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Abstract

Connectivity on-the-go has been one of the most impressive techno-
logical achievements in the 2010s decade. However, multiple studies
show that this has come at an expense of increased carbon footprint,
that also rivals the entire aviation sector’s carbon footprint. The two
major contributors of this increased footprint are (a) smartphone
batteries which affect the embodied footprint and (b) base-stations
that occupy ever-increasing energy footprint to provide the last mile
wireless connectivity to smartphones. The root-cause of both these
turn out to be the same, which is communicating over the last-mile
lossy wireless medium. We show in this paper, titled DensQuer,
how base-station densification, which is to replace a single larger
base-station with multiple smaller ones, reduces the effect of the
last-mile wireless, and in effect conquers both these adverse sources
of increased carbon footprint. Backed by a open-source ray-tracing
computation framework (Sionna), we show how a strategic den-
sification strategy can minimize the number of required smaller
base-stations to practically achievable numbers, which lead to about
3x power-savings in the base-station network. Also, DensQuer is
able to also reduce the required deployment height of base-stations
to as low as 15m, that makes the smaller cells easily deployable on
trees/street poles instead of requiring a dedicated tower. Further, by
utilizing newly introduced hardware power rails in Google Pixel 7a
and above phones, we also show that this strategic densified network
leads to reduction in mobile transmit power by 10-15 dB, leading to
about 3x reduction in total cellular power consumption, and about
50% increase in smartphone battery life when it communicates data
via the cellular network.

1 Introduction

Over the past-decade, cellular networks have enabled almost perva-
sive connectivity, enabling multitiude of applications like video call
to social media to gaming enjoyed all on a platform. Further, people
expect to be connected to the network 24/7, and do not want to miss
the latest messages/e-mails/news as they are on the go. Two pri-
mary enablers of these are smartphone mobiles, and the base-station
mobile is connected to, which facilitates a wireless connection of
mobile device to the rest of the world. As we moved from 4G to
5G, there are varied reports on mobile devices experiencing reduced
battery life [1, 2], and as well an increase in power bills faced by
network companies for base-station operation [3-5]. A larger over-
arching problem is the worsening carbon footprint of the larger
telecom and information network, which now rivals that of the avia-
tion sector [6]. Unsurprisingly, the two largest contributors are the
embodied carbon footprint in smartphones, and the operational car-
bon footprint in base-station network [7]. Hence, it is the need of the
hour while planning for 6G and beyond, to minimize the impact of
cellular networks on the smartphone battery and base-station power
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Figure 1: In an urban cellular coverage, a single macro base-station has
to overcome large wireless path loss, which can equivalently be served
with smaller multiple low-power base-stations, that can be located closer
at lower heights, which has positive effect on smartphone battery as well

consumption, the highest contributors of embodied and operational
footprints respectively [8, 9].

Enabling wireless last-mile connectivity forms a major part of the
energy consumption at both the smart-phone and the base-stations.
This is because instead of a controlled wired-medium, wireless
connectivity is over the air, which is a lossy medium. The physics
behind this phenomenon lies in the fact that the signal is radiated
in all directions from the source, leading to a natural dispersion of
the electromagnetic waves. As the signal propagates through space,
it encounters various obstacles and undergoes absorption, reflec-
tion, and scattering. This phenomenon creates substantial signal
losses as the base-station and smartphones communicate wirelessly.
This translates to high mobile battery drainage at the phone, and
increased power-draw from the mains at the base-station, to transmit
large-enough power data packets to travel through the air and get
received successfully at a far-off distance. Fundamentally, to enable
greener energy footprint of base-stations, and positively increase the
operation time on a single battery charge for smartphones in cellular
network, these large wireless signal losses through the air need to be
minimized.

