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Abstract 
The Autosegmental-Metrical model of American English 
distinguishes three pitch accents with rising F0 trajectories (H*, 
L+H*, L*+H), differing in peak alignment and presence vs. 
absence of a low pitch marking the rise onset. Empirical studies 
report additional distinctions in the dynamics and scaling of the 
F0 rise, raising the question of which properties best capture 
variation among accents. We use functional principal 
components analysis (FPCA) to examine dynamic properties of 
accentual F0 trajectories in data from an intonation imitation 
experiment. F0 trajectories from 70 speakers producing rising 
accents on the phrase-final (nuclear) accented word were 
submitted to FPCA. The first three PCs account for 95% of 
variation in F0 trajectories and each shows significant 
differences between the three rising accents. Variation in PC1 
primarily relates to differences in the overall F0 level of the 
trajectory, PC2 captures differences in rise shape (scooped vs. 
domed rise) and PC3 captures fine variation from a following 
Low phrase accent. Alignment distinctions are distributed 
across all three PCs. Examination of individual speakers shows 
all use PC1 and PC2 to some degree to distinguish rising 
accents, with no trading relations. Rises are variously 
implemented through level or shape distinctions, to varying 
degrees across individuals.  
Index Terms: American English intonation, pitch accent, pitch 
contours, FPCA, individual differences, trading relations 

1. Introduction 
In the Autosegmental-Metrical (AM) theory of intonation, 
patterns of F0 variation that encode pragmatic meaning at the 
phrase level are generated from an underlying sequence of 
discrete tone features, which in American English (AE) 
includes tonally specified pitch accents that associate with the 
stressed syllable of words with phrasal prominence. The 
inventory of pitch accents proposed by [1,2] includes three 
accents that define high or rising F0 trajectories. The monotonal 
H* accent specifies a high F0 target on the stressed syllable of 
the accented word. The bitonal L+H* similarly defines a high 
F0 target on the stressed syllable (the starred tone), but with the 
addition of a preceding Low tone and a corresponding low F0 
target at the onset of the rise, generally located at the beginning 
of the stressed syllable. The other bitonal accent is L*+H, which 
specifies a low F0 target on the stressed syllable followed by a 
high F0 target realized on the following syllable if there is one. 
Notably, the L*+H accent has a late F0 peak, compared to the 
relatively earlier F0 peaks of H* and L+H*. Schematic F0 
trajectories for these three accents are shown in Figure 1. 
 

Figure 1: Schematic F0 trajectories for three high/rising 
pitch accents: H* (red, dashed), L+H* (blue, dotted), 

L*+H (green, solid). Vertical lines mark boundaries at 
beginning and end of the stressed syllable (center).   

The perceptual distinction between accents with an early vs. 
late peak can also be conveyed by differences in the shape of 
the F0 trajectory related to the slope [3, 4] or curvature of the 
F0 rise [5], scaling of F0 extrema, or by similar differences in 
the post-peak F0 fall [5, 6]. F0 peak alignment, slope, scaling 
and curvature function independently to determine the acoustic 
‘tonal center of gravity’ (TCoG) of the F0 movement over the 
stressed syllable [5, 6]. These acoustic parameters may be 
variously recruited for encoding pitch accent contrasts across 
languages [5]. Moreover, evidence from German and Italian 
indicates similar dimensions of variation characterize 
differences among individual speakers, with some using 
alignment and other using rise/fall slope as the primary 
dimension of contrast between rising accents [4].  

