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ABSTRACT

Whenever we send a message via a channel such as E-mail, Facebook, WhatsApp, WeChat, or LinkedIn,
we care about the response rate—the probability that our message will receive a response—and the
response time—how long it will take to receive a reply. Recent studies have made considerable efforts
to model the sending behaviors of messages in social networks with point processes. However, statistical
research on modeling response rates and response times on social networks is still lacking. Compared
with sending behaviors, which are often determined by the sender’s characteristics, response rates and
response times further depend on the relationship between the sender and the receiver. Here, we develop
a survival mixed membership blockmodel (SMMB) that integrates semiparametric cure rate models with
a mixed membership stochastic blockmodel to analyze time-to-event data observed for node pairs in a
social network, and we are able to prove its model identifiability without the pure node assumption. We
develop a Markov chain Monte Carlo algorithm to conduct posterior inference and select the number of
social clusters in the network according to the conditional deviance information criterion. The application
of the SMMB to the Enron E-mail corpus offers novel insights into the company’s organization and power
relations. Supplementary materials for this article are available online.
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1. Introduction

With the rapid development of social media and electronic
commerce, many social networks now encompass a sequence
of time-to-event data for a pair of social actors. In an E-mail
network, how long it takes for the receiver of an E-mail to
reply to the sender is available; on Twitter and Sina Weibo, the
time for a user to repost a message from another user can be
recorded; in a company that uses web-based electronic docu-
ment management systems such as those provided by Dropbox
and ParaDM, the time an employee processes a file shared by
another employee can be tracked. Compared to the number of
events between a pair of actors, time-to-event data can pro-
vide alternative perspectives into interpersonal relationships.
For instance, an employee may have many more E-mails with a
secretary than with the CEO but replies to E-mails from the CEO
much faster than to those from the secretary. However, despite
the active research on time-to-event data on social networks,
statistical research on response times and response rates on a
social network is still lacking.

Many previous studies on time-to-event data from a social
network focus on the behavior undertaken by a social actor to
initiate events, either by sending E-mails or by posting tweets.
Such behavior has often been modeled by point processes. Perry
and Wolfe (2013) treat the time of sending E-mails between pairs
of actors in a network as a multivariate point process. Fox et al.
(2016) adopt self-exciting point processes to model the rate of
sending E-mails, in which the intensity function comprises a

baseline sending rate and triggering functions that character-
ize the impact of receiving E-mails on sending rates. Matias,
Rebafka, and Villers (2018) assume that each actor belongs
to one and only one social group, in line with the classical
stochastic blockmodel (Wang and Wong 1987), and assume a
separate conditional inhomogeneous Poisson process for each
social group pair. They use the proposed model to analyze the
times at which actor A sends E-mails to actor B. Sit, Ying, and Yu
(2021) model the times that an actor A sends an E-mail to actor
B as recurrent events and develop a pseudo-partial likelihood
approach to capture the flexible dependence structures among
pairs of actors in the network. Zhang et al. (2022) jointly model
the times at which actors initiate two events: posting their own
tweets and reposting tweets from others. All of these studies
focus on how frequently actor A initiates events (such as by
posting tweets) or how frequently actor A interacts with actor
B (such as by sending an E-mail to actor B).

Nevertheless, we not only care how frequently friends or
colleagues contact us, but we are also always eager to know (a)
whether the recipient will reply to our message (response rate)
and (b) how long it will take us to receive a reply (response time).
Both the response rate and the response time encode important
information. For example, even if two actors send E-mails with
a similar frequency, the one with a higher response rate will be
more influential in their social network. Therefore, instead of
studying the sending behaviors, in this article, we will model
response rates and response times on a social network.
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Noteworthy, the response behavior of actors in a social
network can be highly heterogeneous. Recently, Rastelli and
Fop (2020) propose the exponential stochastic blockmodel
(expSBM) to examine the duration of the interaction between
actors. expSBM assumes that the network structure follows the
stochastic blockmodel (Wang and Wong 1987) and that the
interaction lengths follow exponential distributions. To fit into
their framework, we may view actors’ E-mail response behaviors
as interactions and the time period with no E-mail and with no
E-mail reply as a noninteraction period. Because the stochastic
blockmodel partitions the network into several communities
and lets each actor belong to one and only one community,
although expSBM allows individuals’ response speed to vary,
it assumes the response speed of a given social actor to be
the same no matter whom he or she interacts with. However,
even for the same person, his or her response speed can be
very different when communicating with different people. For
example, the speed of an employee’s responses to the CEQ, a
secretary, and his or her peers can vary considerably. Moreover,
expSBM cannot deal with censoring time and hence E-mails that
are never replied to.

To deal with the challenges of nonresponse events, severe
heterogeneity, and sparse observations, we integrate the mixed
membership stochastic blockmodel (MMSB) (Airoldi et al
2008) with the semiparametric cure rate model (SCRM) (Chen,
Ibrahim, and Sinha 1999; Ibrahim, Chen, and Sinha 2001a,
chap. 5) to build a survival mixed membership blockmodel
(SMMB). The SMMB allows an actor to play different roles
when interacting with different actors, accounts for the impact of
covariates, and models nonresponse events. Globally, the SMMB
can detect social clusters in a network and characterize between-
and within-cluster interaction patterns. Locally, the SMMB is
capable of identifying the specific role an actor plays when he
or she interacts with another actor. The SMMB simultaneously
learns the network structure from the data and uses the learned
structure to improve actor pair-specific inference. Consequently,
the SMMB pools information across the whole network.

