lipschitz
velocity field that satisfy a continuity equation, there exist
control inputs such that the measure and the non-local
velocity field of the Transformer’s continuous-time evolu-
tion approximate them, respectively, in the p-Wasserstein
and LP-sense, where 1 < p < co.

Index Terms—Distributed parameter systems, machine
learning, neural networks.

[. INTRODUCTION
EMARKABLY, the recent work [1] shows that
Transformers, which needless to say have revolutionized
machine learning and beyond [2], [3], [4], [5], can be viewed
as interacting particle systems. To be more precise, in [1], the
authors considered the dynamics

xi(6) = Py Zﬂj(l, xi (), xi(0) V(1)x; (1)

=1

(D

Here:
1) P, : 81 - T,,8%!, defined as

2

represents the projection of y € S%1 ¢ R? the unit
sphere onto the tangent space Tx'-Sd_]. This projection
map ensures that the relative positions of neighbouring
states influence the dynamics of each state.

Pry=y— (X, y)x
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2) The self-attention A;(f, x;(1), x;(f)) captures the impor-
tance or attention given by the i-th state to the j-th
state relative to sequence of states (x;(f))ic[n]
x1(0) ..., x(1)) € RY)", where [n] = {1,2,...,n} C
Z, at time t. Specifically,

e QOxi(0).M(1)x;(1))

Z‘E’:] e\ Qi (5),M(t)xi(1))

Aj(t, xi(0), xi(D)) =

where Q(f) € RP*? and M(t) € RP*? determine the
influence of the neighboring states.
The matrix V(f) € R9*? scales the dot products in the
self-attention mechanism, determining the strength of
interactions among the states.
The analysis in [1] shows that due to the layer
normalization property, the states evolve over the unit
sphere (x;(1))icy) € (SN for t > 0. Moreover, they
showed that (1) inherits some clustering property almost
surely, under some suitable condition.

Related to our work is the continuity equation

By (x) + V - (Px ( f B‘B(x'y)ydﬂr(}’)) m{x}) =0, (3

on Rso x 89!, with initial distribution po € P(S% 1),
where B > 0 is fixed and determined by the magnitude of Q
and M. In [1, Lemma 3.5] it is shown that (3) is a Wasserstein
gradient flow of some energy function on P(S%~1). The
interacting particle systems interpretation of Transformers is
also investigated in [6], where the clustering properties of the
model is investigated, and it is shown that the absence of layer
normalization leads to system instability.

This letter adopts a control-theoretic perspective. In partic-
ular, we consider

Opir(xi) +V - (Flui, W, Ai, V, bI(E, xi) pie (xi)) = 0,
with initial distributions (ui)ies) € (P(S9~1))", where

3)

)

Flp;, W, A;, V,b](t, x;) =P, (W(r)

2
(> f Aik(t, Xi, DVi@)ydpiay) + b@) | | (5)
1 Gd—1
is the trainable vector field and A; = (A; 1, A;2), where

&'k (0)xi, My (1)y)
Aik(t, xi,y) = Tors €00 A y)”

(6)
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with k € {1,2} and i € [n]. Here, W(f) € R4*4 and b(t) € R4
are the weight matrix and bias vector for the neural network,
respectively, and o is the activation function. The specific o
will be made explicit later. Note that if u; has density f;, then
Flpi, W, A;, V, b](t, x;) in (5) is not uniquely determined by
the value of f;(x;) but rather the value of f; on the whole
sphere 84-1, Therefore, F in (5) is non-local. If w; in (5) is
an empirical measure, then

Flui, W, Ai, V, b1, xi) =
2 n

Py | WOo | DD Aik(t. xi, x;) ViO)x; + b(0)

k=1 j=1

is the complete feed-forward layer (see [1, Sec. 2.3.2]).
Note that since the trainable parameters W(f), Vi(f) €
R&*d 0 (1), Mi(f) € RP*4 and b(t) € R in (5) are indepen-
dent of i € [n], the system in (4)—(5) is the i-th component of a
sequence. From this point on, we sometimes use the shorthand
notations

F = (Fi)ieny Where F;:=F[u;,W,A;,V,bl. (7)
The problem under study in this letter is the following:
Problem 1.1: Given (x,v) = (Xi, Vi)ic[a], @ sequence of

Lipschtiz velocity fields and absolutely continuous probability
measures, where each pair (v;, x;) satisfies the continuity
equation of the form

Orvir + V- (xilvielvi)) = 0, (8

does there exist control inputs W(f), Vi (1) c
Ré*d 0w (t), My(t) € RP*4 and b(t) € R? such that the
sequence (F, p) = (Fj, i;)ic[n], Where each (Fj, ;) in (4),
approximate (x, v) in some proper sense?

