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Abstract

Cluster analysis on time-series fO data is an increasingly pop-
ular method in intonation research. There are a number of
methodological decisions to take when applying cluster analy-
sis. Crucially, these decisions may affect the clustering results,
potentially also the conclusions of the research. This paper in-
vestigates the extent to which the choice for either K-means
or hierarchical clustering, two of the most popular clustering
methods, leads to grouping differences that are potentially rel-
evant for intonation research. This is tested using a dataset of
fO measures taken from imitated intonation patterns in Amer-
ican English. The analysis concerns a generic correlation test
between K-means and hierarchical clustering outcomes as well
as a number of specific measures assessing partitioning quality
and {0 contour differences. The results show that both cluster
methods generally show very similar outcomes, although con-
siderable differences for specific clusterings might occur.

Index Terms: fO contour, cluster analysis, intonation, k-means,
hierarchical

1. Introduction

Cluster analysis is an unsupervised statistical method to divide
a dataset into groups (clusters) of observations that are similar
along one or more quantitative measurement dimensions ([1];
[2]). It is a particularly suitable method when little is known
about the (number of) possible groups. The applications of clus-
ter analysis range from genetics to marketing and recently it be-
came a popular method in research on intonation (e.g. [3]; [4]).
Models of intonation generally assume phonological categories
of tones or tonal configurations that make up an intonational
feature (e.g., pitch accents and boundary tones; [5]). The sim-
plest intonational pattern consists of single intonational feature,
while complex configurations are composed of a sequence of
two or more intonational features [6]. Much research has been
devoted to the extent to which intonation patterns are indeed cat-
egorical in nature. The literature has shown that a strict categor-
ical approach to intonational meaning does not hold [7]: some
patterns have multiple meanings and different meanings might
be expressed by the same pattern (e.g., [8]; [9]; [10]; [11]; [12];
[13]; [14]). Contemporary empirical methods such as cluster
analysis offer a new perspective to the categorical nature of in-
tonation. Studies have applied this method in order to explore
the intonation of previously under-researched languages (e.g.
[3]; [15]; [16]) as well as to test existing models of intonation
in well-studied languages (e.g., [17]; [18]; [4]).

The usefulness of cluster analysis for intonation crucially
depends on a myriad of methodological choices that researchers
need to make. Roughly, these choices can be divided into ones

relating to the contour representation, that is the way an {0 con-
tour is numerically represented before clustering, and ones re-
lating to the cluster analysis itself, i.e. its specific statistical
properties (e.g., [19]). The current paper focuses on the latter, in
particular on the type of cluster analysis. To this end, K-means
and hierarchical clustering are compared for their performance
on the same dataset of American English fO contours, as used
in previous research [4].

K-means clustering (KM) is based on partitioning the data
according to centroids [2]. This method cannot be applied with-
out a prior choice for the number of clusters (K). Centroids
are then identified in an iterative way, by assigning observa-
tions to K clusters randomly. Each time all observations are
randomly assigned, centroids are calculated by taking the mean
value for all observations in a cluster. Then, each observation
is assigned to the centroid to which it lies closest, as calculated
by Euclidean distance or some other distance metric. The cen-
troid computation and centroid assignment are repeated until
the centroids are stable, i.e. when the two most recent centroid
assignments are identical.

Hierarchical clustering (HC) is based on partitioning the
data using a tree-structure (dendrogram) [2]. Bottom-up HC
starts with assigning each observation into a cluster. Then, an
iterative merging process follows in which the (clusters of) ob-
servations with the smallest distance are merged until all obser-
vations are in one cluster. Note that the initial and final state are
not informative as they are tantamount to single observations
or the entire dataset (=no clustering) respectively. The dendro-
gram visualises the merging process such that the height in the
tree structure shows how many clusters were formed (higher in
the tree = less clusters). As in KM, HC requires setting the way
distances between observations are calculated (distance metric).
In addition, HC requires setting the way distances between clus-
ters of observations are calculated (linkage criterion).

