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SUMMARY

Cancer is molecularly heterogeneous, with seemingly similar patients having different molecular land-
scapes and accordingly different clinical behaviors. In recent studies, gene expression networks have been
shown as more effective/informative for cancer heterogeneity analysis than some simpler measures. Gene
interconnections can be classified as “direct” and “indirect,” where the latter can be caused by shared
genomic regulators (such as transcription factors, microRNAs, and other regulatory molecules) and other
mechanisms. It has been suggested that incorporating the regulators of gene expressions in network analysis
and focusing on the direct interconnections can lead to a deeper understanding of the more essential gene
interconnections. Such analysis can be seriously challenged by the large number of parameters (jointly
caused by network analysis, incorporation of regulators, and heterogeneity) and often weak signals. To
effectively tackle this problem, we propose incorporating prior information contained in the published
literature. A key challenge is that such prior information can be partial or even wrong. We develop a two-
step procedure that can flexibly accommodate different levels of prior information quality. Simulation
demonstrates the effectiveness of the proposed approach and its superiority over relevant competitors. In
the analysis of a breast cancer dataset, findings different from the alternatives are made, and the identified
sample subgroups have important clinical differences.

KEYWORDS: gene expression network; heterogeneity analysis; prior information; regulation.

1. INTRODUCTION

Heterogeneity analysis has been extensively conducted in the research and clinical treatment of
cancer (and many other complex diseases). In such analysis, the goal is to separate seemingly similar
patients into subgroups that may have different behaviors. Analysis has been conducted based
on a wide range of factors such as demographic and clinical characteristics, pathological images,
immunological features, and others. With the maturity of high-throughput profiling techniques,
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Figure 1. Schematic presentation of gene expression networks under heterogeneity. Left: gene expression
networks with direct interconnections only; Middle: regulations of gene expressions by regulators; Right:
gene expression networks with both direct and indirect interconnections.

molecular measurements have been effectively integrated into heterogeneity analysis (Navin et al.
2010; Meeks et al. 2020). In particular, a series of studies have shown that gene expression-based
heterogeneity analysis can be highly successful (Budinska et al. 2013; Church et al. 2019). Some
early studies are based on simple measures, such as the means and variances of gene expressions. In
recent studies, it has been shown that gene expression network analysis, which takes a systemic per-
spective, can generate more insights into patient heterogeneity patterns (Tang et al. 2018; Pio et al.
2022). Here, it is noted that measures such as mean and variance can be easily incorporated into
network-based analysis.

As noted in the literature (Kang et al. 2015), the interconnection between two gene expressions
can be roughly classified as indirect and direct. An indirect interconnection can occur when for
example two gene expressions are mediated by shared genomic regulators, such as transcription
factors, microRNAs, and other regulatory molecules. In contrast, a direct interconnection does
not involve such shared regulators and may describe a more essential interconnection. A schematic
presentation is provided in Fig. 1. The gene expression networks with only direct interconnections
(left panel) are usually sparser. The middle panel describes the regulations of gene expressions
by regulators, and such regulation relationships are usually sparse. When both direct and indirect
interconnections are included, as shown in the right panel, the networks are denser, which may
mask the more essential gene interconnections. For the small example in Fig. 1, the networks in
the right panel for the two subgroups have 78.3% overlapping edges, while the networks in the
left panel have 46.2% overlapping edges—making them easier to be distinguished. Incorporat-
ing regulators in gene expression analysis has been made possible by the increasing popularity
of multiomics studies, which collect gene expression and regulator data on the same subjects
(Kagohara et al. 2018; Lee et al. 2021). It is especially worth noting that there have been a handful
of gene expression network analyses incorporating regulators, including heterogeneity analysis
(Lietal. 2023).

Gene expression data analysis is “traditionally” challenged by high data dimensionality and weak
signals. Network analysis, heterogeneity analysis, and incorporating regulators each and all make
these challenges more serious. To improve estimation, here we adopt the strategy of borrowing
strengths from prior information, in particular, that contained in published literature. The proposed
analysis involves the interconnections among gene expressions and the regulations of gene expres-
sions by regulators. Our preliminary exploration suggests that there are relatively fewer published

Gz0z Ae|n g uo sasn Aysieniun sjeA Aq 1L29£z/2/8209eX3/1/92/21011He/SO1SIeISOIq/W 0o dno dlWwapede//:sdiy Wwoly pspeojumoq



