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Universal theories are a broad class of well-motivated microscopic dynamics of the electroweak sector
that go beyond the Standard Model description. The long distance physics is described by electroweak
parameters which correspond to local operators in the effective field theory. We show how unitarity and
analyticity constrain the space of parameters. In particular, the W and Y parameters are constrained to be
positive and are necessarily the leading terms in the low-energy expansion. We assess the impact of
unitarity on the interpretation of Drell-Yan data. In passing, we uncover an unexpected Wilson coefficient

transcendental cancellation at the O(< 1073) level.
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I. INTRODUCTION

As we approach the era of the High Luminosity LHC
(HL-LHC), attention will increasingly turn toward high
precision probes of new physics. One particularly powerful
class of precision new physics observables is the W and Y
electroweak (EW) parameters. The future opportunities for
effectively probing new physics through these observables
at the LHC were emphasized already in [1], whose central
point will only become more relevant as time goes on.
Recent estimates suggest that between now (140 fb~!) and
the full HL-LHC dataset (3 ab™') the precision on mea-
surements of these parameters will improve roughly by a
factor of 2 [2,3]. However, given the encouraging results of
a recent CMS analysis [4] with 101 fb~! (already over-
coming the 300 fb~! projections [1,2]) together with new
possible dedicated measurements [3] and continuous theo-
retical and experimental effort [5,6], there is reason to
believe that the factor of 2 improvement expected for the
HL-LHC may be overly conservative.

It is thus increasingly important to better understand how
to interpret these EW parameters and any constraints on
them or, better, any emerging evidence for nonzero values.
In this work we seek to further that understanding. It is well
known that these EW parameters only find a robust IR
interpretation within the universal universality class of UV
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completions to the Standard Model [7,8], i.e., those Beyond
the Standard Model (BSM) scenarios in which the leading
effects of new physics may be encoded in modified gauge
boson propagators.

Theoretical constraints on the oblique parameters have
been widely investigated in the past [9—17]. Here we
continue this program, and we show that within the class
of universal theories the W and Y parameters are positive,
under mild assumptions concerning perturbativity of the
EW gauge couplings.

This observation has significant implications for the
interpretation of experimental analyses. The present sit-
uation, in which the CMS analysis [4] presently observes a
negative W parameter at greater than the 2¢ level, provides
a timely opportunity to highlight those implications.

The first is that if this deviation were to persist in the
future, and grow in significance, it would imply the new
physics is not universal, providing crucial information on
the structure of new physics in the UV. The second
implication is that, interpreted as a bound on the mass
scale of new physics within the context of UV-completions
where the W parameter is relevant, positivity implies much
stronger constraints on the mass scale of new physics than
if positivity is disregarded. In this latter regard we find a
constraint on the mass scale of new physics almost a factor
of 3 stronger than reported by CMS [4].

This paper is structured as follows. In Sec. II positivity is
derived in detail. In Sec. III the interpretation of universal
theories is expounded by analogy with the Standard Model
(SM), wherein two examples of universal “UV comple-
tions” which modify the photon propagator are studied,
namely QCD and hypercharge. In the course of these
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calculations we reveal a surprising transcendental cancel-
lation in a Wilson coefficient, for which we lack a
satisfactory understanding. In Sec. IV we look beyond
the Standard Model and study the implications of positivity
and unitarity for EW precision parameters. In Sec. V we
consider the current phenomenological situation, before
concluding in Sec. VL

II. POSITIVITY OF OBLIQUE CORRECTIONS

Consider a theory 7 that describes the dynamics of a
system at low energy. For simplicity and relevance for our
discussion, this theory has a weakly coupled Lagrangian
description and, in fact, through this paper will consist of
free or weakly gauged matter. A different sector 7, may
instead have a mass gap, m,, and may or may not be
strongly coupled. The sole connection between both sectors
is the gauging of some symmetry G, subgroup of the global
symmetries of both 7, and 7,. A cartoon depicting this
situation is the following:

From the point of view of observables in 7 ;, such as
scattering amplitudes between modes within this sector, the
existence of 7, is revealed at leading order and at energies
below m,, through the modification of the self-energies of
the gauge bosons that belong to G.

The quadratic part of the action of the gauge bosons is

given by
/dp 1
(2n)i2 "

where we neglect the terms proportional to p*p*, and
Ayy(g?) is given by the #** part of the propagator,

TAG(PP)V e (1)

1 8y) 4+ = =i [ dre VIV (2)
The fields V; , interpolate the physical gauge bosons at low
energies and couple to the currents of the 7 theory as the
gauging of the global symmetry but, as will become clear in
explicit examples, they are generally not mass eigenstates.
By expanding the two-point functions in powers of g2,

4
q
85(0) = 25(0) + @23,(0) + L a5 + -+, (3)
we can classify the leading effects of the dynamics of 7, at
long distances.

It is useful to interpret Eq. (3) in terms of local operators
in an effective field theory (EFT) expansion. For instance,

the local operator O»r = D,F,,D,F,,, with F,, being a

U(1) field strength, is potentially generated by 7, at
energies g> < m%, and its dynamics parametrized by £ D

—26%021; lead to the identification of the ¢* term in the
m*

expansion of Eq. (3) with the Wilson coefficient c,f,
AY.;(0) = cyp. In a similar way, higher derivative operators
are identified with coefficients of higher powers of g?.

We can write the gauge boson self-energy in terms of the
dynamics of 7,. Denoting by J/ the conserved current of
the sector 7, associated with the vector boson V; ,, the
two-point function of the vectors is proportional to the two-
point correlator of the global symmetry current

Wi (q) = i [ dxe s O (x)730)0)
= (0" — "¢ )0} (q%) — ¢"¢*'TI5(q?), (4)

where i, j = 1, ..., N runs over the number of gauge bosons
in G, and we have decomposed the vacuum polarization in a
transverse and a longitudinal component. We are interested
in the ungauged limit g — O of the correlator, so that the
vacuum polarization is computed at leading order in ¢ but
to all orders in the dynamics of 7 ,. In this limit, the current-
current correlator affords a Killen-Lehmann [18,19] spec-
tral representation. This is obtained by inserting a complete
set of states

(017 (x)75(0)[0)

0 pO)é(pZ _ MZ)e—ip‘pril;/(p),
(5)

where we have defined the spectral density pf‘f( p) to be
given by

Q2m)0(p°)ply (p) =D ¥ (p = pa) (017 |a) (] 7% 0)
= 22)0(p°)[(p*p* = p* )P} (P?)
+ prppl(p?)).

