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Abstract Phytoplankton in the Arctic Ocean and sub-Arctic seas support a rich marine food web that
sustains Indigenous communities as well as some of the world's largest fisheries. As sea ice retreat leads to
further expansion of these fisheries, there is growing need for predictions of phytoplankton net primary
production (NPP), which will likely allow better management of food resources in the region. Here, we use
perfect model simulations of the Community Earth System Model version 2 (CESM2) to quantify short-term
(month to 2 years) predictability of Arctic Ocean NPP. Our results indicate that NPP is potentially predictable
during the most productive summer months for at least 2 years, largely due to the highly predictable Arctic
shelves where fisheries in the Arctic are projected to expand. Sea surface temperatures, which are an important
limitation on phytoplankton growth and also are predictable for multiple years, are the most important physical
driver of this predictability. Finally, we find that the predictability of NPP in the 2030s is enhanced relative to
the 2010s, indicating that the utility of these predictions may increase in the near future. This work indicates that
operational forecasts using Earth system models may provide moderately skillful predictions of NPP in the
Arctic, possibly aiding in the management of Arctic marine resources.

Plain Language Summary Phytoplankton form the base of the marine food web, supporting
Indigenous communities and some of the world's largest fisheries in the Arctic Ocean and in sub-Arctic seas. As
sea ice continues to retreat, fisheries are expected to expand in the Arctic, and predicting phytoplankton growth
could allow us to better manage these fisheries. We used model simulations to investigate the upper limit in
short-term phytoplankton productivity prediction and we found that phytoplankton can be predicted for at least
2 years, especially in the shallow continental shelves of the Arctic Ocean where fisheries are expected to expand.
This predictability was largely provided by ocean temperatures, which control the rate of phytoplankton growth
and can be predicted for multiple years. We also found that predictability in the 2030s was higher than in the
2010s, indicating that predictions may improve in the near future. This work demonstrates that models may
provide useful predictions of NPP in the Arctic, aiding in the management of fisheries in the region.

1. Introduction

Marine phytoplankton comprise the base of the oceanic food web and mediate the global carbon (C) cycle by
fixing inorganic C in the surface ocean and sequestering it at depth (Falkowski, 2012; Field et al., 1998; Volk &
Hoffert, 1985). Although they account for only 1% of global photosynthetic biomass, phytoplankton generate
nearly half of the world's net primary production, or NPP (Falkowski, 2012). Phytoplankton NPP is controlled by
ocean temperatures and the availability of light and nutrients (Sigman & Hain, 2012) and can show substantial
seasonal-to-interannual variability both globally and regionally (Elsworth et al., 2020, 2021; Krumhardt
et al., 2017; Séférian et al., 2014), altering food availability for upper trophic level organisms and the efficacy of
the biological C pump on short timescales.

In the Arctic Ocean, phytoplankton NPP forms the foundation of a diverse and dynamic food web. Satellite-based
estimates indicate that Arctic phytoplankton fix ~500 Tg C yr~! (Arrigo & Van Dijken, 2011, 2015) and that
between 1998 and 2018, NPP increased by 57% (Lewis et al., 2020). This primary production supports large
zooplankton communities (Ashjian et al., 2003; Ershova et al., 2015; Hopcroft et al., 2005; Mueter et al., 2021;
Smidt, 1979), allowing the Arctic Ocean to serve as a critical feeding ground for both polar and migrating fish,
marine mammals, and seabirds (Boertmann et al., 2004; Bradstreet & Cross, 1982; Hamilton et al., 2021; Joi-
ris, 2011; Loeng et al., 2005; Logerwell et al., 2015; Munk, 2003; Rysgaard et al., 1999; Tsujii et al., 2016). While
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some of the world's largest fisheries are located in the sub-Arctic (Christiansen et al., 2014; Hollowed &
Sundby, 2014), Arctic Ocean fisheries are largely small-scale (Tai et al., 2019; Zeller et al., 2011). However, these
largely community-managed Arctic fisheries are a critical source of income for Indigenous communities and are
key to cultural traditions and food sovereignty (Divine et al., 2021; Hoover et al., 2013; Lysenko & Schott, 2019).

Phytoplankton NPP in the Arctic Ocean is subject to large year-to-year variability and is projected to be impacted
by long-term anthropogenic climate change. Arctic NPP exhibits substantial interannual variability, driven by
diminishing sea ice cover and possibly by increases in nutrient inventories in the surface ocean (Arrigo & Van
Dijken, 2015; Lewis et al., 2020). As a result of anthropogenic climate change, the Arctic has experienced
dramatic increases in temperature and declines in sea ice extent (Beer et al., 2020; Holland & Bitz, 2003;
Kwok, 2018; Meier & Stroeve, 2022; Rantanen et al., 2022; Screen & Simmonds, 2010; Timmermans &
Labe, 2023), with consequences for phytoplankton species composition as well as the timing and magnitude of
Arctic NPP (Ardyna et al., 2014; Arrigo et al., 2014; Arrigo & Van Dijken, 2015; Lewis et al., 2020; Li
et al., 2009; Payne et al., 2024; Terhaar et al., 2020). Models estimate that Arctic Ocean phytoplankton NPP may
increase by 2100 (Tagliabue et al., 2021; Vancoppenolle et al., 2013), though these projections are plagued by
high uncertainty, largely due to uncertainty in future nutrient inventories (Carmack & Chapman, 2003; Crawford
et al., 2020; McLaughlin & Carmack, 2010; Nummelin et al., 2015; Rainville & Woodgate, 2009; Tremblay
et al., 2011; Zhang et al., 2004). Variability and changes to Arctic phytoplankton NPP have already coincided
with changes in the fish species observed in the Arctic (Fossheim et al., 2015; Frainer et al., 2017), and fisheries
and other marine food resources will likely be impacted in the near future as the open water area, length of the
fishing season, and harvestable species are all projected to change (Christiansen et al., 2014; Tai et al., 2019; Wisz
et al., 2015). Arctic marine resource management thus stands to benefit from advanced knowledge of NPP
variations in a changing climate.