So, what can be done to offset these large wireless signal losses?
One way to counter this is to somehow have mobile phones and base-
stations located closer to each other. However, this reduces the range
of wireless operation and binds the user to a smaller coverage area.
But, this approach can be implemented on a network-wide scale to
ensure a large coverage area by performing cell-densification [10—
14]. This entails substituting a single large-area coverage base-station
to be replaced by multiple small-area coverage base-stations. Since
the smaller base-stations have to cover lesser area, they also need to
transmit at much lower power levels to facilitate the wireless connec-
tion. Further, since the wireless channel is equivalent, the smartphone
also can transmit at a lower power-level as well as communicate
to the nearby base-station. Although each base-station on its own
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transmits at a lower-power, since there are multiple of them, if the
number of smaller base-stations grows too large, practical issues
arise, such as deployment costs/backhaul, as well the total power
consumption ends up overshooting because of a multiplicative in-
crease. So far, the past-work consensus is that there are perhaps 100s
of these smaller base-stations needed to replace a single high-power
base-station, and this has led to very limited real world deployments.
In this paper, we present DensQuer, which builds extremely en-
ergy efficient connectivity for any given geographical region, and
enables greener energy-footprint base-station and longer battery op-
eration of smartphone. DensQuer utilizes explicit environmental
features generated via a ray-tracing digital-twin framework (Sionna
[15]) of the geographical region into account, to strategically place
multiple low-power low-coverage base-stations, which cumulatively
cover the given larger area at a much lower energy-footprint. Further,
often, acquiring these strategic sites at higher height is challeng-
ing, requiring a tower placement, and to address this, DensQuer
designs the network with base-stations placed only at 15m height
above ground, that can be enabled by mounting base-stations above
street-poles or trees. In addition to reducing the energy footprint
at the base-station, DensQuer’s designed network also reduces the
transmit power requirements at the smartphone clients, which leads
to an extended battery life. We also validate DensQuer’s simulation
framework in real-world environment via hardware measurements,
and further, procure power measurements from various components
of commercial smartphone to quantify the exact battery savings.
DensQuer’s first contribution is to show that by utilizing the
explicit knowledge of the environment, base-station densification
can be done in a strategic manner that reduces the number of re-
quired smaller base-stations considerably. To show this, we utilize an
open-source ray-tracing framework (Sionna [15]) which can model
the wireless environment accurately and can predict signal cov-
erage by simulating EM phenomenon like diffraction, scattering
and multipath. We frame an optimization problem of covering area
equivalent of a large power base-station via multiple smaller power
base-stations placed in the Sionna’s digital environment. We show
that this problem becomes np-hard, and has an analogy to the tra-
ditional sum of subsets problem. Hence, we present two heuristics,
a greedy approach, and an hill climbing approach, which perform
similar to each other which suggests that the greedy approach could
be close to optimum. Both these approaches do 3-4x better than the
previously considered environment-agnostic densification strategy
[16-21]. Also, the designed approaches are able to minimize result-
ing interference by minimizing the overlap areas of the multiple
base-stations. We also evaluate the total power consumption (300W)
of this optimized network, that comes to be around 700W lower
powered than compared to a single base-station consuming about
1000W. We also show dependence of the densification strategy on
height of base-stations and operation frequency, across two different
scenes with varying building densities. We also verify consistency
of the Sionna framework via real-world measurements.
DensQuer’s second contribution is to extend the designed frame-
work to the client side (smartphones), where we are able to populate
the designed small-cell network with smartphones and utilize the
path-loss calculations to calculate the resultant transmit powers at
the smartphone side. The simulations reveal a drastic 10-15 dB re-
duction in the transmit power of the smartphones, since the smaller
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Figure 2: Average power consumption computed over 30-second uses for
different activities, like watching a 1080p video on youtube, doing a video
call via google meet, scrolling on instagram feed, playing pokemon-go
and keeping the phone idle in standby

base-stations are located, on an average 5 times closer to the mobiles.
However, the challenge here is to map this impressive reduction in
transmit power to actual savings in mobile battery. Mobile power
measurement campaigns in the past [2] relied on measuring the
cellular power consumption in an indirect manner, by computing
power consumption of a task when mobile is in airplane mode and
then normal mode, and taking the difference to estimate cellular
power consumption. Although this yields a measurement of average
power consumption, it doesn’t provide fine-grained measurements.
To this end, we utilize a new tool released by Google to directly
procure the On-Device Power Measurements (ODPM) via hardware
power rails connected to different modules (display/cellular/compute
etc). Through a combination of ODPM power rails measurement,
and a spectrum analyzer antenna placed right next to mobile for
measuring transmit power, we collect combined transmit power and
power measurement data from a Pixel 7a smartphone connected to
an actual base-station. This is the first such publicly available dataset
with such fine grained hardware measurements, since all the earlier
collected 5G performance data [2, 22, 23] had primarily focused on
core network, or did not collect the transmit power measurements in
conjunction with hardware measurement.