While the studies cited above provide converging evidence 
that multiple dimensions of F0 modulation serve to distinguish 
phonologically distinct high/rising pitch accents across 
languages and speakers, there has not yet been a comprehensive 
production study examining the F0 dynamics of high/rising 
accents in AE that includes all three of the high/rising accents, 
or which examines pitch accent production in all contexts of the 
following phrase accent and boundary tone. The present study 
aims to fill this knowledge gap by identifying the  characteristic 
dynamic F0 properties that distinguish the high/rising accents 
in AE. Distinctions in the global shape of accentual F0 
trajectories are analyzed using functional principal component 
analysis (hereafter, FPCA), to test the hypothesis from the AM 
model that variation in F0 dynamics is structured in terms of a 
low target preceding the accentual peak, and in the temporal 
location of the peak. We also look for evidence of accent 
distinctions conveyed through ‘shape’ differences manifest in 
the slope and curvature of the F0 rise. FPCA is applied to data 
aggregated over speakers, with results analyzed to identify 
parameters of variation in terms of F0 peak alignment and in 
parameters that contribute to F0 shape, including slope and rise 
curvature. In addition, we examine FPCA results for individual 
participants to identify parameters of individual speaker 
variation along the same acoustic dimensions. 
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2. Methods 

2.1. Materials 

The F0 trajectories analyzed in this study are drawn from an 
intonation production experiment [7] using an imitation 
paradigm in which on each trial an intonation pattern is 
presented auditorily via two model sentences, and participants 
reproduce the heard melody on a new sentence presented in text 
format. The stimuli were short sentences ending in a 3-syllable 
name with initial stress (e.g., “He answered Jeremy”), recorded 
from two native speakers of AE, one male and one female. 
These base recordings underwent pitch resynthesis using the 
PSOLA algorithm in Praat [8, 9] to generate one of 12 
intonation patterns over the final word, specified in terms of the 
‘nuclear’ (phrase-final) pitch accent (H*, L+H*, L*+H) on the 
stressed syllable, followed by a phrase accent (H- or L-) and 
boundary tone (H% or L%). The resynthesized F0 patterns of 
the final word were based on straight-line approximations from 
[10], which were in turn modeled after empirical data in [1], as 
shown in Figure 2.1 70 participants, monolingual speakers of 
AE, were recruited from Prolific (12F, 14M, 2 non-binary, 
mean age = 23.7) and from the undergraduate Linguistics 
subject pool at Northwestern University (17F, 17M, 1 non-
binary, mean age = 19.7). Participants reproduced the 12 tunes 
(12 repetitions each) on three target sentences (e.g., “He 
modeled Harmony.”) with syllable and stress patterns similar to 
the stimuli.2 We removed likely F0 tracking errors [11], which 
resulted in exclusion of approximately 12% of the data, 
retaining 8,914 files for analysis.  

 
F0 trajectories were extracted from the first two syllables of the 
sentence-final word of each analyzed trial. This portion of the 
phrase-final F0 trajectory represents the phonetic 
implementation of the pitch accent, though the extracted 
interval also reflects the transition from the accentual peak to 
the high- or low-tone phrase accent and the following boundary 
tone, especially for productions where the accentual peak falls 
in the first syllable (as expected for imitations of H* and L+H*). 
The analyzed portions of the time-normalized speaker-mean 
trajectories for each pitch accent are shown in Figure 3A. Based 

 
 
1  Audio files of stimuli are available on the OSF at 
https://osf.io/b3su6/. 
 

on visual inspection, these empirical findings already suggest a 
pattern of co-variation, with F0 rise slope, peak alignment and 
peak scaling jointly distinguishing the three accents.  

2.2. Analysis  

We use FPCA to quantify the dynamic properties of the F0 
trajectories implementing high/rising pitch accents. FPCA is a 
data-driven method that identifies the distinct global shape 
characteristics in time-series data [12, 13]. As discussed in [12], 

2  Reproducing a heard melody on a new sentence requires 
encoding and retrieving a representation of that melody. While 
gross shape distinctions were reproduced, pitch level, range and 
some finer shape distinctions were not. See [7] for details. 

Figure 3: Empirical F0 trajectories of imitated pitch 
accents. Thin lines are mean F0 trajectories by 
speaker (N=70). Dark dotted lines represent the 

mean trajectory of each accent types over all 
speakers (Panel A). The first three PCs shown as 

trajectories that deform the mean F0 curve fit to the 
aggregated data (dashed black line) as determined 
by the normalized PC score, coded by color (Panel 
B). Bayesian regression model estimates of mean 

PC scores (and 95% credible intervals) for 
empirical data grouped by accent type (Panel C). 