Biostatistics, 2025,26(1) - 3

findings on the regulations of gene expressions. As such, in this study, we focus on the prior
information on gene expression interconnections. It is noted that, with relatively straightforward
extensions, the proposed analysis can incorporate prior information on the regulations. To fixideas,
we mine prior information by searching PubMed. There are more than 20,000 published studies
that simultaneously include “EGFR;” “ERBB2,” and “breast cancer” In contrast, there are only 18
published studies that simultaneously include “WLPH,” “ARAF,” and “breast cancer.” Based on this
observation, it is sensible to conjecture that for breast cancer, EGFR and ERBB2 have a higher
likelihood of being interconnected than WLPH and ARAF. Here, it is noted that this search is
coarse. There are more refined ways to mine published literature (Lee et al. 2020), however, they
may involve complicated algorithms/coding. Additionally, it is noted that PubMed (or any other
literature database) does not include all published findings, published findings can be partial or even
wrong, and the cooccurrence of two genes in a published literature does not necessarily suggest that
they are interconnected. As such, the prior information can be useful but cannot be “fully trusted.”

With the consideration of the quality of the prior information, our proposal is to data-
dependently “balance” between the prior information and the information contained in the
observed data. The proposed strategy shares some similar spirit with that in Jiang et al. (2016),
Lietal. (2022), and Wangetal. (2023), which have considerably simpler settings. Broadly
speaking, incorporating prior information is not a new strategy. The most natural may be
Bayesian analysis (Zhao et al. 2019), which adopts significantly different techniques. Highly curated
biological information has also been used (Fan et al. 2016)—it is noted that such information can
often be fully trusted and that a higher quality often means a smaller amount of information.

In this study, the goal is to develop anew technique that can further advance cancer heterogeneity
analysis. Built on the existing literature, this study advances in multiple important aspects. First,
compared to heterogeneity analysis that is based on simpler measures, it is based on gene expression
networks as well as regulations of gene expressions by regulators. Second, different from most of the
existing multiomics analyses, heterogeneity analysis is conducted, which is critical for cancer and
many other diseases. Third, the type of prior information used is significantly different from that in
Burrell et al. (2013), Fan et al. (2016), and many others. The data/model settings are much more
complicated than in Jiang et al. (2016), Li et al. (2022), and Wang et al. (2023). The adopted anal-
ysis strategy significantly differs from Bayesian analysis. The proposed method incorporates prior
information to conduct network-based unsupervised clustering, which demands more challenging
computation. It does not specify prior information regarding the number of subgroups, which is
very challenging to obtain in practice. Instead, it adopts a fusion technique to determine the number
of subgroups along with model parameter estimation in a fully data-driven manner. Last but not
least, as can be partly seen from our data analysis, this study can also deliver a practically useful tool
that can lead to new insights into the heterogeneity of cancer (and some other diseases).

2. METHODS

The proposed analysis is unsupervised and takes measurements on gene expressions and their
regulators as input. As argued in the published multiomics studies—in particular including those
involving network analysis and heterogeneity analysis (Tarazona et al. 2021; Henao etal. 2023),
the collection of regulators does not need to be “complete”—some types of regulators or some
components of a specific type of regulators may not be available. The overall overflow is shown
in Fig. 2. The first step is to obtain the prior information. After that, the analysis contains two steps.
In the first step of prior information-guided analysis, the prior information is “fully trusted.” In the
second step of prior information-incorporated analysis, we take into account the varying quality of
the prior information and balance between the prior information and observed data.

2.1. Extracting prior information

There are many sources of prior information. In this study, we focus on that contained in published
studies, which can be broad and of relatively high quality. In particular, we use PubMed, whichis one
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Figure 2. Flowchart of the proposed analysis.

of the most comprehensive publication databases. For a specific cancer (for example, breast cancer),
we search PubMed for the cooccurrence of two genes (for example, EGFR and ERBB2). This can
be realized using software such as PubMatrix and easyPubMed. Then a threshold is imposed to
the counts of cooccurrence to retain the strongest evidence. Two genes are considered as having
prior information of being interconnected if they have a nonzero count of cooccurrence (after the
thresholding). It is noted that this coarse text mining can be potentially improved (for example,
by normalizing using the occurrence counts of individual genes) and that the proposed analysis
does not demand prior information to be fully accurate. Additional discussions are provided in the
last section.