Using Earth system models (ESMs) that include a mathematical representation of primary and secondary pro-
ducers in the ocean, several studies have demonstrated that variations in NPP can be predicted multiple years in
advance (Frolicher et al., 2020; Krumbhardt et al., 2020; Séférian et al., 2014; Yeager et al., 2018). A few studies
have used ESMs to investigate multi-year predictability of NPP in polar regions, where variations in NPP are
strongly tied to interannual variation in sea ice. Buchovecky et al. (2023) found that the spring bloom in the
seasonally ice-covered Southern Ocean is potentially predictable more than 7 years in advance, and work by
Fransner et al. (2023) demonstrated that phytoplankton abundance in the Barents Sea can be predicted up to
5 years in advance. While quite a few studies have investigated the potential seasonal predictability of Arctic sea
ice (e.g., Blanchard-Wrigglesworth, Armour, et al., 2011; Blanchard-Wrigglesworth, Bitz, & Holland, 2011;
Blanchard-Wrigglesworth & Bushuk, 2019; Bushuk et al., 2017; Holland et al., 2019; Lindsay et al., 2008;
Merryfield et al., 2013), the seasonal predictability of NPP across the Arctic has not yet been explicitly explored.
Given the utility of seasonal NPP forecasts for marine resource management (Brodie et al., 2023; Tommasi
et al., 2017; Yeager et al., 2022) in a rapidly changing environment, quantifying the seasonal predictability of
Arctic NPP and its evolution under anthropogenic climate change may prove critical to managing regional marine
resources in the future.

This study investigates, for the first time, the potential near-term (month to 2 years) predictability of NPP in the
Arctic Ocean and sub-Arctic seas and its evolution in a rapidly changing climate. We do this within the context of
the Community Earth System Model and use “perfect model” ESM experiments to quantify the predictability of
NPP, to evaluate differences in predictability between the 2010s and 2030s, and to identify the physical drivers of
NPP predictability during these two periods. These two analysis periods are separated by two decades, allowing
us to assess how substantial changes in Arctic climate may alter the predictability of phytoplankton productivity
in the near future. We will demonstrate that NPP in the Arctic is potentially predictable on multi-year timescales
and that much of this predictability is provided by the Arctic shelves, where fisheries are likely to expand sub-
stantially (Tai et al., 2019).

2. Methods
2.1. CESM

This analysis relies on simulations of the Community Earth System Model version 2 (CESM2), an ESM that
includes atmosphere (the Community Atmosphere Model version 6; CAMG6), ocean, sea ice, and terrestrial
(Community Land Model version 5; CLMS5) components run at 1° horizontal resolution (Danabasoglu
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=== CESM2-LE

Net Primary Production

=== Perfect Model Sims.

et al., 2020). The ocean is simulated by the Parallel Ocean Program version 2
(POP2) and uses 60 vertical layers. Sea ice dynamics and thermodynamics are
/ simulated using the CICE model (version 5.1.2; Hunke et al., 2017), which
includes a sub-grid scale ice thickness distribution to represent the spatial
heterogeneity of sea ice and calculates light availability for photosynthesis in
grid cells with partial and full sea ice coverage (Long et al., 2015). CESM2
represents ocean biogeochemistry using the Marine Biogeochemistry Library
(MARBL; Long et al., 2021), which is composed of three phytoplankton

functional types (representing diatoms, diazotrophs, and picophytoplankton)
and one generic zooplankton type and simulates the marine cycle of carbon,

Figure 1. The mean and standard deviation of net primary production over

Time

oxygen, and the nutrients nitrogen (N), phosphorus (P), silica (Si), and iron
(Fe). CESM2 has been extensively evaluated with observational and rean-
alysis products (Danabasoglu et al., 2020; Long et al., 2021). While CESM2

time for the Community Earth System Model version 2 large ensemble captures the observed negative trends in 1979-2014 sea ice extent (DuVivier
(CESM2-LE; gray line and shading), which provides climatological et al., 2020) and cloud cover over the Arctic Ocean (Mcllhattan et al., 2020), it
variability, and for perfect model forecasts (blue lines and shading), produces sea ice (DuVivier et al., 2020) and snow on ice (Webster

initialized in 2010 and 2030.

et al., 2021) that is too thin, resulting in some inaccuracies in light limitation

in ice-covered waters. Simulated sea surface temperatures demonstrate
reasonable agreement with observations in the Arctic Ocean (Danabasoglu et al., 2020) and while modeled N
concentrations are low in the sub-Arctic Pacific, they match observations well in the Arctic Ocean and other sub-
Arctic regions (Long et al., 2021). Consequently, CESM2 has been found to replicate observed patterns of N and
Fe limitation globally (Long et al., 2021). NPP produced by CESM2 for regions poleward of 50°N has not
previously been explicitly evaluated against observations. Here, we compare monthly integrated 0—100 m NPP
produced by 50 members of the CESM2 large ensemble (CESM2-LE; see details of these simulations below) to
monthly NPP produced by an Arctic-specific algorithm (Lewis & Arrigo, 2020) as well as two global NPP al-
gorithms, VGPM (Vertically Generalized Production Model; Behrenfeld & Falkowski, 1997) and CbPM (Car-
bon-based Production Model; Westberry et al., 2008). We present this evaluation for the 2005-2014 period.