The main objective of this letter is to provide an answer
under appropriate regularity assumptions. Before we state this
result, it is important to point out the technical difference
between our work and that of Neural ODEs, for instance,
in [7], [8], [9], [10], [11]. Beyond the fact that in the Neural
ODE settings, one is often concerned with approximating one
state, whereas here we deal with sequences, which somehow
mimic ensemble control settings [12], complication arises
from the fact that the velocity fields in (5) and (8) are
non-local [13], [14], [15], [16]. Nevertheless, we show that
(F, u) = (Fi, i)ieln). Where each (Fj, ;) in (4), approximate
(x.v) = (Xi. Vi)ie[n], Where each pair (x;, v;) in (8) in some
proper sense. As a result of the inherent non-local velocity
fields F and yx, the approximation of the measures v is
in p-Wasserstein sense and that of the velocity fields x is
in LP-sense, where 1 < p < oo. For simplicity, we only
deal with the case of 1-Wasserstein sense. We assert that
akin to the significant impact Neural ODEs have had on the
understanding of performance and training of neural networks,
it is reasonable to anticipate that the novel transformer model
will assume a comparable role.

This letter is organized as follows; in Section II, we
state some Preliminary result on the existence of a general
continuity equation with a non-local velocity field. We state
the main result in Section III and follow with the proof in
Section I'V.

Il. PRELIMINARIES ON TRANSPORT PDEs WITH
NON-LOCAL VELOCITIES

This section provides some mathematical background that
will be used throughout this letter. The following notations
will be needed: let L (R9; R?) denote the space of essentially
bounded functions from R? to R4, LX (R; R) be the space
of locally essentially bounded functions from R to R and
C(R4; R?) be the space of continuous functions from R4 to
R4, Let P(R?) and P,.(R?) be the set of probability and abso-
lutely continuous probability measures on R4, respectively. We
define the metric Wi on P(RY) as

Wi(ro, 1r) =
sup[Ldfd(pg —uf):f e Coo(Rd) N Lip, (Rd)],@)

where Lip,; (RY) is the set of Lipschitz functions on R¢ with
Lipschitz constant less than 1. It is well-known, see for
instance [17, Th. 7.12], that the topology induced by W; on
P(Rd) coincides! with weak convergence on P(Rd). Suppose
that T : R — R is a measurable map, and pg, py € P(RY).
Then the pushforward of pg ala T is denoted by Typp = py
and given by

| 8T enduae = [ erduo(r=0) = [ g0y
R? R4 R4
(10)

where g L'(R4, Ky) is any integrable function and as usual
L (Rd, uy) is the space of uy-integrable functions defined
on R<.

We collect preliminary results of general non-local transport
PDE [13], [14], [15], [16]. We say that a given pair (2, ¢)
satisfies (8) if the function

t— f [t 0dg;
Bd
is absolutely continuous for every f € C°(Rxo x R?; R) and

f S, x)ds(x)dx — f SO0, x)dgo =
R4 R4

t
L. jl;d (8¢f (8, x) + V[ (s, x) - Hlg:1(s, x))dgs(x)ds

holds, for almost every f € R>p. To guarantee the existence
of a solution to (8), following from [13], [14], [15], [16], the
following assumptions are needed:

Assumption 1: There exists positive functions Lj, L5, K €
L (R>0; R) such that

9 C(]RZ{); 'P(R‘f)) N C(]Rzg x RY; R‘f) nL® (RZQ x RY; Rd)
satisfies:
1) the inequality
19 [5e1(t, x) — el (8, Plge < L1(Dlx = Yllga, (11)
for all ¢; € P(R?) and x,ye R and t € R>o.

IThe distance W) metrizes the weak convergence of measures only if
the measure has finite first moment. This condition is satisfied whenever the
measures have compact support.
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2) the inequality
1915, 0)llpa < La(0)(1 + [Ix]Ipe),

for all ¢, € P(R?) and X, ye R and t € R>o.
3) the inequality

(12)

I9[s0] — P11l (mog; O (mey) = KOWi(50, 1) (13)

for all gg, g1 € P(R?) and t € R.
It is well known (see for instance [16, Th. 2.3] and reference
therein) that if J satisfies Assumption 1, there exists a unique
solution ¢ € C(Rx0; Pac-(RY)) to (8), whenever ¢p € Puc(RY).