Denote Sg as the collection of gene expression relationships. In particular, if there exists prior
information for the jth gene and mth gene, then (j, m) € Sg (which corresponds to a network edge
in the first step of analysis). We also set (j, j) € Sg. Here, it is noted that in the literature there have
been relatively limited studies on heterogeneity analysis and so the same prior information Sg is
shared by all sample subgroups.

2.2. Prior information-guided heterogeneity analysis

Denote n as the number of subjects. For the ith subject, denote y; = (yi1,.. ., yip)T as the gene
expression measurements and x; = (x;1, . . ., xiq)T as their regulators, which can be copy number
variations, DNA methylation, microRNAs, and others. Here, if there are multiple types of regula-
tors, we stack them together. Multiple published studies have shown that this simple strategy has
satisfactory performance (Seal et al. 2020). Denote X as the design matrix composed of x;’s and an
intercept. For heterogeneity analysis, denote Ko as the number of sample subgroups. Different from
some studies, it is not assumed that Ky is known. To start with, we consider a mixture model with
K(> Kp) subgroups. In practice, although K is unknown, specifying an “upper bound” is usually
not difficult. Our numerical exploration suggests that the value of K is not critical as long as it is
large enough. Then, the probability density function of y;, i =1, ..., nis:

K K

Y mhily) = wifily; %, Ty, ©)), 2.1)

=1 =1

where @) represents the gene expression network in the Ith subgroup, I'; represents the regulation
relationships in the Ith subgroup, and 77 is the mixing proportion satisfying 0 < 7; <1 and
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Z{il m=1,1=1,...,K. This belongs to the mixture modeling framework, which has been
extensively adopted for heterogeneity analysis (Hao et al. 2018; Ren et al. 2022). In the proposed
analysis, each component of the mixture model and hence the heterogeneity structure is defined by
a conditional Gaussian graphical model (CGGM) (Yin and Li 2011) incorporating the regulation
relationships in the gene expression networks.

Consider linear regulations and Gaussian distributions for gene expressions. That is, in the
Ith subgroup, y, =T'1x; +€; and €; ~ N(0, @fl). Then, fi(y;xi, ', 01 = (2m)~/P|@,1/?
exp{—(y; — I'zx,-)TG)z(yi —Tx;)/2}. ©; is the precision matrix (inverse of the covariance
matrix), and its sparsity structure directly describes the gene expression network structure.
I'; is the coefficient matrix and describes the regulation relationships. It is noted that the
Gaussian assumption and GGM model have been extensively adopted for gene expressions
(Wang and Huang 2014), and it is possible to relax such assumptions. Additionally, although
nonlinear regulations have been considered, considering the high dimensionality and satisfactory
performance, we follow the literature (Bersanelli et al. 2016) and consider linear regulations.

In the first step, we propose estimation:

K

Ap 1<
(Szp: n,p) = arg Isrzl?g( {; ; 108 (Z 7Tlfl(yi5 Xiy Szl)) - Pprior(sz)} ) (2-2)

I=1

where @ =vec(®,T)T = O1,..., 01 -, Opp b VILD - - ) ViigrDh - - -» V(g1 ) ) R =
(R1, ..., 2x)7T, and the penalty function is defined as:

K K
Porior(@®) =Y Y p(Omilier) + Y Y p(1¥jmil, 2, (23)

=1 (jm)¢Sr =1 (jm)

where p(:, @) is a base penalty function with regularization parameter o > 0. Convenient choices
include MCP and SCAD. Note that, as (j,j) € Sg for j=1,...,p, the diagonal elements in the
precision matrices are not penalized. In practical data analysis, p and g are usually of the same
order, which can be partly seen in our data analysis. Additionally, it is expected that a certain
proportion of the genes have prior information. As such, the two terms in (2.3) are likely to have
similar scales.

Here, we adopt a finite mixture modeling strategy with a prefixed number of subgroups. The
objective function has two terms. The first term is the log-likelihood and measures goodness-of-fit.
The second term is the sparsity penalty, which conducts regularized estimation and identification
of important network connections and regulations. Here, we “fully trust” the prior information—
the network edges in the prior information set are not subject to selection. Then the sparsity
penalty searches for additional signals. With this step of estimation, we obtain K sample subgroups,
the gene expression network and regulation relationships for each subgroup, and the mixture
probabilities.

