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Abstract

The Autosegmental-Metrical model of American English
distinguishes three pitch accents with rising FO trajectories (H*,
L+H*, L*+H), differing in peak alignment and presence vs.
absence of a low pitch marking the rise onset. Empirical studies
report additional distinctions in the dynamics and scaling of the
FO rise, raising the question of which properties best capture
variation among accents. We use functional principal
components analysis (FPCA) to examine dynamic properties of
accentual FO trajectories in data from an intonation imitation
experiment. FO trajectories from 70 speakers producing rising
accents on the phrase-final (nuclear) accented word were
submitted to FPCA. The first three PCs account for 95% of
variation in FO trajectories and each shows significant
differences between the three rising accents. Variation in PC1
primarily relates to differences in the overall FO level of the
trajectory, PC2 captures differences in rise shape (scooped vs.
domed rise) and PC3 captures fine variation from a following
Low phrase accent. Alignment distinctions are distributed
across all three PCs. Examination of individual speakers shows
all use PC1 and PC2 to some degree to distinguish rising
accents, with no trading relations. Rises are variously
implemented through level or shape distinctions, to varying
degrees across individuals.

Index Terms: American English intonation, pitch accent, pitch
contours, FPCA, individual differences, trading relations

1. Introduction

In the Autosegmental-Metrical (AM) theory of intonation,
patterns of FO variation that encode pragmatic meaning at the
phrase level are generated from an underlying sequence of
discrete tone features, which in American English (AE)
includes tonally specified pitch accents that associate with the
stressed syllable of words with phrasal prominence. The
inventory of pitch accents proposed by [1,2] includes three
accents that define high or rising FO trajectories. The monotonal
H* accent specifies a high FO target on the stressed syllable of
the accented word. The bitonal L+H* similarly defines a high
FO target on the stressed syllable (the starred tone), but with the
addition of a preceding Low tone and a corresponding low FO
target at the onset of the rise, generally located at the beginning
of'the stressed syllable. The other bitonal accent is L*+H, which
specifies a low FO target on the stressed syllable followed by a
high FO target realized on the following syllable if there is one.
Notably, the L*+H accent has a late FO peak, compared to the
relatively earlier FO peaks of H* and L+H*. Schematic FO
trajectories for these three accents are shown in Figure 1.
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Figure 1: Schematic F0 trajectories for three high/rising
pitch accents: H* (red, dashed), L+H* (blue, dotted),
L*+H (green, solid). Vertical lines mark boundaries at

beginning and end of the stressed syllable (center).

The perceptual distinction between accents with an early vs.
late peak can also be conveyed by differences in the shape of
the FO trajectory related to the slope [3, 4] or curvature of the
FO rise [5], scaling of FO extrema, or by similar differences in
the post-peak FO fall [, 6]. FO peak alignment, slope, scaling
and curvature function independently to determine the acoustic
‘tonal center of gravity’ (TCoG) of the FO movement over the
stressed syllable [S, 6]. These acoustic parameters may be
variously recruited for encoding pitch accent contrasts across
languages [5]. Moreover, evidence from German and Italian
indicates similar dimensions of variation characterize
differences among individual speakers, with some using
alignment and other using rise/fall slope as the primary
dimension of contrast between rising accents [4].

While the studies cited above provide converging evidence
that multiple dimensions of FO modulation serve to distinguish
phonologically distinct high/rising pitch accents across
languages and speakers, there has not yet been a comprehensive
production study examining the FO dynamics of high/rising
accents in AE that includes all three of the high/rising accents,
or which examines pitch accent production in all contexts of the
following phrase accent and boundary tone. The present study
aims to fill this knowledge gap by identifying the characteristic
dynamic FO properties that distinguish the high/rising accents
in AE. Distinctions in the global shape of accentual FO
trajectories are analyzed using functional principal component
analysis (hereafter, FPCA), to test the hypothesis from the AM
model that variation in FO dynamics is structured in terms of a
low target preceding the accentual peak, and in the temporal
location of the peak. We also look for evidence of accent
distinctions conveyed through ‘shape’ differences manifest in
the slope and curvature of the FO rise. FPCA is applied to data
aggregated over speakers, with results analyzed to identify
parameters of variation in terms of FO peak alignment and in
parameters that contribute to FO shape, including slope and rise
curvature. In addition, we examine FPCA results for individual
participants to identify parameters of individual speaker
variation along the same acoustic dimensions.
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2. Methods