The network structure inferred from time-to-event data can
be very different from the structure learned from a binary
network W that records the connectivity between actors. In
this article, we use “communities” to refer to the grouping of
actors according to their connectivity encoded by W and “roles”
to refer to the grouping of actors according to their response
times and response rates. If W follows an MMSB, then actors
belonging to the same community have a high probability of
communicating with each other—sending E-mails in the case
of the Enron E-mail corpus. In comparison, actors sharing
the same role have similar distributions of response times and
response rates in the SMMB. Therefore, communities and roles
reveal different aspects of a social network with time-to-event
data. For example, different communities can correspond to the
various departments of a company, whereas roles reflect employ-
ees’ levels of seniority. Employees in the same department tend
to have more E-mail contacts, and thus are grouped together
by W, but have very different E-mail response speeds and rates
because of their different levels of seniority.

As pointed out by Zhang, Levina, and Zhu (2020), it is
nontrivial to establish identifiability for social network models
that allow actors to belong to multiple social clusters such as
the MMSB (Airoldi et al. 2008). Recently, Mao, Sarkar, and

Chakrabarti (2021) prove that the requirement of the existence
of at least one pure node, defined as a social actor who acts as a
member of only one social cluster irrespective of whom he or she
communicates with, for each social cluster is not only sufficient
(Kaufmanna, Bonaldb, and Lelargec 2018; Zhang, Levina, and
Zhu 2020) but also necessary for the MMSB for binary networks
to be identifiable. Fortunately, compared with binary data, time-
to-event data encode more information, and hence we are able to
prove that the SMMB is identifiable up to label switching without
the pure node assumption.

We conduct statistical inference under the Bayesian frame-
work and develop a Markov chain Monte Carlo (MCMC) algo-
rithm. The application of the SMMB to the Enron E-mail corpus
reveals network structure that better represent leadership pat-
terns than those obtained from the state-of-the-art methods.

2. Model Formulation

Suppose that a social network consists of N actors and has
sequences of time-to-event data, instead of binary outcomes
Wiys, recorded for actor pairs. For a pair of actors (i,j),
when actor i sends a sequence of E-mails to actor j, the
response (failure) time and the censoring time for the gth E-
mail by actor j are denoted as Tjg and Cj, respectively. The
associated p-dimensional covariates are denoted as Xj, =
(Xijg1, Xijgas - - - ,X,;,vgp)T, where Xjj;; = 1 corresponds to the
intercept term. If actor i sends n;; E-mails to actor j, then we
observe a sequence of survival times y;; = (yj, - -, y,;,v,,r})T and
censoring indicators vi = (il v,-J,-,,‘.j)T satisfying Yig =
min(tjg, Cjg) and vz = 1(fjg < Cijg), and the corresponding
covariates x;; = (Xjj1,. . . ,x,-j,,,})T. Here, N’ = {1, ..., N} denotes
the set of actors and £ = {(i,j)|n; > 0,i,j € N} represents
the set of actor pairs with at least one failure or censoring
observation.

Following the MMSB, assume that there exist K roles with
Dirichlet parameters & = (£,...,&x)T € (0,+00)K. Here,
EEKE represents the abundance of the kth role in the network.

=1

Each pair of roles has a unique SCRM.

For the SCRM, we adopt the formulation S(t)=
exp(—0 + 0Sp(t)) = t!=%® (Chen, Ibrahim, and Sinha
1999; Ibrahim, Chen, and Sinha 2001a, chap. 5), which enjoys a
population level proportional hazards structure. Here, Sy(f) is a
proper survival function for the baseline, and its hazard function
ho(t) is piecewise constant: hg(t) = A if t € (Sm—1,5m], With
0 <5 < 8 < --- < sy < oo being a partition of the time
axis and ho(t) = 0 for t > syr. Meanwhile, T = exp(—8) is the
cure proportion. The survival time of this model can be viewed
as the earliest event time of N iid competing risks with survival
probability So(f) and N following a Poisson distribution Pois(6),
s0 6 can be interpreted as the average number of competing
risks (Chen, Ibrahim, and Sinha 1999). Similarly, we may
suppose that there exist N latent intentions to reply to an E-mail
and view 6 as the average number of latent response intentions.
Furthermore, we can model covariate effects 8 = (B1,..., ﬁp)T
via @ = exp(x ), which corresponds to a log-log link for t:
log(—log(r)) = x!B. Consequently, the hazard function of
the SCRM is h(t|x) = exp(xrﬁ)fo(t), where f(f) denotes the
probability density function for Sy(f). In the SMMB, we let both
the baseline hazards and covariate effects to be role-pair-specific.



When role k replies to the E-mails sent by role /, the piecewise
constant baseline hazard function in interval t € (5,1, 8m,] is
hg‘ (1) = Aﬁ. We collect Ak = (W, .., }Lf.{f[) and denote the role-
pair-specific covariate effects as g = (,81”‘, cees ﬁﬁ‘)r. Notably,
the time-to-event data from role I to role k # I do not necessarily
have the same distribution as those from role & to role L. In other
words, f*(y, v|x, B%,1%) = X (y, v]x, B4, A¥) is not required.
Instead, the interactions are allowed to be asymmetric.