Lorentz invariance allows the decomposition of the spectral
density into the longitudinal and transverse components.
By evaluating the time and spatial components of
the spectral density p{} and pjf in the frame where

= (v p2,6), one verifies that both longitudinal and
transverse spectral densities are positive definite matrices,

pL(p?)>0. (6)

This is equivalent to the statement that any linear combi-
nation of currents >, @;J% has a positive spectral density
associated with its two-point correlator for any choice of a.

After taking the time-ordered product, the advanced
propagator in Eq. (5) changes to the Feynman propagator,

pr(p?) >0,
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which after taking the Fourier transform leads to

S NG

to be compared with Eq. (4). From this equation we can
identify the spectral densities with the imaginary part of the
vacuum polarizations,

1
Py (¢7) = —ImIL;*(g?). (8)

It is possible to examine the asymptotics of the vacuum
polarization by understanding the operator product
expansion (OPE) limit of the current correlator [20,21].
As long as the currents J# are conserved currents, the
OPE is dominated by the perturbative contribution
(J#(x)J¥(0)) ~ C*(x) -5, which may be understood
through the renormalization group (RG)-invariance of
charge conservation, while contributions from potential
condensates are less singular in x.' This scaling implies that
ImIT7L (g?) scales as a constant at large and positive ¢,
which implies a logarithmic divergence of the vacuum
polarization. This reflects the fact that the vector wave
function must be renormalized. To do so, we subtract the
vacuum polarization at zero momentum and define a
renormalized vacuum polarization given by

© ds s
_ImH(z), ()

T

2
() = (g?) -1(0) = £ [T

which is calculable and satisfies positivity, as advertised.

Equivalently, we could have made use of the analyticity
of the vacuum polarization in the complex plane except on
the positive real axis, where it develops a discontinuity due
to the creation of physical states that belong to 7,. We can
define a once-subtracted vacuum polarization as

H’(q2):q—27§§ I(z) :q_zlrlmélml'[(s)’ (10)

27i) zz—q¢* w)e s s—¢

where the contour integral encloses the poles at z = 0 and
z = ¢* and the second inequality comes from the disconti-
nuity around the real axis and, crucially, neglects the
contribution from the z — oo region.

By expanding IT(¢?) in powers of ¢?, II'(¢?) =
S —1 ¢ D with TICHD being the nth derivative of
IT'(g?) at ¢> =0, we can identify the terms in the

'We point out that the consideration of global current-current
correlators in establishing positivity was independently suggested
to M. McCullough by R. Rattazzi.

expansion in Eq. (3) with the vacuum polarization,
A =TI, Moreover, similar to Eq. (10), one has the
dispersive representation

1 (0) L%%H(Z) = l/OOQImH(s)’ (11)

2ri J z " T)w s s"

identifying I1"") with the nth moment of a positive definite
matrix distribution. The fact that the measure is a positive
definite matrix implies an infinite number of nonlinear
constraints on I1"), Such constraints are given by extending
the Hausdorff moment problem, which applies to positive
measures in a compact domain, to consider measures that
form a positive definite matrix in a compact domain.
Following similar arguments as in [22] (see also [23]),
the necessary and sufficient conditions for identifying the
sequence of matrices {H(l), n, ..., H(")} as moments of a
positive definite measure are given by

H'>-0, H?’>-0, H'-H?>-0, H?>-H?>0, (12)

where HY* is the Hankel matrix of moments,
(H*);; = U741 This has exactly the same form as
the constraints emanating from the Hausdorff moment
problem, with the important remark that the elements
1) of the Hankel matrix are themselves matrices.
Equation (12) represents, therefore, the optimal constraints
on a given set of moments of a matrix of vacuum
polarizations.

III. OVERTURE: THE STANDARD MODEL

The low-energy phenomenology of QED within the
SM provides illustrative instances of universal theories
featuring positivity of the oblique corrections. We consider
the SM below the QCD and EW scales and discuss
the resulting UV impact on the photon self-energy.
The first two examples are universal theories; hence, the
leading effect is encoded in the dimension six operator
D,F,,D,F,,. This operator alone, however, is unphysical
unless some light matter fields are present in the theory.
Otherwise, it may be removed via the equations of motion
or, equivalently, the theory is free.” This makes manifest the
crucial role played by the matter to which the photon
couples and hence the positivity of the self-energy will
depend not only on how the QED might be embedded in a
larger group in the UV but also on how the matter the
photon couples to is embedded within the UV group.

Beyond QED: QCD. Consider the case where the
IR theory is QED at low energies, describing only

At higher derivatives, one will encounter a nonvanishing
Euler-Heisenberg operator F*, which will lead to nontrivial
scattering. However, even in this case the (DF)? operator can
be reabsorbed in a redefinition of the dimension 12 operator F°.
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electrons and photons. A prime example of a universal
UV-completion is given by QCD itself. Indeed, QCD is an
instance of a universal strongly coupled sector, which
manifests in the scattering of electrons only through a
modification of the photon’s self-energy at leading order:

U(l)em

Positivity of the operator D,F,,D,F,, stems from the
textbook discussion of the so-called R-ratio [24,25],
Ry.q = o(ete™ — hadrons)/o(ete™ — ptu™). In the lan-
guage of the previous section, the gauged symmetry G is a
U(1), with 7| consisting of free leptons and 7, the QCD
sector. Therefore, the vacuum polarization in Eq. (4) is a
single function IT*(q) instead of a matrix. The conservation
of the current implies that ImI1” (s) — const for s — oo,
signaling the need to renormalize the electric charge as in
Eq. (9). The vacuum polarization IT'(¢?) is finite, and the
threshold starts at the pion mass m2. By considering the
scattering among different flavors of 7|, for instance
A(ete™ — utu™), one finds that at leading order in the
U(1) coupling e and to all orders in a, the imaginary part of
the amplitude is, on the one hand, proportional to the
imaginary part of the vacuum polarization ImIT’(s), and
on the other, proportional to the total cross section of
producing hadrons, i.e., the 7, states. Explicitly,

e’ImI1” (s) = so(ete™ — hadrons). (13)

At large s, ImI1?(s) is calculable in perturbation theory,
while the leading effects near threshold m2 are described by
the photon-p mixing [26,27].