2.1. Materials

The FO trajectories analyzed in this study are drawn from an
intonation production experiment [7] using an imitation
paradigm in which on each trial an intonation pattern is
presented auditorily via two model sentences, and participants
reproduce the heard melody on a new sentence presented in text
format. The stimuli were short sentences ending in a 3-syllable
name with initial stress (e.g., “He answered Jeremy”), recorded
from two native speakers of AE, one male and one female.
These base recordings underwent pitch resynthesis using the
PSOLA algorithm in Praat [8, 9] to generate one of 12
intonation patterns over the final word, specified in terms of the
‘nuclear’ (phrase-final) pitch accent (H*, L+H*, L*+H) on the
stressed syllable, followed by a phrase accent (H- or L-) and
boundary tone (H% or L%). The resynthesized FO patterns of
the final word were based on straight-line approximations from
[10], which were in turn modeled after empirical data in [1], as
shown in Figure 2. 70 participants, monolingual speakers of
AE, were recruited from Prolific (12F, 14M, 2 non-binary,
mean age = 23.7) and from the undergraduate Linguistics
subject pool at Northwestern University (17F, 17M, 1 non-
binary, mean age = 19.7). Participants reproduced the 12 tunes
(12 repetitions each) on three target sentences (e.g., “He
modeled Harmony.”) with syllable and stress patterns similar to
the stimuli.? We removed likely FO tracking errors [11], which
resulted in exclusion of approximately 12% of the data,
retaining 8,914 files for analysis.
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Figure 2: Schematic trajectories for the model tunes in

the study, showing the three pitch accents (rows) and

four boundary tones (columns). Dashed lines indicate
syllable boundaries in the nuclear-accented word.

FO trajectories were extracted from the first two syllables of the
sentence-final word of each analyzed trial. This portion of the
phrase-final FO trajectory represents the phonetic
implementation of the pitch accent, though the extracted
interval also reflects the transition from the accentual peak to
the high- or low-tone phrase accent and the following boundary
tone, especially for productions where the accentual peak falls
in the first syllable (as expected for imitations of H* and L+H*).
The analyzed portions of the time-normalized speaker-mean
trajectories for each pitch accent are shown in Figure 3A. Based

I Audio files of stimuli are available on the OSF at
https://ost.io/b3su6/.
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on visual inspection, these empirical findings already suggest a
pattern of co-variation, with FO rise slope, peak alignment and
peak scaling jointly distinguishing the three accents.

2.2. Analysis

We use FPCA to quantify the dynamic properties of the FO
trajectories implementing high/rising pitch accents. FPCA is a
data-driven method that identifies the distinct global shape
characteristics in time-series data [12, 13]. As discussed in [12],
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Figure 3: Empirical F0 trajectories of imitated pitch
accents. Thin lines are mean F0 trajectories by
speaker (N=70). Dark dotted lines represent the
mean trajectory of each accent types over all
speakers (Panel A). The first three PCs shown as
trajectories that deform the mean F0 curve fit to the
aggregated data (dashed black line) as determined
by the normalized PC score, coded by color (Panel
B). Bayesian regression model estimates of mean
PC scores (and 95% credible intervals) for
empirical data grouped by accent type (Panel C).

2 Reproducing a heard melody on a new sentence requires
encoding and retrieving a representation of that melody. While
gross shape distinctions were reproduced, pitch level, range and
some finer shape distinctions were not. See [7] for details.



the advantage of FPCA is twofold. First, it captures global
shape characteristics jointly determined through multiple
acoustic parameters, e.g., FO peak alignment, slope and
curvature, in terms of the principal components (PCs) from a
set of continuous functions that when applied, deform the mean
curve fit to the entire dataset. The shape of a PC, generated as
a time series over the dependent variable (here, FO), represents
the deformation it exerts on the mean curve at each normalized
time step. Individual FO trajectories input to the analysis can
then be identified in terms of the associated weight of each PC
(the PC ‘score’), which represents the relative contribution of
that PC’s deformation to the mean curve, in modeling the shape
of the input along its whole trajectory. The second benefit of
FPCA is that the individual PC scores associated with each
input FO trajectory can be submitted to statistical analysis using
regression or other methods to test hypotheses about class
distinctions, in our case, corresponding to the three high/rising
accent types proposed as phonological contrasts in the AM
model of AE. We adopted the workflow in [12]: 8,914
(unlabeled) FO trajectories from the first two syllables of the
nuclear word were scaled within speaker, normalizing for
speaker differences in FO height and range, and time-
normalized with 20 temporal samples, then submitted to FPCA
using the fda package in R [14]. Scores from the first three PCs
were subsequently submitted to separate Bayesian mixed-
effects linear regressions [15], with weakly-informative student
t priors, predicting variation in the PC score as function of pitch
accent, boundary tone, and their interaction. Models included
random intercepts for speaker, and by-speaker slopes for both
fixed effects and interactions. Here we focus on just the
marginal effect of pitch accent which we computed using [16].
In reporting the effects, we give posterior median and 95%
credible intervals (Crl) for the contrasts comparing each of the
three pitch accents. When the 95% Crl excludes the value of
zero, we take this as credible evidence for an effect (i.e. a
reliably estimated non-zero difference).