When actor j replies to an E-mail sent by actor i, actor i
and actor j pick up their latent social role Q;; and R;; according
to their latent role proportions =; = (mwi,..., 7)) and © s
respectively. Given the latent roles Q; = land R; = k a
sequence of failure times Tjj;,g = 1,...,n; are iid generated
according to a SCRM with the p1ecew1se constant baseline haz-
ards A’ and the coefficients ,8

We denote & = (&,.. gK)T g = {B* }k_;--"K and A =
{JL”‘} ’K . The proposed SMMB can then be described by the
followmg data generation mechanism:

; ~ Dirichlet(&) i=1,...,N;
Qjj|m; ~ Categorical(r ) (i,j) € &
Rij|mj ~ Categorical(r;) (i,j) € &

Yijg, vijg|Qij = L Rij = k ~ f(¥ig» vig|Qyj = L Ryj = k. xyjg, B, A)
:f(yx_'jg> Vi]"g |xi:jga .8"(: l"{] 2= ]-) R nl}'a

1)
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where ;i = 1,..., N, are iid given &; Q;; (Rj;) for (i, j) € £ are
independent conditional on x; (r); conditional on Qj, R;; and
given the parameters 8, A and covariates x;j, failure time Tjg
and censoring time Cj;, are independent, and for g = 1,.. ., n,
the corresponding observed survival times and censoring indi-
cators (Yjjg, vijg)s are independent. It is also interesting to note
the link between the SMMB and the MMSB. When y;; is a binary
random variable and there is exactly one observation y; on each
edge with no censoring (vj; = 1), the SMMB reduces to the
MMSB.

Following the inference for the SCRM model (Chen, Ibrahim,
and Sinha 1999), we can augment a latent variable Uy, for
each E-mail by each pair of actors to facilitate the compu-
tation. If actor i plays role Q; = [ and actor j plays role
R;; = k when actor j replies to actor i's E-mails, then Uj;, follows

Pols(exp(x,jgﬁik)) + viig. Consequently, in the SMMB, © =
Mij

(&,B8,A) are the parameters of interest; y = {y,jg}(f_ﬁ‘E £

o Mir=L,...,p

,,,,,,,

v = Yand X = {x,}g,,}(t ;)es are the

observed data; and Q = {Qjlujes, R =
n = (x,m2....7y) and U =
latent variables. Let djgm = 1 if yj, € (sm 1,Sm] and

zero otherwise. Then, the complete data likelihood function
becomes:

{Rt}}(t;)eﬁ,
are

L£(®|y3 V,X, H) Q) R) U)

nij

[Te@ie) [] ]'[]'[[rr,:rrjk]'[[so(y,}gu”‘ YU (U (7 IN)) V1

ieN (ij)e€ =1 k=1
nij
-exp{)_[Ugxt, 8% — log(Uygh) — exp(xf, 511" Q=01 Rs=h), (2)
£=1

5!) l_[k—l Ek 1 Sﬂ(yx}'guik) —

where p(r;|§) = l"(!,f )

| exp{—Bijgm[MX (viig
foigh¥) =TT l(x”‘)ﬁwﬂ exp{—BiigmAX 1izg — Sm—1) + Yoy A(s,

— Sm-1) + 25 M¥(sg — sg-D)1} and

q 1)]}

After marginalizing over the latent variables, the observed dat qhkehflood is as follows:

nij

Lo(®ly, v, X) = f I1 Zmejkl'[exp{vgg[xqgﬁ +1og(fo (i) — exp(xf B%) (1 — So g A"0)} [ [ Ip(il&)dr ;1.

(ij)e€ =1 k=1 g=1

For reference, we have summarized all the notations in Table S1.

ieN
(3)

3. Model Identifiability

There is emerging research on the identifiability of the MMSB
(Mao, Sarkar, and Chakrabarti 2017; Zhang, Levina, and Zhu
2020; Mao, Sarkar, and Chakrabarti 2021). As mixture models,
both the regular stochastic blockmodel (Wang and Wong 1987)
and the MMSB are only identifiable up to the label switching of
communities. Theorem 1 shows that the SMMB is also identifi-
able up to the label switching of roles given easily met regularity
conditions.

Theorem 1. In a network G = (N, £), N denotes a set of actors
and & = {(i,j)|nj > 0,i,j € N} represents the set of actor
pairs with at least one observation. Suppose that we observe n;;
time-to-event data for each actor pair (i, j). Let K > 2 denote the
number of roles and V be an open set that consist of all possible
covariate values. Given that

(C1) There exist three actors (i, ji, j2) such that n; > 0 and
?‘!,}'2 = 0;
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(C2) There exists a covariate set V* C V satisfying
V* = {(x1,%2,....%)T € RP|x; = 1 and
x, € {xf, x5, r=2,3,....,p}

where (x},x},),r = 1,...,p, are two distinct real num-
bers such that for two distinct role pairs (/,k) and (1 IT:),
and x* € V¥,

exp((x*)" %) exp(— > A (sy —54-1))

g=1

# exp((x") %) exp(— Y AF (55 — s¢-1))
q=1
atknotmm=1,...,M;

then the SMMB is identifiable (up to label sw1tch1ng) in the sense
that if two sets of parameters © = {§, Ak ,8 } Lk=1,-- k and -
{8, 1™, ¥"}, =1k give rise to the same llkehhood function as
(3) for any yiig and xjg = (1, Xijg2, Xijg3» - - - » Xijg,p Y e v cRe,

then K = K.§ = 8> Ak — ”p(f)p(k) and gk = yrrk),

where p is a permutation of {1,...,K}.

Condition 1 requires the existence of an actor who has time-
to-event data with at least two actors, which is easily met for real
social networks. Condition 2 requires each covariate to take at
least two values so that the survival functions of different role
pairs are distinct at all of the knots; this is similar to the non-
singular block matrix assumption that ensures the identifiability
of the MMSB for binary networks (Mao, Sarkar, and Chakrabarti
2021). For the identifiability of the MMSB, Mao, Sarkar, and
Chakrabarti (2021) require the existence of pure nodes who each
play one and only one role. Fortunately, because a sequence of
survival outcomes y;;, rather than a single binary or continuous
weight is observed for each pair of actors, much more informa-
tion is available for the SMMB to distinguish between different
role pairs. Consequently, the assumption of the existence of pure
nodes is released in our theorem.