2.3. Prior information-incorporated heterogeneity analysis
With estimation (2.2) and the Bayesian rule, we can also obtain the subgroup membership for each
subject. Consider the n x K membership matrix with each row corresponding to the subgroup
identified for each subject. This matrix is denoted as Z = (zy, .. Sz, and zi = (zi, - - ., zig)-
Fori=1,...,nand!l=1,...,K,

A Ap
1, 1= argmaxy i (R fily;; 4, )
zj| = ) (2.4)
0, otherwise.

G20z AeN 81 uo Jasn AyisieAlun aleA Aq L.Z9€2.2/8209EX/1L/9Z/aI01HE/SONSIIEISOIG/W0D"dNO0jWapeo.//:Sd)y Wolj papeojumod



6 - Lietal

‘We propose objective function:

n K
1
L(R,m|Y,X)= " E (1 —mn)log < E Tifily;; xi, Slz))
i=1 1

1=

1 n K
+- > nlog <Z zitfi(y;; %, @) | — P(R), (2.5)
i=1 1

1=

where 0 < 1 < 1is a data-dependent weighting parameter and the penalty:

K K
PO =" p(l0mil D)+ Y > p(Vjmils A2)

I=1 j#m I=1 (jm)
+ Y p (01— O3+ ITi = Ty} 23).
1<V
Consider the estimate:
(@7) = arg ns%’a;rx L(,m|Y,X). (2.6)

It is noted that, with the fusion penalization, Q=(Ry,..., 27 may contain identical values.
Denote the number of unique values of € as Ko, which provides an estimate of the number of
subgroups. From this estimation, we can also obtain the estimated gene expression network and
regulation relationships for each subgroup, mixture probabilities, as well as subgroup membership
of each subject.

In (2.5), the first two terms measure goodness-of-fit and balance between the observed data and
the prior information. The balancing is achieved with . Intuitively, when the prior information has
alow quality, » — 0, and the analysis will be heavily based on the observed data. On the other hand,
when the prior information has a high quality,  — 1, and it puts more emphasis on borrowing
strength from the prior information.

The proposed penalty has two major components. The first two terms achieve sparsity. Here,
the edges in the prior information set are also subject to selection, which allows the proposed
approach to screen out wrong prior information. The last term adopts a penalized fusion strategy
for heterogeneity analysis. The intuition is that, if two of the K subgroups are “close enough,” their
parameters will be shrunk to be the same, and the two subgroups can be combined together. It
is noted that both the gene expression networks and the regulation relationships are included in
the fusion penalty and used for defining the subgroups, which significantly differs from the gene
network-only heterogeneity analysis. @ and I' are treated as a group and simultaneously used to
promote similarity, which can be more effective than being analyzed separately.

2.4. Computation

The two optimization problems (2.2) and (2.6) are solved sequentially. The objective function
in (2.6) requires the solution of (2.2). For each problem, the expectation-maximization (EM)
technique is adopted, with computing the conditional expectation of the complete data log-
likelihood function in the expectation step and updating (®,1) iteratively in the maximization
step. The alternating direction method of multipliers (ADMM) technique (Boyd etal. 2011) is
adopted, and the algorithm is summarized in Algorithm 1. The details for the M-steps are provided
in Supplementary Materials.
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Algorithm 1 Computational algorithm for the proposed method

Require: the observed data (y, x;)’s, K, and prior information Sg.

Ensure: Ko, mixture probabilities # = (7, . . . ,JATI}O), and ((:31, ces (:)1}0, Iy,..., fﬁo).

1:

@

10:

11:

12:
13:

~ (0) ~ (0) ~(0) ~
Initialization: t =0, = (® ,I ) and#©.
The first step for solving (2.2):
A (t-1)

. while [ — 9“7V, > 10, do

t=t+1;
E-step: calculate conditional expectation:

-0 LR 7Y, X)] = ZZL llog 71 + log fi(y;; %, )] — Pprior(R), (27
i=1 I=1
where Lflt) = A,(t_l)fz <y,-;xl, @, 1)) / Z, 1 f[l(t Y (yl, X SZZ ) depends on the estimates from the

(t — 1)th step.
M-step: Update 7'[ Zl lL,(l /n, and update F (Fit), .. ;?) é(t) = (é(lt), ..., 6 ;))
iteratively. For I';, I = 1 ., K, maximizing (2.7) is equivalent to solvmg

n K K

o () ) 1 A (t-1)

{27} =argmin | =331 {0, =T "6, 0, = T | + 303 p1 sl )
i=1 I=1 I=1 (j,m)

It can be achieved using the local quadratic approximation technique. For @, I =1,...,K, it is equivalent
to solving:

K

K
|(C)(t)] - argn“gn Zn;” [—10gdet(®1) + tr(Sif;@l)] + Z Z p(Ejmil, 1) |,

=1 I=1 j#m,(jm)¢SR

A (t)
where n;t) =y, Lflt ) and S;fl) is based on L,(lt )and I . It can be achieved using the ADMM technique.