2.2. Simulations

For this analysis, we use both the CESM2-LE (Rodgers et al., 2021) and a prediction ensemble composed of sets
of ensemble simulations initialized from CESM2-LE simulations. We use 50 members of the large ensemble that
are initialized in 1850 with a pre-industrial control simulation and are subsequently run for historical (1850-2014)
and future (2015-2100) scenario periods using historical and SSP3-7.0 forcing protocols from the 6" Coupled
Model Intercomparison Project (CMIP6; Eyring et al., 2016). Ensemble members have identical prescribed
forcing but differ due to a roundoff-level perturbation (10" K) in the initial air temperature and different initial
ocean states. Consequently, the spread between ensemble members demonstrates the effect of internal climate
variability (Deser et al., 2012). In addition to the CESM2-LE, we use a specialized set of “perfect model”
forecasts. Five CESM2-LE ensemble members are randomly selected, and 15 forecast ensemble members are
generated for each of these selections by initializing from the 2010 and 2030 coupled model state and perturbing
air temperatures by 10™'* K (Figure 1 blue lines and shading). Prediction ensembles (15 members each for five
initial states) are initialized on 1 January, 1 March, 1 May, 1 July, 1 September, and 1 November, yielding 75
forecast ensemble members for each initialization month. Predictability is subsequently quantified by comparing
how these forecast ensemble simulations diverge from each other over time (Figure 1). These “perfect model”
forecasts use the model to predict itself. While these experiments can be influenced by the climate biases of the
underlying model, they do not depend on model skill. As such, these experiments provide a measure of potential
predictability, rather than a measure of true forecast skill using an observational data set.

2.3. Analysis

We assess predictability across the Arctic Ocean and in sub-Arctic seas. We consider all ocean grid cells north of
50°N to be in the “Arctic Ocean”. To evaluate regional predictability, we use Large Marine Ecosystems (LMEs;
https://www.seaaroundus.org/; Figure 2a) and divide the Arctic into four regions—the Arctic shelves (>66.5°N
and a grid cell depth of <1,000 m), Arctic deep ocean (>66.5°N, depth of >1,000 m), sub-Arctic shelves (50—
66.5°N, depth of <1,000 m), and sub-Arctic deep ocean (50-66.5°N, depth of >1,000 m; Figure 2b). We compare
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Figure 2. (a) Community Earth System Model version 2 Large Ensemble 20102012 annual mean NPP (mg C m~2 d™") for each large marine ecosystem (LME; https:/
www.seaaroundus.org/) in the Arctic Ocean (black lines). Labels indicate the boundaries of the (1) Gulf of Alaska, (2) West Bering Sea, (3) Aleutian Islands, (4) East
Bering Sea, (5) Sea of Okhotsk, (6) North Bering and Chukchi Seas, (7) Beaufort Sea, (8) East Siberian Sea, (9) Laptev Sea, (10) central Arctic, (11) Canadian High
Arctic and North Greenland, (12) Kara Sea, (13) Hudson Bay, (14) Canadian East Arctic and West Greenland, (15) Barents Sea, (16) Greenland Sea,

(17) Newfoundland-Labrador Shelf, (18) Iceland Sea and Shelf, (19) Norwegian Sea, and (21) North Sea LMEs, as well as the (20) north Atlantic. (b) Study region,
separated into Arctic (>66.5°N) and sub-Arctic (50-66.5°N) shelves (<1,000 m) and deep ocean (>1,000 m), with LME boundaries marked in black. (c) June 2010
mean Prognostic Potential Predictability (PPP) for each grid cell for perfect model experiments initialized 1 May 2010. LME boundaries are marked in gray.
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variability across CESM2-LE members from 2010 to 2012 and 2030-2032 to variability across the perfect model
experiment ensemble members for the same years. Because NPP is lognormally distributed, we calculate variance
for In(NPP) as in Campbell (1995).

We quantify prediction skill using the intra-ensemble Prognostic Potential Predictability (PPP; Pohlmann
et al., 2004, Figure 2c¢), such that

62 me
PPP =12, (1)
2
Oclim

where ;pme represents the mean of the variability across the different initializations of the perfect model ex-

2

periments and o7,

represents the variability of the climatology, here the variability for the CESM2-LE simu-
lations for 2010-2012 or 2030-2032. PPP is a commonly used metric for assessing predictability in idealized
studies (e.g., Germe et al., 2014; Holland et al., 2011; Koenigk & Mikolajewicz, 2009; Pohlmann et al., 2004). It
is typically used to quantify the upper limit of predictability, or the “predictability horizon” (Séférian et al., 2018).
With the perfect model approach used here, there is not a specific state (e.g., from observations or a control run)
that is being predicted. Instead, we seek to assess how rapidly the simulations lose the “memory” of the initial
state that would allow for predictable conditions. PPP provides a simple but intuitive metric for this in that it
measures the spread of ensemble members that are initialized with nearly identical conditions relative to the
spread expected from internal variability. A PPP value of 1 amounts to perfect predictability, while a value less
than 0 indicates that the variance among ensemble members is greater than that of the climatology, and thus that
there is no predictive skill. In our analysis, negative PPP values could be attributed to either very low variance in
both the climatology and the experimental ensemble sets or as a consequence of the relatively small sample size
for the ensemble sets. Consequently, PPP values <0 are excluded from our analysis.

In addition to computing the predictability of NPP, we also assess the relative importance of the drivers of
phytoplankton productivity using the light, nutrient, and temperature limitation terms for the diatom functional
group, the group that accounts for the vast majority of total NPP in the Arctic Ocean (Long et al., 2021). The
model formulations of these limitation terms are listed in Section S1. We use the N limitation term for diatoms to
approximate the role of nutrients in limiting phytoplankton growth. On an annual, pan-Arctic scale, CESM2-LE
average N limitation terms are lower (and thus more limiting) than for any other nutrient (Long et al., 2021). Si has
a slightly lower limitation term in September on a pan-Arctic basis, but Si availability largely controls phyto-
plankton functional type dominance in the Arctic, not NPP (Ardyna et al., 2020; Long et al., 2021). To determine
the relative limitation (R) for the light (L), N (¥), and temperature (7') drivers, we use the modeled limitation
terms for light (Lim,), nitrogen (Lim,), and temperature (Limy), such that:

R — 1 - Lim(L’N’T)
END = (1 = Limy) + (1 = Limy) + (1 — Limy)’

2

where Lim; y 7 represents the limitation term for the desired driver. With this formulation (Oliver et al., 2023),
limitation proportions for light, temperature, and the most limiting nutrient sum to 1 (R, + Ry + Ry = 1), and
the larger the value of the limitation proportion, the more important that driver is in controlling phytoplankton
growth. However, both the relative limitation by any driver and the predictability of that limitation term play a
role in how important a given driver is in controlling the predictability of NPP. The relative PPP of each limitation
term (Rppp), and thus its relative importance in controlling the PPP of NPP, is quantified as

Run,r) * PPPy N1
Rppp = e — , (3)
(R, # PPP.) + (Ry * PPPy) + (Ry % PPPy)
where R represents the relative limitation (calculated in Equation 2) and PPP, y 7, represents the PPP of the
limitation term (calculated in Equation 1).