In summary, we present a new approach to optimizing locations
of multiple small-power base-station which cumulatively cover a
single large-power base-station’s coverage area, that minimizes the
required number of such base-stations from about 100 to about 25-
30. This optimized small-cell network is achieved by placing them
strategically and relying on the explicit environment knowledge
about the setting given forth by a ray-tracing computational frame-
work. Further, the achieved small-cell network has a total power
consumption of about 300W, that is 700W less than the 1000W sin-
gle base-station. In addition, we also explore the benefits which the
smartphone clients enjoy because of this small-cell network, which
results in 10-15 dB lower transmit power, and about 50% longer
battery life.

2 Background & Motivation

In this section, we will investigate the energy consumption of the
user-devices and the breakdown of this energy consumption required
for cellular wireless networking. In addition, to that we would also
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Figure 3: Analogy of densification to simple human oral communication

explore as why base-station densification helps with both, improving
battery life of smartphones, as well as reducing the total base-station
energy footprint.

2.1 Smartphone power consumption and distance
to base-stations

To motivate why cellular network power consumption has a big
impact on smartphone battery consumption, we collect power mea-
surements from different components (cellular, compute, memory
etc), while performing everyday tasks like playing youtube videos,
scrolling instagram feed and video calls. Also, we collect data when
the mobile is kept on standby, that is, we do not actively use the
mobile and it is just turned on and kept idle. We see that in Fig. 2,
cellular power out-trumps all the other components in the smart-
phone in terms of power consumption. So, why is it the case that
cellular power consumption is so high?

To understand this, consider a toy example in Fig. 3a, with a
person A (red), who is placed on top of a far away building, and
is talking via a loudspeaker to you (downlink). Now it’s your turn
to talk, and in order to reach person A (uplink), you would end up
needing a loudspeaker as well, unless the person A has superhuman
listening skills (which would also then pick up faint signals from
everywhere else). Compare this to a person B (green), who’s just
perched on top a nearby tree, and hence both you, and the person
B can communicate without loudspeakers. In this analogue, the
person A represents a typical macro base-station, which has about
47 dBm transmit power and is typically mounted on a tower. The
person B represents a smaller pico/femto base-station, which has
about 17-20 dBm transmit power, and is typically mounted on street-
poles/trees or sometimes atop balconies, or rooftops. Even though
macro and smaller base-stations have large asymmetricity in transmit
power (30 dB, or 1000x lower), their receiver sensitivities are almost
the same, or only marginally higher (Macro cell RX sensitivity
~ —(95—100) dBm [24], Small cells sensitivities * —(92 — 95) dBm
[25]), i.e. no superhuman hearing involved. Because of this huge
asymmetricity, when a smartphone talks to a far-away located macro

ArXiv preprint, ,

cell it needs to transmit at 10— 15 dB higher powers than transmitting
to a nearby base-station. Since typically, existing deployments utilize
a high-power single base-station that is located farther away, most
of the population ends up expending high transmit power from their
smartphones to maintain the connection, leading to a very high
power draw for cellular wireless networking. In DensQuer, we show
how large cellular power consumption can be remedied by having
more of smaller power base-stations located close to phones.

2.2  Why Densification reduces total base-station
network power consumption?

In addition to improving smartphone battery life, we also explain
why a network of small power base-stations reduce energy foot-
print of base-station network. In a typical urban setting, wireless
communication between a far-off macro base station and a mobile
occurs via a complicated, typically non-line of sight (nLOS) path,
because of factors like buildings, elevation differences, and natural
landscapes, instead of a direct line-of-sight (LOS) path. As a conse-
quence, the transmitted signals accrue huge losses due to reflections
and penetration through blockages like buildings. Imagine the same
toy-example as before, where you want to hear signals from your far-
off Person A, only that you actually can’t even see him and can hear
faint audio signals of his bouncing off from nearby buildings and
reaching you (Fig. 3b). Mathematically, this effect has been studied
in form of path-loss exponents, which can help understand how the
wireless signals decay with distance. If the the base-station/mobile
are located R away, the wireless signal decay as « 1/RY, with y
being the path loss exponent. Typically with LOS, y = 2 as proven
in EM-theory, whereas in nLOS, y > 2 to mathematically represent
the higher losses accrued [26].

