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Universal theories are a broad class of well-motivated microscopic dynamics of the electroweak sector
that go beyond the Standard Model description. The long distance physics is described by electroweak
parameters which correspond to local operators in the effective field theory. We show how unitarity and
analyticity constrain the space of parameters. In particular, the W and Y parameters are constrained to be
positive and are necessarily the leading terms in the low-energy expansion. We assess the impact of
unitarity on the interpretation of Drell-Yan data. In passing, we uncover an unexpected Wilson coefficient
transcendental cancellation at the Oð< 10−3Þ level.
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I. INTRODUCTION

As we approach the era of the High Luminosity LHC
(HL-LHC), attention will increasingly turn toward high
precision probes of new physics. One particularly powerful
class of precision new physics observables is the W and Y
electroweak (EW) parameters. The future opportunities for
effectively probing new physics through these observables
at the LHC were emphasized already in [1], whose central
point will only become more relevant as time goes on.
Recent estimates suggest that between now (140 fb−1) and
the full HL-LHC dataset (3 ab−1) the precision on mea-
surements of these parameters will improve roughly by a
factor of 2 [2,3]. However, given the encouraging results of
a recent CMS analysis [4] with 101 fb−1 (already over-
coming the 300 fb−1 projections [1,2]) together with new
possible dedicated measurements [3] and continuous theo-
retical and experimental effort [5,6], there is reason to
believe that the factor of 2 improvement expected for the
HL-LHC may be overly conservative.
It is thus increasingly important to better understand how

to interpret these EW parameters and any constraints on
them or, better, any emerging evidence for nonzero values.
In this work we seek to further that understanding. It is well
known that these EW parameters only find a robust IR
interpretation within the universal universality class of UV

completions to the Standard Model [7,8], i.e., those Beyond
the Standard Model (BSM) scenarios in which the leading
effects of new physics may be encoded in modified gauge
boson propagators.
Theoretical constraints on the oblique parameters have

been widely investigated in the past [9–17]. Here we
continue this program, and we show that within the class
of universal theories the W and Y parameters are positive,
under mild assumptions concerning perturbativity of the
EW gauge couplings.
This observation has significant implications for the

interpretation of experimental analyses. The present sit-
uation, in which the CMS analysis [4] presently observes a
negative W parameter at greater than the 2σ level, provides
a timely opportunity to highlight those implications.
The first is that if this deviation were to persist in the

future, and grow in significance, it would imply the new
physics is not universal, providing crucial information on
the structure of new physics in the UV. The second
implication is that, interpreted as a bound on the mass
scale of new physics within the context of UV-completions
where the W parameter is relevant, positivity implies much
stronger constraints on the mass scale of new physics than
if positivity is disregarded. In this latter regard we find a
constraint on the mass scale of new physics almost a factor
of 3 stronger than reported by CMS [4].
This paper is structured as follows. In Sec. II positivity is

derived in detail. In Sec. III the interpretation of universal
theories is expounded by analogy with the Standard Model
(SM), wherein two examples of universal “UV comple-
tions” which modify the photon propagator are studied,
namely QCD and hypercharge. In the course of these
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calculations we reveal a surprising transcendental cancel-
lation in a Wilson coefficient, for which we lack a
satisfactory understanding. In Sec. IV we look beyond
the Standard Model and study the implications of positivity
and unitarity for EW precision parameters. In Sec. V we
consider the current phenomenological situation, before
concluding in Sec. VI.

II. POSITIVITY OF OBLIQUE CORRECTIONS

Consider a theory T 1 that describes the dynamics of a
system at low energy. For simplicity and relevance for our
discussion, this theory has a weakly coupled Lagrangian
description and, in fact, through this paper will consist of
free or weakly gauged matter. A different sector T 2 may
instead have a mass gap, m⋆, and may or may not be
strongly coupled. The sole connection between both sectors
is the gauging of some symmetry G, subgroup of the global
symmetries of both T 1 and T 2. A cartoon depicting this
situation is the following:

From the point of view of observables in T 1, such as
scattering amplitudes between modes within this sector, the
existence of T 2 is revealed at leading order and at energies
below m⋆, through the modification of the self-energies of
the gauge bosons that belong to G.
The quadratic part of the action of the gauge bosons is

given by

S ¼
Z

d4p
ð2πÞ4

1

2
Vμ
iΔijðp2ÞVj;μ; ð1Þ

where we neglect the terms proportional to pμpν, and
ΔVV 0ðq2Þ is given by the ημν part of the propagator,

ημνΔijðq2Þ þ % % % ¼ −i
Z

d4xeiq·xh0jVμ
i ðxÞVν

jð0Þj0i: ð2Þ

The fields Vi;μ interpolate the physical gauge bosons at low
energies and couple to the currents of the T 1 theory as the
gauging of the global symmetry but, as will become clear in
explicit examples, they are generally not mass eigenstates.
By expanding the two-point functions in powers of q2,

Δijðq2Þ ¼ Δijð0Þ þ q2Δ0
ijð0Þ þ

q4

2
Δ00

ijð0Þ þ % % % ; ð3Þ

we can classify the leading effects of the dynamics of T 2 at
long distances.
It is useful to interpret Eq. (3) in terms of local operators

in an effective field theory (EFT) expansion. For instance,
the local operator O2F ¼ DμFμνDρFρν, with Fμν being a

Uð1Þ field strength, is potentially generated by T 2 at
energies q2 ≪ m2

⋆, and its dynamics parametrized by L ⊃
− c2F

2m2
⋆
O2F lead to the identification of the q4 term in the

expansion of Eq. (3) with the Wilson coefficient c2F,
Δ00

FFð0Þ ¼ c2F. In a similar way, higher derivative operators
are identified with coefficients of higher powers of q2.
We can write the gauge boson self-energy in terms of the

dynamics of T 2. Denoting by Jμi the conserved current of
the sector T 2 associated with the vector boson Vi;μ, the
two-point function of the vectors is proportional to the two-
point correlator of the global symmetry current

Πμν
ij ðqÞ ¼ i

Z
d4xeiq·xh0jTJμi ðxÞJνjð0Þj0i

¼ ðq2ημν − qμqνÞΠT
ijðq2Þ − qμqνΠL

ijðq2Þ; ð4Þ

where i; j ¼ 1;…; N runs over the number of gauge bosons
in G, and we have decomposed the vacuum polarization in a
transverse and a longitudinal component. We are interested
in the ungauged limit g → 0 of the correlator, so that the
vacuum polarization is computed at leading order in g but
to all orders in the dynamics of T 2. In this limit, the current-
current correlator affords a Källen-Lehmann [18,19] spec-
tral representation. This is obtained by inserting a complete
set of states

h0jJμi ðxÞJνjð0Þj0i

¼
Z

∞

0
dμ2

Z
d4p
ð2πÞ4

ð2πÞθðp0Þδðp2 − μ2Þe−ip·xρμνij ðpÞ;

ð5Þ

where we have defined the spectral density ρμνij ðpÞ to be
given by

ð2πÞθðp0Þρμνij ðpÞ ¼
X

α

δð4Þðp − pαÞh0jJμi jαihαjJνj j0i

¼ ð2πÞθðp0Þ½ðpμpν − p2ημνÞρTijðp2Þ

þ pμpνρLijðp2Þ':