To evaluate differences between 2010-2012 and 2030-2032, we use paired ¢ tests (using @ = 0.05). All statistical
analyses are conducted in Python version 3.10.12.
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3. Results
= 3.1. Evaluation of Modeled Net Primary Production
<
=]
é — copm CESM2 is a fully coupled Earth system model; each simulation differs due to
o — VGPM internal climate variability and represents an equally possible realization of
£ — Llewisetal. any given variable. In contrast, the observational record is analogous to one
% CESM2-LE iteration of an Earth system model. Therefore, individual years of satellite
observations cannot be directly compared to climate model output due to
differences in the internal variability of the Earth system. To better understand
how observations fit within the range of modeled NPP, we compare modeled
2005-2014 NPP (integrated over the top 100 m, mean of 50 ensemble
Figure 3. Monthly net primary production (NPP; Tg C per month) for the members) to remote sensing observations using an Arctic-specific NPP al-
Arctic Ocean north of 66.5°N from 2005 to 2014 for three satellite gorithm and two global algorithms, VPGM and CbPM. Satellite observations
algorithms (Behrenfeld & Falkowski, 1997; Lewis et al., 2020; Westberry in the Arctic are limited by low sun angle and by sea ice and cloud cover and

et al., 2008) and the 2005-2014 mean (black dashed line) and standard
deviation (gray area) of 50 ensemble members of the Community Earth
System Model version 2 Large Ensemble (CESM2-LE).

the unique optical properties of the region mean that satellite estimates are
particularly uncertain, with satellite-derived estimates ranging from 200 to
1,000 Tg C yr~" across the region (Babin et al., 2015). For the region >66.5°
N, both sea ice cover and the polar night limit light availability, and conse-
quently there is little NPP from October until March. NPP in the CESM2-LE increases from April until July, when
phytoplankton produce an average of 130 Tg C per month (Figure 3), and NPP rapidly diminishes again in August
and September. Estimates of NPP derived from ocean color using an Arctic-specific algorithm similarly find that
NPP peaks in July in almost all years (with the exception of 2010, when NPP peaked in August), with rates of NPP
peaking at 67-99 Tg C per month (Figure 3). For both the CbPM and VGPM algorithms, Arctic NPP peaked more
frequently in August (in six and 8 years of the 10 spanning from 2005 to 2014, respectively) than in July, and peak
NPP averaged 132 and 248 Tg C per month with these two algorithms (Figure 3). On a pan-Arctic scale, the
CESM2-LE appears to over-estimate NPP in the spring (Figure 3), but the large under-ice phytoplankton blooms
that may be generated across much of the Arctic likely result in substantial underestimates of NPP by satellite
observations during this period (Arrigo et al., 2014; Payne et al., 2024). In the fall, NPP in the CESM2-LE is low
compared to the global algorithms and slightly higher than the Arctic-specific algorithm (Figure 3), with this
spread across satellite algorithms likely attributable to the unique optical properties of the Arctic (Babin
et al., 2015; Lewis & Arrigo, 2020). For the 50 members of the CESM2-LE used as a part of this analysis,
annually integrated NPP in this region averaged 474 + 158 Tg C yr~"' from 2005 to 2014, while the three satellite
algorithms produced average NPP of 306 + 21, 475 + 27, and 852 =+ 87 Tg C yr™ for the Lewis et al. (2020),
CbPM (Westberry et al., 2008), and VGPM algorithms (Behrenfeld & Falkowski, 1997), respectively (Figure 3).

Spatially across the Arctic Ocean and sub-Arctic seas (>50°N), the CESM2-LE replicates broad patterns of
annual NPP but produces too little NPP in coastal regions (Figure 4). The model produces lower NPP in the
central Arctic and extending down the east coast of Greenland and as far south as Hudson Bay, while higher
annual NPP is observed in the north Atlantic and in the Bering and Barents Seas (Figure 4a). The two global
algorithms have similar spatial patterns of high and low NPP, with perhaps the biggest discrepancy in Hudson
Bay, where VGPM and CbPM both observe more NPP than the CESM2-LE produces (Figure 4). Elevated NPP
between Iceland, Svalbard, and Norway is observed in the model and across all three satellite algorithms
(Figure 4). While both CbPM and VGPM produce very high NPP close to the coast in Alaska and Scandinavia
(Figures 4¢ and 4d), the CESM2-LE looks more comparable to the Lewis et al. (2020) algorithm (Figures 4a and
4b), likely because the global algorithms overestimate Chlorophyll-a concentrations in these waters, leading to an
overestimate of NPP. Overall, this evaluation indicates that CESM2-LE adequately reproduces the seasonal cycle
of NPP in the Arctic observed across different satellite algorithms, as well as broad spatial patterns of annual NPP
produced remotely.