Beyond QED: EW, universal case. Now consider the
case where the universal UV-completion is given by the
massive gauge bosons of the full EW group. We focus on
the hypothetical possibility that the IR-matter consists only
of right-handed fermions, so from the UV perspective
fermions have only hypercharge and are singlets of SU(2).
In this case, 7| contains free right-handed fermions and 7,
is the EW group with gauged SU(2) and a mass gap
generated by the Higgs. In this case, one has a universal
theory since UV effects can be encoded entirely in the
photon’s self-energy. Due to the universality, coefficients of
local operators controlling the corrections of the photon
self-energy will be positive-definite:

Uy

That the theory is universal is readily observed by
considering the interactions between the photon and the

Z boson to the right-handed currents as
LD (Yo Jep + Yo i) (g cwAy = gswZ,).  (14)

where we denote by Y, and Y, the hypercharges of the
matter fields, which coincide with the electromagnetic
charges. The QED coupling is given by e = ¢'cy, and ¢
and cy, are the hypercharge coupling and the cosine of the
Weinberg angle. Written in this way, it is clear that
performing the field redefinition

Ay = A, +1yZ, (15)

allows us to decouple the Z boson from the light fermions.
Notice that in the IR the field Aﬂ still interpolates single
photon states; hence, we refer to it as the photon field. In
the EFT, the field redefinition is equivalent to use the
equations of motion.

Since we have decoupled the Z from the light matter, it is
clear that at leading order we do not generate four-fermion
operators. Instead, this field redefinition induces a kinetic
mixing between the interpolating field and the Z, given by
L D tyD,F,,Z, When integrating out the Z boson, this
mixing induces a modification of the photon self-energy
given by

1 €2
“2n2 g, Pt P E (16)
Z w

LD
Positivity of the Wilson coefficient can be understood
noticing that the Z boson is interpolated by the current,
(0J#|Z;) = ﬁm%eﬂ{, which gives a delta function con-
tribution to the spectrum at the Z pole,

Y Zv 7 2
1 g CW

whose normalization is positive since it is proportional to
the square of the mixing.

Alternatively one can derive the same result without
relying on the interpolating field. Integrating out the Z
boson directly generates four-fermion interactions among
the hypercharged fermions f and f,, whose coefficient is

. Y Y, g%s3 .
proportional to %fsw However, given that the photon
z

couples to matter in a way that is aligned with the Z, using
the equations of motion all four-fermion operators can be
removed in favor of the photon’s self-energy in Eq. (16).

Going beyond tree-level is more interesting because it
forces us to understand the role of negative norm states.
This is because in this example U(1),,, is embedded in a
larger non-Abelian gauge group, and therefore one has
a priori loops of ghosts to consider. First of all, in general,
the full theory has a gauge group G ,7,, which is
spontaneously broken to H. To get an effective action
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invariant under the unbroken gauge group H we must use a
gauge-fixing term that is invariant under H [28], which in
our particular case is U(1),,,. This can be done using the
gauge-fixing functional

, 1 . -
ft= Ve (D, Vi —&g'oixi). (18)

where D, is the H-covariant derivative, @ are indices
corresponding to the broken generators, and the second
term corresponds to the gauge-fixing term for the gold-
stones y;. The vacuum expectation values (VEVs) ¢% are
given by ¢% = T4(X), with T being a scalar field trans-
forming as 6% = T4a*T under G7, 7, that gets a VEV (Z).
This is similar to using a background field gauge for the
vectors in H. Going back to the EW example, the photon
self-energy receives a contribution from a W loop, as well
as from goldstones and ghosts:

W= c N
/\/\Qm/ /\/\, -’\/\/ /\/\1, \V\/\/
0 Y Yo Vet

w c #*

We can directly compute the imaginary part of the self-
energy. It only depends on the photon’s off-shell momenta
g* and the W mass my, through the positive dimensionless
quantity y = 4m3,/¢* < 1. The cut receives a contribution
from the physical W polarizations, but also a contribution
from the unphysical polarizations, goldstone modes, and
ghosts. All together, the sum of all contributions lead to a
contribution to the spectral density given by

1 &2
Imll = ———+/1 —vy3(7 R 19
Wl =L iy, ()

which is negative. From this, one obtains the vacuum
polarization and therefore the coefficient of the operator
— 3% D'F,,D,F", which is given by the first moment of
the previous (negative definite) kernel,

1 =y 1 37
2 T4y)=—— 22" (20
CZF“;TA Y ear ) (47)230 (20)

which corresponds to the results obtained in [29,30].
The negativity of this result challenges our expectations
to interpret the result as being proportional to the cross
section for producing a physical state. The key point to note
is that this result is invariant under the unbroken low-energy
gauge group H, but is not invariant under G 7, and is
hence unphysical, incorrectly capturing the IR effects of the
UV physics. Consequently, unphysical states not only
contribute but dominate the cut, giving rise to a negative
coefficient. This also means that the cut cannot be

interpreted as a physical production process from a
right-handed current.

In fact, the amplitude to produce a W pair is gauge
invariant, and therefore obeys the Becchi, Rouet, Stora and
Tyutin relations with the consequent decoupling of unphys-
ical states, only after the inclusion of the Z exchange. This
means that only the combinations that appear in physical
quantities, such as the amplitude A(egér — pgig)
between two flavors of right-handed currents, are invariant
and hence physical. In this case, in the frame where the Z
boson does have a direct coupling to the matter fields,
besides the operator which modifies the photon’s self-
energy, one generates a four-fermion operator of the type
fr* f]_‘y,, f and operators of the type fy* fD,F,,. When
integrating out the EW sector, the individual coefficients
are not invariant under G. In our case, the four-fermion
operator would be naturally identified with the diagram
with two Z bosons, and the current-photon operator is
naturally identified with diagrams with a Z and a photon
coupling to each current. Since the theory is universal, the
leading effect may be encoded in the single operator
D,F,,D,F,, whose coefficient is positive and given by
the first moment of a positive distribution, both at tree-level
and at one-loop.

This contribution is more easily understood in the picture
where the Z coupling to matter fields is removed via field
redefinition. The mixing between the photon and the Z
must now be included in the calculation of the photon self-
energy. While the photon’s direct coupling to the W pair is
given by e, the coupling via the Z-mixing is proportional to
ty X gcw = e, so it transpires they are of the same order
and hence equally important:

w- W= c
/\/\J.‘ .':'\/\/

v Z zZ YV Z~l0Z Y Z
W+ ¢+ C

By including the mixing terms in the calculation of the
vacuum polarization, the cut is gauge invariant and
the unphysical polarizations of the WW loop cancel the
contributions from the goldstone and ghost, leaving only
the physical polarizations to contribute to the photon self-
energy, resulting in

e’ VT—y(1-y)(4+20y+3y°)
3 64rn (4r —y)? '

ImIl = (21)

where we denote r = m3,/m% = c3,. This correct expres-
sion for ImIT is manifestly positive and indeed equal to the
production cross section of a WTW~ pair from a right-
handed electron current, and gives a manifestly positive
value for c,p.