Both KM and HC are among the most popular clustering
techniques in intonation research, see [19] for an overview.
Given the fundamentally different way in which they work, their
performance might vary. Previous research has made explicit
comparisons of KM and HC using datasets from a variety of
scientific disciplines. Concerning the computational costs of
KM and HC, several studies concluded that the running time
as well as memory usage is larger for HC than for KM ([20];
[21]). It was also found that clustering performance generally
increases with larger datasets and that HC performs better than
KM for smaller datasets ([22]; [21]; [23]). It was furthermore
reported that KM shows overall less accuracy in clustering pre-
known groups in the data and is more sensitive to noise in the
data than HC [22]. Crucially, the latter conclusions were drawn
from a comparison of multiple clustering techniques on time-
series data. Another study comparing multiple clustering meth-



ods (among which KM and HC with Ward linkage criterion)
concluded that performance of the cluster analysis largely de-
pends on the dataset and recommend exploratory methods that
compare results from different algorithms [24].

So far, intonation research has not explicitly compared the
impact of the choice of clustering technique on the outcome of
the analysis. Recent studies did investigate the discriminatory
performance of different contour representations and distance
metrics [19], which were mainly tailored to HC. Another study
used multiple classification techniques, among which KM, to
test the categories underlying inventory of nuclear intonation
patterns in American English [4]. It was found that the model
that predicts eight distinct nuclear intonation patterns formed
using simple High and Low tone pitch accents is likely in need
of revision given the optimum of five distinct patterns appearing
from both production and perception analyses. Thus, it remains
to be seen whether the type of clustering method needs to be
chosen in a principled way when clustering fO contours. The
current study investigates this by a number of metrics assess-
ing the quality of the KM or HC clustering output based on the
same data. The types of tests carried out in the current study are
two-fold. On the one hand we perform tests to assess the simi-
larity of the KM and HC clustering output, by comparing their
outputs to each other. This is done using correlation metrics and
distributions of cluster mismatches, which do not directly take
into account any fO data to assess the clustering methods. On
the other hand, we test the respective clustering outputs relative
to the data, i.e. assessing the partitioning quality with regard to
the fO contour differences. The latter type of tests concern pro-
portional assignment of contours to clusters, root-mean-square-
distances between the contours in the clusters, and a comparison
of within and between cluster variance. Further details on the
methodological choices are provided in the next section.

2. Methodology

The dataset used in this study is identical to the one used in
[4]. The dataset, R-script and additional figures are available
as supplementary material: https://osf.io/u3nsz/. For a detailed
description of the data collection, see [4]. The relevant data for
the current study concerns time-series fO measures of 240 in-
tonation contours, each specified in terms of three intonational
features (pitch accent, phrase accent, boundary tone), produced
by 30 speakers of American English. Each contour (obser-
vation) is represented by 30 equidistant measurement points
in the equivalent rectangular bandwidth (ERB) scale and then
speaker-scaled. Each contour is the mean of eight repeated imi-
tations by the same speaker for one out of eight patterns: HHH,
HHL, HLH, HLL, LHH, LHL, LLH, LLL.

2.1. Cluster analyses

Both the KM and HC cluster analyses were performed in R [25]
and R Studio [26]. KM was done using the km1 package [27],
HC was done using the stats package available in base R
[25]. KM was done using the algorithm described in [28], us-
ing Euclidean distance with Gower adjustment [29]. The al-
gorithms to obtain an initial cluster assignment (starting point
for finding stable centroids) were left to the default: ‘kmeans-’
followed by an alternation of ‘kmeans--’ and ‘randomK”, as de-
scribed in further detail in [27]. HC was performed with Eu-
clidean distance as distance metric and complete linkage as
linkage criterion. The latter HC settings have been used by
default by the software tool used in previous work [3]. Note

that the assessment of different linkage criteria falls beyond the
scope of the current study and is planned for future research.

The outcomes of KM and HC were obtained for several
rounds of cluster analysis, i.e. assuming 2 to 8 clusters. This
was done in order to allow for a comparison over the course of
different clusterings, potentially revealing differences between
the respective methods. Note that multiple (unsupervised) clas-
sification techniques in [4] indicated that the optimum for this
dataset lies at 5 clusters. Together with the indication of the
eight imitated intonation contours, these data provide a refer-
ence for the assessment of the clustering results in the current
study.