3.2. Predictability of Net Primary Production in 2010 and 2030

On a pan-Arctic (>50°N) scale, modeled phytoplankton NPP peaks in May, with nearly 25% of total annual NPP
generated in the month of May (greyscale gradients in background of Figure 5). June and July are similarly highly
productive and account for 22% and 16% of total NPP, respectively. April, August, and September contribute
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Figure 4. Mean annual integrated net primary production (NPP; g C m~2 yr™") for the Arctic Ocean north of 50°N from
(a) the CESM2-LE and satellite-derived NPP produced by (b) an Arctic-specific algorithm (Lewis & Arrigo, 2020), (c) the
VPGM (Behrenfeld & Falkowski, 1997), and (d) the CbBM (Westberry et al., 2008) for 2005-2014.

12%, 12% and 6%, respectively, to annual NPP, while the months of October-March generate a total of 8% of
annual NPP. Consequently, we focus our analysis on changes to predictability from May-July.

For both the 2010 and 2030 sets of perfect model forecasts, the PPP for NPP is high (>0.75) in the initialization
month (Figure 5) due to low initial variance among the perfect model experiments (i.e., small spread across the
forecast ensemble). However, in the first month after initialization, PPP drops substantially, with PPP gradually
increasing across most initializations during the subsequent summer and fall months (May—November) and
sharply falling off in the winter (December-February) months. While there are some differences in monthly PPP
across the different initialization months, PPP generally follows the same temporal evolution across all initial-
ization months, indicating that Arctic NPP predictability is relatively insensitive to the forecast initialization
month (Table 1, Figure 5).
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Figure 5. Monthly Prognostic Potential Predictability (PPP) of net primary production (NPP) for (a) January 2010—October 2012 and (b) January 2030—October 2032 for
the Arctic Ocean (> 50°N). Line colors indicate when simulations were initialized (1 January, 1 March, 1 May, 1 July, 1 Septemberl , and 1 November), and background
gradient indicates the proportion of the maximum NPP generated in each month. Y-axis limits are set to exclude negative PPP values where there is no predictive skill.

When only the most productive months (May—July) are taken into account, PPP values for forecasts initialized in
the 2010s are lower than PPP for forecasts initialized in the 2030s on a pan-Arctic scale. Most individual months
demonstrate no change in PPP over this period with the exception of July of 2031, which has a significantly higher
PPP (mean of 0.50) than July of 2011 (mean of 0.20, respectively; p = 0.007; Figure 5). However, mean PPP

Table 1

Mean May-July Prognostic Potential Predictability (PPP) by Initialization
Month for the 2010-2012 and 2030-2032 Periods, Excluding PPP Values
Below 0, As Well As the Mean and Standard Deviation (SD) Across
Initialization Months and the p-Value of the Paired t Test Comparing 2010—
2012 and 2030-2032

Period Jan Mar May Jul Sep Nov Mean £ SD p-value

20102012 0.21
2030-2032 0.32 0.31

033 039 035 022 028 0.30«x0.07

043 042 031 039 0.36+0.05 0.018

values during the most productive months (May—July) across each initiali-
zation month are significantly higher in the 2030s than in the 2010s (Table 1).
Differences in pan-Arctic PPP between the 2010s and 2030s arise from both a
change in climatological variance and forecast ensemble variance. Variance
in Arctic NPP in the CESM2-LE is 7.7% greater for 2010-2012 than for
2030-2032 (Table 2). Among the forecast ensembles, variance in 2010-2012
is on average 10.9% greater than in 2030-2032 (Table 2). Forecast ensembles
initialized in January and September have far higher variance in the 2010s,
while ensembles initialized in May and November have only modestly more
variance in the 2010s and ensembles initialized in March and July exhibit
more variance in the 2030s (Table 2).
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Table 2

We investigate regional predictability by separating the Arctic (>66.5°N)

Change in Variance (A, %) in Phytoplankton NPP Across the Arctic Between from the sub-Arctic (50-66.5°N) and the shelf (<1,000 m) from the deep
the 2010s and 2030s for the Climatology and Forecast Ensembles and for ocean (>1,000 m) areas, as well as by LME (Table 3). On regional scales, the

Each Initialization Month

Arctic shelves stand out as having consistently high productive-season pre-

A Variance  dictability in the 2010s but lowered predictability in the 2030s (Figure 6),

Climatology
Forecast
January
March

May

July
September

November

while the sub-Arctic shelves and deep ocean also demonstrate relatively high

77 predictability (Table 3; Figures S1-S3). PPP values for the most productive
—10.9 months (May—July) were highest on Arctic shelves in the 2010s (PPP = 0.46;
—29.1 Figure 6a) and were also relatively high in the sub-Arctic shelf (PPP = 0.34;

13.3 Figure S2a) and sub-Arctic deep ocean (PPP = 0.33, Figure S3a). In the
-5.1 2030s, however, PPP was highest on the sub-Arctic shelves and deep ocean

79 (PPP = 0.39 for both; Figures S2b and S3b) and was significantly lower on
_394 the Arctic shelves than it had been in the 2010s (PPP = 0.37, p = 0.032;
e Figure 6b). During just the most productive month (May in both the sub-

Arctic shelves and deep ocean), PPP decreased in the sub-Arctic shelves

but increased in the sub-Arctic deep ocean (Table 3; Figures S2 and S3)

between 2011 and 2031. On the Arctic shelves, where NPP is equally high in
June and July, PPP decreased in June 2031 relative to 2011 and did not change in July 2031 relative to 2011
(Table 3). The Arctic deep ocean had the lowest predictability of any region and did not significantly change
between the 2010s and 2030s (Table 3; Figure S1). We also quantified PPP for 20 LMEs in the Arctic, as well as
for the Atlantic Ocean (>50°N). The five LMEs with the highest PPP during their most productive month across
all initializations and for the 2010s and 2030s are the Canadian East Arctic, East Siberian, Beaufort Sea, Kara Sea,
and Laptev Sea LMEs (Table 3), all of which are primarily located on Arctic shelves.

