
Statistical Papers (2024) 65:2165–2190
https://doi.org/10.1007/s00362-023-01470-9

REGULAR ART ICLE

Privacy-preserving and homogeneity-pursuit integrative
analysis for high-dimensional censored data

Xin Ye1 · Baihua He2 · Yanyan Liu1 · Shuangge Ma3

Received: 13 October 2022 / Revised: 27 June 2023 / Published online: 19 September 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
In the analysis of data with a censored survival outcome and high-dimensional covari-
ates, when a single data source has a limited sample size/power, integrative analysis of
data frommultiple sources can effectively increase sample size and improve estimation
and variable selection performance. Under certain circumstances, for example when it
is desirable to preserve data privacy, only summary statistics, as opposed to raw data,
can be pooled for integrative analysis. In this study, we consider summary statistics-
based integrative analysis of multi-source data with a censored survival outcome and
high-dimensional covariates under the Cox model. This data setting can be more chal-
lenging than many in the literature. We further consider the scenario where some (but
not all) covariates have homogeneous effects, and note that properly identifying such
homogeneity can lead to more efficient estimation and a deeper understanding of the
underlying data generation mechanisms. To this end, we propose a privacy-preserving
penalized integrative analysis method, which can simultaneously achieve regularized
estimation, variable selection, and homogeneity pursuit. An effective computational
algorithm is developed, and asymptotic consistency and distributional properties are
rigorously established. Numerical studies, including simulation and the analysis of a
bladder cancer data set, convincingly demonstrate the practical effectiveness of the
proposed method.
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1 Introduction

Datawith a censored survival outcome and high-dimensional covariates are commonly
encountered. In the analysis of such data, variable selection is usually needed along
with estimation.Many regularizationmethods, basedon the penalization, thresholding,
Bayesian, boosting, and other techniques, have been developed (Lee et al. 2011;Wang
and Wang 2011; Zhang 2010). In practice, data from a single source often have a
limited sample size/power, leading to unsatisfactory estimation. For many scientific
problems, there are multiple independent data sources/sets, making it possible to pool
data, conduct integrative analysis, increase sample size/power, and improve estimation
and selection. The first, relatively easier integrative analysis scenario is when raw data
from multiple sources can be shared. For application examples and methodological
and theoretical developments, we refer to Cheng et al. (2015), Huang et al. (2017),
and Tang et al. (2018). In such analysis, multiple sources can have the same model or
heterogeneous covariate effects.

It has been recognized that under certain circumstances, raw data cannot be shared.
One consideration pertains to preserving privacy (Gomatam et al 2005; Homer et al.
2008;Wolfson et al. 2010). For example, there are often many challenges with sharing
medical and genetic data. Similar concerns may also arise in the analysis of personal
financial data. Additionally, when both the dimensionality of covariates and sample
size are high, sharing raw data may incur considerable cost. Under these circum-
stances, it can be easier or even necessary to share summary statistics, which are
generated from analyzing local data, as opposed to raw data. To this end,Wolfson et al.
(2010) proposed a generic individual information protected integrative analysis frame-
work, called DataSHIELD, that transfers only summary statistics from distributed
local sites to a central site for pooled analysis. Several distributed approaches for
high-dimensional data can be used for integrative analysis under the DataSHIELD
constraint. A popular approach is to synthesize local estimators. Chen and Xie (2014)
proposed to average local estimates and recover sparsity by adopting majority voting.
Wang et al. (2014) adopted a similar idea to combine local Lasso estimators. Lee and
Zeng (2017) and Battey et al. (2018) proposed distributed inference procedures by
aggregating local debiased Lasso estimators which can be used for inference directly.
They obtained sparse estimators by truncating aggregated debiased estimators. An
alternative approach is to adopt sequential communications between a central site
and multiple local sites and minimize a global loss function, refered to as distributed
regression (Karr et al. 2007). Li et al. (2016) developed the communication procedure
for ridge logistic regression. Wang et al. (2016) and Jordan et al. (2019) proposed
a communication-efficient surrogate likelihood framework for high-dimensional set-
tings.

The above and some other works assume homogeneity in covariate effects. That
is, multiple data sources/sets share the same underlying model. In integrative analysis
based on raw data, it has been well argued that this assumption may be too stringent
(Liu et al. 2013, 2014). There are often significant differences in experimental settings,
sample characteristics, data collection mechanisms, and other aspects that cannot be
eliminated and can lead to different regression models. It is noted that the hetero-
geneity structure (in model/covariate effects) includes the homogeneity structure as a
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special case and is more flexible. A traditional way to deal with heterogeneous data
is meta-analysis based on random effect model. However, it only concerns about the
estimation of mean effect.When heterogeneity is of interest, it can not be able to detect
such effects (Danieli and Moodie 2021; Walker et al. 2008). To tackle this problem
as well as to protect privacy, some summary statistics-based approaches have been
developed to accommodate heterogeneity in covariate effects. For example, He et al.
(2016) proposed an overall surrogate loss function based on local maximum likelihood
estimates and Hessian matrixs, and accommodated heterogeneity by adopting hierar-
chical Lasso. Cai et al. (2021) proposed an overall surrogate loss function based on
local debiased Lasso estimators, gradient vectors and Hessian matrixs. They tackled
the heterogeneity problem by reparameterizing coefficients into a homogeneous part
and a heterogeneous part.