2.2. Similarity assessments

Once the clusterings were obtained, the similarity of the KM
and HC outcomes was assessed. Note that this assessment could
not be done on the raw cluster assignments of each method.
That is, for a clustering round assuming, for example, 3 clus-
ters, cluster 1 obtained from KM does not necessarily match
cluster 1 obtained from HC. Therefore, a matching procedure
was carried out. This was done by systematically testing all
possible mappings and by choosing the mapping that had the
highest number of contours that matched between KM and HC
(i.e. the optimal exhaustive mapping). Note that this matching
procedure tests an exponentially growing number of possible
mappings for each subsequent round of clustering. With 2 as-
sumed clusters, KM and HC could map in two ways {1:1,2:2}
or {1:2,2:1}. With 3 assumed clusters, KM and HC could
map in six ways: {1:1,2:2,3:3}, {1:1,2:3,3:2}, {1:2,2:1,3:3},
{1:2,2:3,3:1}, {1:3,2:1,3:2}, or {1:3,2:2,3:1}. From 4 to 8 clus-
ters assumed, the number of possible mappings tested were 24,
120, 720, 5040, and 40320 respectively. The numbers assigned
to the clusters were then recoded according to the optimal map-
ping of the matching procedure, for each round of clustering,
such that the clusters numbers of KM and HC aligned, i.e. KM
cluster 1 mapped optimally onto HC cluster 1, KM?2 onto HC2,
etc. Thereafter, Kendall 7 was computed between the KM and
HC outcomes of each round. This was done to assess to what
extent the clustering methods correlated, i.e. by ranking their
cluster number assignments and calculating concordant and dis-
cordant rankings. In addition, it was counted for each intonation
pattern and for each clustering round which contours occurred
in matching clusters and which ones did not. An overall mis-
match percentage was obtained for each clustering round.

2.3. Partitioning quality assessments

In order to assess the quality of the partitioning, the cluster as-
signment for each of the eight intonation patterns was calculated
as a proportion. That is, for each pattern it was calculated how
often it was assigned to each cluster, in terms of the proportion
of productions of that pattern that were assigned to that cluster,
maximally 30. For example, for a round assuming 3 clusters
the maximum number of LHH patterns assigned to a particular
cluster was 19 times (out of 30 possible assignments = 0.63).
For each clustering round, the average of the maximum propor-
tions (over all patterns) was taken in order to assess the quality
of the pattern-to-cluster assignments. Higher proportions would
indicate a more systematic mapping of a given contour to one
particular cluster. Thus, lower proportions might indicate either
the failure of the analysis to assign patterns to clusters in an op-
timal way and/or that some patterns are particularly difficult to
cluster in general, because of their shape similarity.

In order to disentangle the latter two scenarios further, an



additional measure was taken to assess the difference between
two clusters based on their average FO contours. This was done
by taking the RMSD between the two FO vectors, where the 30
time-normalized FO measurements in each vector are averaged
over 30 participants. RMSD was shown to be a close approxi-
mation of how fO contour differences are perceived by the hu-
man ear [30]. For rounds with more clusters, more comparisons
were made. Per clustering round, the average of all RMSDs
was taken to represent the distance between the clusters in that
round.

As a final partitioning quality assessment, the variance
within and between clusters was calculated for each round, a
method implemented in the software tool [3]. The general as-
sumption for the majority of the clustering methods is that with
more clusters, the variance within clusters becomes smaller
(observations within clusters are more similar), while the vari-
ance between clusters becomes larger (clusters represent more
distinct groups). When the two variances no longer signifi-
cantly diverge, the optimal number of clusters has been reached.
Within cluster variance was computed by taking the standard
deviation of the f0 measures representing the average contour in
a certain cluster, which in turn was averaged over all clusters in
a particular round. Between cluster variance was computed by
taking the mean fO for each measurement point in each cluster,
over which the absolute difference between the minimum and
maximum was calculated as an assessment of the fO distance
between the clusters. The resulting 30 measurement points of
fO distance were then averaged for each round.

3. Results

Table 1: KM and HC similarity measures per clustering round:
number of mismatching observations per intonation pattern
(max. per cell is 30), mismatch percentage, and Kendall .