Therefore, in the case where the charged matter couples
only to hypercharge, the interpolating field is aligned with
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the U(1), gauge boson and the SU(2), part of the EW
sector enters only through the kinetic mixing of the
interpolating field with the Z boson. The Z boson exchange
and mixing plays a crucial role in restoring gauge invari-
ance and therefore unitarity of the cross section and in also
providing the correct, physical, positive, Wilson coefficient
for the low-energy EFT.

A. A transcendental surprise

Explicitly calculating ¢, one finds an expression which
is rather involved, as a function of r. However, at leading
order in 1 — r < 1, one finds

1 766991 — 140910+/37
C ~
2F 18072 7

+0(-r)+---,
(22)

which well approximates the full expression for SM
parameters. We draw the attention of the reader to the
first term. This term exhibits a peculiar transcendental
cancellation at the level 3 x 10~%. Unfortunately we have
no explanation to offer for this bizarre effect. In the limit of
r — 1 hypercharge is vanishing and so, although it is
interesting that the final Wilson coefficient in this case is
the first term alone, it is also the case that it is unphysical
since there is no QED to speak of in that case. However, in
the limit of a very small hypercharge, (1 — r) < 1, only the
first remains. The result is compatible with what natural-
ness would suggest but yet resulting of this peculiar
cancellation. Since the cancellation is between a rational
number and doubly irrational number, it does not seem that
symmetry could offer an explanation.

Note that we can capture the integral for » = 1 with the
general form

W VI—Y
I :/dyy (4-y)?

Jor s ) o

The prefactor is heavily peaked at y — 1, so that is the most
important region of the integral. The first term in the
brackets gives the purely irrational piece and goes to 1 as
y — 1. The second term gives the purely rational piece.
Across the integration region the difference of the two
terms is O(1), but in the region with the greatest weight
they cancel very efficiently; hence, the final result has to be
much smaller than either of the two terms on their own.

Note that this allows one to understand the cancellation
between rational and irrational contributions to the integral.
However, it offers no physical explanation and so is not
satisfying.

Beyond QED: EW, nonuniversal case. A different
situation occurs when considering instead a left-handed

current coupled to electromagnetism. Considering left-
handed leptons, the interactions are given by

9

(=22, + I JWi +He., (24)
w

V2

where J%, J¥, and J%, are the electron neutral current, the
neutrino neutral current, and the leptonic charged current,
respectively. This is clearly a nonuniversal theory; no field
redefinition can remove both electron and neutrino cou-
plings from the heavy sector, and there is no identification of
two theories 7, and 7, connected via weak gauging.
Despite also being of interest, since this work is concerned
with universal theories, we do not study this scenario further.

LD eltA, +

IV. BEYOND THE STANDARD MODEL

The microscopic dynamics behind electroweak symmetry
breaking must necessarily induce deviations in the SM
dynamics of the EW sector. As advertised, a particularly
interesting subset of microscopic theories are universal
theories, i.e., those theories where the leading deviations
from the SM arise from deviations in the boson self-energies
(see, e.g., [8]). In this context, at low energies, BSM effects
in the scattering of light SM matter fields only appear as
deviations in the mediating SM gauge boson propagator.

In such theories we can identify 7 with the SM matter
in terms of quarks and leptons, and 7, with an external
sector which may or may not be strongly coupled; we will
give examples of both paralleling the QCD and EW
examples of QED extensions in Sec. III:

Gsm

The BSM sector modifies the two-point function of the
vectors V' and V/ that belong to the SM gauge group G.
For instance, focusing on the EW sector, V;V; =
{WEWT, W*W3, W?B, BB}. This matrix is block diagonal
since U(1),,, is unbroken. Moreover, one can also consider
the Higgs self-energy, as in [31]. Considering the cases
where QCD is also part of G, then the gluon self-energy can
also be affected by the BSM sector. In general, there are
seven parameters which encode universal new physics up to
order ¢g* in the vacuum polarization of the SM gauge
bosons [7], plus an extra parameter controlling the Higgs
self-energy [31].

A. Positivity of W and Y

The constraints on the moments of the vacuum polari-
zation in Eq. (12) lead to constraints on the space of oblique
parameters. First and foremost, Eq. (12) implies the
positivity of the diagonal ¢* coefficients of the vector
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two-point function. Encoding the long distance effects in
the local Lagrangian

w Y

£ == DDy Wiy =5 2 DuBuDyBp. - (25)

we can identify W and Y with the EW parameters. In term
of UV data, they are also given by the moment of the
spectral density associated with the corresponding current,

_ g'miy
2

w

- QZm%V /oo QImHTﬁ?,(S) ’ (26)

IT5,(0) =
33(0) 2 e s .

and a similar expression for Y. Given the positivity of the
spectral density, one has

W >0, Y > 0. (27)
Therefore, in universal theories consisting of a strong sector
that couples to the SM by weakly gauging its global
symmetries, one has positive W and Y parameters up to
electroweak-size loops. Moreover, positivity and conver-
gence of the spectral density imply that W and Y are the
leading corrections in the energy expansion of the vacuum
polarization for all energies below the cutoff. For instance,
the nonhomogeneous constraints in Eq. (12) indicate that
the ¢ terms A!/ are necessarily subleading corrections,
I, — m3I14; > 0, with the equality saturated only by a
single delta function at the threshold, i.e., a single state
mixing with the SM vectors. Therefore, for any process at
some energy E < m, well below the cutoff, the W and Y
parameters dominate the leading effects due to the BSM
states.

The most delicate case is for minimally coupled vectors,
i.e., whenever the SM gauge group is embedded in a larger
group. For concreteness one can consider the UV gauge
group to be SU(2), x SU(2), broken down to the EW
SU(2),, but the reasoning can be extended to more
general cases.

We assume the SM fermions and Higgs to be coupled to
SU(2),. The group is broken to the EW one by a scalar in
the bifundamental with VEV w. The linear combination

Q% = cpA{ — 5pA4 obtains a mass m3 = %(gf + )=
g, with ¢ = g,/gy and sy = g,/gy. The orthogonal
combination W¢ = s4A{ 4 cyA§ remains massless and
is to be identified with the SM SU(2), group. The EW
coupling g is given by g = ¢,9»/ g, and is the interaction
strength among light fermion fields and the vectors W¢,
while the coupling with the heavy states Q¢ is given
by 9250 = 95/ 9«

The calculation of the EW gauge boson self-energies and
the W parameter goes through in analogy to Sec. III. The
SU(2), x SU(2), extension of the SM is a universal theory,
in the sense that the direct interactions of the heavy modes

with the light matter fields can be removed via the field
redefinition

a N/a a 92 a
Wi - W, =W, —EQ”. (28)

This induces a kinetic mixing between the EW bosons and
their heavy partners given by

£>%20ap,we,. (29)
g

The interpolating field W,‘j is aligned with the direction of
the SU(2), gauge bosons, which is the direction in group
space the light fields couple to, in analogy to Eq. (15) where
the interpolating field Aﬂ is aligned with the hypercharge.