In most of the aforementioned and other existing works of privacy preserving,
the methods has focused on completely observable data. Though some of them have
generality on many problems, they are not directly appliable to survival data with
censoring. The models to deal with censored data are more complex and the theories
are different. Lu et al. (2015) developed a privacy preservingweb service for distributed
censored data. Shu et al. (2020) proposed a distributed method for inverse probability
weighted Cox model under the case where there are two groups (control/treatment)
and there is no individualized effect in Cox model. More recently, Li et al. (2022)
developed a more general method for distributed Cox model which involves a multi-
stage procedure that alternates between sites and central computer. Moodie et al.
(2022) gave a summary-statistics based approach for privacy-preserving estimation of
individualized treatment rule based on accelerated failure timemodel. However, these
studies are limited to low-dimensional covariates and does not address the problem of
covariate effect heterogeneity. Cheng et al. (2015) proposed an integrative approach
for pooled cohort studies that can accommodate covariates with homogeneous and
heterogeneous effects, and Tang et al. (2018) used a fused Lasso-type penalty to
accommodate partially heterogeneous effects under the Cox model. It is noted that
both studies demand raw data and thus fail to meet privacy preservation. As far as
we know, the privacy preserving analysis of high-dimensional censored survival data
considering heterogeneous covariate effects is still a blank.

In this article, we consider the integrative analysis of multi-source data with a cen-
sored survival outcome and high-dimensional covariates where heterogeneous effects
may exist. We focus on the scenario where, with a data privacy consideration, only
summary statistics can be shared. The proposed method is privacy-preserving for
multi-site high-dimensional heterogeneous censored data. We assume a Cox propor-
tional hazard model and flexibly consider the model setting where some covariates
have homogeneous effects (but others do not), with the set of such covariates being
unknown a priori. The proposed method is data-driven to identify homogeneous
covariate effects (we call it homogeneity pursuit here) and at the same time select
important variables. It can be seen that pursuing homogeneity can reduce the number
of unknown parameters in the model and give more understanding of the connection
among multiple datasets.

The proposed method can be viewed as a distributed regression approach since it
aims to minimize a (approximated) global loss function, but it don’t request multiple
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communications that alternate between sites and central computer. Each site is only
requested once to send summary statistics to the central computer. In this way, privacy
of personal data can be preserved. Since a (approximated) global loss function is built
in one computer, it will be more convenient and flexible to adopt regularization tech-
nique to deal with heterogeneous covariates effects. This study may complement the
existing literature in multiple important aspects. First, the integrative analysis of cen-
sored survival data is conducted, which can be more challenging than the analysis of
completely observable data. Second, the privacy-preserving analysis can complement
the analysis that demands raw data. Third, the proposed approach allows for partially
homogeneous covariate effects and can be more flexible than those demanding fully
homogenous effects. It can data-dependently determine which covariates have homo-
geneous (versus heterogeneous) effects. This can lead to a deeper understanding of the
underlying data generating mechanisms and “interconnections” among multiple data
sources/sets. Fourth, our theoretical and computational developments can also shed
broad insights into integrative analysis and high-dimensional regularized estimation.
Last but not least, this study can deliver a practically useful tool for many scientific
problems.

2 Methods

2.1 Integrative analysis

Suppose that there are K independent data sources with nk subjects in the kth source,
k = 1, 2, . . . , K . n = ∑K

k=1 nk . Let T̃
(k)
i be the event time, and C (k)

i be the censoring
time, for k = 1, 2, . . . , K and i = 1, 2, . . . , nk . For the i th subject in the kth source,

the observed sample is
{
T (k)
i , Z(k)

i ,�
(k)
i

}
, where T (k)

i = T̃ (k)
i ∧C (k)

i ,�(k)
i = I (T̃ (k)

i ≤
C (k)
i ), and Z(k)

i ∈ R
p is the covariate vector. Assume that T̃ (k)

i follows the Cox model
with hazard:

λ(k)(t |Z(k)
i ) = λ

(k)
0 (t) exp

{
β(k)TZ(k)

i

}
, (1)

where β(k) ∈ R
p is the coefficient vector. Let Y (k)

i (t) = I (T (k)
i ≥ t). The log partial

likelihood function based on the kth local data is:

�k(β
(k)) =

nk∑

i=1

�
(k)
i

{

β(k)TZ(k)
i − log

( nk∑

i=1

Y (k)
i (T (k)

i ) exp
(
β(k)TZ(k)

i

)
)}

, (2)

As discussed in Sect. 1, under the context of privacy preservation, raw data are not
directly available. Accordingly, we propose the overall goodness-of-fit:

L
(
β
) = 1

2

K∑

k=1

nk
n

{
β(k)TĤ

(k)
β(k) − 2 ĝ(k)Tβ(k)

}
,
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where, for k = 1, 2, . . . , K , Ĥ
(k) = −n−1

k ∇2�k
(
b̂
(k))

, ĝ(k) = Ĥ
(k)

b̂
(k) +

n−1
k ∇�k (̂b

(k)
), ∇�k(β) and ∇2�k(β) are the first and second derivatives with respect

to β, and b̂
(k)

is the local Lasso estimator with tuning parameter ak > 0, that is,

b̂
(k) = argminβ

{
−n−1

k �k
(
β
) + ak

∥
∥β

∥
∥
1

}
, (3)

and ‖ · ‖1 denotes the �1 norm.

Remark 2.1 L
(
β
)
is built on theTaylor expansion of the overall negative log-likelihood

function −∑K
k=1 �k(β

(k))/n at the local debiased Lasso estimators (Yu et al. 2021)
defined as:

b̃
(k) = b̂

(k) + �̂
(k)
n−1
k ∇�k

(
b̂
(k))

, (4)

where �̂
(k)

is a sparse estimator approximating the inverse of Ĥ
(k)

. If
∑K

k=1 ∇�k
(
b̃
(k))

/n =
op(1), and �̂

(k)
Ĥ

(k) = I + op(1), we have

− 1

n

K∑

k=1

�k
(
β(k)) = − 1

n

K∑

k=1

�k
(
b̃(k)) + 1

2

K∑

k=1

nk
n

(
β(k) − b̃(k))TĤ(k)(

β(k) − b̃(k)) + op(1)

= 1

2

K∑

k=1

nk
n

{
β(k)TĤ(k)

β(k) − 2 ĝ(k)Tβ(k)
}

+ C
(
b̃
) + op(1),

(5)

where C
(
b̃
) = −n−1 ∑K

k=1 �k
(
b̃
(k)) + b̃

(k)T
Ĥ

(k)
b̃
(k)

, which leads to the proposed
L
(
β
)
. A similar strategy also based on local debiased Lasso estimators has been

adopted in Cai et al. (2021).

Remark 2.2 As has been argued in the literature and can be easily seen, L
(
β
)
con-

tains the key first- and second-order information of the overall negative log-likelihood
−n−1 ∑K

k=1 �k
(
β(k)) on β. As we are only interested in estimation and inference (not

higher-order properties), all sites only need to share
{
Ĥ

(k)
, ĝ(k)

}
, k = 1, 2, . . . , K , as

opposed to raw data. Additionally, it is noted that we make use of the local debiased

Lasso estimators without calculating �̂
(k)
, k = 1, 2, . . . , K , which is time-consuming

and can only be estimated well under strong conditions (Yu et al. 2021).

To accommodate heterogeneity, we reparameterize the regression parameters as
α(k) = β(k) −μ for k = 1, 2, . . . , K , where μ = K−1 ∑K

k=1 β(k). Here, μ represents
the average effects, and α(k)’s represent the “deviances” of effects in source k from
the average. Let α j = (

α
(1)
j , · · · , α

(K )
j

)T , and ‖ · ‖2 be the Euclidean norm. Then
covariates can be classified into three mutually exclusive categories: (1) homogeneous
effects if μ j �= 0 and ‖α j‖2 = 0; (2) heterogeneous effects if ‖α j‖2 �= 0; and (3)
null effects if μ j = 0 and ‖α j‖2 = 0.
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For simultaneous estimation, variable selection, and homogeneity pursuit, we pro-
pose the following penalized objective function:

Q(μ,α) = L(μ + α) + ρ̃(μ,α; λ1, λ2),

where

ρ̃(μ,α; λ1, λ2) =
p∑

j=1

ρMCP(|μ j |; λ1, γ ) +
p∑

j=1

ρMCP(‖α j‖2; λ2, γ ), (6)

ρMCP(t; λ, γ ) = λ
∫ t
0

(
1 − x/(γ λ)

)
+dx is the MCP penalty function (Zhang 2010)

with tuning parameters λ > 0, γ > 1. The proposed estimator is defined as:

(
μ̂, α̂

) = argminμ,αQ(μ,α), subject to
K∑

k=1

α(k) = 0. (7)

The final estimates of the coefficients are β̂
(k) = μ̂ + α̂(k), k = 1, 2, . . . , K .

Remark 2.3 With the proposed approach, the determination of homogeneity versus
heterogeneity is fully data-driven. For a specific covariate, if homogeneity is con-
cluded, then, intuitively, its estimate is based on information from all data. As such,
more accuracy (than individual estimates) can be expected. By flexibly allowing for
heterogeneity, the proposed approach can avoid the risk ofmakingwrong homogeneity
assumption and generating biased estimation. Null effects can be viewed as a special
case of homogeneous effects with μ̂ j = 0. As such, the proposed approach may also
better identify null (versus nonzero) effects.