No. of clusters

Pattern 2 3 4 5 6 7 8
HHH 0 0 14 9 9 9 14
HHL 0 1 5 0 1 1 9
HLH 0 1 1 1 17 18 13
HLL 0 0 1 3 12 13 13
LHH 0 9 28 0 13 23 16
LHL 1 1 9 0 0 23 23
LLH 4 1 1 0 1 4 3
LLL 0 0 30 0 0 1 1
mismatch %  2.08 542 3625 542 2208 3833 38.33
T 096 0.85 024 0.84  0.54 0.42 0.47

The results of the similarity measures are reported in Table 1.
A general trend can be observed in that the number of con-
tours for which KM and HC mismatch increases with higher
numbers of clusters. Kendall 7 showed a significant correla-
tion for all rounds, which was moderate to strong for all except
the round with 4 clusters (weak correlation). As for the indi-
vidual intonation patterns, LLH had the lowest number of mis-
matches, whereas LHH had the highest number of mismatches.
The round with 4 clusters shows a particularly high number of
mismatching contours. This round was further analyzed by an
inspection of the contours in the clusters of KM and HC. It
can be observed from the contours in Figure 1 that KM and
HC showed mismatching cluster assignments for a concave ris-
ing pattern (KM1/HC4: HHH vs. LHH), for a rise-fall-rise
pattern (KM2/HC3: HLH/HLL vs. LHL/LLH), for an over-
all rising pattern (KM3/HC4: LHH), a shallow fall (KM4/HC2:
LLL vs. HLH/HLL), and a level contour (KM4/HC3: LLL vs.

LHL/LLH). Note that KM and HC did not have any matching
contours in their fourth cluster.
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Figure 1: Average fO contours in the round with 4 clusters, for
each combination (matching/mismatching) of cluster numbers.

0.95-

0.80-

0.75-
2 3 4 5 6 7 8
no. of clusters

Figure 2: Average Maximum Proportion (AMP) of cluster as-
signment per tune in each clustering round.

The partitioning quality measures showed an overall de-
cline of the proportion maxima per tune with more clusters
(AMP, Figure 2). KM shows a clear deviation from this decline
for the round with 5 clusters, whereas HC shows an overall me-
andering decline for increasing numbers of clusters. The RMSD
measure showed overall smaller values for higher numbers of
clusters, although highly fluctuating for both KM and HC (Fig-



ure 3). KM shows higher RMSD values than HC (larger differ-
ences between the average contours of the clusters) for lower
number of clusters (<6). For the rounds with 7 or 8 clusters HC
shows higher RMSD values than KM. KM and HC show virtu-
ally identical RMSD values for the round with 5 clusters. As
for the variance as measured within and between clusters (Fig-
ure 4), KM and HC show a highly similar pattern: strong diver-
gence up to the round with 5 clusters, then a weak divergence
with HC reaching a somewhat higher between cluster variance
than KM for the rounds with 6, 7, and 8 clusters respectively.
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Figure 3: Mean RMSD between the average contours of all clus-
ter combinations in each clustering round.
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Figure 4: Within and between cluster variance in each cluster-
ing round.

4. Conclusions

This study has shown that KM and HC clustering methods gen-
erally provide highly comparable results on the dataset of fO
contours investigated here. The most remarkable difference be-
tween the two methods appeared from the round with 4 clusters,
showing a relatively high percentage of contours for which KM
and HC mismatched. Further inspection of this particular round
revealed that LLL, LHH and HHH were the intonation patterns
with the highest number of mismatches respectively (Table 1).
The dataset included other patterns that showed a similar shape

from the acoustic measures. The difference between HHH and
LHH appeared particularly difficult (Figure 1), likely due to the
subtle realisation of the initial L tone.

It is furthermore interesting that KM and HC tend to con-
verge on 5 as the optimal number of clusters. This appeared
not only from the relatively high 7 value and hence the low per-
centage of mismatches, but also from the RMSD and variance
measures. In addition, the AMP measure appeared particularly
informative in this respect for the KM method. Note that in
[4] a hierarchy of patterns was proposed in which the eight nu-
clear configurations were merged into five (groups) of contours:
{HHH,HHL}, LHH, {LHL,LLH}, {HLL,HLH} and LLL. It is
striking that the small number of mismatches between KM and
HC for the round with 5 clusters exclusively concerns patterns
that are involved in the merge proposed in [4]; HHH, HLH, and
HLL.