Lorentz invariance allows the decomposition of the spectral
density into the longitudinal and transverse components.
By evaluating the time and spatial components of
the spectral density ρ00ij and ρxxij in the frame where

pμ ¼ ð
ffiffiffiffiffi
p2

p
; 0⃗Þ, one verifies that both longitudinal and

transverse spectral densities are positive definite matrices,

ρTðp2Þ≻ 0; ρLðp2Þ≻ 0: ð6Þ

This is equivalent to the statement that any linear combi-
nation of currents

P
i αiJ

μ
i has a positive spectral density

associated with its two-point correlator for any choice of α⃗.
After taking the time-ordered product, the advanced

propagator in Eq. (5) changes to the Feynman propagator,
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which after taking the Fourier transform leads to

Πμν
ij ðqÞ ¼

Z
∞

0
dμ2

qμqν − μ2ημν

q2 − μ2 þ iϵ
ρTijðμ2Þ

þ
Z

∞

0
dμ2

qμqν

q2 − μ2 þ iϵ
ρLijðμ2Þ; ð7Þ

to be compared with Eq. (4). From this equation we can
identify the spectral densities with the imaginary part of the
vacuum polarizations,

ρT;Lij ðq2Þ ¼ 1

π
ImΠT;L

ij ðq2Þ: ð8Þ

It is possible to examine the asymptotics of the vacuum
polarization by understanding the operator product
expansion (OPE) limit of the current correlator [20,21].
As long as the currents Jμ are conserved currents, the
OPE is dominated by the perturbative contribution
hJμðxÞJνð0Þi ∼ CμνðxÞ 1

x6, which may be understood
through the renormalization group (RG)-invariance of
charge conservation, while contributions from potential
condensates are less singular in x.1 This scaling implies that
ImΠT;Lðq2Þ scales as a constant at large and positive q2,
which implies a logarithmic divergence of the vacuum
polarization. This reflects the fact that the vector wave
function must be renormalized. To do so, we subtract the
vacuum polarization at zero momentum and define a
renormalized vacuum polarization given by

Π0ðq2Þ ¼ Πðq2Þ − Πð0Þ ¼ q2

π

Z
∞

0

ds
s
ImΠðsÞ
s − q2

; ð9Þ

which is calculable and satisfies positivity, as advertised.
Equivalently, we could have made use of the analyticity

of the vacuum polarization in the complex plane except on
the positive real axis, where it develops a discontinuity due
to the creation of physical states that belong to T 2. We can
define a once-subtracted vacuum polarization as

Π0ðq2Þ ¼ q2

2πi

I
dz
z

ΠðzÞ
z − q2

¼ q2

π

Z
∞

m2
⋆

ds
s
ImΠðsÞ
s − q2

; ð10Þ

where the contour integral encloses the poles at z ¼ 0 and
z ¼ q2 and the second inequality comes from the disconti-
nuity around the real axis and, crucially, neglects the
contribution from the z → ∞ region.
By expanding Π0ðq2Þ in powers of q2, Π0ðq2Þ ¼P
n¼1 q

2nΠðnþ1Þ, with Πðnþ1Þ being the nth derivative of
Π0ðq2Þ at q2 ¼ 0, we can identify the terms in the

expansion in Eq. (3) with the vacuum polarization,
ΔðnÞ ¼ ΠðnÞ. Moreover, similar to Eq. (10), one has the
dispersive representation

ΠðnÞð0Þ ¼ 1

2πi

I
dz
z
ΠðzÞ
zn

¼ 1

π

Z
∞

m2
⋆

ds
s
ImΠðsÞ

sn
; ð11Þ

identifying ΠðnÞ with the nth moment of a positive definite
matrix distribution. The fact that the measure is a positive
definite matrix implies an infinite number of nonlinear
constraints onΠðnÞ. Such constraints are given by extending
the Hausdorff moment problem, which applies to positive
measures in a compact domain, to consider measures that
form a positive definite matrix in a compact domain.
Following similar arguments as in [22] (see also [23]),
the necessary and sufficient conditions for identifying the
sequence of matrices fΠð1Þ;Πð2Þ;…;ΠðnÞg as moments of a
positive definite measure are given by

H1≻0; H2≻0; H1−H2≻0; H2−H3≻0; ð12Þ

where Hk is the Hankel matrix of moments,
ðHkÞij ¼ Πðiþjþk−1Þ. This has exactly the same form as
the constraints emanating from the Hausdorff moment
problem, with the important remark that the elements
ΠðiÞ of the Hankel matrix are themselves matrices.
Equation (12) represents, therefore, the optimal constraints
on a given set of moments of a matrix of vacuum
polarizations.

III. OVERTURE: THE STANDARD MODEL

The low-energy phenomenology of QED within the
SM provides illustrative instances of universal theories
featuring positivity of the oblique corrections. We consider
the SM below the QCD and EW scales and discuss
the resulting UV impact on the photon self-energy.
The first two examples are universal theories; hence, the
leading effect is encoded in the dimension six operator
DμFμνDρFρν. This operator alone, however, is unphysical
unless some light matter fields are present in the theory.
Otherwise, it may be removed via the equations of motion
or, equivalently, the theory is free.2 This makes manifest the
crucial role played by the matter to which the photon
couples and hence the positivity of the self-energy will
depend not only on how the QED might be embedded in a
larger group in the UV but also on how the matter the
photon couples to is embedded within the UV group.
Beyond QED: QCD. Consider the case where the

IR theory is QED at low energies, describing only

1We point out that the consideration of global current-current
correlators in establishing positivity was independently suggested
to M. McCullough by R. Rattazzi.

2At higher derivatives, one will encounter a nonvanishing
Euler-Heisenberg operator F4, which will lead to nontrivial
scattering. However, even in this case the ðDFÞ2 operator can
be reabsorbed in a redefinition of the dimension 12 operator F6.
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electrons and photons. A prime example of a universal
UV-completion is given by QCD itself. Indeed, QCD is an
instance of a universal strongly coupled sector, which
manifests in the scattering of electrons only through a
modification of the photon’s self-energy at leading order:

Positivity of the operator DμFμνDρFρν stems from the
textbook discussion of the so-called R-ratio [24,25],
Rhad ¼ σðeþe− → hadronsÞ=σðeþe− → μþμ−Þ. In the lan-
guage of the previous section, the gauged symmetry G is a
Uð1Þ, with T 1 consisting of free leptons and T 2 the QCD
sector. Therefore, the vacuum polarization in Eq. (4) is a
single functionΠμνðqÞ instead of a matrix. The conservation
of the current implies that ImΠTðsÞ → const for s → ∞,
signaling the need to renormalize the electric charge as in
Eq. (9). The vacuum polarization Π0ðq2Þ is finite, and the
threshold starts at the pion mass m2

π . By considering the
scattering among different flavors of T 1, for instance
Aðeþe− → μþμ−Þ, one finds that at leading order in the
Uð1Þ coupling e and to all orders in αs, the imaginary part of
the amplitude is, on the one hand, proportional to the
imaginary part of the vacuum polarization ImΠTðsÞ, and
on the other, proportional to the total cross section of
producing hadrons, i.e., the T 2 states. Explicitly,

e2ImΠTðsÞ ¼ sσðeþe− → hadronsÞ: ð13Þ

At large s, ImΠTðsÞ is calculable in perturbation theory,
while the leading effects near thresholdm2