: end while ©
N A (t
. Obtain 7’ =#® and @' = @ . Calculate z; according to (24) fori=1,...,nand!=1,...,K. Revert

(@ (« ~
t=0, Q 0) (@ o F(O)) and 7@ as the initial value.

The second step for solving (2.6):
(®) (t=1)

: while ||SZ -Q I, > 107%, do

t=t+1;
E-step: calculate conditional expectation:

1 n
Byt L@V, X)) == Z(l — L [log m + log fi(y; %, T1, @]
i=1 I=1
n K

1
- i1 5%, T —P( 2.
+ -2 D nailogfily; x, T1, ) — P(R), (28)

i=1 |=1

O _ A~ (t-1) oD A@ 1) (t-1)
where L;" =11, ﬁ(yiixi: 91 /Zz T h yiixu s21 .

M-step: U daten " oL® n, andu dater (l"(t), . f'(t))usin the local quadratic approx-
p: UP i=1 Ll P 1 K g q PP

imation technique and @ = (@)(lt) yees K ) using the ADMM algorithm iteratively.

end while © 0
) At N
Denote the number of distinct values of (@ I' ) as Ko. SZk_ (@)k ,Ie), k=1,...,Kp, and

=Y 1, 1(52, =@’ k=1,...,K,.
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For selecting the optimal tunings 1 and o5 in the first step, we adopt the following BIC criterion
and a grid search:

n K K
BIC= -2 Z log |:Z ﬁ'lpfl(yi; x;, Qf):| + Zlog(n)dfl, (2.9)
=1

i=1 =1

where df; is the total number of nonzero parameters in flf, I=1,...,K.Inthe second step, we need
to determine A1, A2, A3, and 1. We propose first fixing 1 and, for each candidate value of 1), selecting
the optimal (A1, A2, A3) using the BIC criterion and a grid search. Then the optimal 1 can be
selected also using the BIC criterion. It is noted that, with a more complex analysis goal, the tunings
needed are more than some of the existing studies. However, published studies and our own experi-
ence suggest that such tuning parameter selection is feasible and generates reliable results. The code
for the proposed algorithm is publicly available at https://github.com/lirong95/prior-cggm.

3. SIMULATION

Simulation is conducted to assess the performance of the proposed method and compare it against
relevant alternatives. We set the true number of subgroups Ky = 3, where different subgroups have
distinct networks and regulation relationships. For the dimensions, we consider p = g = 100 and
p = q = 200. For the sample sizes, we consider a balanced case with all the subgroups having sample
sizes of 500 and an imbalanced case with the three subgroups having sample sizes of 250, 300, and
350. For the prior information, we consider a correctly specified case (denoted as T, where Sg is
the intersection of the nonzero elements in the Ko subgroups) and a partially mis-specified case
(denoted as F, where the entries of Sg are selected at random following true/false positive rates
(TPR/FPR) being 0.6/0.1).

3.1. Settings

The following two network structures are considered. ST1: The first subgroup has an upper-
tridiagonal precision matrix with the diagonal elements equal to 1 and the nonzero off-diagonal
elements equal to 0.4. The second subgroup has a lower-tridiagonal precision matrix with the diag-
onal elements equal to 1 and the nonzero off-diagonal elements equal to 0.4. The third subgroup has
a diagonal precision matrix with the nonzero elements equal to 1. ST2: The precision matrices are
generated by the nearest-neighbor networks. Specifically, each network consists of 10 equally-sized
disjoint subnetworks (modules), among which eight are shared by the three sample subgroups.
Additionally, the first subgroup shares one module with the second subgroup and another one with
the third subgroup. The second subgroup and the third subgroup also have a unique module of their
own. The structure of each module is generated by a nearest-neighbor network. We first generate
p/10 points randomly on a unit square, calculate all p/10 x (p/10 — 1)/2 pairwise distances, and
select m = 2 nearest neighbors of each point besides itself. The nonzero off-diagonal elements of
the precision matrices are located at which the corresponding two points are among the m nearest
neighbors of each other. The nonzero values are generated from Unif(—0.4, —0.1) U Unif(0.1, 0.4).
The diagonal elements are all set as 1. ST1 has a chain-like structure, and ST2 has a module
structure. They are graphically presented in Supplementary Fig. S1 (Supplementary Materials).