3. Results

Figure 3B shows the time-series generated from each of the
first three PCs, each plotted across a range of PC scores
(proportions of the s.d. of the PC) from -1 to 1. The black
dashed line superimposed on each PC series is the mean curve
fit to the aggregated data (same curve projected on each PC).
Notice that functions with the highest (positive) and lowest
(negative) PC scores generate shapes with greater positive or
negative magnitude, which when applied to the mean curve will
have a stronger deforming effect. Also notice that the PCs differ
in the location, direction and magnitude of their effect on
shaping the mean trajectory. These PCs together account for
95% of the variation in the combined input FO trajectories: 57%
for PC1, 28% for PC2, 10% for PC3. PC1 primarily captures
variation in the overall level of the F0 trajectory, with
secondary effects on the scaling and alignment of the F0
peak and in the F0 range. Higher positive PC1 scores (e.g.,
the yellow trajectory of PC1) shift the mean curve upward and
have a larger FO range, and an earlier and higher FO peak. By
comparison, trajectories associated with lower PC1 scores (e.g.,
the purple PC1 trajectory) are shifted downward in FO and span
a smaller FO range with later and lower peaks. PC2 primarily
captures variation in F0 trajectory shape through combined
effects of peak alignment, rise slope, and F0 range. Higher
PC2 scores exert a deformation resulting in a distinct scooped
shape and a correspondingly steep rise slope, late rise onset and
late peak, compared to trajectories with low PC2 scores, which
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have a flatter shape. PC3 has a uniform effect of imposing a
scooped rise shape and captures variation primarily in peak
alignment. Higher PC3 scores yield trajectories that begin
lower and have an earlier and lower FO peak, compared to
trajectories with higher PC3 scores. Note that all three PCs also
capture variation in the final quarter of the interval related to
the variable influence of a following phrase accent (H- or L-).

PC scores for each input FO trajectory were determined as
those whose combined effects on the mean curve generate the
mostly closely matching trajectories. Scores for each PC,
aggregated over speakers, were submitted to separate mixed
effects models. Figure 2C plots the model-estimated PC scores
for each accent type and each PC. For PC1 (left panel), large
positive scores are associated with productions of L-+H*,
indicating FO trajectories with large excursions that are overall
higher in the FO range and have an early, high peak. In
comparison, the negative PC1 scores for H* and L*+H
productions indicate FO trajectories with smaller excursions,
placed lower in the FO range, with later, lower peaks.
Comparison of marginal effects estimates for PC1 across pitch
accents confirms a credible difference for each pair. L+H*
shows credibly higher PC1 values as compared to both H* (b =
-2.33, 95CrI[-2.57,-2.08]) and L*+H (b = -2.65, 95CrI [-2.97,-
2.33]). H* also showed credibly higher PC1 compared to L+H*
(b=10.32, 95Cr1 [0.05,0.66]). PC2 scores show a more graded
distinction, with positive scores for L*+H indicating
trajectories with a scooped rise, later peak, and a steeper slope
spanning a larger FO range. PC2 scores for L+H* indicate a
trajectory with shape characteristics like L*+H, but milder—
less scooped, earlier peak, shallower slope. The negative PC2
scores for H* indicate little deformation of the mean curve.
Comparisons of PC2 across pitch accents also show a credible
difference for each pair. H* shows credibly lower PC2 values
than L*+H (b =-1.94, 95CrI[-2.09,-1.80]) and lower than L+H*
(b = -0.88, 95CrI[-1.03,-0.73]). L*+H also shows credibly
higher PC2 scores in comparison to L+H* (b 1.07,
95Crl[0.87,1.26]). PC3 shows much weaker differentiation of
accents, promoting a scooped accent shape with a late FO peak
for L*+H, and a milder but similarly scooped shape, with an
earlier peak, for H* and L+H*. A credible difference is
confirmed for each pair of comparisons across pitch accents in
PC3, though the magnitude of differences is much smaller.
L*+H shows credibly lower PC3 values in comparison to H* (b
=0.56, 95CrI[0.47, 0.65]) and L+H* (b = -0.48, 95CrI[-0.58.-
0.40]). Credibly lower PC3 scores are also found for L+H* as
compared to H* (b = 0.07, 95CrI[0.005,0.14]), though the
magnitude of this difference is small and credible intervals only
narrowly exclude 0. Individually and combined, these three PCs
succeed in characterizing a three-way distinction among
productions of these accents (Table 1).

Table 1: Model estimated PC scores, by sign
(negative, positive, zero) for each pitch accent.
Marginal non-zero value in parentheses.