It is possible to replace MCP with another penalty. Cai et al. (2021) adopted Lasso
type penalty. We conduct some simulation tests to compare the performances under
different type of penalty. In our problems and simulation settings, as shown in our
numerical analysis, MCP will gain more accuracy.

2.2 Computational algorithm

The estimates of μ and α can be obtained by solving the following constrained opti-
mizing problem:

min
μ,α,ω

⎧
⎨

⎩
L(μ + α) +

p∑

j=1

Jλ1(|μ j |) + λ1‖μ‖1 +
p∑

j=1

ρMCP
(‖ω j‖2; λ2

)
⎫
⎬

⎭
,

subject to
K∑

k=1

α(k) = 0, α = ω,

(8)
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where Jλ1(|μ j |) is the concave part derived from ρMCP(μ j ; λ1):

Jλ1(|μ j |) = ρMCP(μ j ; λ1) − λ1|μ j |

= −μ2
j

2γ
I (0 ≤ |μ j | < γλ1) +

(
γ λ21

2
− λ1|μ j |

)

I (|μ j | ≥ γ λ1).

We adopt the Augmented Lagrangian Multiplier (ALM) technique to solve (8).

Remark 2.4 The original objective function (7) is not easy to solve due to the concavity
of the penalty. In (8), we divide ρMCP(μ j ; λ1) into two parts: convex Lasso and a non-
convex but differentiable residual. Then, the optimization with respect to μ involves a
differentiable part LPHI (μ,α) + ∑p

j=1 Jλ1(|μ j |) as well as a convex and nonsmooth
part λ1‖μ‖1, which can be solved with the proximal gradient (PG) method. A similar
decomposition strategy has been used inWang et al. (2013). Additionally, we consider
the reparameterization ω with the constraint α = ω. This way, the optimization with
respect to both α and ω has explicit solutions. A similar strategy has been adopted
with group MCP in He et al. (2020).

The augmented Lagrangian function of (8) with tuning parameter ψ > 0 is

Lψ(μ, α,ω, V , �) =
⎧
⎨

⎩
L(μ + α) +

p∑

j=1

Jλ1 (|μ j |) + λ1‖μ‖1 +
p∑

j=1

ρMCP
(‖ω j‖2; λ2

)

+ψ

2
‖

K∑

k=1

α(k) + 1

ψ
V‖22 + ψ

2

p∑

j=1

‖α j − ω j + 1

ψ
� j‖22

⎫
⎬

⎭
.

Overall, we propose an iterative algorithm. With the local Lasso estimates as the
initial value, the proposed algorithm iterates between the following two steps until
convergence (which is concluded when the absolute difference between the estimates
from two consecutive iterations is smaller than a predefined cutoff). Here we use
superscript [m] to denote the mth iteration.

Step 1: Given V [m] and �[m], solve
{
μ[m+1],α[m+1],ω[m+1]} = argminμ,α,ωLψ(μ,α,ω, V [m],�[m]).

Step 2: Given α[m+1], ω[m+1], V [m], and �[m], update V and � as follows:

V [m+1] = V [m] + ψ

K∑

k=1

α(k)[m+1], �[m+1]

= �[m] + ψ
(
α[m+1] − ω[m+1]) .

More details of Step 1 are provided in the Appendix.
The proposed approach is computationally affordable. In all of our numerical

studies, convergence is achieved within a small to moderate number of iterations.
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Convergence of the proposed algorithm can be established by similar arguments as in
Wang et al. (2014) and He et al. (2020).

For choosing tuning parameters λ1 and λ2, we consider the generalized information
criterion (GIC) (Wang and Leng 2007) defined as:

GIC(λ1, λ2) = L(β̂) + νn

2
DF(μ̂, α̂),

where DF(μ̂, α̂) is the overall number of nonzero components of μ̂ and α(k), k ∈
{2, . . . , K }. As discussed in Cai et al. (2021), νn can be 2/n for AIC, log n/n for
BIC, and log(log p) log n/n for modified BIC. In our numerical studies, we adopt the
modified BIC, which leads to favorable results. Since we consider the scenario where
raw data can not be shared, adopting cross validation (CV) to select tuning parameters
will result in additional communications. Therefore here we don’t suggest using CV
for tuning parameter selection.

2.3 Theoretical properties

Here we examine theoretical properties of the proposed estimator under high dimen-
sional settings. Assumptions (A1)–(A4) are described in the Appendix, and we note
that they are sensible and comparable to those in the literature.

For a set A, |A| denotes its size. For a vector q = (q j , j = 1, 2, . . . , p) and

an index set A ⊂ {1, 2, . . . , p}, qA = (q j , j ∈ A). Let β
(k)
0 , μ0, and α

(k)
0 ,

k = 1, 2, . . . , K , be the true parameter values.DefineϕT = (μT,α
(−1)T
1 , . . . ,α

(−1)T
p ),

where α
(−1)
j = (α

(k)
j , k = 2, 3, . . . , K )T, and denote its true value as ϕ0. Let the

support set of μ0 be Sμ = {
j = 1, 2, . . . , p

∣
∣μ0 j �= 0

}
and that of α0 be Sα ={

j = 1, 2, . . . , p
∣
∣‖α0 j‖2 �= 0

}
. Define Sc

μ = {
j = 1, 2, . . . , p

∣
∣ j /∈ Sμ

}
and Sc

α =
{
j = 1, 2, . . . , p

∣
∣ j /∈ Sα

}
. LetSμ,α = Sμ∪Sα andS = {

j = 1, 2, . . . , pK
∣
∣ϕ0 �= 0

}
.