π are described by
the photon-ρ mixing [26,27].
Beyond QED: EW, universal case. Now consider the

case where the universal UV-completion is given by the
massive gauge bosons of the full EW group. We focus on
the hypothetical possibility that the IR-matter consists only
of right-handed fermions, so from the UV perspective
fermions have only hypercharge and are singlets of SUð2Þ.
In this case, T 1 contains free right-handed fermions and T 2

is the EW group with gauged SUð2Þ and a mass gap
generated by the Higgs. In this case, one has a universal
theory since UV effects can be encoded entirely in the
photon’s self-energy. Due to the universality, coefficients of
local operators controlling the corrections of the photon
self-energy will be positive-definite:

That the theory is universal is readily observed by
considering the interactions between the photon and the

Z boson to the right-handed currents as

L ⊃ ðYeRJ
μ
eR þ YqRJ

μ
μRÞðg0cWAμ − g0sWZμÞ; ð14Þ

where we denote by YeR and YqR the hypercharges of the
matter fields, which coincide with the electromagnetic
charges. The QED coupling is given by e≡ g0cW, and g0

and cW are the hypercharge coupling and the cosine of the
Weinberg angle. Written in this way, it is clear that
performing the field redefinition

Aμ → Āμ þ tWZμ ð15Þ

allows us to decouple the Z boson from the light fermions.
Notice that in the IR the field Āμ still interpolates single
photon states; hence, we refer to it as the photon field. In
the EFT, the field redefinition is equivalent to use the
equations of motion.
Since we have decoupled the Z from the light matter, it is

clear that at leading order we do not generate four-fermion
operators. Instead, this field redefinition induces a kinetic
mixing between the interpolating field and the Z, given by
L ⊃ tWDμFμνZν. When integrating out the Z boson, this
mixing induces a modification of the photon self-energy
given by

L ⊃ −
1

2m2
Z

e2

g2c2W
DμFμνDρFρν: ð16Þ

Positivity of the Wilson coefficient can be understood
noticing that the Z boson is interpolated by the current,
h0jJμjZλi ¼ e

gcW
m2

Zϵ
μ
λ , which gives a delta function con-

tribution to the spectrum at the Z pole,

ð17Þ

whose normalization is positive since it is proportional to
the square of the mixing.
Alternatively one can derive the same result without

relying on the interpolating field. Integrating out the Z
boson directly generates four-fermion interactions among
the hypercharged fermions f1 and f2, whose coefficient is

proportional to
Yf1

Yf2
g02s2W

m2
Z

. However, given that the photon

couples to matter in a way that is aligned with the Z, using
the equations of motion all four-fermion operators can be
removed in favor of the photon’s self-energy in Eq. (16).
Going beyond tree-level is more interesting because it

forces us to understand the role of negative norm states.
This is because in this example Uð1Þem is embedded in a
larger non-Abelian gauge group, and therefore one has
a priori loops of ghosts to consider. First of all, in general,
the full theory has a gauge group GT 1∪T 2

, which is
spontaneously broken to H. To get an effective action
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invariant under the unbroken gauge groupH we must use a
gauge-fixing term that is invariant under H [28], which in
our particular case is Uð1Þem. This can be done using the
gauge-fixing functional

fâ ¼ 1ffiffiffi
ξ

p ðDμVâ
μ − ξgâσâi χiÞ; ð18Þ

where Dμ is the H-covariant derivative, â are indices
corresponding to the broken generators, and the second
term corresponds to the gauge-fixing term for the gold-
stones χi. The vacuum expectation values (VEVs) σâ are
given by σâ ≡ Tâ

ΣhΣi, with Σ being a scalar field trans-
forming as δΣ ¼ TA

Σα
AΣ under GT 1∪T 2

that gets a VEV hΣi.
This is similar to using a background field gauge for the
vectors in H. Going back to the EW example, the photon
self-energy receives a contribution from a W loop, as well
as from goldstones and ghosts:

We can directly compute the imaginary part of the self-
energy. It only depends on the photon’s off-shell momenta
q2 and the W mass mW through the positive dimensionless
quantity y≡ 4m2

W=q
2 ≤ 1. The cut receives a contribution

from the physical W polarizations, but also a contribution
from the unphysical polarizations, goldstone modes, and
ghosts. All together, the sum of all contributions lead to a
contribution to the spectral density given by

ImΠ ¼ −
1

3

e2

64π

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
3ð7þ yÞ; ð19Þ

which is negative. From this, one obtains the vacuum
polarization and therefore the coefficient of the operator
− c2F

2Λ2 DμFμνDρFρν, which is given by the first moment of
the previous (negative definite) kernel,

c2F ∝
1

π

Z
1

0
dy

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p

64π
ð7þ yÞ ¼ −

1

ð4πÞ2
37

30
; ð20Þ

which corresponds to the results obtained in [29,30].
The negativity of this result challenges our expectations

to interpret the result as being proportional to the cross
section for producing a physical state. The key point to note
is that this result is invariant under the unbroken low-energy
gauge group H, but is not invariant under GT 1∪T 2

and is
hence unphysical, incorrectly capturing the IR effects of the
UV physics. Consequently, unphysical states not only
contribute but dominate the cut, giving rise to a negative
coefficient. This also means that the cut cannot be

interpreted as a physical production process from a
right-handed current.
In fact, the amplitude to produce a W pair is gauge

invariant, and therefore obeys the Becchi, Rouet, Stora and
Tyutin relations with the consequent decoupling of unphys-
ical states, only after the inclusion of the Z exchange. This
means that only the combinations that appear in physical
quantities, such as the amplitude AðeRēR → μRμ̄RÞ
between two flavors of right-handed currents, are invariant
and hence physical. In this case, in the frame where the Z
boson does have a direct coupling to the matter fields,
besides the operator which modifies the photon’s self-
energy, one generates a four-fermion operator of the type
f̄γμff̄γμf and operators of the type f̄γμfDνFνμ. When
integrating out the EW sector, the individual coefficients
are not invariant under G. In our case, the four-fermion
operator would be naturally identified with the diagram
with two Z bosons, and the current-photon operator is
naturally identified with diagrams with a Z and a photon
coupling to each current. Since the theory is universal, the
leading effect may be encoded in the single operator
DμFμνDρFρν, whose coefficient is positive and given by
the first moment of a positive distribution, both at tree-level
and at one-loop.
This contribution is more easily understood in the picture

where the Z coupling to matter fields is removed via field
redefinition. The mixing between the photon and the Z
must now be included in the calculation of the photon self-
energy. While the photon’s direct coupling to the W pair is
given by e, the coupling via the Z-mixing is proportional to
tW × gcW ¼ e, so it transpires they are of the same order
and hence equally important:

By including the mixing terms in the calculation of the
vacuum polarization, the cut is gauge invariant and
the unphysical polarizations of the WW loop cancel the
contributions from the goldstone and ghost, leaving only
the physical polarizations to contribute to the photon self-
energy, resulting in

ImΠ ¼ e2

3

ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p

64π
ð1 − yÞð4þ 20yþ 3y2Þ

ð4r − yÞ2
; ð21Þ

where we denote r≡m2
W=m

2
Z ¼ c2W . This correct expres-

sion for ImΠ is manifestly positive and indeed equal to the
production cross section of a WþW− pair from a right-
handed electron current, and gives a manifestly positive
value for c2F.
Therefore, in the case where the charged matter couples

only to hypercharge, the interpolating field is aligned with
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the Uð1ÞY gauge boson and the SUð2ÞL part of the EW
sector enters only through the kinetic mixing of the
interpolating field with the Z boson. The Z boson exchange
and mixing plays a crucial role in restoring gauge invari-
ance and therefore unitarity of the cross section and in also
providing the correct, physical, positive, Wilson coefficient
for the low-energy EFT.