In the proof we need to show that if two sets of parameters

= (6.0, B5) ey, xand © = (8,47, ™), _, g giverise
to the same observed data likelihood function, then ©® must be
a permutation of © with K = K, & = §,(), Ak = pr(r®
and g’ = yrMe®) Tt is difficult to show the existence of such a
permutation p(-) directly. Instead, by first viewing the model as
a mixture of cure rate models with K> components, we are able
to find a permutation (-, -) of all K? role pairs such that these
two sets of parameters satisfy y L ,wﬁ(" ) and ,8”‘ = yﬁ(f’k).
Then, we show that the permutation §(-,-) can be decomposed
with the single permutation p(-) so that o(l,k) = (p(D), p(k)).
Finally, these two sets of parameters can be equal up to the
label switching p(-), that is, & = 8, A% = uP®*® and
,6”‘ = y"(””"(k). The proof of Theorem 1 is outlined in the
Appendix and provided in details in Supplementary Sections
S2-84.

4, Statistical Inference

We conduct the statistical inference under the Bayesian frame-
work. We first reparameterize £ as @ = Zle & and np =

%,k = 1,...,K. For the MMSB, Airoldi et al. (2008) let
¢ vary between 0.05 and 0.25, so here following the same
philosophy, we impose a Beta(a,a) prior on « and a non-
informative Dirichlet(1, 1,.. ., 1) prior on 5 independently. We
follow the common practice in choosing independent Gaussian
priors for g% ~ N(b,,02) with b, = 0,forr = 2,...,p,
and 'mdependent Gamma priors for the baseline hazard Aﬁ ~
Gamma(=22 x'", K) m = 1,..., M. By default, (a,02, k) is set as
(1,5,50), and b; and wams rely on their empirical estimators.
In particular, we first use the Kaplan-Meier estimator (Kaplan
and Meier 1958) to estimate an overall survival function for all
of the observations. As a result, an empirical estimation b]""
is log(— log(Skm(sm))), where Sgar(f) represents the Kaplan-
Meier estimator of the survival probability at time t. Given b; =

b;"® and Sk (f), we then sample latent variables Ufj;lp from

Pois(Sxm (Vijg) exp(b]"")) + vijg and set wy,, as the estimated
baseline hazard (Robbins 1955):
Wom =
Z(i,j)ES Z;il SijgmVijg
2 et Eg U [Bigm(Vig — Sm—1) + a1 Siea(sg —sg-D)1}

Let us now discuss the asymptotic behavior of the posterior
distribution of the SMMB. Without loss of generality, let n;; = n
for all actor pairs (i, j) € £. Let us denote E = |£] as the number
of active edges. When two actor pairs share an actor, for example,
(i, j1) and (i, j), their survival outcomes are dependent. Inspired
by the Bayesian consistency results for non-iid data (Ghosal and
Van Der Vaart 2007; Ghosal and Van der Vaart 2017), we provide
sufficient conditions under which the posterior of the SMMB
concentrates on the true parameters as E goes to infinity.

Theorem 2. Assume that the conditions in Theorem 1 hold
so that the SMMB is identifiable and that Xj;, are generated
iid from a bounded distribution f'x(x) such that fx(x) =
[Tgjee [Toms fx(rsg)- Let PS™ denote the joint distribution
of E observations {Y;, vy, Xy, (i,j) € £} given © that admits
the density f(y, v, x|®) = f(y, v|©, x)fx(x), where f(y,v|©, x)
follows the SMMB. Let Pg;“) indicate the joint distribution
under the true parameters ®( and I1(©) represent the prior

distribution of @. If for £ > 0, there exists an £-neighborhood
N:(©p) C 2 such that TT(N;(©g)) > 0 and it satisfies

(C1) For some constant » > 0 and B > 0, there exist test
functions ®g(Y, v,X) for testing Hy : @ = @ versus
H; : © ¢ N.(Og) such that

E, E, .
Pgu"’{cbg] = f c1>EdPF90”’ < Be bE

sup PO (1— @p) = f (1— ®p)dPE™ < BeVE

OeNE(Bq)

sup
OeNE(By)

(C2) There exists some positive by < b such that for any @ <

Ne(©o)

S (3, |G, x)

1 bo (En)_,
— log( y< 2 p
E 870,005

> 9, a.s.,

then as E goes to infinity, the posterior distribution [1(® €
N£@)ly. v,x) — 0,Pg"-as.



The proof of Theorem 2 is provided in Supplementary
Section S5.

We develop an MCMC algorithm to draw samples from the
posterior distribution. Here, we use superscript [{] to denote
the corresponding posterior samples of parameters or latent
variables at the tth iteration of the MCMC algorithm. At the tth
iteration:

1. To update the latent variable U,B; associated with the gth

E-mail sent from actor i to actor j, we first sample from

Pois(So (yiig|AM'~11) exp(x] 8*!~'1)) and then add vy

2. To update the roles QE}.‘] and RE? of actor i and actor j when
j replies to an E-mail sent from i, we first collapse down the
latent variable U;; = (U1, U, - . . U,;,v,,ﬂ)T and then sample
these roles from a categorical distribution with probabilities
(Liu 1994)

Mij
o erl; I]Ij[kf 1] H{Uﬂ(%jgmik[r_l]) exp(x;}]:'gﬁlk[t—l])]vgx
=1

- expl— exp(x, A1) (1 — So (yig M =11

3. To update ,Sfc[t], we apply a Metropolis-Hasting (MH)
step with a symmetric Gaussian proposal distribution
2B 18 ~ N, 0.2).