Accent | PC1 | PC2 | PC3
H* - - (&)
L+H* + 0 0
L*+H - + -

Jointly, PC1 and PC2 capture roughly 85% of the variation
in the data, with primary effects on overall FO level and FO
trajectory shape. We next examine the PC1 and PC2 scores for
individual speakers to assess variation in the degree to which a



variation accross pitch accents:
'use' of PC1 vs. PC2
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Figure 4: Mean PC1 and PC2 ‘use’
scores (s.d. of mean PC scores across
accents) by speaker (Panel A). Mean F0O
trajectories for six speakers (Panel B).

speaker implements high/rising accent distinctions through
variation in FO level (PC1) or shape (PC2) as the primary
dimension, or through co-variation along both dimensions.
Figure 4A displays how much PC1 and PC2 varied as a function
of pitch accent for each speaker. We operationalized this in
terms of standard deviation, taking the mean PC1 and PC2 of
each accent for each speaker, and computing the standard
deviation in terms of the difference between the mean PC for a
given accent and the mean PC over the three accents, for each
speaker. Larger values on the x and y axes correspond to larger
variation in PC1 and PC2 as a function of pitch accent, for a
given speaker. We take this to represent PC ‘use’: a speaker
with a higher standard deviation for PC1 uses variation in FO
level (the primary dimension of variation for PCl) in
differentiating among the high/rising accents more heavily than
a speaker who has a low value for PC1 ‘use’. Notably, there is
nearly continuous individual variation along both PC ‘use’
dimensions, with individuals filling every quadrant of the
plot—all speakers implement pitch accents with variation in
both FO level and shape. There is also not a clear negative or
positive correlation between PC1 and PC2 ‘use’, indicating that
level and shape are not in a trading relationship.

To better understand how the variable patterns of PC ‘use’
relate to the FO trajectories speakers produce for different
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high/rising accents, we examine the mean FO trajectories of
each accent for six individual speakers who represent relatively
extreme values of PC1 and PC2 use (Figure 3B). Speaker 29
makes minimal distinctions among accent types, with very low
‘use’ scores for PC1 and PC2. This speaker produces very
similar FO trajectories for all three accent types. On the other
extreme we have speakers 69 and 58 with high ‘use’ scores for
both PC1 and PC2. These speakers differentiate accents by
overall FO level (high for L+H*, low for L*+H), and shape
(later peaks and more scooped shape for L*+H compared to
L+H* and H*). Speakers 65 and 3 use level distinctions (high
PC1) as the major dimension of contrast, while speaker 7 uses
shape, with a scooped rise for L*+H, and nearly identical,
minimally rising trajectories for H* and L+H*.

4. Discussion

FO trajectories of three high/rising pitch accents in phrase-final
(nuclear) position were examined in data from an intonation
imitation experiment with speakers of AE. FO trajectories were
analyzed using FPCA to identify the FO parameters associated
with the first three PCs, representing the primary dimensions of
variation in the data aggregated over speakers. Following the
tonal specification of these accents in the AM model and their
schematic illustrations in ToBI training materials, we
hypothesized that a low pitch target at the onset of the rise and
the alignment of the FO peak would be the primary dimensions
of variation. FPCA analysis identified three PCs that together
account for 95% of the variation in FO trajectories in our data.
There are three important findings from the FPCA results from
data aggregated over speakers. First, FO level is the primary
dimension of variation among the high/rising accents: L*+H
is produced with an overall higher FO level than L+H* and H*.
Second, variation in peak alignment is distributed across all
three PCs: For each PC, the location of the FO peak varies from
earlier to later across PC score variation. Third, the second
most substantial dimension of variation, PC2, is best
described in terms of TCoG [5], conditioning co-variation of
several acoustic parameters related to rise shape: peak
alignment, curvature (scooped shape with low pitch at rise
onset), and rise slope. In addition, PC scores from individual
speakers show that all speakers implement distinctions among
high/rising accents through co-variation of FO level (PC1) and
shape (PC2). And while there is no evidence for trading
relations between these two dimensions of variation, some
speakers favor level distinctions, while others favor shape
distinctions, similar to findings from German and Italian [4].

5. Conclusions

Variation in the FO trajectories of high/rising pitch accents in
AE is structured around two primary dimensions: FO level and
rise shape, the latter a dynamic property conditioned by the
acoustic parameters of FO peak alignment, slope and rise
curvature. These findings, along with prior findings from
German [3, 17, 18] and Italian [4], support a theory where peak
alignment, a key contrastive feature in the AM model of AE [1,
19] and other languages (e.g., [20]), co-varies with other shape
parameters to define phonological distinctions among
intonational categories.
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