A. A transcendental surprise

Explicitly calculating c2F one finds an expression which
is rather involved, as a function of r. However, at leading
order in 1 − r ≪ 1, one finds

c2F ≈
1

180π2
766991 − 140910

ffiffiffi
3

p
π

7
þOð1 − rÞ þ % % % ;

ð22Þ

which well approximates the full expression for SM
parameters. We draw the attention of the reader to the
first term. This term exhibits a peculiar transcendental
cancellation at the level 3 × 10−4. Unfortunately we have
no explanation to offer for this bizarre effect. In the limit of
r → 1 hypercharge is vanishing and so, although it is
interesting that the final Wilson coefficient in this case is
the first term alone, it is also the case that it is unphysical
since there is no QED to speak of in that case. However, in
the limit of a very small hypercharge, ð1 − rÞ ≪ 1, only the
first remains. The result is compatible with what natural-
ness would suggest but yet resulting of this peculiar
cancellation. Since the cancellation is between a rational
number and doubly irrational number, it does not seem that
symmetry could offer an explanation.
Note that we can capture the integral for r ¼ 1 with the

general form

In ¼
Z

dyyn
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p

ð4 − yÞ2

¼
Z

dyyn
2þ y

2ð4 − yÞ2
ffiffiffiffiffiffiffiffiffiffiffi
1 − y

p
"
4 − y
2þ y

− 1

#
: ð23Þ

The prefactor is heavily peaked at y → 1, so that is the most
important region of the integral. The first term in the
brackets gives the purely irrational piece and goes to 1 as
y → 1. The second term gives the purely rational piece.
Across the integration region the difference of the two
terms is Oð1Þ, but in the region with the greatest weight
they cancel very efficiently; hence, the final result has to be
much smaller than either of the two terms on their own.
Note that this allows one to understand the cancellation

between rational and irrational contributions to the integral.
However, it offers no physical explanation and so is not
satisfying.
Beyond QED: EW, nonuniversal case. A different

situation occurs when considering instead a left-handed

current coupled to electromagnetism. Considering left-
handed leptons, the interactions are given by

L ⊃ eJμeAμ þ
g

2cW
ðJμe − JμνÞZμ þ

gffiffiffi
2

p JμeνWþ
μ þ H:c:; ð24Þ

where Jμe, J
μ
ν , and Jμeν are the electron neutral current, the

neutrino neutral current, and the leptonic charged current,
respectively. This is clearly a nonuniversal theory; no field
redefinition can remove both electron and neutrino cou-
plings from the heavy sector, and there is no identification of
two theories T 1 and T 2 connected via weak gauging.
Despite also being of interest, since this work is concerned
with universal theories, we do not study this scenario further.

IV. BEYOND THE STANDARD MODEL

Themicroscopic dynamics behind electroweak symmetry
breaking must necessarily induce deviations in the SM
dynamics of the EW sector. As advertised, a particularly
interesting subset of microscopic theories are universal
theories, i.e., those theories where the leading deviations
from the SM arise from deviations in the boson self-energies
(see, e.g., [8]). In this context, at low energies, BSM effects
in the scattering of light SM matter fields only appear as
deviations in the mediating SM gauge boson propagator.
In such theories we can identify T 1 with the SM matter

in terms of quarks and leptons, and T 2 with an external
sector which may or may not be strongly coupled; we will
give examples of both paralleling the QCD and EW
examples of QED extensions in Sec. III:

The BSM sector modifies the two-point function of the
vectors Vμ

i and Vμ
j that belong to the SM gauge group G.

For instance, focusing on the EW sector, ViVj ¼
fW(W∓;W3W3;W3B;BBg. This matrix is block diagonal
since Uð1Þem is unbroken. Moreover, one can also consider
the Higgs self-energy, as in [31]. Considering the cases
where QCD is also part of G, then the gluon self-energy can
also be affected by the BSM sector. In general, there are
seven parameters which encode universal new physics up to
order q4 in the vacuum polarization of the SM gauge
bosons [7], plus an extra parameter controlling the Higgs
self-energy [31].

A. Positivity of W and Y

The constraints on the moments of the vacuum polari-
zation in Eq. (12) lead to constraints on the space of oblique
parameters. First and foremost, Eq. (12) implies the
positivity of the diagonal q4 coefficients of the vector
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two-point function. Encoding the long distance effects in
the local Lagrangian

L ¼ −
W

2m2
W
DμWa

μνDρWa
ρν −

Y
2m2

W
DμBμνDρBρν; ð25Þ

we can identify W and Y with the EW parameters. In term
of UV data, they are also given by the moment of the
spectral density associated with the corresponding current,

W ¼ g2m2
W

2
Π0

33ð0Þ ¼
g2m2

W

2π

Z
∞

m2
⋆

ds
s
ImΠT;33ðsÞ

s
; ð26Þ

and a similar expression for Y. Given the positivity of the
spectral density, one has

W > 0; Y > 0: ð27Þ

Therefore, in universal theories consisting of a strong sector
that couples to the SM by weakly gauging its global
symmetries, one has positive W and Y parameters up to
electroweak-size loops. Moreover, positivity and conver-
gence of the spectral density imply that W and Y are the
leading corrections in the energy expansion of the vacuum
polarization for all energies below the cutoff. For instance,
the nonhomogeneous constraints in Eq. (12) indicate that
the q6 terms Δ000

ii are necessarily subleading corrections,
Π0

33 −m2
⋆Π00

33 ≥ 0, with the equality saturated only by a
single delta function at the threshold, i.e., a single state
mixing with the SM vectors. Therefore, for any process at
some energy E < m⋆ well below the cutoff, the W and Y
parameters dominate the leading effects due to the BSM
states.
The most delicate case is for minimally coupled vectors,

i.e., whenever the SM gauge group is embedded in a larger
group. For concreteness one can consider the UV gauge
group to be SUð2Þ1 × SUð2Þ2 broken down to the EW
SUð2ÞL, but the reasoning can be extended to more
general cases.
We assume the SM fermions and Higgs to be coupled to

SUð2Þ2. The group is broken to the EW one by a scalar in
the bifundamental with VEV w. The linear combination
Qa ¼ cθAa

1 − sθAa
2 obtains a mass m2

⋆ ¼ w2

4 ðg21 þ g22Þ≡
w2

4 g2⋆, with cθ ¼ g1=g⋆ and sθ ¼ g2=g⋆. The orthogonal
combination Wa ¼ sθAa

1 þ cθAa
2 remains massless and

is to be identified with the SM SUð2ÞL group. The EW
coupling g is given by g ¼ g1g2=g⋆, and is the interaction
strength among light fermion fields and the vectors Wa,
while the coupling with the heavy states Qa is given
by g2sθ ¼ g22=g⋆.
The calculation of the EW gauge boson self-energies and

the W parameter goes through in analogy to Sec. III. The
SUð2Þ1 × SUð2Þ2 extension of the SM is a universal theory,
in the sense that the direct interactions of the heavy modes

with the light matter fields can be removed via the field
redefinition

Wa
μ → W̄a

μ ¼ Wa
μ −

g2
g1

Qa
μ: ð28Þ

This induces a kinetic mixing between the EW bosons and
their heavy partners given by