We simulate x; as having a normal distribution N (0, I;;) and a categorical distribution, where x;;
is generated randomly from {0, 1, 2} with equal probabilities. In terms of regulations, the positions
of the nonzero entries are randomly selected, and each entry has a probability proportional to 1/g of
being nonzero. The nonzero values are generated from the uniform distribution Unif(—1, —0.7) U
Unif(0.7, 1).

The simulation settings are comprehensive. In particular, two types of network structures are
considered, both of which are popular in the literature. Both continuous and categorical regu-
lators are considered to mimic the distributions of genomic regulators encountered in practice.
Two levels of prior information quality are considered, which may test the “robustness” of the
proposed approach. It is noted that although the data dimensions may not seem that high, with
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the networks, regulations, and heterogeneity, the number of unknown parameters is significantly
larger than the sample sizes. To better gauge performance, we consider the following relevant
alternatives. (i) A two-step procedure. In the first step, a clustering method is used to generate
subgroups. Here, we consider both the K-means clustering and a nonparametric clustering method
(Chauveau and Hoang 2016). Both clustering methods are conducted on (X, Y) and only Y. The
number of subgroups is set as K = 2, 3, 6. In the second step, we apply the CGGM approach with
Lasso penalization (cglasso) (Yin and Li 2011). We denote them as K-cglasso-X, K-cglasso-(XY),
np-cglasso-X and np-cglasso-(XY), respectively. (ii) HeteroGGM. The heterogeneous Gaussian
graphical model via penalized fusion (HeteroGGM) approach (Ren et al. 2022) is applied. It can
simultaneously achieve subgroup membership identification and precision matrix estimation. The
number of subgroups is automatically determined by fusion regularization. It does not accom-
modate the regulations of x on y or the prior information. (iii) RI-HeteroGGM. We conduct the
regulation-incorporated network-based heterogeneity analysis (Li et al. 2023). This method ex-
tends HeteroGGM to incorporate heterogeneous regulation relationships and can simultaneously
obtain subgroup memberships and determine the number of subgroups, precision matrices, and
coefficient matrices. It does not accommodate prior information. This alternative may be the closest
to the proposed approach. (d) PI-CGGM. This heterogeneity analysis approach accommodates
prior information. It conducts the mixture modeling + CGGM analysis with a fixed number of
subgroups. It is the first step of the proposed approach and solves objective function (2.2). To
facilitate comparison, the number of subgroups is set as K = 6.

3.2. Results

When implementing the proposed approach, we set K = 6. Similar results are obtained under other
K values. We adopt the following measures to evaluate performance. For subgrouping accuracy, we
consider Ko and adjusted Rand index (RI), which measures the similarity between the estimated
and true subgrouping structures. For estimation accuracy, we consider root mean squared error
(RMSE). Specifically, for the precision matrices,

30 16k - 65l Ko = Ko,
RMSE(©) = | & Y1 300, 161 - O 1
(k= argmini (161 — OF I + T~ T13}) Ko £ Ko.
For variable selection accuracy, we consider true/false positive rates (TPR/FPR):

L Ko Ljem 1O #0,0m 1 70)

L Ko=K
Ko k=1 > 10 #0) 0= 20

TPR(®) ={ 1 Ko Ko Ljem[G#00mi#0)
7 =1 2k DO (e R

(k= argmine (161 — O 13 + 1F1 - T3 13)) Ko # Ko,

1 Ko Ljem 1O}, =00m70)

L Ko =K
Ko &—k=1"" > _ 16, =0 0 0

FPR(@) = | 1 yKo v Ko Zjenl 6, =0fmi#0)

kO =1 k=1 Zj<m I(G;n,k:())

(k= argming (161 — OF I3 + I - TL13)) Ko # Ko,

The above measures are defined accordingly for I'. Performance is evaluated for @ and I separately.