4. To update Alkml e sample from its full conditional, which
is a Gamma distribution with a shape parameter equal to

Mij
w,
Y 1Qf =LR =k Z ViigSiigm + ﬂ
(hj)e€
and a rate parameter equal to
i
(1] [t]
> 1Q =LR' =k Z UL Bgm (Vig — Sm—1)
(if)e€
A 1
+ Z ai}'gq(sq - sq—l)) + ;
g=m+1

5. Toupdate J’l’ , we sample from its full conditional, a Dirichlet
distribution w1th the following parameters

( Y@=+ Y R =n+g
jGf)eE FGi)eE
> I(QE.;]: 3 1(R}j]:10+gg—”).
jlij)eE J(ie€

6. To update alfl, we apply an MH step with the proposal
distribution g(%.{:m[f—l]) ~ Beta(a!"1, K — al—11),

Table 1. Time complexity of MCMC steps.
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7. To update p!*l, we adopt an MH step with the proposal
distribution g(y*[y!*~1) ~ Dirichlet(109/*~1).

To accelerate the convergence of the MCMC algorithm, inspired
by the shift-mode Metropolis step proposed by Liu (1994), we
incorporate another Metropolis step into the above algorithm to
allow the global swapping of two randomly selected role pairs.
Because this step involves extra sampling and computation, we
insert it into the above algorithm every few iterations, such
as every 10 iterations. We call the new step a global swapping
Metropolis step. Specifically, a pair of role pairs (I, k;) and (I3, k)
are randomly selected and their role-pair-specific parameters A
and B’ are swapped to obtain the proposed values (A*, 8*). We
correspondingly swap the role labels Q;’s and Ry’s as (Q;"j, R;"j).
To propose (IT*,£*), we incorporate an MH step to draw a
sequence of m; and £ from their full conditional distributions
given (Q”‘ R”‘) To reach convergence, we run the MH step for
50 1terat10ns and take the samples at the 50th iteration as the
proposed values IT* and &*. If the swapping is rejected, we keep
all of the parameters and latent variables unchanged; otherwise,
we swap the role pair and update the parameters and latent
variables with the proposed values. The detailed derivations of
the full conditional distributions and the acceptance ratios are
listed in Supplementary Section Sé6.

The Dirichlet parameters &, the role-pair-specific piece-
wise constant hazards A%, the covariate coefficients ,8”" ,
and the user-specific role proportions =;’s are estimated by
their posterior means, and the latent role pairs (Qj, Rj)
of each pair (i,j) € & are estimated by their posterior
modes.

Denoting L := } ;¢ nij as the total number of observed
survival times, the time complexity of each step of the MCMC
algorithm is shown in Table 1. In general, the number of covari-
ates p is fixed, and the number of knots M is not very large.
Therefore, the scalability of the proposed MCMC algorithm is
determined by the number of roles K and the total number of
observed survival times L. The total time complexity, which is
the summation of all of the terms in Table 1, is linear in L and
quadratic in K.

We determine the number of roles K present in the network
according to the conditional deviance information criterion
(DIC) (Celeux et al. 2006; Lu and Song 2012) and select K as
the one that attains the minimum (see Supplementary Section
S7 for details).

5. Simulation

5.1. A Simulation Dataset Mimicking the Enron E-mail
Corpus

To evaluate the performance of the SMMB, we first generate
a simulation dataset that mimics the Enron E-mail corpus.
We generate a binary network with N = 150 actors using a

Variables U (Q.R)

I A B £

Time complexity O(L(p + M) O(LKZ(p + M)

O(E + NK) oamy OLp(p + M) O(NK)

NOTE: Here, E denotes the number of active edges in the network, and L = } ;g njj represents the total number of observed survival times.
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stochastic block model (Wang and Wong 1987). Specifically, we
assume the existence of four communities, which contain 25,
30, 40, and 55 actors, respectively (Figure S1). For each active
edge, we generate the number of E-mails n; from a shifted
negative binomial distribution. We assume that when replying to
E-mails, actors can play K = 3 roles, incorporate two covariates,
one binary and the other continuous, and divide the time axis
by M = 5 knots. Consequently, the true underlying response
times Tj,’s are generated sequentially according to the SMMB.
Finally, we generate the censoring time Cj;, ~ Unif(0, 100) (see
Supplementary Section S8 and Table S2 for more details).

We run 50,000 MCMC iterations with the first 25,000 as
burnins. The estimated potential scale reduction (EPSR) cri-
terion (Gelman et al. 2013) shows that the Markov chain has
reached convergence after 25,000 iterations (Supplementary
Section S9 and Table S7). To identify the number of roles, we
vary the number of roles K from 1 to 5, and the conditional DIC
correctly selects the number of roles as the true value K = 3.
The estimated é — (0.215,0.368,0.597)T is consistent with the
true &. Figure S2 shows that the posterior means of piecewise

constant hazards A" and intercept terms B{k recover the true
values of the baseline survival function of each role pair well (see
also Tables S4-S6 and Figures §3-S4). The credible intervals of
all the covariate coefficients %s,r = 2,3,.. ., p, cover the true
values (Table S2).

The contingency table of the estimated versus the true role
pairs shows that the roles of the actors in each pair are inferred
accurately (Table S3). Extensive sensitivity analyses (Supple-
mentary Section S10) show that SMMB is robust to the choice of
hyperparameters (Table S8) and the selection of knots (Table S9).