Il. MaIN RESULTS

This section presents the key findings of this letter. To this
end, we fix the activation function o : R4 - R4 to be the
rectified linear function (ReLU) applied to each component of
a vector x; = (Xj1,...,Xid) € R4:

o (x;) = ReLU(x;) = (ReLU(x;1), ..., ReLU(x;)), (14)

where ReLU(x;) = max{x;, 0}, j e [d]. Under the activa-
tion function, [18] has laid the groundwork by establishing
that Transformers characterized as

T = {(xi);e[n] = (Flpi, W, Ai, V, b1(X1) icpn)
= (Flpi, W. Ai, V, b1 + )i = W, Vi € R¥,
Ok, My € R4 and b, w; € RY, where k € {1,2}}, (15)

where p; is a given empirical measure, serves as universal
approximators of continuous sequence-to-sequence functions
defined on a compact domain f € C((S4Hr: (R4)™), where

C((Sd—l)n; (Rd)n) o
{ f: (Sd_l)n — (]Rd)n: f is continuous functions}.

In particular, we later use the following universal approxima-
tion result, presented as [18, Th. 3].

Theorem 1: Let 1 < p < oo and € > 0. Then for any
f € C((S*1y; (R9)™), there exists g € T such that

df,g) = (_/.;Sd—l)" I (()ictn)

g
—g((xs)fe[n])llpﬂl---dxn) <e. (16

We state here that the universal approximation result also
holds when k£ = 3 in (15), see [18]. We now state the main
result of this letter.

Theorem 2: Consider (x, v) '= (Xi, vi)ic[n], Where for each
i € [n], we have that x; satisfies Assumption 1 and v; €
C(R>0; Pac (841)) is the corresponding unique solution to (8)
with initial measure vjp € Pac(Sd_l). Then, for any € > 0,
there exist a final time # > 0 and piecewise constant in time
control inputs

W,V € L™ ([0, i): R‘*x“’) O My € L°°([O, i): Rpxd),

where k € {1,2} and b,w € L™(][0, tf];Rd) such that the
pair of sequence (F, ) = (Fj, pti)ie[n], Where each (Fj, p;) is

characterized in (4)—(5), approximates (y, v) in the following
sense:

d(F(t.-), x(t,-) <€,

where x (f, (Xien) = (Xilval(t, Xi))ic[n), for all t € [0, f]
and

sup Wi(pir, vir) < €,
te[0,4]
for all i € [n].

The theorem ensures that there exist appropriate control
inputs such that (F, ) characterized in (4)—(5) can approx-
imate a given sequence of velocity fields and measures that
solves (8).

IV. PROOFS OF MAIN RESULT

This section is devoted to presenting the proof of
Theorem 2. The proof is organized into two subsections:
firstly, we provide some properties on a generic sequence
{(x", vi")}m=1, where x;" is piecewise constant in time vector
field that approximate the solutions (x;, v;) to the continuity
equations (8) in Proposition 2. Next, we prove in Corollary 1
that the set of control inputs W, Vi, O, My, where k € {1, 2}
and b, w can be selected in such a way as to ensure that
the Transformer in (4) generates a sequence (FN s ,uN ), where
FN is in (15) that have the required properties in the former
subsection. This core idea is inspired from [8]; however, in our
derivations, the technical details differ as we deal with non-
local vector fields and approximating sequence-to-sequence
functions. For that part, we utilize Theorem 1 and modified
techniques in [13], [14], [15], [16], [19].

A. Approximating the Solutions to (8)

We start with a stepping stone result on the support of the
solutions to (8).

Proposition 1: Let i € [n] and consider the continuity
equation (8) where each yx; satisfies Assumption 1 and v;p €
Pac(S41). There exists a final time #r > 0 such that the
solution v; € C(Rx0; Puc(RY)) to (8), satisfies

supp(vir) € 8471, (17)

for all € [0, r].