The simulation results for ST1, the normal distribution, and p = q = 100 are summarized in
Table 1, and the other results are presented in Supplementary Tables S1-S7 (Supplementary
Materials). The proposed method demonstrates competitive performance in subgrouping,
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Table 1. Simulation results under ST1 with x ~ N(0, I,) and p = q = 100. In each cell, mean (SD).
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selection, and estimation, across the whole spectrum of simulation scenarios. Specifically, when
the prior information is correct, the proposed method can accurately identify the number of
subgroups and achieve desirable estimation and selection accuracy. When the prior information is
partially misspecified, the performance remains competitive compared to the approaches without
incorporating prior information (i.e. RI-HeteroGGM). This suggests that the proposed approach
has the “robustness” property—it can data-dependently adjust the impact of prior information. The
alternative methods have inferior performance. HeteroGGM, which does not take the regulations
into account, tends to over-estimate the number of subgroups and over-select the nonzero elements
in the precision matrices. The estimation of the two-step procedure heavily depends on the
subgrouping results, and it performs acceptably only when the number of subgroups is correctly
specified—this is highly challenging in practice.

We also conduct a simulation experiment to assess the effects of prior information on the final
estimation. We consider the setting with continuous regulators, ST'1 precision matrices, dimen-
sions p = g = 100, and sample sizes n = (300, 300, 300). We consider varying prior information
quality, as measured by the TPR/FPR values, with a larger TPR and a smaller FPR indicating
a higher quality of prior information. The results are summarized in Supplementary Table S8
(Supplementary Materials). It is observed that the performance of subgrouping, estimation, and
selection deteriorates as the degree of misspecification in prior information increases, which
is as expected. It is also observed that, even when the prior information is completely wrong
(with TPR=0 and FRP=1), the proposed method still performs comparably to those without
accommodating prior information. This is due to the weighting strategy. Additional simulations
are conducted to more deeply comprehend the impact of weight 1. The results in Supplementary
Table S9 (Supplementary Materials) suggest that higher-quality prior information corresponds to
a larger 1, which is highly sensible.

4. BREAST CANCER DATA ANALYSIS

Breast cancer is among the most extensively studied using high-throughput profiling techniques,
and there have been a handful of multiomics breast cancer studies. Here, we analyze the
METABRIC data and refer to the original publications (Curtis et al. 2012; Pereira et al. 2016;
Rueda et al. 2019) for details on the study and experimental designs. The dataset contains gene
expression and copy number variation measurements on 1,898 subjects. Copy number variation has
been long recognized as a critical regulator of gene expression. Although in principle the proposed
analysis can be conducted using a large number of genes, to generate more reliable results, we focus
on the “most interesting” genes. In particular, we consider genes in the PAMSO set (which has been
manually curated and suggested as highly relevant for breast cancer subtyping) and in the KEGG
“breast cancer” pathway—this leads to 154 genes that are highly likely to be relevant for breast
cancer biology. We then identify the corresponding copy number variations. For prior information
mining, we use the R package easyPubMed. The search involves breast cancer and any two genes
out of the 154. The cooccurrence counts are presented in Fig. 3. Prior information is available for
about 30% of the gene pairs. To focus on more reliable prior information, we impose a threshold of
10, which leads to a total of 195 gene pairs. More detailed information is available from the authors.
Here, it is noted that the cutoff of 10 can be somewhat subjective. However, this may not pose a
serious concern with the flexibility of the proposed method.

When implementing the proposed method, we set K = 6. A total of four subgroups are iden-
tified, with sizes 782, 448, 439 and 229, respectively. The detailed membership information is
available from the authors. The estimated gene expression networks and regulation relation-
ships are shown in Supplementary Fig. S2 (Supplementary Materials). In Supplementary Table S11
(Supplementary Materials), we present the numbers of network edges and the numbers of overlap-
ping edges. We further present the DeltaCon distances in parentheses to measure the similarity of
the corresponding two networks (Tantardini et al. 2019). It is observed that the four subgroups have
significantly different network structures. Subgroups 1 and 3 are the most similar in terms of gene
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Figure 3. Prior information. Left: heatmap; Right: cumulative distribution function (red dotted line
corresponds to count=10).
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Figure 4. Comparison of survival for the four subgroups. Left: overall survival (OS); Right: relapse free
survival (RES).

expression networks. More comparisons between the networks are presented in Supplementary
Fig. S3. It is observed that the network of subgroup 2 has more high-degree nodes, which indicates
higher direct connectivity. The network of subgroup 3 has more high-betweeness nodes, which
indicates higher influence of information passing. Across the four subgroups, on average, about half
ofthe edges in Sy are identified. Additionally, the likelihood for an edge to be identified is correlated
with the cooccurrence count.