In our theoretical developments, we take a popular two-step strategy. In particular,
we first consider the oracle estimator, for which the true sparsity structure is known.
Then we establish that the estimate is equal to the oracle one with a high probability.
Specifically, the oracle estimator is defined as:

(
μ̂or, α̂or) = argmaxμ,α

{
1

n

K∑

k=1

�k(μ + α(k))

}

,

subject to μSc
μ

= 0,α j = 0, j ∈ Sc
α,

K∑

k=1

α(k) = 0,

(9)

and the oracle estimator ϕ̂or can be defined accordingly. Let q0 = |Sμ| + |Sα|, λ∗ =
max(λ1, λ2), λ∗ = min(λ1, λ2),μ∗ = min j∈Sμ

|μ0 j |, and ‖α∗‖2 = min j∈Sα
‖α0 j‖2.

We first establish the following results.

Theorem 2.1 (Estimation and selection consistency) Suppose that (A1), (A2), (A3)
and (A4) described in the Appendix hold. Then,
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(i) ‖ϕ̂or − ϕ0‖2 = Op
(√|S|/n)

.

(ii) If there exists a sequence λn → ∞ as n → ∞, such that min(μ∗ −
γ λ1, ‖α∗‖2 − γ λ2) ≥ λn

√
log(max(q0, 1)/n), and λ∗ ≥ λn

√
q0 log(2p − q0)/n,

then P (ϕ̂ �= ϕ̂or) → 0.

Proof is presented in theAppendix. It is noted that, although the theoretical develop-
ments share some similar spirit with the existing literature, with the censored survival
outcome and homogeneity pursuit, the existing results cannot be directly applied, and
nontrivial developments are needed. With the estimation and selection consistency
results, we then move on to studying asymptotic normality. Define the log partial
likelihood function based on all data, with the constraint

∑K
k=1 α(k) = 0 taken into

account, as �(ϕ) = �(μ,α(−1)) = ∑K
k=1 �k(μ,α(−1))/n, where �k is defined in

(2). Accordingly, for the penalty function, we write ρ̃(ϕ) instead. Use ∇S�k(ϕ) and
∇2
S�k(ϕ) to denote the first and second order derivatives with respect to ϕS . Let


S = E∇2
S�(ϕ0), a1n = ∇S ρ̃(ϕ0), and a2n = ∇2

S ρ̃(ϕ0).

Theorem 2.2 (Asymptotic normality) Suppose that the results in Theorem 2.1 hold.
Assume that assumptions (A1) and (A2) described in the Appendix hold. Assume
|S|2√log p/n = o(1),

√
nmax (‖a1n‖2, ‖a2n‖2) = o(1), and the eigenvalues of 
S

are finite and bounded away from zero. Then for any q ∈ R
|S|, if qT
−1

S q → σ 2 < ∞
with ‖q‖2 < ∞, it holds that

√
nqT

(
ϕ̂S − ϕ0S

) →d N (0, σ 2).

Proof is presented in the Appendix. It is noted that, in practice, with a fixed p, we can

approximate the variance of ϕ̂S by 1
n

{∇2
S�(ϕ̂)

}−1
.

3 Simulation

We conduct simulation to examine performance of the proposed approach (referred
to as PMCP) and gauge against the following alternatives: (i) Oracle estimator, which
is defined in (9); (ii) Local Lasso estimator (LasLo), defined in (3); (iii) averaged
debiased Lasso estimator (dLasDC) from Lee and Zeng (2017), which takes the mean
of local debiased Lasso estimators and recovers sparsity by thresholding; (iv) sparse
meta analysis (SMA) method from He et al. (2016), which is based on local MLE
estimators (if dimension is high, then marginal screening is first conducted), and
solves for:

β̂SMA = argmin
β

K∑

k=1

(β(k) − β̂
(k)
MLE )TĤ(k)

(β(k) − β̂
(k)
MLE ) + λ

p∑

j=1

⎛

⎝
K∑

k=1

w jk |β(k)
j |

⎞

⎠

1/2

,

where β̂
(k)
MLE is the local MLE estimator, Ĥ

(k)
is the same as defined in Sect. 2.1, w jk

is the predetermined weight taking value w jk =
(
β̂

(k)
MLE, j

)−1
under homogeneity,

or w jk =
(∑K

k=1 β̂
(k)
MLE, j/K

)−1
, k = 1, 2, . . . , K , under heterogeneity and λ is the

tuning parameters selected by a modified information criterion (MIC): MIC(λ) =
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∑K
k=1