3.3. Which Regions Are Responsible for Increases in Future Predictability?

To investigate which regions drove the pan-Arctic increase in predictability by 2030, we focus on May—July of
2011 and 2031 of a single initialization timing (May 1-initialized). This particular initialization month had pan-
Arctic PPP values close to the average across all initialization months (Figure 5) as well as similar spatial patterns
of changes between the 2010s and 2030s (compare Figure 7 to Figure S4). Although the increase in predictability
in the 2030s is subtle on a pan-Arctic scale, clear regional patterns are visible for the months of May-July,
whereby increases in predictability shift northward over the productive summer months. In May, the largest
increases in PPP from 2011 to 2031 occured in Hudson Bay, the Iceland LME, and the southern Barents Sea
(Figure 7a). May PPP also increases from 2011 to 2031 in the Gulf of Alaska, the Siberian Sea, the Sea of
Okhotsk, the northern Norwegian Sea, and the north Atlantic (Figure 7a). In contrast, May PPP declines from
2011 to 2031 in the southern Bering Sea, the northern Chukchi Sea, the central Arctic, the northern Barents Sea,
and the Kara Sea (Figure 7a). PPP is most enhanced in June 2031 relative to June 2011 in the shelf regions of the
Arctic—in Baffin Bay and the Beaufort, Chukchi, Siberian, Laptev, Kara, and northern Barents Seas—as well as
in the eastern Bering Sea (Figure 7b). PPP exhibits slight increases from 2011 to 2031 across the Arctic, with
Hudson Bay, the Sea of Okhotsk, and the southern North Atlantic all showing moderate increases in 2031 June
PPP relative to 2011 (Figure 7b). June PPP declines from 2011 to 2031 in the central Arctic and the Norwegian
Sea (Figure 7b). PPP in July 2031 exhibits large increases relative to PPP in July 2011 in the central Arctic, with
July PPP increases also apparent in the north Atlantic, the Siberian, Laptev, and Kara Seas, and the northern Gulf
of Alaska (Figure 7¢). In contrast, July PPP shows moderate declines in 2031 relative to 2011 in coastal areas
throughout the Arctic, including in the Sea of Okhotsk, the Norwegian Sea, Baffin Bay, and parts of the coastal
Barents Sea (Figure 7c).

3.4. What Drives Predictability?

NPP is controlled by temperature and the availability of light and nutrients. We quantified the importance of these
drivers in controlling the predictability of NPP on a pan-Arctic basis as well as by LME and by region. However,
the primary drivers were not significantly different between LMEs or by region, and consequently we present only
our results on a pan-Arctic basis here.

Between October and April, when much of the Arctic is covered with sea ice, the light limitation is the most
important of these factors, accounting for ~50% of the total limitation on pan-Arctic phytoplankton growth
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Table 3

Net Primary Production (NPP; g C m™2 d™') and Mean Prognostic Potential Predictability (PPP) Across All Initialization Timings Forecasts for 2011 (‘11) and 2031
(’31) for May, June, and July for Each of the 20 Large Marine Ecosystems (LMEs) and for the North Atlantic (>50°N)

May May May June June June July July July
LME Region NPP ‘11 PPP ‘31 PPP NPP ‘11 PPP ‘31 PPP NPP ‘11 PPP ‘31 PPP
Arctic shelf 0.21 0.35 0.20 0.33 0.45 0.10 0.33 0.51 0.48
N. Bering and Chukchi Arctic shelf 0.45 0.12 0.21 0.51 0.05 0.15 0.43 0.36 0.23
Seas
Beaufort Sea Arctic shelf 0.05 - 0.05 0.23 0.24 0.15 0.28 0.75 0.63
E. Siberian Sea Arctic shelf 0.03 - - 0.18 - 0.05 0.26 0.75 0.79
Laptev Sea Arctic shelf 0.04 - 0.11 0.15 - 0.02 0.24 0.52 0.65
Canadian High Arctic Arctic shelf 0.01 0.52 0.68 0.06 - 0.71 0.18 0.12 0.54
Kara Sea Arctic shelf 0.08 0.24 0.14 0.28 0.39 0.39 0.34 0.64 0.60
Canadian E. Arctic Arctic shelf 0.37 0.80 0.47 0.57 0.91 0.41 0.49 0.73 0.44
Barents Sea Arctic shelf 0.49 0.48 0.36 0.51 0.34 0.13 0.39 0.32 0.11
Arctic deep 0.22 0.32 0.19 0.24 - - 0.33 0.31 0.32
Central Arctic Arctic deep 0.00 0.15 - 0.06 0.21 - 0.30 - 0.44
Greenland Sea Arctic deep 0.51 0.59 0.48 0.54 0.28 0.27 0.42 0.24 -
Norwegian Sea Arctic deep 1.39 0.14 0.27 0.97 0.18 0.23 0.51 0.27 0.12
Sub-Arctic 0.89 0.26 0.15 0.73 0.23 0.34 0.50 0.31 0.46
shelf
Sea of Okhotsk Sub-Arctic 1.31 0.29 0.26 1.00 0.20 0.26 0.56 0.18 0.17
shelf
Hudson Bay Sub-Arctic 0.12 - - 0.30 0.54 0.69 0.30 0.87 0.83
shelf
Newfoundland-Labrador Sub-Arctic 0.94 0.44 0.41 0.61 0.40 0.43 0.45 0.62 0.29
shelf
Iceland Sea and Shelf Sub-Arctic 1.19 0.38 0.50 0.98 0.26 0.19 0.57 0.27 0.19
shelf
North Sea Sub-Arctic 0.83 0.22 0.15 0.61 0.06 0.35 0.49 0.17 0.21
shelf
Sub-Arctic 1.2 0.11 0.31 0.97 0.09 0.29 0.57 0.39 0.5
deep
Gulf of Alaska Sub-Arctic 0.68 0.26 0.50 0.49 0.24 0.08 0.41 0.12 0.05
deep
W. Bering Sea Sub-Arctic 1.28 0.28 0.09 1.16 0.18 0.21 0.59 0.27 0.09
deep
Aleutian Islands Sub-Arctic 1.06 0.24 0.15 1.25 0.13 0.30 0.81 0.21 0.18
deep
E. Bering Sea Sub-Arctic 1.08 0.25 0.26 0.95 0.21 0.37 0.57 0.28 0.31
deep
North Atlantic Sub-Arctic 1.33 0.12 0.41 1.04 0.18 0.22 0.61 0.19 0.42
deep

Note. PPP Values Below 0 are Excluded From Means. LMEs are organized by the dominant region (sub-Arctic or Arctic and deep ocean or shelf), and mean NPP and
PPP values for each region are also presented. Bold indicates the month(s) with the highest NPP for each LME.