Figure 2: Schematic trajectories for the model tunes in 
the study, showing the three pitch accents (rows) and 
four boundary tones (columns). Dashed lines indicate 

syllable boundaries in the nuclear-accented word. 
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the advantage of FPCA is twofold. First, it captures global 
shape characteristics jointly determined through multiple 
acoustic parameters, e.g., F0 peak alignment, slope and 
curvature, in terms of the principal components (PCs) from a 
set of continuous functions that when applied, deform the mean 
curve fit to the entire dataset. The shape of a  PC, generated as 
a time series over the dependent variable (here, F0), represents 
the deformation it exerts on the mean curve at each normalized 
time step. Individual F0 trajectories input to the analysis can 
then be identified in terms of the associated weight of each PC 
(the PC ‘score’), which represents the relative contribution of 
that PC’s deformation to the mean curve, in modeling the shape 
of the input along its whole trajectory. The second benefit of 
FPCA is that the individual PC scores associated with each 
input F0 trajectory can be submitted to statistical analysis using 
regression or other methods to test hypotheses about class 
distinctions, in our case, corresponding to the three high/rising 
accent types proposed as phonological contrasts in the AM 
model of AE. We adopted the workflow in [12]: 8,914 
(unlabeled) F0 trajectories from the first two syllables of the 
nuclear word were scaled within speaker, normalizing for 
speaker differences in F0 height and range, and time-
normalized with 20 temporal samples, then submitted to FPCA 
using the fda package in R [14]. Scores from the first three PCs 
were subsequently submitted to separate Bayesian mixed-
effects linear regressions [15], with weakly-informative student 
t priors, predicting variation in the PC score as function of pitch 
accent, boundary tone, and their interaction. Models included 
random intercepts for speaker, and by-speaker slopes for both 
fixed effects and interactions. Here we focus on just the 
marginal effect of pitch accent which we computed using [16]. 
In reporting the effects, we give posterior median and 95% 
credible intervals (CrI) for the contrasts comparing each of the 
three pitch accents. When the 95% CrI excludes the value of 
zero, we take this as credible evidence for an effect (i.e. a 
reliably estimated non-zero difference). 

3. Results 
Figure 3B shows the time-series generated from each of the 

first three PCs, each plotted across a range of PC scores 
(proportions of the s.d. of the PC) from -1 to 1. The black 
dashed line superimposed on each PC series is the mean curve 
fit to the aggregated data (same curve projected on each PC). 
Notice that functions with the highest (positive) and lowest 
(negative) PC scores generate shapes with greater positive or 
negative magnitude, which when applied to the mean curve will 
have a stronger deforming effect. Also notice that the PCs differ 
in the location, direction and magnitude of their effect on 
shaping the mean trajectory. These PCs together account for 
95% of the variation in the combined input F0 trajectories: 57% 
for PC1, 28% for PC2, 10% for PC3. PC1 primarily captures 
variation in the overall level of the F0 trajectory, with 
secondary effects on the scaling and alignment of the F0 
peak and in the F0 range. Higher positive PC1 scores (e.g., 
the yellow trajectory of PC1) shift the mean curve upward and 
have a larger F0 range, and an earlier and higher F0 peak. By 
comparison, trajectories associated with lower PC1 scores (e.g., 
the purple PC1 trajectory) are shifted downward in F0 and span 
a smaller F0 range with later and lower peaks. PC2 primarily 
captures variation in F0 trajectory shape through combined  
effects of peak alignment, rise slope, and F0 range. Higher 
PC2 scores exert a deformation resulting in a distinct scooped 
shape and a correspondingly steep rise slope, late rise onset and 
late peak, compared to trajectories with low PC2 scores, which 

have a flatter shape. PC3 has a uniform effect of imposing a 
scooped rise shape and captures variation primarily in peak 
alignment. Higher PC3 scores yield trajectories that begin 
lower and have an earlier and lower F0 peak, compared to 
trajectories with higher PC3 scores. Note that all three PCs also 
capture variation in the final quarter of the interval related to 
the variable influence of a following phrase accent (H- or L-).  