L ⊃
g2
g1

Qa
μDνWa

μν: ð29Þ

The interpolating field W̄a
μ is aligned with the direction of

the SUð2Þ2 gauge bosons, which is the direction in group
space the light fields couple to, in analogy to Eq. (15) where
the interpolating field Āμ is aligned with the hypercharge.
The self-energy of such an interpolating field receives a

loop contribution from the heavy vectors, which have a
non-Abelian QQW coupling ∼g1c2θsθ þ g2cθs2θ ¼ g. This
contribution alone is the equivalent of Eq. (19) and it is
gauge-dependent. This calculation coincides with the one
reported in [29,30]. There is, however, another contribution
at one loop, given by the mixing between the interpolating
field and the heavy vectors. While the mixing is of order
g2=g1, the QQQ vertex, for g1 ≫ g2, is given by ∼g1, and
therefore the contribution is of order g, like the directQQW
vertex. Together, the imaginary part of the vacuum polari-
zation is given by

ImΠ ¼ g2

16π2
1

8

ð1 − yÞ3=2ð4þ 20yþ 3y2Þ
ð4 − yÞ2

; ð30Þ

which is manifestly positive, with y ¼ 4m2
⋆=q2. The

integrand is indeed given by the production of the heavy
vectors pair from a scattering of light left-handed fermions
in the g2 → 0 limit. In this limit, the t-channel diagram

scales as ∼g2 g22
g2⋆
, so it has an extra suppression of g22

g2⋆
with

respect to the s-channel diagram. Therefore, at order g2 in
the electroweak coupling and to all orders in g⋆, the
imaginary part of the amplitude is in one-to-one corre-
spondence with the self-energy and the oblique parameters
are positive definite. In particular,

W ¼ g2

16π2
m2

W

m2
⋆

1

8

Z
1

0
dy

ð1 − yÞ3=2ð4þ 20yþ 3y2Þ
ð4 − yÞ2

¼ g2

16π2
m2

W

m2
⋆

8983 − 1630
ffiffiffi
3

p
π

120
≃

g2

16π2
m2

W

m2
⋆
0.039; ð31Þ

which is positive and significantly smaller than the result
in [29]. Notice the ∼10−4 cancellation between the rational
and transcendental terms.
The argument behind positivity follows from the weak

gauging of a global current, so we remark that it is a
statement at leading order in g but to all orders in g⋆.
Thus, beyond leading order in the EW gauge coupling
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higher-order terms may not, necessarily, be positive.
However, they are subleading in magnitude also due to
the perturbativity of the EW gauge couplings at the
EW scale.
We conclude that in any scenario where the SM vectors

mixwith a strong sector via amarginal operator, theW andY
parameters are positive and necessarily dominate IR effects.3

B. The X parameter

The S and X parameters control the mixing between
the diagonal of the SUð2Þ group and hypercharge, via the
vacuum polarization Π3Bðq2Þ, which is given by the corre-
lator h0jJμ3ðxÞJνBð0Þj0i. Notice that one requires a Higgs
VEVinsertion in order to generate such contributions,which
implies that the OPE of the conserved currents scales only as
∼ v2

x4. Therefore, the spectral density has a better asymptotic
behavior and the vacuum polarization receives finite con-
tributions from the once-subtracted spectral density.
This is related to the fact that the S parameter, given by

g2Δ0
3Bð0Þ, receives a contribution from a dimension six

operator OWB ¼ H†τaHWa
μνBμν even if it is a q2 term. The

X parameter, given by 1
2 gg

0m2
WΔ00

3Bð0Þ and related to the
local operator OX ¼ H†τaHDμWa

μνDρBρν, is the next
moment of the spectral density. However, since the spectral
density ρ3BðzÞ has no definite sign, it is not possible to rule
out theories where the X parameter dominates at low
energies. By dimensional analysis, in strongly-interacting
light higgs (SILH)-like theories one expects X to be
suppressed by a factor of v2=f2 with respect to the W
and Y parameters, and therefore only by accident might one
generate a large X.
Relying purely on unitarity, the constraints in Eq. (12)

imply that the parameters controlling the off-diagonal
correlators are constrained by the diagonal terms. In
particular, positivity of the leading moment implies

"
W X

X Y

#
≻ 0: ð32Þ

So not only are the W and Y parameters positive, but X is
constrained by unitarity to be smaller than the geometric
average of W and Y,

WY − X2 > 0: ð33Þ

Phenomenological implications of this relation are
explored in Sec. V.
Typical composite models that obey a SILH power

counting [33] automatically satisfy the constraint

WY − X2 > 0. Indeed, given the Lagrangian in Eq. (25)
together with

L ⊃ −
X
m2

W

2

v2
H†τaHDμWa

μνDρBρν; ð34Þ

a dimensional analysis based on the SILH counting leads to
an estimation of

W ¼ c2W
g2m2

W

g2⋆m2
⋆
; Y ¼ c2B

g02m2
W

g2⋆m2
⋆

ð35Þ

for theW and Y parameters, while the oblique parameter X
is obtained from the dimension eight operator after the
Higgs gets a VEV,

X ¼ cHWB
gg0

m4
⋆
m2

Wv
2 ≃ cHWB

gg0

g2⋆

m2
W

m2
⋆

v2

f2
: ð36Þ

Notice that the dimension eight operator that gives rise to
the X parameter is suppressed, with respect to O2V , by an
extra factor of 1=f2 ¼ g2⋆=m2

⋆ instead of just 1=m2
⋆. This

implies that the X parameter is suppressed not by m2
W=m

2
⋆

but only by v2=f2.
It is expected that c2W , c2B, and cHWB areOð1Þ numbers,

since all dimensionful quantities, i.e., masses and cou-
plings, are taken into account. In terms of these order one
parameters, the constraints in Eq. (33) imply

c2W >0; c2B >0; c2Wc2B >c2HWB

"
v2

f2

#
2

: ð37Þ

The first two inequalities are the positivity constraints onW
and Y. The last inequality is automatically satisfied in
theories with c2W ∼ c2B ∼ cHWB ∼ 1 due to the further
v2=f2 suppression in the generation of the X parameter.
One might envisage a theory controlled by a power

counting where, besides an overall coupling g⋆ and scale
m⋆, it also involves a small parameter ξ⋆ ≪ 1, in such a
way that while cHWB ∼ 1, one has c2W ∼ c2B ∼ ξ⋆. In such a
scenario, a hierarchy between the VEV v and the compos-
iteness scale f is enforced by unitarity, which requires
v2=f2 ≤ ξ⋆. However, dimension eight operators such as
H†HDμWa

μνDρWa
ρν and H†HDμBμνDρBρν contribute to the

W and Y parameters. The scattering of a Higgs with vector
bosons is bounded by unitarity, so it is reasonable that the
bounds in Eq. (33) are automatically satisfied and therefore
such theories with unitary-protected hierarchies are not
possible. Nonetheless, if in these theories v2=f2 is acci-
dentally small enough, v2=f2 ≲ ξ⋆, then the leading con-
tributions toW and Y come from dimension eight operators
and provide a realization of a scenario whereWY − X2 ≥ 0
might saturate. This is speculative, and thus exploration of
such models is left for future work.