We perform posterior predictive check and use the L measure
(Ibrahim, Chen, and Sinha 2001b) to compare the SMMB with
(a) fitting a single SCRM (overall SCRM) to all the data and
(b) fitting a separate SCRM to each actor pair (pairwise SCRM)
(Supplementary Section S11). The SMMB achieves the smallest
L measure and hence outperforms the two benchmark methods
in goodness of fit (Table S10).

5.2. Simulation Datasets with Different Heterogeneity and
Sparsity Levels

We further test the performance of the SMMB using datasets
generated with different heterogeneity levels, different numbers

of active edges and different numbers of observed survival times
per active edge. In order to vary the sparsity of the network, here
we generate the binary networks W with N = 150 using the
Erdds-Rényi model (Erdds and Rényi 1960) with the connectiv-
ity probability p., which denotes the probability that a directed
edge is drawn between two arbitrary actors. We generate the
baseline probabilities, the censoring times Cjjg, and the under-
lying response times T, similarly as in Section 5.1. Details are
presented in Supplementary Section S12.

First, we fix the number of roles at K = 3 and vary the con-
nectivity probability p. over (0.2,0.3, 0.4, 0.5) to investigate how
the network sparsity affects the recovery performance. Next, we
fix the number of roles at K = 3 and the connectivity probability
pe = 0.3 but vary the average number of observations on each
edge. In particular, we sample the number of E-mails n;; from
Pois(u) + 5 and vary p over (10, 15, 20, 25, 30, 35). Finally, we
are also interested in the impact of pattern heterogeneity on
parameter estimation. Thus, we fix the connectivity probability
pc = 0.3 and generate the number of E-mails per active edge
from Pois(25) + 5 while varying the number of roles K from 2 to
5. We generate 100 replicated datasets for each setting. In total,
there are 1,200 simulation datasets.

For each simulation dataset, we run 50,000 MCMC iterations
with the first 25,000 as burnins. Almost all of the parameters
enjoy small biases, standard deviation (SD), and root mean
square errors (RMSE), and their coverage probabilities (CP) of
the 95% credible interval are high (Figures 1 and Supplement
Tables S12-547).

Moreover, these simulation studies allow us to verify the the-
oretical calculation of time complexity of our MCMC algorithm.
Figure 2 confirms that the time complexity of the algorithm
is linear in the total number of observed survival times L and
quadratic in the number of roles K.

We also examine the performance of the conditional DIC
in determining the number of roles in the network. For the
100 sets of simulated data with K = 3 roles, p. = 0.3 and
ni ~ Pois(25) + 5, we run the MCMC algorithm with the
number of roles K varying from 2 to 4 for each dataset. It turns
out that the conditional DIC correctly identifies the optimal K
as three for all of the replicates. Moreover, the conditional DIC
also performs well in selecting the optimal number of knots and
outperforms the Bayesian information criterion (BIC) (Airoldi
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et al. 2008) and the Watanabe-Akaike information criterion
(WAIC) (Watanabe and Opper 2010) (Supplementary Section
$13 and Figures S5-S6).

6. The Enron E-mail Corpus

The Enron E-mail corpus (Klimt and Yang 2004) is the largest
publicly available E-mail dataset to date and was released by the
Federal Energy Regulatory Commission during its investigation
of Enron’s bankruptcy. The dataset contains E-mails generated
by 158 Enron employees between November 13, 1998 and June
21, 2002. Because “It’'s always about the people. Enron is no
different,” (Diesner, Frantz, and Carley 2005) the Enron E-
mail corpus provides a unique opportunity to study the com-
munication patterns, company organization, and power spread
inside a company. The corpus contains the user information
and timestamp of each E-mail. Following the enrondata GitHub
repository, we focus on the E-mail folders of 148 Enron users
whose positions in the company are known.

We apply the SMMB to the preprocessed dataset (see Supple-
mentary Section S14 for preprocessing details and Table $48).
The dataset contains the response times for 25,629 E-mails, 1886
of which are observed and 23,743 are censored. The Kaplan-
Meier estimate of the survival probability after three weeks is
92.36%; thus, a cure rate model is necessary to fit the survival
function of the response time. We set the number of knots as five
and let (s, 51, 52,53,584,85) = (0,0.152,0.717,2.83,19.82, 504)
hours such that each interval (s;—1,5ml,m = 1,2,3,4,5 con-
tains the same number of failure times.

6.1. Analysis Without Confidential Information

We first consider the following four covariates: whether the
E-mail was sent over the weekend, whether the E-mail was
forwarded, the number of recipients of the E-mail, and the
number of words in the E-mail. We log-transform the latter two
covariates to reduce the impact of skewness. If a series of E-mails
had the same subject, we denote the first E-mail as the original
E-mail and record the fourth covariate as the number of words
in the contents of the original E-mail. The hyperparameters
(a,x,02) for (&, A, B) are set as (1,50, 5). We vary the number
of roles K from one to five and run 100,000 MCMC iterations
with the first 50,000 iterations as burnins for each value of K.
The EPSR values shows that the Markov chain has reached
convergence after 50,000 iterations (Supplementary Section S9
and Table S7).

The conditional DIC attains its minimum at K = 2 (Figure
S7a), and the SMMB fits the data well (Supplementary Table
§11). For K = 2, when we vary the number of knots, the
conditional DIC also selects the optimal number of knots as five,
thus, M = 5 is a reasonable choice for the data analysis (Figure
§7b). In Figure 3(a), we plot the probability m;; of belonging
to the first role as opposed to the second role. Warmer colors
(red and deep orange) represent higher positions (CEO and
president). The warmer colored points are concentrated on the
left-hand side, thus, preferring to belong to the second role,
especially the four CEOs shown as red (Table 2). Thus, we regard
the second role as the senior group and the first role as the junior
group.