The self-energy of such an interpolating field receives a
loop contribution from the heavy vectors, which have a
non-Abelian QQW coupling ~glc§s9 + 920955 = g. This
contribution alone is the equivalent of Eq. (19) and it is
gauge-dependent. This calculation coincides with the one
reported in [29,30]. There is, however, another contribution
at one loop, given by the mixing between the interpolating
field and the heavy vectors. While the mixing is of order
9/ g1, the QQQ vertex, for g; > ¢,, is given by ~g;, and
therefore the contribution is of order g, like the direct QQW
vertex. Together, the imaginary part of the vacuum polari-
zation is given by

g 1(1-y)"(4+20y +3y%)
16728 (4-y)? '

which is manifestly positive, with y = 4m?%/g?. The
integrand is indeed given by the production of the heavy
vectors pair from a scattering of light left-handed fermions
in the g, — O limit. In this limit, the z-channel diagram

ImIl =

(30)

2 2
scales as ~g° Q%Z, so it has an extra suppression of 5—22 with
* *

respect to the s-channel diagram. Therefore, at order ¢* in
the electroweak coupling and to all orders in g,, the
imaginary part of the amplitude is in one-to-one corre-
spondence with the self-energy and the oblique parameters
are positive definite. In particular,

s m%vl/' (1 —y)32(4 + 20y + 3y?)
0

T l6mt m2 8 (4—y)?
2 m?, 8983 — 16301/3 2 m?
=7 " Vir_ g STV 0,039, (31)
167~ m3, 120 167~ m3,

which is positive and significantly smaller than the result
in [29]. Notice the ~10~* cancellation between the rational
and transcendental terms.

The argument behind positivity follows from the weak
gauging of a global current, so we remark that it is a
statement at leading order in g but to all orders in g,.
Thus, beyond leading order in the EW gauge coupling
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higher-order terms may not, necessarily, be positive.
However, they are subleading in magnitude also due to
the perturbativity of the EW gauge couplings at the
EW scale.

We conclude that in any scenario where the SM vectors
mix with a strong sector via a marginal operator, the W and Y
parameters are positive and necessarily dominate IR effects.’

B. The X parameter

The S and X parameters control the mixing between
the diagonal of the SU(2) group and hypercharge, via the
vacuum polarization I135(g?), which is given by the corre-
lator (0]J%5(x)J%(0)|0). Notice that one requires a Higgs
VEV insertion in order to generate such contributions, which
implies that the OPE of the conserved currents scales only as
~ )”C—j Therefore, the spectral density has a better asymptotic
behavior and the vacuum polarization receives finite con-
tributions from the once-subtracted spectral density.

This is related to the fact that the S parameter, given by
A%, (0), receives a contribution from a dimension six
operator Oy = H't*HW¢4,B,, even if it is a ¢* term. The
X parameter, given by 1 gg'mj,A4;(0) and related to the
local operator Oy = H't“HD,W4%,D,B,,, is the next
moment of the spectral density. However, since the spectral
density p3z(z) has no definite sign, it is not possible to rule
out theories where the X parameter dominates at low
energies. By dimensional analysis, in strongly-interacting
light higgs (SILH)-like theories one expects X to be
suppressed by a factor of »?/f? with respect to the W
and Y parameters, and therefore only by accident might one
generate a large X.

Relying purely on unitarity, the constraints in Eq. (12)
imply that the parameters controlling the off-diagonal
correlators are constrained by the diagonal terms. In
particular, positivity of the leading moment implies

<§(V )Y(>>o. (32)

So not only are the W and Y parameters positive, but X is
constrained by unitarity to be smaller than the geometric
average of W and Y,

WY — X2 > 0. (33)

Phenomenological of this relation are
explored in Sec. V.
Typical composite models that obey a SILH power

counting [33] automatically satisfy the constraint

implications

*The same positivity argument applies to the Z parameter,
defined as a modification of the gluon two-point function,
L > -5%4-D,G4,D,G5,, and probed in high invariant mass

2 1%
2my, 1z

dijets [32].

WY — X? > 0. Indeed, given the Lagrangian in Eq. (25)
together with

X 2
LD =5 S H'T"HD,W},D,B,,. (34)
w

a dimensional analysis based on the SILH counting leads to
an estimation of

2 9 n 2
g nmyy g-my,
W=cw>—, Y=cp—>5—> (35)
gEm3 gEm3

for the W and Y parameters, while the oblique parameter X
is obtained from the dimension eight operator after the
Higgs gets a VEV,

/ m2 ,U2
X = cyws i—im%ﬂz = Cywa %m—‘g]z (36)
Notice that the dimension eight operator that gives rise to
the X parameter is suppressed, with respect to O,y, by an
extra factor of 1/f? = g% /m3 instead of just 1/m?2. This
implies that the X parameter is suppressed not by m#,/m3
but only by v*/f>

It is expected that ¢y, o5, and cywp are O(1) numbers,
since all dimensionful quantities, i.e., masses and cou-
plings, are taken into account. In terms of these order one
parameters, the constraints in Eq. (33) imply

1}2 2
Cow > O, Cop > O, CowCoB > CIZ-IWB <F> . (37)

The first two inequalities are the positivity constraints on W
and Y. The last inequality is automatically satisfied in
theories with ¢, ~ cop ~ cywg ~ 1 due to the further
v?/f? suppression in the generation of the X parameter.

One might envisage a theory controlled by a power
counting where, besides an overall coupling g, and scale
my, it also involves a small parameter £, < 1, in such a
way that while cgwp ~ 1, one has coyy ~ ¢ ~ &, Insucha
scenario, a hierarchy between the VEV v and the compos-
iteness scale f is enforced by unitarity, which requires
v?/f? < &,. However, dimension eight operators such as
H'HD,W4,D,W4, and H'HD,B,,D,B,, contribute to the
W and Y parameters. The scattering of a Higgs with vector
bosons is bounded by unitarity, so it is reasonable that the
bounds in Eq. (33) are automatically satisfied and therefore
such theories with unitary-protected hierarchies are not
possible. Nonetheless, if in these theories v?/f? is acci-
dentally small enough, v?/f%> < &,, then the leading con-
tributions to W and Y come from dimension eight operators
and provide a realization of a scenario where WY — X2 > 0
might saturate. This is speculative, and thus exploration of
such models is left for future work.
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C. Lacking positivity?