Proof: Suppose that x; in (8) satisfies Assumption 1 and
viop € ’Pac(Sd_]). Following from [16, Th. 2.3] the unique
solution v; € C(R>o; P (R?)) is characterized as
(18)
where ®;(t, -) is the diffeomorphic flow on R4 that satisfies

3 @i(t, x) = xilviel(t, i, x)) and @;(0,x) =x, (19)

vir = D;(F, -)xvio,

on Ry x R?, where i € [n]. We proceed to show that
there exists fy such that (19) admits a unique solution on
[0, #]. To this end, let T > 0 be fixed. From (12), since
| xi[viel(t, ©)|lga < 2Li> holds for all (£,x) e [0,T] x S%1,

where Ljp = essup,E[O,ﬂL,g(r). If tr < mjn,-e[,,]a-gz, then

from [20, Ch. 1, Th. 1], for any x € Sd_l, we have that (19)
admits a solution on [0, #]. For uniqueness, since the Lipschitz
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condition (11) holds, for any (t,x), (f,y) € [0,T] x S%1,
from [20, Ch. 1, Th. 2] we have that the unique solution
satisfies ®;(t, supp(vip)) C Sd_l, where 1 € [0, #].

We now show (17). Let z € supp(vy). Then, from (18)
and (10), since v (B;(€)) = v,'[)(CDl-_l(f, B.(¢€))) > 0 holds, for
all € > 0, where B;(¢) C R4 is the ball with radius € centred at
Z € supp(vjr), we have that CDI-_I(I, B;(€)) C supp(vip) holds,
for all e > 0. Since ®(f,-) is a diffeomorphic flow on R4
and t — &®(f,) is continuous map, we have that B;(e) C
®@;(t, supp(vjo)), for all € > 0. Since ®;(t, supp(vip)) C S¢1,
holds, for all ¢ e [0, fr], we have that B.(e) € S !, for all
€ > 0. This completes the proof.

Next, we provide an approximation result for (8).

Proposition 2: Suppose, for each i € [n], we have that x;
satisfies Assumption 1 and v; € C([0, gf];??M(Sd_])) is the
corresponding solution in (8) with initial distribution vy €
Pac(S41). Then, for each i € [n], there exists (G v =1
such that each x/" is piecewise constant in time and (x;", vi"
solves (8) with initial distribution vy € ’Pac(Sd—f) and
x™ 0 C(0,f]; Pac(S1) — C([0, 1] x S84 n
L*®([0, 5] x §4=1; S4=T1) uniformly converges to x; and v?" €
C([0, #f]; Pac(S41)) weakly converges to v;.

Proof: Let 0 =1 < 1" < --- < bym_,; = Iy, where [ =
€27ty be a regular partition of [0, fr] into 2™ subintervals.
Given (x, v), let

X" vid = xil v | (20)

where t € [rg",rggr]], then x/™ is piecewise constant in

time velocity field on C([0, #]; Pac(Sd_l)). Since y; satisfies
Assumption 1, we have that x/" satisfies

| X" il @, %) — X"l ¢ 9) | ga < LitIx —yllgs, and
X vied 2, 0)|| ga < 2La2, @21)
where Lig = esssupejo 1 1Lia (1), With @ € {1, 2}, hold for all
x,y € 8471, Therefore, the unique solution v to
avi + V- (x/"[vilvi) =0 and v =vjo
is characterized by
vie = OF'(t, pvien,
B OL (1, 3) = | vie | (17, @'t ), (22)

and ®7'(f", x) = ®;(#]", x), for all ¢ e [1}, I?H], where @;
is as given in (18). We show that, for each i € [n], the
pair (x/",vi"), characterized in (20) and (22), respectively,
converges to (x;, v;) in some sense.

We show that for any € > 0, there exists Np € N such that
for any m > Ny, we have

Ix" — xi| <e.

where

|x" = x| = sup | %" tvil = xilvil| oo (23)
vec([g ., [iPs)

and L® = LO([f}, 1,1 x 81,89 1). To this end,

using (20) and since

| % il — xilviel | ;o0 = H Xi[virf‘] — xilvil ‘Lm,

for all 7 € [t} I?H], using (13), we have that

[ X7 [viel = xilviel | o0 < KiW2 (vf:;", vs:)

< Kfﬂfzim,
for all v; € C([ty, !?4—1]; P(S9-1)), where the second inequal-
ity follows from the fact that the solution curve ¢ — v; in (8)
is a;-Lipschitz continuous, for some positive constant a; € R
(see for instance [15, Proposition 5]). Therefore, we conclude
that x" uniformly converges to ;.