3The same positivity argument applies to the Z parameter,
defined as a modification of the gluon two-point function,
L ⊃ − Z

2m2
W
DμGA

μνDρGA
ρν, and probed in high invariant mass

dijets [32].
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C. Lacking positivity?

So far we have assumed, besides the universality of the
theory, that the SM gauge fields weakly gauge a global
symmetry. Here “weakly” is critical in the argument behind
positivity, which was perturbative in nature. Now consider
how the arguments behind positivity may break down.
Nonminimal coupling. One obvious example is if the

universal BSM sector is nonminimally coupled to the SM
gauge bosons, hence not entirely through a weak gauging
of a conserved current. For example, consider the scenario
presented in [34], which consists of a strong sector with a
global symmetry GT 2

, which includes the EW group, and a
gauged Uð1ÞN symmetry giving rise to N photons with
coupling g⋆. A subgroup G of GT 2

is gauged, such that
dimðGÞ ¼ N and the Uð1ÞN are in the adjoint of G. This
gauging implies that ½Dμ; Dν' ¼ ϵAFμν, and that light
matter couples with a strength g ¼ ϵAg⋆, ensuring the
universality of the weak gauge interactions. However,
multipole interactions involving field strengths are con-
trolled by a scale m⋆ and a strong coupling g⋆. The
dynamics of the model at energies below the strong sector
scale m⋆ are given by

L ¼ m4
⋆

g2⋆
L
"
Dμ

m⋆
;
Fμν

m2
⋆

#
−

1

4g2⋆
F2
μν þ iψ̄γμð∂μ þ ϵATiAi

μÞψ

ð38Þ

with ϵA given by g=g⋆ and g0=g⋆ for SUð2ÞL and Uð1ÞY ,
respectively.
If the dimension of the operator Oμν in L ⊃ ϵFFμνOμν is

dO > 2,4 the OPE limit of the correlator
h0j∂μOμνðxÞ∂ρOρνð0Þj0i is given by ∼x−2dO−2. As long
as dO < 3, one has that ρiiðq2Þ=q2 → 0 as q2 → ∞, and the
dispersion relation in Eq. (10) converges and the results of
the previous section hold. However, if dO ≥ 3, then the
once-subtracted dispersion relation for the vacuum polari-
zation Πðq2Þ diverges, and one needs an extra subtraction.
Equivalently, in such theories the W parameter is not
calculable and is defined experimentally through measur-
ing Δ00 and employing a suitable counterterm, similar to the
gauge couplings Δ0 ¼ 1=g.
Nonphysicality of the two-point function. A further

potential subtlety arises when considering non-Abelian
currents, since in this case the two-point function is not
gauge invariant and only the limit where one has a global
symmetry gives a physical two-point correlation function.
A relevant historical point was the argument that QFT does
not admit asymptotically free theories because the spectral
representation of the two-point correlator implies the
positivity of the beta function [18,35]. However, non-
Abelian gauge theories outflank this argument since the

two-point correlator is nonphysical [36]. In fact, the gauge-
invariant beta function can be computed from the two-point
function only after gauge fixing to the background field
gauge [37]. Alternatively the beta function can be com-
puted from a physical process, for instance from computing
the potential between external sources [38], where gauge
invariance requires that besides the single s-channel gluon
exchange with a gluon loop, one receives contributions
from triangle and box diagrams. Ultimately, only the sum
of contributions is physical.
Amplitude approach. Both aspects may be better under-

stood by restricting to physical observables. Consider the
forward scattering of different flavors of weakly gauged
matter. At leading order in the gauge coupling, scattering
occurs via exchange of an s-channel vector boson. The
charges of the initial and final states can be arranged so that
the exchanged vector is any element of the EW group, such
that the scattering at energies well below the cutoff of the
theory, s ≪ m2

⋆, is given by5

AðsÞ ¼ g2
s

s −m2
W

"
CþW

s −m2
W

m2
W

þ % % %
#
; ð39Þ

where the nonenergy growing term C ¼ −1 − 2t2W−1
1−t2W

W

comes from the SM contribution and the contribution from
the redefinition of the SM input parameters [1,39], and the
contact interaction from the leading EFT correction due to
the local operator L ⊃ − W

2m2
W
ðDμWa

μνÞ2.
The crucial point is that even above m⋆, at leading order

in the gauge coupling g, the scattering takes place exclu-
sively in the l ¼ 1 partial wave. Higher partial waves are
generated only at higher orders in g. Even if the strong
sector leads to an Oð1Þ modification of the propagator due
to the two-point correlator modifying the vacuum polari-
zation, the s-channel diagram is of order g2.
This implies that in the s complex plane, A has a single

branch cut along s ≥ m2
⋆, with no u-channel discontinuity

in the forward limit. The discontinuity along the cut is
given by the imaginary part of the amplitude, which is
positive, and is identified with the production cross section
of BSM states. Second, since in this limit the scattering
takes place through a single partial wave, the amplitude can
only scale as a constant at large s and therefore has a faster-
than-Froissart convergence as AðsÞ=s → 0 for s → ∞.
The analytic structure for the amplitude is given in the

left of Fig. 1. The poles and branch cut due to the mixing
with the strong sector start at s ¼ m2

⋆. This allows one to
consider the quantity AðzÞ=z2 integrated along the contour
in the figure, which leads to a dispersive representation for
W of the form

4This is the case, indeed, if Oμν belongs to an interacting
conformal field theory.

5For clarity, in this section we focus the discussion on the W
parameter, but the argument trivially extends to the general case.
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W ¼ 1

g2
m2

W

2πi

Z

C

dz
z
AðzÞ
z

¼ 1

g2
m2

W

π

Z
∞

m2
⋆

dz
z
ImAðzÞ

z
; ð40Þ

in correspondence with Eq. (26).
Loss of perturbativity. The advantage of this perspective

is that it allows one to understand what happens away from
the g → 0 limit and for generic, nonconserved, currents.
The raison d’être of both assumptions is to be able to
neglect scattering through higher partial waves. We can
explore therefore the scenarios that would have higher
partial waves become non-negligible above some scale Λ.
The g → 0 limit is still required in the IR, such that the

W-parameter can dominate the dynamics. However, one
might imagine a situation where the strong sector induces
the EW interactions to lose asymptotic freedom. At the
scale Λ at which gðΛÞ ∼ 4π, perturbativity is lost and all
diagrams enter in the scattering with comparable impor-
tance. The cut for s > Λ contains all partial waves, and thus
develops a u-channel discontinuity as well. The analytic
structure gets modified as in Fig. 1. The situation in a
cartoon is the following:

It is possible to analyze theW parameter dispersively via
the contour in the right of Fig. 1. The arc at m⋆ extracts the
W parameter. This is related to the positive discontinuity
between m⋆ and Λ, plus the contribution from the arc at Λ.
The latter is not calculable, but can be estimated via

dimensional analysis. The overall coupling must be propor-
tional to ∼4π, since by definition it is defined as the scale
where the matter fields are strongly coupled. Moreover, by
dimensional analysis the arc must be proportional to 1=Λ2.
The overall sign is undetermined. Therefore, we arrive at
the relation