So far we have assumed, besides the universality of the
theory, that the SM gauge fields weakly gauge a global
symmetry. Here “weakly” is critical in the argument behind
positivity, which was perturbative in nature. Now consider
how the arguments behind positivity may break down.

Nonminimal coupling. One obvious example is if the
universal BSM sector is nonminimally coupled to the SM
gauge bosons, hence not entirely through a weak gauging
of a conserved current. For example, consider the scenario
presented in [34], which consists of a strong sector with a
global symmetry Gr,, which includes the EW group, and a
gauged U(1)N symmetry giving rise to N photons with
coupling g,. A subgroup G of Gr, is gauged, such that
dim(G) = N and the U(1)" are in the adjoint of G. This
gauging implies that [D,,D,| = €,F,,, and that light
matter couples with a strength g = €,49,, ensuring the
universality of the weak gauge interactions. However,
multipole interactions involving field strengths are con-
trolled by a scale m, and a strong coupling g,. The
dynamics of the model at energies below the strong sector
scale m, are given by

4
m D, F 1 .
L=—"2L—2 ) ———F2 +ipy“(0, + esT;A!
gi (m* mi 493 ;w+ vy ( /4+ Al ;4)1//

(38)

with e, given by g/g, and ¢'/g, for SU(2), and U(1),,
respectively.

If the dimension of the operator O* in £ D e F,,O" is
do>2' ‘the OPE limit of the correlator
(0]0,0"(x)a,0(0)|0) is given by ~x~*%~2 As long
as dp < 3, one has that p;;(¢*)/q* = 0 as ¢> — o, and the
dispersion relation in Eq. (10) converges and the results of
the previous section hold. However, if dn > 3, then the
once-subtracted dispersion relation for the vacuum polari-
zation I1(q?) diverges, and one needs an extra subtraction.
Equivalently, in such theories the W parameter is not
calculable and is defined experimentally through measur-
ing A” and employing a suitable counterterm, similar to the
gauge couplings A’ = 1/g.

Nonphysicality of the two-point function. A further
potential subtlety arises when considering non-Abelian
currents, since in this case the two-point function is not
gauge invariant and only the limit where one has a global
symmetry gives a physical two-point correlation function.
A relevant historical point was the argument that QFT does
not admit asymptotically free theories because the spectral
representation of the two-point correlator implies the
positivity of the beta function [18,35]. However, non-
Abelian gauge theories outflank this argument since the

*This is the case, indeed, if O" belongs to an interacting
conformal field theory.

two-point correlator is nonphysical [36]. In fact, the gauge-
invariant beta function can be computed from the two-point
function only after gauge fixing to the background field
gauge [37]. Alternatively the beta function can be com-
puted from a physical process, for instance from computing
the potential between external sources [38], where gauge
invariance requires that besides the single s-channel gluon
exchange with a gluon loop, one receives contributions
from triangle and box diagrams. Ultimately, only the sum
of contributions is physical.

Amplitude approach. Both aspects may be better under-
stood by restricting to physical observables. Consider the
forward scattering of different flavors of weakly gauged
matter. At leading order in the gauge coupling, scattering
occurs via exchange of an s-channel vector boson. The
charges of the initial and final states can be arranged so that
the exchanged vector is any element of the EW group, such
that the scattering at energies well below the cutoff of the
theory, s < m2, is given by’

2 s = miy
A(s) =g | C+W—7F=+---], (39)
s — myy, myy
where the nonenergy growing term C = —1 — 21 w

1-13,
comes from the SM contribution and the contribution from
the redefinition of the SM input parameters [1,39], and the
contact interaction from the leading EFT correction due to
the local operator £ D —% (D,W4,)%

The crucial point is that even above m, at leading order
in the gauge coupling g, the scattering takes place exclu-
sively in the # = 1 partial wave. Higher partial waves are
generated only at higher orders in g. Even if the strong
sector leads to an O(1) modification of the propagator due
to the two-point correlator modifying the vacuum polari-
zation, the s-channel diagram is of order ¢°.

This implies that in the s complex plane, .4 has a single
branch cut along s > m?%, with no u-channel discontinuity
in the forward limit. The discontinuity along the cut is
given by the imaginary part of the amplitude, which is
positive, and is identified with the production cross section
of BSM states. Second, since in this limit the scattering
takes place through a single partial wave, the amplitude can
only scale as a constant at large s and therefore has a faster-
than-Froissart convergence as A(s)/s — 0 for s — oo.

The analytic structure for the amplitude is given in the
left of Fig. 1. The poles and branch cut due to the mixing
with the strong sector start at s = mZ%. This allows one to
consider the quantity .A(z)/z* integrated along the contour
in the figure, which leads to a dispersive representation for
W of the form

SFor clarity, in this section we focus the discussion on the W
parameter, but the argument trivially extends to the general case.
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2
_ 1my

%M_lm_%v/ooﬂlm/l(z)’ (40)

S P2iJez 2z Fom)e 2 oz
in correspondence with Eq. (26).

Loss of perturbativity. The advantage of this perspective
is that it allows one to understand what happens away from
the g — O limit and for generic, nonconserved, currents.
The raison d’étre of both assumptions is to be able to
neglect scattering through higher partial waves. We can
explore therefore the scenarios that would have higher
partial waves become non-negligible above some scale A.

The g — 0 limit is still required in the IR, such that the
W-parameter can dominate the dynamics. However, one
might imagine a situation where the strong sector induces
the EW interactions to lose asymptotic freedom. At the
scale A at which g(A) ~ 4z, perturbativity is lost and all
diagrams enter in the scattering with comparable impor-
tance. The cut for s > A contains all partial waves, and thus
develops a u-channel discontinuity as well. The analytic
structure gets modified as in Fig. 1. The situation in a
cartoon is the following:

M
Gsm

Gsm

It is possible to analyze the W parameter dispersively via
the contour in the right of Fig. 1. The arc at m, extracts the
W parameter. This is related to the positive discontinuity
between m, and A, plus the contribution from the arc at A.
The latter is not calculable, but can be estimated via

- @@ -

A
NI/
Do - e -

FIG. 1. Left: analytic structure of the scattering amplitude
between weakly gauged matter of different flavors at LO in
the gauge coupling. At m% the amplitude develops a branch cut
due to the strong sector dynamics, but only in the # = 1 partial
wave. Right: the gauge coupling becomes nonperturbative above
the scale A? and diagrams populating the rest of partial waves and
channels are no longer negligible.