∥
∥β̂

(k)
MLE − β̂

(k)
MLE

∥
∥2
2 + ∑K

k=1
log nk
nk

DFk, with DFk being the number of the

nonzero components of β̂
(k)
SMA; (v) median selection of local Lasso estimators from

Wang et al. (2014) (LasVote), which is based on local Lasso estimators b̂
(k)

and
recovers sparsity by selecting themedian values of b̂(k)

j , k = 1, 2, . . . , K , for every j =
1, 2, . . . , p. Additionally, to “re-establish” the advantage of MCP, we also consider
an alternative that applies Lasso (as opposed to MCP) in the proposed method. This
alternative is referred to as PLAS. For the alternative methods, tuning parameters are
selected in a way similar to the proposed method. We acknowledge that there may be
other applicable alternatives. The above may be the most relevant.

To evaluate estimation performance, we adopt absolute estimation error (AEE).
To evaluate variable selection performance, we calculate true positive rate (TPR)

with β̂
(·)

(which is defined as the ratio of nonzero coefficients that can be cor-
rectly identified) and false discovery rate (FDR, which is defined as the rate of
mistaken positive identification). To evaluate the identification of covariate effects
structure, we calculate the number of correct/incorrect discovery of homogene-
ity/heterogeneity. To be specific, correct discovery of homogeneity is defined as
the number of elements in

{
j : μ0 j �= 0,α0 j = 0, μ̂ j �= 0, α̂ j = 0

}
, referred to as

HomoCorrect. Incorrect discovery of homogeneity is defined as the number of ele-
ments in

{
j : α0 j �= 0, μ̂ j �= 0, α̂ j = 0

} ∪ {
j : μ0 j = 0, μ̂ j �= 0, α̂ j = 0

}
, referred

to as HomoIncorrect. Correct discovery of heterogeneity is defined as the number of
elements in

{
j : α0 j �= 0, α̂ j �= 0

}
, referred to as HeteCorrect. Incorrect discovery of

heterogeneity is defined as the number of elements in
{
j : α0 j = 0, α̂ j �= 0

}
, referred

to as HeteIncorrect.
We set the number of studies K = 4 and total sample size n = 800. We consider

a balanced design with all individual sample sizes = 200 and an unbalanced design
with individual sample sizes = 50, 150, 300, 300. For the dimension of covariates, we
consider p ∈ {400, 800}. The covariates Z(k)

i are generated from multivariate normal

distributions with marginal means 0, variances 1, and correlations cov(Z (k)
i j , Z (k)

il ) =
0.5| j−l| for i = 1, 2, ..., nk , k = 1, 2, . . . , K , and j = 1, 2, . . . , p. The survival times
are generated from the Cox model with hazard:

λ(k)(t |Z(k)
i ) = (t − 0.5)2 exp

{
β(k)TZ(k)

i

}
. (10)

The censoring times C (k)
i are generated from uniform distributions on [c/2, c], where

c > 0 is adjusted to achieve censoring rate (CR) 30% and 60%. For the covariate
effects, we consider three scenarios:

(S1) 12 covariates have homogeneous effects, and the rest have zero effects. Specif-
ically, β(1)

0 = β
(2)
0 = β

(3)
0 = β

(4)
0 = (0.5 × 11×6,−0.5 × 11×6, 01×(p−12))

T;
(S2) 6 covariates have homogeneous effects, 6 covariates have heterogeneous effects,

and the rest have zero effects. Specifically, β(1)
0 = β

(2)
0 = (0.5× 11×6,−0.5×

11×6, 01×(p−12))
T, β(3)

0 = β
(4)
0 = (0.5 × 11×12, 01×(p−12))

T;
(S3) 12 covariates have heterogenous effects, and the rest have zero effects. Specif-

ically, β
(1)
0 = (0.5 × 11×6,−0.5 × 11×6, 01×(p−12))

T, β
(2)
0 = (−0.5 ×
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11×6, 0.5× 11×6, 01×(p−12))
T, β(3)

0 = (0.5× 11×6,−0.5× 11×6, 01×(p−12))
T,

β
(4)
0 = (−0.5 × 11×6, 0.5 × 11×6, 01×(p−12))

T.

Based on 800 replicates, we summarize the AEE, TPR, and FDR results in Table 4.
The results of homogeneity pursuit using the proposed method are summarized in
Table 5. Additionally, to assess the asymptotic normality results, we calculate standard
error (SE) and standard deviation (SD) for the estimated parameters. Noting that the
numbers of parameters under different homogeneity settings are different, we show the
average SE and SD values of all parameters in Table 6. Additionally, to demonstrate
that estimation gets better with a larger sample size, we also consider scenario (S3)
with p = 800, K = 8, a balanced sample size setting (with all individual sample sizes
200), and an unbalanced sample size setting (with two individual sample sizes 50, two
150, and four 300). Beyond the tables, we also show the AEE, FDR, and TPR results
graphically in Figs. 1, 2, and 3, respectively.