PC scores for each input F0 trajectory were determined as 
those whose combined effects on the mean curve generate the 
mostly closely matching trajectories. Scores for each PC, 
aggregated over speakers, were submitted to separate mixed 
effects models.  Figure 2C plots the model-estimated PC scores 
for each accent type and each PC. For PC1 (left panel), large 
positive scores are associated with productions of L+H*, 
indicating F0 trajectories with large excursions that are overall 
higher in the F0 range and have an early, high peak. In 
comparison, the negative PC1 scores for H* and L*+H 
productions indicate F0 trajectories with smaller excursions, 
placed lower in the F0 range, with later, lower peaks. 
Comparison of marginal effects estimates for PC1 across pitch 
accents confirms a credible difference for each pair. L+H* 
shows credibly higher PC1 values as compared to both H* (b = 
-2.33, 95CrI[-2.57,-2.08]) and L*+H (b = -2.65, 95CrI [-2.97,-
2.33]). H* also showed credibly higher PC1 compared to L+H* 
(b = 0.32, 95CrI [0.05,0.66]). PC2 scores show a more graded 
distinction, with positive scores for L*+H indicating 
trajectories with a scooped rise, later peak, and a steeper slope 
spanning a larger F0 range. PC2 scores for L+H* indicate a 
trajectory with shape characteristics like L*+H, but milder—
less scooped, earlier peak, shallower slope. The negative PC2 
scores for H* indicate little deformation of the mean curve. 
Comparisons of PC2 across pitch accents also show a credible 
difference for each pair. H* shows credibly lower PC2 values 
than L*+H (b = -1.94, 95CrI[-2.09,-1.80]) and lower than L+H* 
(b = -0.88, 95CrI[-1.03,-0.73]). L*+H also shows credibly 
higher PC2 scores in comparison to L+H* (b = 1.07, 
95CrI[0.87,1.26]). PC3 shows much weaker differentiation of 
accents, promoting a scooped accent shape with a late F0 peak 
for L*+H, and a milder but similarly scooped shape, with an 
earlier peak, for H* and L+H*. A credible difference is 
confirmed for each pair of comparisons across pitch accents in 
PC3, though the magnitude of differences is much smaller. 
L*+H shows credibly lower PC3 values in comparison to H* (b 
= 0.56, 95CrI[0.47, 0.65]) and L+H* (b = -0.48, 95CrI[-0.58,-
0.40]). Credibly lower PC3 scores are also found for L+H* as 
compared to H* (b = 0.07, 95CrI[0.005,0.14]), though the 
magnitude of this difference is small and credible intervals only 
narrowly exclude 0. Individually and combined, these three PCs 
succeed in characterizing a three-way distinction among 
productions of these accents (Table 1).  

Table 1: Model estimated PC scores, by sign 
(negative, positive, zero) for each pitch accent. 

Marginal non-zero value in parentheses. 

Accent PC1 PC2 PC3 
H* - - (+) 

L+H* + 0 0 
L*+H - + - 

 
Jointly, PC1 and PC2 capture roughly 85% of the variation 

in the data, with primary effects on overall F0 level and F0 
trajectory shape. We next examine the PC1 and PC2 scores for 
individual speakers to assess variation in the degree to which a 
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speaker implements high/rising accent distinctions through 
variation in F0 level (PC1) or shape (PC2) as the primary 
dimension, or through co-variation along both dimensions. 
Figure 4A displays how much PC1 and PC2 varied as a function 
of pitch accent for each speaker. We operationalized this in 
terms of standard deviation, taking the mean PC1 and PC2 of 
each accent for each speaker, and computing the standard 
deviation in terms of the difference between the mean PC for a 
given accent and the mean PC over the three accents, for each 
speaker. Larger values on the x and y axes correspond to larger 
variation in PC1 and PC2 as a function of pitch accent, for a 
given speaker. We take this to represent PC ‘use’: a speaker 
with a higher standard deviation for PC1 uses variation in F0 
level (the primary dimension of variation for PC1) in 
differentiating among the high/rising accents more heavily than 
a speaker who has a low value for PC1 ‘use’. Notably, there is 
nearly continuous individual variation along both PC ‘use’ 
dimensions, with individuals filling every quadrant of the  
plot—all speakers implement pitch accents with variation in 
both F0 level and shape. There is also not a clear negative or 
positive correlation between  PC1 and PC2 ‘use’, indicating that 
level and shape are not in a trading relationship.  