[EX

dimensional analysis. The overall coupling must be propor-
tional to ~4rx, since by definition it is defined as the scale
where the matter fields are strongly coupled. Moreover, by
dimensional analysis the arc must be proportional to 1/AZ.
The overall sign is undetermined. Therefore, we arrive at
the relation

. l67r2m_%v _ 1m}, [N dzImA(z)
A2 2 I
g A

My (4l
F ez 2 (41)

where Sign(n) = £1 to make explicit that this second term
has no definite sign. Under the assumption that up to A
there is a single partial wave, naive dimensional analysis
fixes the parameter 5 to be  ~ O(1). The right-hand side of
Eq. (41) is positive. Therefore, as long as W dominates the
left-hand side of the relation, W must be positive. It is
useful to use dimensional analysis for W as well and
estimate it as W ~ mj,/m?% as in the classes of theories we
just discussed. This way, positivity of the W parameter is
ensured as long as, parametrically,

4
A>my (42)
9

In other words, under such an estimate, if strong coupling is
reached at arbitrary high scales, decoupling guarantees that
such dynamics does not affect the W parameter, which is
positive. In practical terms, if Eq. (42) is satisfied, the large
arc at A can be set to zero and the conclusions from the
previous section hold true. Otherwise A and the W
parameter have no determined sign.

There is, in fact, a large quantity that may potentially
alter the 5~ O(1) estimate, which is the largest
partial wave L that enters in the amplitude, estimated to
be L ~ %logn/:—z [40]. Requiring perturbativity in g above

m3 in order to neglect the u-channel cut in the dispersion

relation, leads to an estimate for the arc at A given by

F(A)/A? 9126(;\2) L, where ¢g*(A) is the EW coupling at A and
the L factor comes from the sum over partial waves. That
both arcs become comparable requires A ~ m,g*(A)/
(167%¢%). By assuming g(A) ~ 4z, this estimate extends
the scale A by another factor 47/ g with respect to Eq. (42).
Therefore, the fact that the electroweak coupling should run
into strong coupling shortly after the m, scale is qualita-
tively unmodified. This plausibility argument can be
systematically refined by considering the one-loop ampli-
tude and dispersion relations to constrain and control the
growth of the partial waves.

V. PHENOMENOLOGICAL DISCUSSION

Positivity constraints on universal theories have a dra-
matic impact on the interpretation of collider data. In this
section we study the implications of positivity on current
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constraints and on future projections for the oblique
parameters.

A. Positivity of W and Y

The electroweak parameters W and Y modify the high-
energy behavior of the EW boson propagators, giving
modifications in the high-energy tails of neutral and
charged Drell-Yan processes [1,41].° As of now, the most
stringent constraint on the W parameter is given by the
CMS Collaboration analysis of lepton + MET (missing
transverse energy) [4]. Interestingly, more events than
expected are measured at high invariant masses in both
electron and muon channels (see [43]). The collaboration
interprets the data in term of the oblique parameter W,
resulting in the constraint’

W =—1.2702 x 107*. (43)

This value is compatible with W = 0 only at the 25 level.®

Constraints on W are readily translated into constraints
on the mass m, and the coupling g, characterizing
universal theories. Assuming a power counting W = %%,
the absolute value of the 95% CL region translates to a
lower bound for the scale of new physics given by
my > (g/gy)5.4 TeV. However, such models lead to
positive W parameters, and therefore this interpretation
is inconsistent.

The correct interpretation of the CMS Drell-Yan
measurement in terms of the W parameter requires that
the positivity constraints are consistently imposed. Since
the only available information is Eq. (43), we estimate the
effect of positivity by assuming that the W parameter is
distributed according to a Gaussian with symmetrized error
compatible with Eq. (43). Convoluting this with the prior
W > 0 leads to the following 95% credibility interval:

W e€[0,0.53] x 107, (44)

The fact that the data show a two-sigma negative excess
leads to an order of magnitude stronger bounds than
the ones naively expected. In particular, it is only with the

. . . 2m2, .
W > 0 constraint that the interpretation W = g—z':l—‘;’ is mean-

* T

ingful. With the new bound we observe that current data put a
very strong constraint on universal resonances given by

6Notice, also, the possible role of parton distribution function
fits for the interpretation of the Drell-Yan tails within the EFT [42].

'CMS [4] normalization of the oblique parameter coincides
with [1] and Eq. (35).

¥The most recent analysis of the ATLAS Collaboration of the
same channel is found in [44], which also seems to report a
tension at large transverse mass. However, they provide no
interpretation in terms of the W parameter.

my > (g9/9,)11 TeV, (45)

which requires moderately large ¢g,, and therefore small
mixing, to lie in direct reach of LHC or future colliders. The
analysis of [4] interprets the constraints in the g, -m, plane, as
is customary in such searches. The idea is to use dimensional
analysis to estimate the size of dimension six coefficients
under the assumption that new dynamics is dominated by one
scale, m,., and one coupling, g, [33]. Under such assump-
tions, Higgs dynamics receives modifications proportional to
Z—Z;% = }—i Therefore, Higgs precision data [45] leads to the
bounds shown in Fig. 2. In the same figure, we show the
bounds from resonant searches of [4] (see their Fig. 11). In

. . 2 m2 .
pink, the bounds assuming W = g—z% and using the absolute

value of the constraint in [4] are shown. We remark that such
universal models predict a positive W parameter, and there-
fore this particular interpretation of the data must include such
constraints in the fit. After doing so, the excluded region is
indicated by the red band.

Lessons from negativity. Assuming universal theories
leads to W >0 and therefore stronger constraints.
However, it is clear that there is a two-sigma tension
between such an hypothesis and the data, so we should
explore the alternatives.

The simplest assumption to drop is the assumption of
universality. This forces us to interpret the data in terms of
individual four-fermion operators. At dimension six, the
only one that modifies charged current Drell-Yan is

2
® ?LyﬂglfLZILnyIQL' (46)

LD —c
‘q 2
My,

In a universal theory, the Wilson coefficient is determined
by the W parameter via the equations of motion, c(;q) =W.

In a nonuniversal theory, there is no a priori link between
this coefficient and the vector boson self-energy, and

therefore positivity of c(;q) is lost.