(Figure 8a). However, light limitation drops in importance between May and July (dipping to a minimum of 34%
in July) as sea ice retreats before increasing again in the fall as day length declines. Temperature limitation is far
more consistent, accounting for 45%—47% of the total phytoplankton growth limitation throughout the year, and
thus is the dominant limitation term during the summer months (May—August) when NPP is greatest (Figure 8a).
Finally, N limitation (which we use here to approximate the overall role of nutrients in limiting growth—see
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Figure 6. Monthly Prognostic Potential Predictability (PPP) of net primary production (NPP) for (a) January 2010-October 2012 and (b) January 2030-October 2032 for
the Arctic shelves (> 66.5°N; <1,000 m). Line colors indicate when simulations were initialized (1 January, 1 March, 1 May, 1 July, 1 September, and 1 November), and
background gradient indicates the proportion of the maximum NPP generated in each month. Y-axis limits are set to exclude negative PPP values where there is no

predictive skill.

Section 2.3) remains <6% between October and April and increases as NPP increases over the summer months,
peaking in July, when it accounts for 19% of the total limitation of phytoplankton growth (Figure 8a).

Light, temperature, and N control the predictability of NPP not only through their relative importance as limi-
tations, but also through their predictability. While light limitation is initially predictable (PPP of 0.81-0.94
during the initialization month of May; Figure 8b), its predictability rapidly declines. The PPP of light limitation
increases again in the summer months of the first year of the simulations (July—October), but declines substan-
tially by the second year (Figure 8b). The PPP of temperature limitation also declines following initialization,
reaching a low in the summer or autumn of the first year of the simulations (Figure 8b), but recovers and remains
elevated in the second year of the simulations, remaining above the significance line throughout the 2-year
forecasts (Figure 8b). Finally, N limitation declines more slowly than light limitation, increases during the
winter of the first year, and declines in the summer of the second year of the forecasts (Figure 8b).
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Figure 7. A PPP for (a) May 2031- May 2011, (b) June 2031 — June 2011,

and (c) July 2031 — July 2011 for simulations initialized on 1 May 2030 and
2010. Black lines indicate large marine ecosystem (LME) boundaries.

To determine which of these limitation terms most controls the predictability
of NPP, we combine the relative importance and PPP of each limitation term
(see Equation 3) and calculate its relative PPP. While temperature initially has
a relative PPP of 0.52, its contribution to PPP rises in importance during the
late summer and autumn, peaking at 0.91 by January (Figure 8c). The relative
PPP of temperature declines once again in the spring of the second year but
rebounds by the autumn of the second year. While light starts off as a simi-
larly important contributor to PPP as temperature, with a relative PPP of 0.41,
it declines through the summer and autumn and is only intermittently
contributing to the predictability of NPP by the second year (Figure 8c). N
limitation is variable in its initial importance depending on initialization
month, with a relative PPP of 0.07 for May-initialized forecasts. The relative
PPP of N limitation never rises above 0.18 and it contributes the most to the
predictability of NPP in July (Figure 8c), the month when its relative limi-
tation is greatest. Overall, this demonstrates that, because of its importance as
a limit on phytoplankton growth and because of its high predictability, tem-
perature limitation is the most important driver in controlling the predict-
ability of phytoplankton NPP across the Arctic in both 2010 and 2030 (see
Figure SS5).

4. Discussion

Here, we use 2-year perfect model forecasts to quantify the potential upper
limit of predictability of NPP in the Arctic Ocean and sub-Arctic seas in the
2010s and 2030s. We find that Arctic NPP is predictable for at least 2 years
during the months with the most phytoplankton production, and that pre-
dictability may moderately increase in 2030 relative to 2010. Further, we find
that the Arctic shelves provide much of this predictability. Finally, we
identify temperature as the primary driver of the predictability of NPP, due
both to its importance as a limit on phytoplankton growth during the summer
months and because of its high interannual predictability.

Phytoplankton NPP in the Arctic Ocean is highly seasonal and experiences
substantial interannual variability, but our results indicate that operational
forecasts may provide moderately skillful predictions of Arctic NPP for
multiple years. This predictability is greatest on the shallow continental
shelves of the Arctic Ocean, where most small-scale, indigenous-operated
Arctic fisheries are currently located (Tai et al., 2019) and where fisheries
are projected to expand substantially in the future (Christiansen et al., 2014).
Both the sub-Arctic shelves and sub-Arctic deep ocean also show a relatively
high degree of predictability, indicating that forecasts of NPP may even prove
useful in regions with some of the world's largest present-day fisheries
(Christiansen et al., 2014; Hollowed & Sundby, 2014). A number of other
recent studies have evaluated the predictability of phytoplankton NPP glob-
ally (Krumhardt et al., 2020; A. Xu et al., 2023; Yeager et al., 2022) as well as
in polar regions (Buchovecky et al., 2023; Fransner et al., 2023), often finding
that predictions of NPP are skillful. Interestingly, NPP has often proven more
predictable than the drivers of phytoplankton production. For example, work
by Séférian et al. (2014) in the tropical Pacific finds that, despite substantial
interannual variability, NPP is more predictable than temperature, the primary

driver of that variability. Forecasts of the spring bloom along the sea ice edge of the Southern Ocean are skillful 7—