W − η
16π2

g2
m2

W

Λ2
¼ 1

g2
m2

W

π

Z
Λ2

m2
⋆

dz
z
ImAðzÞ

z
; ð41Þ

where SignðηÞ ¼ (1 to make explicit that this second term
has no definite sign. Under the assumption that up to Λ
there is a single partial wave, naive dimensional analysis
fixes the parameter η to be η ∼Oð1Þ. The right-hand side of
Eq. (41) is positive. Therefore, as long as W dominates the
left-hand side of the relation, W must be positive. It is
useful to use dimensional analysis for W as well and
estimate it as W ∼m2

W=m
2
⋆ as in the classes of theories we

just discussed. This way, positivity of the W parameter is
ensured as long as, parametrically,

Λ > m⋆
4π
g
: ð42Þ

In other words, under such an estimate, if strong coupling is
reached at arbitrary high scales, decoupling guarantees that
such dynamics does not affect the W parameter, which is
positive. In practical terms, if Eq. (42) is satisfied, the large
arc at Λ can be set to zero and the conclusions from the
previous section hold true. Otherwise Λ and the W
parameter have no determined sign.
There is, in fact, a large quantity that may potentially

alter the η ∼Oð1Þ estimate, which is the largest
partial wave L that enters in the amplitude, estimated to
be L ∼ Λ

m⋆
log Λ2

m2
⋆
[40]. Requiring perturbativity in g above

m2
⋆ in order to neglect the u-channel cut in the dispersion

relation, leads to an estimate for the arc at Λ given by
g2ðΛÞ=Λ2 g2ðΛÞ

16π2 L, where g
2ðΛÞ is the EW coupling at Λ and

the L factor comes from the sum over partial waves. That
both arcs become comparable requires Λ ∼m⋆g4ðΛÞ=
ð16π2g2Þ. By assuming gðΛÞ ∼ 4π, this estimate extends
the scale Λ by another factor 4π=g with respect to Eq. (42).
Therefore, the fact that the electroweak coupling should run
into strong coupling shortly after the m⋆ scale is qualita-
tively unmodified. This plausibility argument can be
systematically refined by considering the one-loop ampli-
tude and dispersion relations to constrain and control the
growth of the partial waves.

V. PHENOMENOLOGICAL DISCUSSION

Positivity constraints on universal theories have a dra-
matic impact on the interpretation of collider data. In this
section we study the implications of positivity on current

FIG. 1. Left: analytic structure of the scattering amplitude
between weakly gauged matter of different flavors at LO in
the gauge coupling. At m2

⋆ the amplitude develops a branch cut
due to the strong sector dynamics, but only in the l ¼ 1 partial
wave. Right: the gauge coupling becomes nonperturbative above
the scale Λ2 and diagrams populating the rest of partial waves and
channels are no longer negligible.
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constraints and on future projections for the oblique
parameters.

A. Positivity of W and Y

The electroweak parameters W and Y modify the high-
energy behavior of the EW boson propagators, giving
modifications in the high-energy tails of neutral and
charged Drell-Yan processes [1,41].6 As of now, the most
stringent constraint on the W parameter is given by the
CMS Collaboration analysis of leptonþMET (missing
transverse energy) [4]. Interestingly, more events than
expected are measured at high invariant masses in both
electron and muon channels (see [43]). The collaboration
interprets the data in term of the oblique parameter W,
resulting in the constraint7

W ¼ −1.2þ0.5
−0.6 × 10−4: ð43Þ

This value is compatible with W ¼ 0 only at the 2σ level.8

Constraints on W are readily translated into constraints
on the mass m⋆ and the coupling g⋆ characterizing

universal theories. Assuming a power counting W ¼ g2

g2⋆

m2
W

m2
⋆
,

the absolute value of the 95% CL region translates to a
lower bound for the scale of new physics given by
m⋆ > ðg=g⋆Þ5.4 TeV. However, such models lead to
positive W parameters, and therefore this interpretation
is inconsistent.
The correct interpretation of the CMS Drell-Yan

measurement in terms of the W parameter requires that
the positivity constraints are consistently imposed. Since
the only available information is Eq. (43), we estimate the
effect of positivity by assuming that the W parameter is
distributed according to a Gaussian with symmetrized error
compatible with Eq. (43). Convoluting this with the prior
W > 0 leads to the following 95% credibility interval:

W ∈ ½0; 0.53' × 10−4: ð44Þ

The fact that the data show a two-sigma negative excess
leads to an order of magnitude stronger bounds than
the ones naively expected. In particular, it is only with the

W > 0 constraint that the interpretationW ¼ g2

g2⋆

m2
W

m2
⋆
is mean-

ingful.With the new boundwe observe that current data put a
very strong constraint on universal resonances given by

m⋆ > ðg=g⋆Þ11 TeV; ð45Þ

which requires moderately large g⋆, and therefore small
mixing, to lie in direct reach of LHC or future colliders. The
analysis of [4] interprets the constraints in the g⋆‐m⋆ plane, as
is customary in such searches. The idea is to use dimensional
analysis to estimate the size of dimension six coefficients
under the assumption that new dynamics is dominated by one
scale, m⋆, and one coupling, g⋆ [33]. Under such assump-
tions, Higgs dynamics receives modifications proportional to
g2⋆
g2

m2
W

m2
⋆
¼ v2

f2. Therefore, Higgs precision data [45] leads to the

bounds shown in Fig. 2. In the same figure, we show the
bounds from resonant searches of [4] (see their Fig. 11). In

pink, the bounds assumingW ¼ g2

g2⋆

m2
W

m2
⋆
and using the absolute

value of the constraint in [4] are shown. We remark that such
universal models predict a positive W parameter, and there-
fore this particular interpretation of the datamust include such
constraints in the fit. After doing so, the excluded region is
indicated by the red band.
Lessons from negativity. Assuming universal theories

leads to W > 0 and therefore stronger constraints.
However, it is clear that there is a two-sigma tension
between such an hypothesis and the data, so we should
explore the alternatives.
The simplest assumption to drop is the assumption of

universality. This forces us to interpret the data in terms of
individual four-fermion operators. At dimension six, the
only one that modifies charged current Drell-Yan is

L ⊃ −cð3Þlq
g2

2m2
W
lLγμσIlLq̄LγμσIqL: ð46Þ

In a universal theory, the Wilson coefficient is determined
by the W parameter via the equations of motion, cð3Þlq ¼ W.
In a nonuniversal theory, there is no a priori link between
this coefficient and the vector boson self-energy, and
therefore positivity of cð3Þlq is lost.
To explain the excess of events in the high-energy data

consistently within the EFT, we need a tree-level size
operator. The reason for this is that the excess of events
comes from a transverse mass of ∼1–2 TeV. Assuming
conservatively that this implies a resonance above 3 TeV in
order to have a consistent EFT, a tree-level resonance gives

cð3Þlq ∼ y2

g2
m2

W
m2

⋆
which gives the correct size of the effect for

m⋆ ∼ 3 TeV and y ∼ g. If the leading effect were at loop
level, then cð3Þlq would have an extra suppression of y2

16π2 and
the effect would be too small to explain the excess.
Tree-level sized and negative cð3Þlq can be obtained via a

heavy vector W0 which has a direct coupling with SM
fermions and its coupling to either leptons or quarks has a
different sign than in the SM. Also, scalar leptoquarks of
the type ð3; 1Þ−1=3; ð3; 3Þ−1=3 and vector leptoquarks in the

6Notice, also, the possible role of parton distribution function
fits for the interpretation of theDrell-Yan tails within the EFT [42].