Wemake the following observations. (i) In Table 4, for AEE, it can be observed that
the proposed method is the closest to the oracle. Under the proposed analysis, Lasso
has inferior performance compared to MCP, because of its inherent biasedness. When
all covariate effects are homogeneous and the sample sizes are balanced, dLasDC
has performance comparable to the proposed. However, it performs badly when the
sample sizes are unbalanced, which can be explained by its dependence on local
estimators. The proposed method gets benefit from its overall surrogate loss function
which approximates the overall likelihood function. Thus it is not so sensitive to the
unbalanced design. In general, AEE gets larger when CR is higher, sample sizes are
unbalanced, or heterogeneity level gets higher. (ii) In Table 4, for variable selection,
it can be seen that the proposed method performs well under all settings, with high
TPR and low FDR. The proposed analysis with the alternative Lasso penalty has good
TPR but relatively high FDR. SMA, dLasDC, and LasVote perform unsatisfactorily
when the sample sizes are unbalanced. It is reasonable as the penalty weights of SMA
significantly depend on local estimators, and the other two methods are sensitive to
local estimators. In general, performance gets worse when CR is higher, heterogeneity
level gets higher, or sample sizes are unbalanced. (iii) For structure identification, in
Table 5, it can be seen that under all scenarios, both PMCP and PLAS behave well and
can effectively recover the homogeneity structure. PMCP outperforms with smaller
false discovery. (iv) From Figs. 1, 2, and 3, it can be seen that performance gets better
when there aremore datasets/samples. (v) It can be seen fromTable 6 that the proposed
SE is close to SD. Overall, we conclude competitive performance of the proposed
method. We have also examined a few other settings and made similar observations.

To evaluate the robustness of the proposed approach to the model misspecification,
we conduct the following numerical experiment. We generate the data from the hazard
models as follow:

λ(k)
(
t
∣
∣
∣Z(k)

)
= λ

(k)
0 (t) exp

(
g(Z(k))Tβ(k)

)
, k = 1, 2, . . . , K ,

where g(Z) = (
g j

(
Z j

)
, j = 1, 2, . . . , p

)
, λ(k)

0 (t) = (t − 0.5)2 and
Setting 1: g j (x) = −1 + 2/ (1 + exp (−2x)) , j = 1, 2, . . . , p,
Setting 2: g j (x) = x3/3, j = 1, 2, . . . , p,
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Fig. 1 Boxplots of AEEs based on simulation replicates when p = 800 in scenario (S3). The x-axis displays
the listed methods. The y-axis is the value of AEE
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Fig. 2 Boxplots of FDRs based on simulation replicates when p = 800 in scenario (S3). The x-axis displays
the listed methods. The y-axis is the value of FDR
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Fig. 3 Boxplots of TPRs based on simulation replicates when p = 800 in scenario (S3). The x-axis displays
the listed methods. The y-axis is the value of TPR
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Setting 3: g j (x) = x3/3, j = 1, 2, . . . , p, g j (x) be randomly selected from

{

−1 + 2

(1 + exp (−2x))
,
x3

3
,−1 + (x − 1)2

4
, |Z | − 1

}

for each j = 1, 2, . . . , p. We set the number of studies be K = 4, total sample size be
n = 800, dimension of covariates be p = 400, and censoring rate be around 30%. We
consider senario (S3) and consider a balanced/unbalanced design same as that in the
preceding part. We still use the (10) for estimation (i.e., it serves as working model).
The simulation results are shown in Table 7. It can be seen that the model we use can
handle Setting 1 and 2 well. The result of Setting 3 is tolerable. It can be concluded
that our method will be affected if model is mis-specified. However, it shows some
robustness if the deviations of correct model specification are not extreme.

4 Data analysis

High-throughput profiling is now common, and genetic measurements have been
extensively associated with disease survival. Published integrative analysis studies
suggest that, for many common survival problems, there are multiple independent
data sources. Although there has been significant effort in sharing raw genetic data,
this is still not routine, with concerns on violating privacy (Qin et al. 2020). It has been
well argued that it is critical to preserve privacy in genetic data analysis (Erlich and
Narayanan 2014).

In our analysis, we consider genetic data from three independent sources:
GSE13507 collected in South Korea, GSE31684 collected in America, and GSE32894
collected in Sweden. The information about these datasets can be found on the website
of Gene Expression Omnibus (GEO). In all the three studies, the goal is to identify
gene expressions that are associated with all-cause mortality following a diagnosis
of bladder cancer. In these three datasets, the index “sample type” records patient’s
type of illness. They contain 165, 93, and 308 samples with sample type be “tumor”,
respectively. The overall proportion of missing data is 14.8%. Since the missing rate
is relatively small, we exclude the incomplete samples. There are 14,025 gene expres-
sions commonly measured in all studies. The censoring rates are 58%, 30%, and 89%
respectively. To obtain more reliable estimation (and also reduce computational cost),
we conduct a screening in each dataset and select n/log(n) candidate genes as Fan and
Lv (2008) recommended. Then we take the union of these genes from each datasets
as final candidates. For the specific datasets we use, we finally select 300 genes for
downstream analysis.