The proposed analysis is unsupervised, and there is a lack of an objective way to evaluate
subgrouping accuracy. To get additional insights, we compare some key clinical features across
the four subgroups. Supplementary Table S10 (Supplementary Materials) presents the results of
the Chi-squared tests with FDR adjustment for the Nottingham prognostics index (NPI), number
of lymph nodes examined positive (LNP), and age at diagnosis (Age). In Fig. 4, we further
compare overall survival (OS) and relapse free survival (RFS). Significant differences are observed
across the four subgroups, which can provide “indirect support” to the sensibility of analysis.
Breast cancer has been subtyped based on molecular biomarkers. A commonly adopted is the
Claudin subtyping, under which breast cancer is classified as Basal-like, Her2, Luminal A, Lu-
minal B, and Normal-like. We compare the obtained subgrouping with the Claudian subtyping,
and the results are summarized in Supplementary Table S12 (Supplementary Materials). Consider
Basal-like and Luminal A, both of which are divided into two of the identified subgroups. To
get further insights, we compare the Basal-like subtype within subgroup 2 and subgroup 4, as
well as the Luminal A subtype within subgroup 1 and subgroup 2. The results are presented
in Supplementary Fig. S4 (Supplementary Materials). It is observed that the Luminal A subtype
within subgroup 3 has a significantly better prognosis than that within subgroup 1. Additionally,
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the Basal-like subtype within subgroup 2 has a significantly poorer prognosis than that within
subgroup 4. This suggests that the proposed analysis may lead to clinically meaningful findings that
can complement the existing subtyping. An interesting finding is that compared to the Basal-like
subtype within subgroup 2, the Basal-like subtype within subgroup 4 exhibits enriched expression
in growth factor signaling, particularly involving EGFR, MET, BRAF, and CTNNB]I, as illustrated
in Supplementary Fig. SS (Supplementary Materials). This observation is consistent with the
known characteristics of BL2 (a subtype of Basal-like breast cancer) documented in the literature
(Hubalek et al. 2017).

This dataset is also analyzed using the alternative approaches. We fix the number of subgroups as
K = 4 for better comparability. The Rand index results are presented in Supplementary Table S13
(Supplementary Materials), which suggests that different approaches lead to significantly different
subgrouping structures. For each approach, we compare survival across the identified subgroups
and present the results in Supplementary Table S14 (Supplementary Materials). It is observed that
the proposed approach can better separate the subjects into subgroups with more distinct survival,
which can provide “indirect support” to the validity of the proposed approach.

S. DISCUSSION

In this study, we have developed a novel heterogeneity analysis approach that is based on both gene
expression networks and gene expression-regulator relationships. Advancing from the existing lit-
erature, we have proposed a way to effectively and flexibly incorporate prior information contained
in vast publications. Simulation and the analysis of a breast cancer dataset have demonstrated the
practical utility of the proposed approach.

This study can be extended in multiple ways. The proposed analysis is not limited to “gene
expressions + regulators.” For example, it is directly applicable to “protein expressions + gene
expressions” with ligand-receptor pairs and protein-protein interaction (PPI) networks as the prior
information. When there are multiple types of regulators, there have been a few developments in
more subtly integrating them (as opposed to directly stacking them together). It is also possible
to refine text mining and extract higher-quality prior information. For example, the convolu-
tional neural network (CNN) technique developed in Wang et al. (2023) can be a viable choice.
Some domain-specific language representation models, such as BioBERT pre-trained on large-scale
biomedical corpora, can be further applied to enhance the extraction of prior information (Lee et al.
2020). Additionally, integrating some natural language processing techniques with web-based tools,
such as GeneDive (Previde etal. 2018), can also facilitate the exploration of gene interactions.
Theoretical exploration, such as the identifiability of the mixture model and consistency properties,
may also be of interest (Ho and Nguyen 2016; Balakrishnan et al. 2017). The proposed strategy for
incorporating prior information has been motivated by several recent successes. It is possible to
develop other information-incorporating strategies. It will also be of interest to develop more data
analysis.
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