The observed differences between KM and HC are overall
rather small, except for the round with 4 clusters. Crucially,
both patterns for which the methods had the most mismatches
(LHH and LLL) showed a (near) perfect match in the previous
round (3 clusters) and the next round (5 clusters). In this respect
it is important to observe that the patterns HHH, HLH, HLL,
and LHH had a the highest mismatch rates throughout all clus-
terings (Table 1). Thus, the observed mismatches in one par-
ticular round seem to be a local phenomenon, in the sense that
they do not necessarily reveal structural differences between the
methods over the course of multiple clusterings. Compared to
matching contours, the mismatches in Figure 1 appear to orig-
inate from subtle shape differences in some contours. In retro-
spect, studies that choose either KM or HC to cluster fO con-
tours are unlikely to have caused a methodological bias in their
results. Nevertheless, the current study shows in which ways
and due to what kind of contour differences KM and HC might
disagree on more than a third of the observations. Crucially,
the round with 4 clusters shows that KM and HC had entirely
differently fourth clusters (no matches). It cannot be taken for
granted, therefore, that KM and HC always lead to the same
conclusions. In this respect, it also needs to be mentioned that
for the round of clustering that was most likely the optimum,
KM and HC were in high agreement. It can thus be reconfirmed
from the perspective of comparing clustering methods that find-
ing the optimal number of clusters is key in doing cluster anal-
ysis [1]. The degree of convergence between different cluster
methods may therefore be taken as an (indirect) indication for
the optimal number of clusters (see also [24]). Note that a vari-
ance analysis as presented here, or an evaluation based on in-
formation cost [31] are more direct and potentially more infor-
mative additional evaluation methods that should also be taken
into account to obtain a reliable assessment of the ideal number
of clusters. It is also important to consider that the current study
investigated KM and HC difference on a single dataset. Future
work should include multiple datasets and a wider range of pa-
rameters to further investigate how KM and HC might differ on
fO contours.

5. Acknowledgements

Research for this paper was funded by the German Research
Foundation (DFG) — Project 281511265 — SFB 1252 (CK) and
by the U.S. National Science Foundation BCS-1944773 (JC).
The dataset, R-script and additional figures are available as sup-
plementary material: https://osf.io/u3nsz/.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

6. References

L. Kaufman and P. J. Rousseeuw, Eds., Finding Groups in Data,
ser. Wiley Series in Probability and Statistics. = Hoboken, NJ,
USA: John Wiley & Sons, Inc., 1990.

G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction
to Statistical Learning, ser. Springer Texts in Statistics. New
York, NY: Springer New York, 2013, vol. 103.

C. Kaland, “Contour clustering: A field-data-driven approach for
documenting and analysing prototypical fO contours,” Journal of
the International Phonetic Association, vol. 53, no. 1, pp. 159-
188, 2021.

J. Cole, J. Steffman, S. Shattuck-hufnagel, and S. Tilsen, “Hier-
archical distinctions in the production and perception of nuclear
tunes in American English.” Laboratory Phonology, vol. 14, no. 1,
pp. 1-51, 2023.

K. Silverman, M. Beckman, J. Pitrelli, M. Ostendorf, C. Wight-
man, P. Price, J. Pierrehumbert, and J. Hirschberg, “ToBI: A stan-
dard for labeling English prosody,” in Second international con-
ference on spoken language processing. Banff: ISCA, 1992.

J. Pierrehumbert and J. Hirschberg, “The Meaning of Intonational
Contours in the Interpretation of Discourse,” in Intentions in Com-
munication, P. R. Cohen, J. Morgan, and M. E. Pollack, Eds.
Cambridge, MA: MIT Press, 1990.

D. R. Ladd, “The Trouble with ToBI,” in Prosodic Theory and
Practice, J. Barnes and S. Shattuck-Hufnagel, Eds. The MIT
Press, 2022, pp. 247-258.

S. Calhoun, “The theme/rheme distinction: Accent type or
relative prominence?” Journal of Phonetics, vol. 40, no. 2, pp.
329-349, 2012.

2

P. Prieto, “Intonational meaning,” Wiley Interdisciplinary Re-
views: Cognitive Science, vol. 6, no. 4, pp. 371-381, 2015.

D. Biiring, Intonation and meaning, ser. Oxford surveys in seman-
tics and pragmatics.  Oxford: Oxford University Press, 2016,
no. 3.

M. Grice, S. Ritter, H. Niemann, and T. B. Roettger, “Integrating
the discreteness and continuity of intonational categories,”
Journal of Phonetics, vol. 64, pp. 90-107, 2017.

E. Chodroff and J. Cole, “Information Structure, Affect and
Prenuclear Prominence in American English,” in Interspeech
2018. 1SCA, 2018, pp. 1848-1852.