7CMS [4] normalization of the oblique parameter coincides
with [1] and Eq. (35).

8The most recent analysis of the ATLAS Collaboration of the
same channel is found in [44], which also seems to report a
tension at large transverse mass. However, they provide no
interpretation in terms of the W parameter.
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reps ð3; 1Þ2=3; ð3; 3Þ2=3 also may generate a negative cð3Þlq

[46]. We should note that the excess of events is observed in
both electron and muon channels, forcing a lepton-flavor
universal structure.
The other logical possibility, emphasized at the end of

Sec. IV, is that the SM gauge coupling itself runs into strong
coupling at some scale Λ given by Eq. (41), at most
Λ ∼ 4π

g m⋆, which for m⋆ ∼ 5 TeV is around Λ ∼ 100 TeV.
In such a scenario, even if at m⋆ the theory is universal,
deviations in Drell-Yan and potentially in dijet events come
from strong dynamics at the 100 TeV scale which populates
all partial waves and has no associated positivity constraint.

B. Unitarity in Drell-Yan and beyond

We now discuss how neutral and charged Drell-Yan
processes can explore the space of universal theories
consistentwith unitarity. The leading effects at high energies
but below the EFT cutoff are parametrized by the W and Y
parameters and also the X parameter. As emphasized, one
would expect X to be parametrically smaller thanW and Y,
but we might want to make no assumptions on the universal
microscopic model, except that the theory is unitary and the
constraints given by the relations in Eq. (33) hold.
In terms of local operators, W and Y are given in

Eq. (25), while the operator that leads to the X parameter
is given in Eq. (34). To make contact with experiment, it is
useful to employ the equations of motion

DμWa
μν ¼ g

"
H†iDa

ν

↔
H þ

X

f

f̄ γνTaf
#
;

DμBμν ¼ g0
"
YHH†iD

↔

νH þ
X

f

Yff̄γνf
#
; ð47Þ

in order to write these operators in terms of contact four-
fermion operators. Only the four-fermion interactions
involving both quarks and leptons are relevant for the
neutral and charged Drell-Yan processes. The X parameter
is generated by the local operator only after the Higgs takes
a VEV.
There is a single relevant four-fermion operator which

affects charged Drell-Yan, generated by the W parameter,
and this is given by

LcDY ¼ −
g2

2m2
W
WūLγμdLēLγμνL þ H:c: ð48Þ

Instead, neutral Drell-Yan is sensitive to several four-
fermion interactions, generated by all three local gauge-
invariant operators. The generated interactions affecting
neutral Drell-Yan are

LnDY ¼ −
1

m2
W

X

q;e

Cqeq̄γμqēγμe; ð49Þ

with the sum spanning over the SM quarks and leptons
fields, q ¼ uL; dL; uR; dR, and e ¼ eL; eR as well. The
coefficients Cqe are given by

Cqe¼g2T3
qT3

eWþg02YqYeYþgg0ðT3
qYeþT3

eYqÞX; ð50Þ

as a function of W, Y, and X parameters.9 Note that
from the dimension six perspective, ūLγμuLēRγμeR and
d̄LγμdLēRγμeR necessarily have the same coefficient since
they are related by SUð2Þ invariance, but the X parameter
leads to a splitting among them.
We encourage the experimental collaboration to interpret

Drell-Yan data in terms of the W, Y, and X parameters in
Eq. (50), with and without the unitarity constraints.
Furthermore, we should mention that the local operator

that leads to the X parameter generates contact interactions
between four-fermions and one and two longitudinal gauge
bosons, giving rise to enhanced rates in processes that look
like Drell-Yan plus extra EW vectors. For instance, in the
llVV final state, the signal is enhanced at both large m2

ll
and large s ¼ ðpl þ pl0 þ pV þ pV 0Þ2. In composite Higgs
models, such signals are generated by the operator in
Eq. (34) without any suppression by v2=f2, unlike in
Drell-Yan.
It would be interesting to explore such searches since

they are sensitive to a different regime of parameters of the
model, dominate in theories where v2=f2 ≪ 1, and provide
alternative tests of the unitarity-driven constraints.

FIG. 2. Regions in the g⋆ −m⋆ plane excluded at 95% CL. In
orange, the region excluded by Higgs precision measurements
[45]. In cyan, blue, and pink the regions excluded by the charged
Drell-Yan data analyzed in [4] (see their Fig. 11). In red, we
impose the positivity constraint W > 0, which leads to stronger
bound W ∈ ½0; 0.53' × 10−4 at 95% CL or m⋆ > ðg=g⋆Þ11 TeV
[see around Eq. (44) for more details].

9We use normalizations such that T3
uL ¼ −T3

dL
¼ 1=2,

T3
uR ¼ T3

dR
¼ 0, T3

eL ¼ −1=2, and T3
eR ¼ 0 are the isospins for

each field, and YuL ¼ YdL ¼ 1=6, YuR ¼ 2=3, YdR ¼ −1=3,
YeL ¼ −1=2, and YeR ¼ −1 are the hypercharges.
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VI. CONCLUSIONS

Basic principles of quantum mechanics and relativity
impose a plethora of nontrivial constraints on possible low-
energy dynamics. In this paper we presented the set of
constraints on universal theories stemming from such
principles. In this context, universal theories refer to a
generic class of models which, in particular, includes those
that might describe electroweak dynamics at the micro-
scopic level. Thus the positivity constraints presented here
have a direct impact on current and future interpretations of
the data from the LHC and future colliders.
The constraints are related to the fact that deformations at

low energy are encoded in the self-energy of the vector
bosons that connect the two sectors of a universal theory. At
leading order in the gauge coupling, the self-energy is
written in terms of the current-current correlator of the
strong sector. Unitarity allows one to map the space of
universal theories to the matrix moment problem, Eq. (12),
which includes and extends the constraints presented
in [22].
The SM itself provides illustrative instances of universal

theories that feature positivity of the oblique corrections.
For the relevant case of BSM models, positivity constrains
the space of theories whose IR dynamics is described by the
EW oblique parameters.

The argument for positivity requires the conservation of
the current the gauge boson couples to, and that the
gaugeless limit g → 0 is a good limit. We observed that,
from the perspective of scattering amplitudes, the secret
role of both assumptions is to control the contribution from
high partial waves. We studied the relaxation of such
assumptions and concluded that positivity is maintained
as long as there is a range of energies of size 4π=g during
which the mixing between sectors is weakly coupled.
At the time of writing, current experimental fits on theW

parameter prefer negative values at the 2σ level. This
implies, when combined with the positivity constraints,
bounds on the scale of new physics much stronger than
expected. Alternatively, the data can be accommodated
without tensions in terms of nonuniversal theories, since in
this case there is no well-defined W parameter and the
definiteness of its sign is lost. The third option is that the
theory is universal, but the mixing itself becomes strongly
coupled at a scale not larger than ∼100 TeV. Whether this
is a fully realistic scenario is left for future exploration.
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