The estimation results of the proposedmethod andSMAare shown inTables 1 and2,
respectively.Analysis using the proposedmethod suggests that the covariate effects are
homogeneous. Genes ABCA5, COL3A1, NABP2, and TLE4 are selected by both the
proposedmethod and SMA. The other genes selected by the twomethods are different.
To test the fitting effect of these methods, we follow the procedure: for the kth dataset,

firstly, we divide it into two subsets by the values of
{
β̂

(k)T
Z(k)
i , i = 1, 2, . . . , nk

}
.
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Then we apply the logrank test on the survival observations of these two subsets. The
reason for this procedure is that the estimate with better fitting effect to the survival
data should seperate the survival curves of these two subsets well, that is, with more
significant p-value in logrank test. With the proposed method, the logrank p-values
are 5.21×10−6, 1.45×10−10, and 3.18×10−8, respectively, for the three datasets. In
comparison, the SMA p-values are 2.55×10−7, 1.13×10−3, and 1.70×10−7, respec-
tively. It can be seen that the proposed method has better fitting effect, especially for
GSE31684 which contains the least number of samples among these three datasets.

A quick literature search suggests that the identified genes can be biologically
sensible. Low expression of gene TESC was found to have negtive effect on overall
survival in cancer patients (Zhang et al. 2022). Gene SNX31 has been associated
with bladder urothelium (Vieira et al. 2014). TM4SF1 gene has been reported to
be overexpressed in breast, ovarian, lung, pancreatic, prostate, and colon carcinomas
(Wang et al. 2015). Its overexpressionwas also associatedwith poor survival in patients
with glioma (Wang et al. 2015). Abnormal expression of CRIP1 has been identified
in numerous solid tumors, and its overexpression was found to be related with shorter
overall survival (Ma et al. 2020).Upregulation ofHSPA7was related to poor survival in
colon cancer (Guan et al 2021). Overexpression of COL3A1 confers a poor prognosis
in human bladder cancer (Yuan et al. 2017).

With real data, it is difficult to evaluate identification performance. Sincewe actually
have access to all datasets, the results from pooled data may provide support for
identification. In addition, we randomly select 90% of the samples from each dataset,
conduct the proposed estimation, and record whether the genes are selected. This
procedure is repeated 100 times, and we calculate the probability of each gene being
identified across replicates. Higher probabilities can suggestmore stable identification.
The results from pooled data are shown in Table 3. The stability results of the listed
methods are provided in Tables 1, 2 and 3, respectively. In Table 3, the genes which
are also selected by the proposed method are marked with ‘*’. It can be seen that the
results from pooled data analysis are more stable and the selected genes share great
similarity with that from the proposed method. The results from the proposed method
are less stable than that from pooled data analysis, but more stable than SMA. These
results can further support the proposed method.

5 Discussion

In this article, we have developed a new integrative analysis method for data with
a censored survival outcome and high-dimensional covariates that can preserve data
privacy and automatically determine the homogeneity (versus heterogeneity) structure
in covariate effects. The proposedmethod has an intuitive formulation and can be easily
extended to other survival models and models for other types of outcomes. It has
been shown to have the well-desired consistency properties under high-dimensional
settings, and it is noted that our theoretical developments may also shed insights into
other integrative analyses. Simulation has demonstrated the practical advantage of
the proposed method, and the analysis of gene expression data on bladder cancer has
demonstrated its practical utility.
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Table 7 Simulation results under deviations of correct model specification

Setting Balanced Unbalanced

1 2 3 1 2 3

AEE/10−3 6.70 6.45 8.48 7.00 6.69 8.75

TPR/10−2 94.90 94.95 80.55 95.33 94.89 79.38

FDR/10−2 2.07 3.64 3.10 5.16 5.92 4.21

HomoCorrect(6) 5.44 5.43 4.10 5.46 5.41 4.01

HomoIncorrect(0) 0.00 0.00 0.05 0.00 0.00 0.02

HeteCorrect(6) 5.94 5.95 5.33 5.92 5.94 5.15

HeteIncorrect(0) 0.05 0.15 0.30 0.38 0.46 0.52

This study can be potentially extended inmultiple directions.An “easy” extension is
to consider alternative models, e.g., accelerate failure time model, transformed model.
This study has considered the scenario where all data sources only provide summary
statistics, while some published studies have considered the other extreme with all
raw data available. A more realistic scenario is to have summary statistics from some
sources while raw data from other sources. In this case, the overall loss function
should be the combination of both summary-statistics-based and log-likelihood-based
loss functions. In our and published studies, all available data sources have been
integrated. When some data sources are overly different from the others, it may be
desirable not to integrate them. In a sense, it may be of interest to identify heterogeneity
at the data source level. A hypothesis test to rule out significantly different datasets
should be considered before integrative analysis.
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