To show that the sequence (v;")n>1 weakly converges to
v;, we first show that the family of functions f — v} is
equi-continuous and equi-bounded. To this end, equi-bounded
follows from the fact that from Proposition 1, we have that
supp(vir), supp(viy) C Sd_], for all f € [0,#] and m > 1.
For equi-continuous, from (20), since || x"|| < 2L;, following
from [15, Proposition 1] we have that

Wi (v, vi) < 2Lt — 7).

(24)

(25)

Therefore, the family of functions f — v} is equi-Lipschitz
and hence equi-continuous. Hence, by Arzela-Ascoli Theorem,
we have that the sequence (v")n>1 admits a subsequence
(vf"’),zl that weakly converges to v;. We proceed to show that
the limit measure v; satisfies

f
fo L d_l(aJ(f, X) + V(. ) - xi[Vi] (¢, ))dvie (x)dt = 0,
(26)

for every f € C*®([0, tr] x S41. R), where f(tr,x) = 0 for
all x € S4~!. We prove this by showing that the following
statements hold:

1))
f
lim f f (1, x)d(Vie(x) — viy" (x))dt = 0.
r—0o0 Jp Sd—1
2)
[T -
tim [* [ vren - cufden -
X" [vier] @ x))dvi(x)dt = 0.
3)

lim fo L PR LCEOR e Al (GR0)
d(Vie(x) — V" (x))dt = 0.

For Statement 1: using (9) and since

i
[) fs . g (1, x)d(Vie(x) — viy" (x))dt| <

laf . x)llty sup Wi (Bie, vi3")
te[0,tr]

and vl-’:" weakly converges to Vj, uniformly in t € [0, fr], we
conclude that Statement 1 holds.
For Statement 2, since

{r -~
f{) fsﬂ._, V(. x) - Ol Vie ] (2, ) —

max
(tx)e[0,67]x S9!
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< max
(r,x}e[{],tf]de—‘

21 oy
> f f |ilBie] 2. %) — %™ [vi] @, 0 | di ),
=0 Ju /&
from (13), we have that
[at5al = sl v ]| = oM (5 i)
< K(WiGin, Vi) + W7, D))

X [vier ]t 0))dvi (x)dt

9 (2, )l

N f
< K(Wl (Vir, V") + 2Li22—f,r),

in the later inequality follows
weakly converges to vy, we have that

where the last term
from (25). Since vy’
Statement 2 holds.

For Statement 3, from (12), we have that

y o h )
ﬁ fsd_, VI, x) - xM Ve xd (i) — viT ()
dt

< max
(t,.x)€[0,tr] xS~

134, DI2Laty Wi (B, V. )-

Using similar arguments in Statement 2, we conclude that
Statement 3 holds. This completes the proof. |

B. Using Transformers to Approximate the Solutions to a
Continuity Equation

We are now ready to present our main proof. We first state a
corollary of the universal approximation result which we later
combine with the observation made in the previous section to
prove Theorem 2.

Corollary 1: Given (x, v) = (i, Vi)ic[n], Where

x (1. Cdierny) = (Xilviel (2. X0))icn- 27

Suppose that yx; satisfies Assumption 1 and v; €
C([0, tf]; Pac(S?™1)) is the solution in (8) with initial distri-
bution vjy € P,.(S4!). Furthermore, suppose that the time
component of x; remain constant on [r), ), ], where £
{0,..., N _ 1} with tév = 2N tr. Then, there exist sequence
of functions FN(t,-) € T, where ¢t > FN(t,-) is constant on
the interval [r?, rﬁrl], such that

Jim d(FN(t, ), x(1,)) =0

for all 1 € [0, t7].

Proof: Given (y,v), consider (27). Then, by assumption
and from (11), since (Z, (x;j)ie[n])) H> X (£, (Xi)ie[n]) iS constant
on [, 1) '] and Lipschitz over (S%~')", we have that x €
c((SHm (R4H™) on [I‘IEV , rﬁrl]. Therefore, from Theorem 1
given an empirical measure p;, we have that, for every € > 0,
there exists FN(t,) € T, piecewise constant in time on [0, ]
such that d(FN(t, ), x(t,-)) < € holds, for all ¢ € [}/, £} |].
This completes the proof. |

We are now ready to provide the proof of Theorem 2.