The estimated baseline survival function of each role
pair reveals communication patterns between employees (Fig-
ure 3(c)). Let us recall that the role pair (/,k) denotes role k
replying to the E-mails from role I. Comparing the survival
function of the role pair (1,2) with that of the other three role
pairs, the longest response time was that of a senior employee
replying to an E-mail from a junior employee. Meanwhile, the
response times between junior employees, which correspond to
the role pair (1, 1), were the shortest among all of the role pairs.
This may be because junior employees often need to communi-
cate via E-mails about routine daily work. As expected, when a
senior employee communicated with a junior employee, which
corresponds to the role pairs (1,2) and (2, 1), junior employees
replied to the E-mails from senior employees much faster than
the reverse situation. Therefore, the level of seniority affected the
speed of E-mail response.

An employee can play different roles when communicating
with different colleagues. For example, John Zufferli (User 148)
held the position of vice president. When he replied to the E-
mails from John Lavorato (User 62), a CEQ, the estimated role
pair (Qﬁz,lq.g,ﬁﬁz,];;g) = (2, 1). Meanwhile, when John Lavorato
replied to the E-mails from John Zufferli, the estimated role pair
became (Ql,;g,ﬁg,ﬁm,ﬁg) = (1,2). Thus, John Zufferli occupied
a junior position in the communications with the CEO. How-
ever, when John Zufferli communicated with Chris Dorland
(User 28), a manager, the estimated role pair (QMg,zg,ﬁMg 28)
and (623,143, ﬁzg,mg) became (2,1) and (1,2), respectively. In
other words, compared with Chris Dorland, John Zufferli held
a higher position. Thus, although the positions of senders and
receivers are not incorporated as covariates, the SMMB is able to
reveal the seniority of employees within a company according to
E-mail response times.
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Table 2. The estimated role probabilities j by the SMMB from time-to-event data
and by the MMSB from binary data of the four CEOs, respectively.

User ID User Name SMMB MMSB
i (7] | )
23 David Delainey 0.049 0.951 0.478 0.522
62 John Lavorato 0.011 0.989 0.835 0.165
63 Kenneth Lay 0.208 0.792 0.463 0.537
17 Jeffrey Skilling 0.014 0.986 0.145 0.855

With regard to the weekend effect (Table 3), among all role
pairs, only the 95% credible interval [—5.4631, —0.7872] for the
coefficient B! do not cover zero. The negativity of ;! indicates
that at weekends, junior employees replied to the E-mails sent
by other junior employees more slowly, which is unsurprising,
as most junior employees are likely to rest over the weekend. The
coefficients for the forwarded E-mails are negative across all of
the role pairs, indicating that the response times for forwarded
E-mails were often longer (Table 3). Moreover, the coefficients
for the number of recipients are also negative across role pairs.
Thus, an E-mail with more recipients was likely to receive longer
response times or was never replied, which is consistent with our
experience that people are less likely to respond to circulating E-
mails. The effects of E-mail length are only negative for the role
pair (1, 1). In other words, for E-mail communications between
junior employees, longer E-mails were usually replied to more
slowly. The most likely reason for this is that junior employees
use E-mails to discuss routine daily work, and a longer E-mail
indicates that the task may be more complicated and require
more time to handle. Consequently, the SMMB is able to uncover
heterogeneous effects across different role pairs.

Table 3. The posterior mean, posterior standard deviation (SD), and 95% credible

interval (Cl) of coefficient ,6;""’5 for the SMMB learned from the Enron E-mail corpus
without considering confidential information.

Covariates Parameters Posterior mean Posterior SD 959 Cl
Weekend effect ,&%‘ —26923* 11340  [—5.4631,—0.7872]
,&52 —0.9623 16866  [—4.6645,1.6364]
B 0.1191 0.1813  [—0.2510,0.4611]
832 0.2810 02051  [—0.1370, 0.6667]
Forwarded effect ,6%” —1.6664* 0.2363  [—2.1566,—1.2218]
,632 —0.9986* 05689  [—2.2854, —0.0571]
B4 —0.6419* 0.1321  [—0.9028, —0.3852]
832 —0.4578* 0.0960  [—0.6499, —0.2718]
Receiver number ,&%‘ —1.2633* 0.1600  [—1.5760, —0.9518]
effect ,632 —1.4220* 04894  [—2.4875, —0.5576]
,&3‘ —0.7037* 0.0917  [—0.8965, —0.5373]
7 —0.8923* 0.0822 [—1.0588, —0.7376]
Word count effect ,&%‘ —0.1086* 0.0477  [—0.2033, —0.0140]
,632 0.1578 01532 [—0.1421,04717]
’631 0.0256 0.0399  [—0.0517,0.1062]
B2 —0.0113 0.0334  [—0.0781,0.0504]

NOTE: The superscript * denotes that the corresponding 95% credible interval does
not contain zero.

For comparison, we apply the MMSB (Airoldi et al. 2008)
to the binary social network W by running the C# program
provided by Burnap et al. (2015). The estimated employee-
specific community proportions fail to reflect the leadership
among users (Figure 3(b)). For example, the four CEOs had very
distinct community proportions (Table 2); therefore, compared
with the relational data, the time-to-event data contain much
more information about the leadership and power spread of



a company. The true position information of these employees
shows that the estimated employee-specific role proportions
;i € N learned from the response times are much more
indicative of the leadership among the employees than those
estimated from E-mail counts (Figure 3(a)).

We also apply the expSBM (Rastelli and Fop 2020) by
regarding E-mail responses as the interactions in the setting
of expSBM. expSBM identifies K = 6 clusters (Table S52).
However, the distribution of employees in different groups is
very uneven: 127 of 148 employees are clustered into group
2 whereas group 3 contains only one person, the CEO John
Lavorato. Moreover, the patterns learned by expSBM fail to char-
acterize the response rates (Tables S53-554 and Supplementary
Section S16).