To explain the excess of events in the high-energy data
consistently within the EFT, we need a tree-level size
operator. The reason for this is that the excess of events
comes from a transverse mass of ~1-2 TeV. Assuming
conservatively that this implies a resonance above 3 TeV in
order to have a consistent EFT, a tree-level resonance gives

2 m? . . .
0(3(1) ~}?':l—‘§’ which gives the correct size of the effect for

my ~ 3 TeV and y ~ g. If the leading effect were at loop
)

2
; y
level, then ¢, g would have an extra suppression of 1= and

the effect would be too small to explain the excess.
Tree-level sized and negative cg) can be obtained via a
heavy vector W' which has a direct coupling with SM
fermions and its coupling to either leptons or quarks has a
different sign than in the SM. Also, scalar leptoquarks of
the type (3, 1)_;/3,(3,3)_,/3 and vector leptoquarks in the
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Indirect search (naive)

B [ndirect search (W > 0)
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FIG. 2. Regions in the g, — m, plane excluded at 95% CL. In
orange, the region excluded by Higgs precision measurements
[45]. In cyan, blue, and pink the regions excluded by the charged
Drell-Yan data analyzed in [4] (see their Fig. 11). In red, we
impose the positivity constraint W > 0, which leads to stronger
bound W € [0,0.53] x 10~ at 95% CL or m, > (g/g4)11 TeV
[see around Eq. (44) for more details].

reps (3,1),3,(3,3),/5 also may generate a negative c%)
[46]. We should note that the excess of events is observed in
both electron and muon channels, forcing a lepton-flavor
universal structure.

The other logical possibility, emphasized at the end of
Sec. IV, is that the SM gauge coupling itself runs into strong
coupling at some scale A given by Eq. (41), at most
A~ %m*, which for m, ~5 TeV is around A ~ 100 TeV.

In such a scenario, even if at m, the theory is universal,
deviations in Drell-Yan and potentially in dijet events come
from strong dynamics at the 100 TeV scale which populates
all partial waves and has no associated positivity constraint.

B. Unitarity in Drell-Yan and beyond

We now discuss how neutral and charged Drell-Yan
processes can explore the space of universal theories
consistent with unitarity. The leading effects at high energies
but below the EFT cutoff are parametrized by the W and Y
parameters and also the X parameter. As emphasized, one
would expect X to be parametrically smaller than W and Y,
but we might want to make no assumptions on the universal
microscopic model, except that the theory is unitary and the
constraints given by the relations in Eq. (33) hold.

In terms of local operators, W and Y are given in
Eq. (25), while the operator that leads to the X parameter
is given in Eq. (34). To make contact with experiment, it is
useful to employ the equations of motion

DWW, = g<H*iDgH + nyl,T“f),
7

S

B, = g/(YHHTiDUH + v f>, (47)
f

in order to write these operators in terms of contact four-
fermion operators. Only the four-fermion interactions
involving both quarks and leptons are relevant for the
neutral and charged Drell-Yan processes. The X parameter
is generated by the local operator only after the Higgs takes
a VEV.

There is a single relevant four-fermion operator which
affects charged Drell-Yan, generated by the W parameter,
and this is given by

2

EL'DY = —g—ZWuLyﬂdLéLyMVL + H.c. (48)
2myy

Instead, neutral Drell-Yan is sensitive to several four-
fermion interactions, generated by all three local gauge-
invariant operators. The generated interactions affecting
neutral Drell-Yan are

1 -
Lupr == > Cear'qer,e. (49)
q.e

with the sum spanning over the SM quarks and leptons
fields, g = u;,d;,up,dp, and e = e;,ep as well. The
coefficients C,, are given by

qu:ngfiTﬁW—l—g’quYeY—i—gg’(TgYe—i—Tng)X, (50)

as a function of W, Y, and X parameters.9 Note that
from the dimension six perspective, iy u;egy,ex and
dyy'd, e rYu€r necessarily have the same coefficient since
they are related by SU(2) invariance, but the X parameter
leads to a splitting among them.

We encourage the experimental collaboration to interpret
Drell-Yan data in terms of the W, Y, and X parameters in
Eq. (50), with and without the unitarity constraints.

Furthermore, we should mention that the local operator
that leads to the X parameter generates contact interactions
between four-fermions and one and two longitudinal gauge
bosons, giving rise to enhanced rates in processes that look
like Drell-Yan plus extra EW vectors. For instance, in the
£¢VV final state, the signal is enhanced at both large mfﬂf
and large s = (p, + py + py + pv)?. In composite Higgs
models, such signals are generated by the operator in
Eq. (34) without any suppression by »?/f2 unlike in
Drell-Yan.

It would be interesting to explore such searches since
they are sensitive to a different regime of parameters of the
model, dominate in theories where v?/ > < 1, and provide
alternative tests of the unitarity-driven constraints.

*We use normalizations such that T} = =Ty, =1/2,
TL3,R = sz =0, Tﬁl =-1/2, and TgR = 0 are the isospins for

each field, and Y, =Y, =1/6, Y, =2/3, Y, =—1/3,
Y, =—1/2,and Y, = —1 are the hypercharges.
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VI. CONCLUSIONS

Basic principles of quantum mechanics and relativity
impose a plethora of nontrivial constraints on possible low-
energy dynamics. In this paper we presented the set of
constraints on universal theories stemming from such
principles. In this context, universal theories refer to a
generic class of models which, in particular, includes those
that might describe electroweak dynamics at the micro-
scopic level. Thus the positivity constraints presented here
have a direct impact on current and future interpretations of
the data from the LHC and future colliders.

The constraints are related to the fact that deformations at
low energy are encoded in the self-energy of the vector
bosons that connect the two sectors of a universal theory. At
leading order in the gauge coupling, the self-energy is
written in terms of the current-current correlator of the
strong sector. Unitarity allows one to map the space of
universal theories to the matrix moment problem, Eq. (12),
which includes and extends the constraints presented
in [22].

The SM itself provides illustrative instances of universal
theories that feature positivity of the oblique corrections.
For the relevant case of BSM models, positivity constrains
the space of theories whose IR dynamics is described by the
EW oblique parameters.

The argument for positivity requires the conservation of
the current the gauge boson couples to, and that the
gaugeless limit g — 0 is a good limit. We observed that,
from the perspective of scattering amplitudes, the secret
role of both assumptions is to control the contribution from
high partial waves. We studied the relaxation of such
assumptions and concluded that positivity is maintained
as long as there is a range of energies of size 4z/¢g during
which the mixing between sectors is weakly coupled.

At the time of writing, current experimental fits on the W
parameter prefer negative values at the 20 level. This
implies, when combined with the positivity constraints,
bounds on the scale of new physics much stronger than
expected. Alternatively, the data can be accommodated
without tensions in terms of nonuniversal theories, since in
this case there is no well-defined W parameter and the
definiteness of its sign is lost. The third option is that the
theory is universal, but the mixing itself becomes strongly
coupled at a scale not larger than ~100 TeV. Whether this
is a fully realistic scenario is left for future exploration.
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