Proof of Theorem 2: Given (x, v) = (Xi, Vi)ie[n], Where for
each i € [n], we have that y; satisfies Assumption 1 and v; €
C(R>0; Pac (841)) is the corresponding unique solution to (8)
with initial measure vy < Pac(Sd_l). From Proposition 2,

we have that for each i € [n], there exists {(x/", v/")}m=1.
where the pair (x;", v") is characterized in (20) and (22),
respectively, such that

lim ||x" —xill =0, and lim W (vﬂ‘, v,-,) =0, (28)
m—s00 m— 00

for all ¢ € [0, t]. Here || - || is defined in (23) and, for any m >
1, we have that x/" is constant in time on [}, IE"H] with 17! =
£€27™ty. Let m > 1 be fixed. Then, from Corollary 1, given an
empirical measure y;, there exists a sequence {FV =1 CT
in (15) such that

lim d(FV@,-), x™(,-)) =0
Jim (FY@, . x™, )
holds, for all ¢ € [0, tr]. Furthermore, from (7), we have that
N ._ N
(P = )i,

admits the following characterization: for a given empiri-
cal measure p;, there exists piecewise time control inputs
WN VN e L0, 7]; R, @V MY e L™([0, 17]; RP*9)
and b’\’f, (.oi.v € L*=([0, #]; R4), where k € {1, 2} such that for
N = 1, we have that

(29)

FN(t, x) =
2 n
P | Wy [ DD ANt xi x)VE (0x; + BV (1)

k=1 j=1

We proceed to generate the corresponding measures ,u{-v . To
this end, we consider the piecewise constant in time vector
field

EN(t, x;) =

2
Py, (W”(r}o (E [S AN )V Oy ) + b (x)) )
k=1
(30)

and show that, for a fixed N and i € [n], we have that F’i\‘r (t, x;)
above satisfies Assumption 1.

To this end, since the projection map P in (2) is uniformly
bounded and Lipschitz on S it is enough to show that

GN(t,x) =
2
W (t)o (Z fs » AN xi, YV Oydpi(y) + DY (r))
k=1

satisfies Assumption 1. For Statement 1 in Assumption 1,
from (6) since

V.GV (t, x) =

2
WX (o (Z fs L VAN X V)V (Oydpi (y))
k=1

for every i € [n] and m > 1, we have that

19,6 <

2
2|, (zqunm ||Qk~||m||vf||m)-
k=1

Therefore, we conclude that x; — G{V (t, x;) is Lipschitz.
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For uniform boundedness, since

2
LAGLIDY fs AN i VY (Oydpiny)
k=1

2
+ VO || < WY oo [ DNVE o0 + 6V o0
k=1
we have that

2
I e = 19 (I e + 167
k=1

This concludes that z; > GY is uniformly bounded.

Lastly, we show that u; — G{V is Lipschitz. From (14),
since for x; = (xj1,...,Xid) € 84-1 we have that ReLU(x;)
is Lipschitz and

2
Z fsd_l AN, x, YV Oyd(in §) — pin )| <
=1

2
D IANO | oo |V | oo )1 (it i)
k=1

we conclude that u; —> GV is Lipschitz. Therefore, FN(z, x;)
satisfies Assumption 1. From [16, Th. 2.3], we have that there
exists a unique solution ,u.‘:‘r to

e (i) + V - (FY (1, ) pie () = 0, 31)

with initial distribution pijp € (Puc(S41))", where i € [n].
Furthermore, from (29), for a fixed m > 1, by Arzela-Ascoli
Theorem, we have that

. N
Jim Wl vff) =0 (32)

uniformly in ¢ € [0, #].

Since Wi(ul,vi) < Wi(uly, vil) + Wi, vio), for all
m = 1, from (32), we have that 0 < limy_,o W) (y,‘?: L Vi) <
Wi(vi, vir), for all m > 1, uniformly in t € [0, #]. From (28),
we have that limy_,c Wi (,u.?f , Vi) = 0, uniformly in ¢ €
[0, fr]. Therefore, for every € > 0, there exists No € N such
that for N = Ny, we have that SUP;e0,] Wi (,u.?f L Vit) < €,
holds, for all i € [n]. Similarly, since d(FN(r, D, x(t ) <
d(FN(r, D, x™(@, ) +d(x™ (¢, -, x(t,-)), from (29), we con-
clude that given (yx,v), there exists sequence of piecewise
constant control inputs WY, VI e L®([0, tr]; R¥*?), OF,

MY e L®([0, ]; RP*4) and bV, 0 € L®([0, #]; RY) such
that limy_ 00 d(FN (1, ), x(1,-)) = 0, for all 1 € [0, f7]. This
finishes the proof. |
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