To better understand how the variable patterns of PC ‘use’ 
relate to the F0 trajectories speakers produce for different 

high/rising accents, we examine the mean F0 trajectories of 
each accent for six individual speakers who represent relatively 
extreme values of PC1 and PC2 use (Figure 3B). Speaker 29 
makes minimal distinctions among accent types, with very low 
‘use’ scores for PC1 and PC2. This speaker produces very 
similar F0 trajectories for all three accent types. On the other 
extreme we have speakers 69 and 58 with high ‘use’ scores for 
both PC1 and PC2. These speakers differentiate accents by 
overall F0 level (high for L+H*, low for L*+H), and shape 
(later peaks and more scooped shape for L*+H compared to 
L+H* and H*). Speakers 65 and 3 use level distinctions (high 
PC1) as the major dimension of contrast, while speaker 7 uses 
shape, with a scooped rise for L*+H, and nearly identical, 
minimally rising trajectories for H* and L+H*.   

4. Discussion 
F0 trajectories of three high/rising pitch accents in phrase-final 
(nuclear) position were examined in data from an intonation 
imitation experiment with speakers of AE. F0 trajectories were 
analyzed using FPCA to identify the F0 parameters associated 
with the first three PCs, representing the primary dimensions of 
variation in the data aggregated over speakers. Following the 
tonal specification of these accents in the AM model and their 
schematic illustrations in ToBI training materials, we 
hypothesized that a low pitch target at the onset of the rise and 
the alignment of the F0 peak would be the primary dimensions 
of variation. FPCA analysis identified three PCs that together 
account for 95% of the variation in F0 trajectories in our data. 
There are three important findings from the FPCA results from 
data aggregated over speakers. First, F0 level is the primary 
dimension of variation among the high/rising accents: L*+H 
is produced with an overall higher F0 level than  L+H* and H*. 
Second, variation in peak alignment is distributed across all 
three PCs: For each PC, the location of the F0 peak varies from 
earlier to later across PC score variation. Third, the second 
most substantial dimension of variation, PC2, is best 
described in terms of TCoG [5], conditioning co-variation of 
several acoustic parameters related to rise shape: peak 
alignment, curvature (scooped shape with low pitch at rise 
onset), and rise slope. In addition, PC scores from individual 
speakers show that all speakers implement distinctions among 
high/rising accents through co-variation of F0 level (PC1) and 
shape (PC2). And while there is no evidence for trading 
relations between these two dimensions of variation, some 
speakers favor level distinctions, while others favor shape 
distinctions, similar to findings from German and Italian [4]. 

5. Conclusions 
Variation in the F0 trajectories of high/rising pitch accents in 
AE is structured around two primary dimensions: F0 level and 
rise shape, the latter a dynamic property conditioned by the 
acoustic parameters of F0 peak alignment, slope and rise 
curvature. These findings, along with prior findings from 
German [3, 17, 18] and Italian [4], support a theory where peak 
alignment, a key contrastive feature in the AM model of AE [1, 
19] and other languages (e.g., [20]), co-varies with other shape 
parameters to define phonological distinctions among 
intonational categories.  
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Figure 4: Mean PC1 and PC2 ‘use’ 
scores (s.d. of mean PC scores across 

accents) by speaker (Panel A). Mean F0 
trajectories for six speakers (Panel B).  
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