10 years in advance (Buchovecky et al., 2023), while sea ice extent in the Southern Ocean is only predictable
11 months in advance (Bushuk et al., 2021). Similarly, we find that the predictability of NPP persists over the
2 years of our forecast ensembles, even though the predictability of sea ice, which acts as a key control on Arctic
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Figure 8. (a) The climatological monthly proportional importance of light (yellow), temperature (red), and nitrogen (green) limitation terms in controlling NPP across
the Arctic in the CESM2-LE for 2010-2012. Background gradient indicates the proportion of maximum climatological NPP reached during each month. (b) Monthly
Prognostic Potential Predictability (PPP) for light (yellow), temperature (red), and nitrogen (green) limitation terms on a pan-Arctic scale for simulations initialized on 1
May 2010 and concluding 30 April 2012. Background gradient indicates the proportion of maximum NPP reached during each month. Horizontal dashed line indicates
line of statistical significance. (c) The importance of N (green), light (yellow), and temperature (red) limitation terms in controlling the PPP of NPP across the Arctic.
Dashed lines demarcate the May—July period with the highest NPP.
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phytoplankton by affecting both light availability and upper ocean temperatures (Blanchard-Wrigglesworth,
Armour, et al., 2011), declines substantially as lead time increases (Holland & Hunke, 2022).

We also investigate how predictability changes as the Arctic climate system evolves and find that NPP is
significantly more predictable during the most productive months in the 2030s than in the 2010s, thus indicating
that the skill of forecasts for Arctic NPP may increase in the near future. This increase in predictability for NPP
stands in contrast to the predictability of sea ice extent in the first several decades of the 21st century. Prior work
using perfect model experiments initialized from the CESM1-LE finds that summer Arctic sea ice reached peak
predictability in 2010, with lower predictability in both 2000 and in 2021 (Holland et al., 2019). This increase and
subsequent decline in predictability is associated with a large increase in the internal variability of sea ice from
2000 to 2030 and a slower increase in forecast variability over this same period (Holland et al., 2019), resulting in
a window of enhanced sea ice extent prediction and possibly explaining the decline we find in the predictability of
NPP on the Arctic shelves in some months of the 2030s relative to the 2010s. Similarly, the climate-driven change
in Arctic NPP predictability arises from changes to both climatological and forecast variance. Between 2010 and
2030, the climatological variance declines by almost 8% while the variance between forecast ensembles declines
by nearly 11%, indicating that both a reduction in the internal variability of Arctic NPP and increased forecast skill
may play a role in driving improvements in predictions of NPP.

Finally, our results indicate that the primary driver of predictability for Arctic NPP is ocean temperatures, which
both act as the most important limit on phytoplankton growth during the summer months and remain highly
predictable over our 2-year forecasts. Although massive phytoplankton blooms have been observed under sea ice
and at very low temperatures (Arrigo et al., 2014), both laboratory studies (Coello-Camba & Agusti, 2017) and
modeling studies that use different methodologies (Krumhardt et al., 2020) suggest that Arctic Ocean tempera-
tures substantially limit phytoplankton growth. In a previous global study of the potential predictability of NPP,
high-latitude environments where temperatures and light are the most important limitations on phytoplankton
growth have far lower potential predictability than areas primarily controlled by nutrient limitation (Krumhardt
et al., 2020). However, ocean temperatures have also been shown to be key in providing predictability to sea ice
extent (Bushuk et al., 2017) as well as to NPP (L. Xu et al., 2023).

While our results suggest that CESM2 and other ESMs may provide moderately skillful predictions of NPP in the
Arctic, challenges remain in implementing actionable forecasts of regional NPP. Perfect model forecasts such as
those used in this study do not require a skillful model, instead providing an upper limit of predictability for a
variable that models may not yet capture accurately (Holland et al., 2019; Krumbhardt et al., 2020). Here, we
demonstrate that the CESM2-LE reasonably replicates both the seasonality and total annual phytoplankton NPP
produced by Arctic-tuned satellite algorithms. However, remotely sensed NPP has many limitations in the Arctic.
Satellites cannot provide direct estimates of large under-ice phytoplankton blooms (Arrigo et al., 2012; Payne
et al.,, 2024), leading to estimates of annual NPP an order of magnitude lower than observations (Arrigo
et al., 2014). Further, satellite-derived estimates of NPP may underestimate NPP generated in the subsurface or in
the fall, when sun angle prevents satellite observations (Babin et al., 2015; Brown et al., 2015; Lee et al., 2015).
While CESM2 and other ESMs may still have lower skill at predicting in situ NPP, our results demonstrate that
these models can forecast phytoplankton NPP reasonably well for at least 2 years, which may help in future
marine resource management.

Data Availability Statement

The CESM2 Large Ensemble (Danabasoglu et al., 2023) is available at: https://www.earthsystemgrid.org/dataset/
ucar.cgd.cesm2le.output.html. The perfect model prediction forecasts (Holland & Bailey, 2024a, 2024b) are
available at https://rda.ucar.edu/datasets/ds651.1 for 2010 and https://rda.ucar.edu/datasets/ds651.3 for 2030.
Remotely sensed NPP files are available at http://orca.science.oregonstate.edu/1080.by.2160.monthly.hdf.
cbpm2.m.php for the Carbon-based Production Model (Westberry et al., 2008), http://orca.science.oregonstate.
edu/1080.by.2160.monthly.hdf.vgpm.m.chl.m.sst.php for the Vertically Generalized Production Model (Beh-
renfeld & Falkowski, 1997), and http://albedo.stanford.edu/gertvd/research/arctic/prod/prod_data/Reg/ for the
Arctic-specific algorithm (Lewis & Arrigo, 2020). Scripts used to create all figures presented in this article can be
found at https://github.com/courtneympayne93/ArcticPerfectPrediction. Shapefiles for Large Marine Ecosys-
tems can be found at https://www.sciencebase.gov/catalog/item/55c77722e4b08400b1fd8244.
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