——, “The phonological and phonetic encoding of information
structure in American English nuclear accents,” in Proceedings
of the 19th International Congress of Phonetic Sciences. Mel-
bourne, Australia: Australasian Speech Science and Technology
Association Inc., 2019, pp. 1570-1574.

X. Xie, A. Bux6-Lugo, and C. Kurumada, “Encoding and
decoding of meaning through structured variability in intonational
speech prosody,” Cognition, vol. 211, p. 104619, 2021.

C. Kaland, N. Peck, T. M. Ellison, and U. Reinohl, “An initial ex-
ploration of the interaction of tone and intonation in Kera’a,” in /st
International Conference on Tone and Intonation (TAI). 1SCA,
2021, pp. 132-136.

S. Babinski and C. Bowern, “Automatic categorization of
prosodic contours in Bardi,” Proceedings of the Linguistic Society
of America, vol. 7, no. 1, p. 5218, 2022.

H. Seeliger and C. Kaland, “Boundary tones in German wh-
questions and wh-exclamatives - a cluster-based approach,” in
Proceedings of the 11th International Conference on Speech
Prosody 2022, S. Frota and M. Vigidrio, Eds., Lisbon, Portugal,
2022, pp. 27-31.

T. J. Laméris, K. K. Li, and B. Post, “Phonetic and Phono-Lexical
Accuracy of Non-Native Tone Production by English-L1 and
Mandarin-L1 Speakers,” Language and Speech, vol. 66, no. 4,
pp. 974-1006, 2023.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

(28]

[29]

[30]

[31]

C. Kaland, “Intonation contour similarity: f0 representations
and distance measures compared to human perception in two
languages,” The Journal of the Acoustical Society of America,
vol. 154, no. 1, pp. 95-107, 2023.

B. Karthikeyan, D. J. George, G. Manikandan, and T. Tony, “A
Comparative Study on K-Means Clustering and Agglomerative
Hierarchical Clustering,” International Journal of Emerging
Trends in Engineering Research, vol. 8, no. 5, pp. 1600-1604,
2020.

A. Gupta, H. Sharma, and A. Akhtar, “A comparative analysis
of k-means and hierarchical clustering,” EPRA International
Journal of Multidisciplinary Research (IJMR), pp. 412-418,
2021.

O. A. Abbas, “Comparisons between data clustering algorithms.”
International Arab Journal of Information Technology (IAJIT),
vol. 5, no. 3, 2008.

H. 1. Abdalla, “A Brief Comparison of K-means and Agglom-
erative Hierarchical Clustering Algorithms on Small Datasets,”
in Proceeding of 2021 International Conference on Wireless
Communications, Networking and Applications, Z. Qian, M. Jab-
bar, and X. Li, Eds. Singapore: Springer Nature Singapore,
2022, pp. 623-632, series Title: Lecture Notes in Electrical
Engineering.

A. Javed, B. S. Lee, and D. M. Rizzo, “A benchmark study
on time series clustering,” Machine Learning with Applications,
vol. 1, p. 100001, 2020.

R Core Team, “R: the R project for statistical computing,” 2022,
version 4.2.1.

R Studio Team, “RStudio: Integrated Development for R,” 2022.

C. Genolini, X. Alacoque, M. Sentenac, and C. Arnaud, “kml
and kml3d: R Packages to Cluster Longitudinal Data,” Journal of
Statistical Software, vol. 65, no. 4, pp. 1-34, 2015.

J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-Means
Clustering Algorithm,” Applied Statistics, vol. 28, no. 1, p. 100,
1979.

J. C. Gower, “Some distance properties of latent root and vector
methods used in multivariate analysis,” Biometrika, vol. 53, no.
3-4, pp. 325-338, 1966.

D. J. Hermes, “Measuring the Perceptual Similarity of Pitch Con-
tours,” Journal of Speech, Language, and Hearing Research,
vol. 41, no. 1, pp. 73-82, 1998.

C. Kaland and T. M. Ellison, “Evaluating cluster analysis on f0
contours: an information theoretic approach on three languages,”
in Proceedings of the 20th International Congress of Phonetic Sci-
ences, R. Skarnitzl and J. Volin, Eds.  Prague (CZ): Guarant In-
ternational, 2023, pp. 3448-3452.



	 Introduction
	 Methodology
	 Cluster analyses
	 Similarity assessments
	 Partitioning quality assessments

	 Results
	 Conclusions
	 Acknowledgements
	 References