6.2. Analysis with Confidential Information

Although we usually have no access to E-mail contents or the
genders of senders and receivers because of privacy and potential
legal issues, we have the unique opportunity to identify each
employee and retrieve the E-mail contents for the Enron E-
mail corpus. Therefore, we first conduct a sentiment analysis
for the E-mail contents. The Loughran and McDonald lexicon
(Loughran and McDonald 2011) categorizes words into classes
of constraining, litigious, negative, positive, superfluous, and
uncertainty (Table S49). For each E-mail, we count the number
of words belonging to each category, log-transform them, and
add them as six extra covariates to the model. To incorporate
gender into the model, we take the male-male actor pair—both
the sender and the recipient being male—as the baseline—and
create three dummy variables: male-female, female-male, and
female—female.

We then refit the SMMB model with 13 covariates. We run
500,000 iterations of the MCMC algorithm, regard the first
250,000 iterations as burnins, and set the variance of the normal
prior distribution of 8 as 1. The role proportions (Figure S8) and
the baseline survival functions of all role pairs (Figure §9) have
similar patterns before and after we incorporate sentiment and
gender covariates.

For the four covariates analyzed in Section 6.1, the direction
and significance of their effects stay the same in the new analysis
except that the 95% credible interval of the weekend effect for
the role pair (1, 2), ,82!2, no longer covers zero (Table §50). The
positivity of B1? indicates that at weekends junior employees
replied to the E-mails sent by the senior employees even faster.
All of the sentiment covariates™ credible intervals cover zero,
so they have limited effects on response behavior. Meanwhile,
the effects of gender are heterogeneous across different role
pairs. As B11 and B}1 are positive, when two junior employees
communicated with each other, they tended to respond faster to
E-mails sent by colleagues of the other gender than to those sent
by colleagues of the same gender. Moreover, when the sender
played a junior role and the receiver played a senior role, male
senders were responded faster than female senders as f{7 is sig-
nificantly greater than 0 but 8% and 87 are significantly smaller
than 0. In contrast, when senior employees communicated with
each other, female senders were responded faster than male
senders. Therefore, the analysis with the sentiment and gender
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covariates again confirms that by allowing different role pairs to
have different survival distributions the SMMB model provides
novel insights into the company organization.

6.3. Analysis Considering Sending Behavior

To explore whether recent E-mails speed up responses and
increase response rates, we introduce a new covariate indicating
whether actor i had received an E-mail from actor j within the
previous week into the SMMB model in Section 6.1. Table S51
shows that the effects of recent communications are significant
and positive for all of the role pairs. However, the patterns of
role proportions and baseline survival functions become quite
different from those in Section 6.1 (Figures $10-S11). The differ-
ence is because the covariate of recent communications encodes
information of the frequency of communications, which implies
the connectivity of the company but not the leadership rela-
tionship. Therefore, to reveal the leadership patterns within the
company, we recommend the SMMB model in Section 6.1. Nev-
ertheless, if one is interested in building a prediction model for
response times and response rates, we suggest adding covariates
related to sending behavior to the SMMB (see Supplementary
Section S15 for details).

7. Discussion

In this article, we propose the SMMB to analyze time-to-event
data between actor pairs in a social network. In the SMMB, we
assume that actor pairs belonging to the same role pairs share
the same SCRM, whereas actor pairs belonging to different role
pairs have distinct cure rate models. Thus, while keeping the
heterogeneity in the response patterns between different role
pairs, the SMMB enables us to borrow information across actor
pairs for a given role pair. We prove the model identifiability
and posterior consistency of the SMMB. We develop an efficient
MCMC algorithm for statistical inference.

In our analysis of the Enron E-mail corpus, we did not
consider any time-dependent covariates, as they are difficult to
construct given the data we have. Nevertheless, for any external
time-dependent covariates, we can directly add them into the
SMMB (Kalbfleisch and Prentice 2011). In contrast, internal
time-dependent covariates may influence the rate of failures, so
additional modeling will be needed, which we will investigate in
the future.

Thus, far, for a pair of actors, conditional on their roles
(Qyj> Rip) = (I, k), we assume that the sequence of response times
is generated independently. When multiple E-mails are about
the same topic, there might be dependence between these E-
mails. To model dependence, we can further add multiplicative
random effects into hazard functions as classic frailty models
(Duchateau and Janssen 2008) do (see Supplementary Section
$17 for details). As we only have 25,629 E-mails for the Enron
E-mail corpus, of which 1886 are observed and the rest are
censored, we do not fit these frailty models. Nevertheless, these
models might be of interest to large social media and electronic
document management systems companies.

With the rapid development of social media and electronic
commerce, many social networks now encompass time-to-event
data. Although we focus on an E-mail network, many other
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social networks have similar time-to-event data. For example,
the times taken for users to repost messages from other users
are available for Twitter. Moreover, in Web-based electronic
document management systems such as the services provided
by Dropbox and ParaDM, the time that a team member spends
on an assigned task can be recorded, and how soon a user
responds to the action of another user is also of great interest
in this context. We envision that the proposed SMMB can help
to analyze these networks and provide insights into information
flow, company organization, and working efficiency.

Supplementary Materials

The supplementary materials provide technical details, figures and tables
referred in the main text, including the detailed proof of model identifiabil-
ity and posterior consistency, the derivation of the posterior inference, and
more detailed results of the simulation studies, sensitivity analysis, and real
applications. We also provide the source code for generating the figures and
tables.
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