The key-reason why densification helps reduce energy footprint
of base-stations is that y > 2. To see this, consider an example where
the macro base-station is located R away from the mobile in this
scenario, and hence, would experience a loss of say, o 1/R3, with
y = 3 in this area. Hence, it would need to transmit at a power oc R
to offset these losses. Instead, say, we had a smaller base-station with
coverage %, the smaller base-station would need to transmit with

o (§)3, 27X smaller power to reach the base-station. Hence, the
DensQuer question becomes, if we can cover the entire R coverage
of a single base-station with < 27, %2 base-stations to save on the
transmit power. Going back to the analogy, say you have Person A
located at R, and Person B located at %, to save on the loudspeaker
power consumption, and still guarantee you can hear signals across
the entire R area, you would need to have < 27 Person B’s placed
strategically (Fig. 3b). If the considered setting becomes close to
LOS, y — 2, hence, you would need to somehow put < 8 such close-
by Person B’s to cover the large area. Thus, the correct number of
smaller base-stations to put depends on the considered scene setting
(buildings, elevation, landscapes).

Hence, in this section, we have shown the background behind
DensQuer, and why densifying helps conquer both the key problems
in today’s wireless network: mobile battery draw, and base-station
energy consumption. There have been papers that also have advo-
cated for this using stochastic geometry [10, 27], or following larger
scale trend-based approximations [11], however, as we explained,
the exact quantification of power-savings depends on number of
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Figure 4: Why uniform densification fails in realistic scenarios

smaller base-station needed, which also depends on the considered
scene geometry. Thus, in the next section, we will delve into details
of how DensQuer is able to the explicit geometrical details of a given
scene, and optimize the number of smaller base-stations needed and
conquer the carbon-footprint problem in nextG communications.

3 Methodology

We have so far explained how base-station densification can po-
tentially reduce total wireless network power, as well as reduce
the transmit power on the mobile side. In this section, we present
how to utilize an open source ray-tracing based simulation tool
(Sionna [15]), that can import any large city-scale scene (via Open-
StreetMap(OSM) [28] + Blender [29]) to create a framework to
optimize base-station locations. The ray-tracing framework brings
explicit knowledge of the environment to the table. We then show
how relying on this explicit knowledge rather than densifying agnos-
tic to the environment, helps minimize number of small base-stations
needed by putting the base-stations strategically, and hence reduce
the consumed power. We present two distinct algorithms to utilize
this, one with a greedy approach and other an hill climbing ran-
domized optimizer, both working with about similar performance,
which alludes to this problem being np-hard with no easily available
global optimized solution. Finally, we present how the simulation
environment can then be extended to compute transmit power re-
quirements at the user-equipment side by populating the obtained
densified network with user locations.

3.1 Why successful network densification needs
explicit environment knowledge?

In this sub-section, we consider two toy examples, to show why
simple densification studies based on indirect measures, like path
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loss trends, are too simplistic to create a working densification strat-
egy for a practical scene, and make a case for requiring explicit
knowledge of considered scenario to arrive at an optimized strategy.

First consider Fig. 4a, with building density fairly uniform across
the area. The task at hand is to replace the single macro base-station
at the center with multiple smaller base-stations of certain power
level. Consider we are working with a certain class of smaller base-
stations, that only cover a radius of R/3, and we need to determine
how many such base-stations would be needed to fill an entire R
radius area. The past approaches would basically try to place an
increasing number of these smaller base-stations in an uniform way,
by dividing the scene into smaller squares, and increasing base-
stations from 1,4,9,16..., and stopping the algorithm when the
entire area is covered without large overlaps (pink) and large blind
areas (cyan), as detailed in Fig. 4a.

However, real world deployments are not uniform, and have nat-
ural asymmetry; therefore, now, consider Fig. 4b left side, where
instead of spread around uniformly, buildings are concentrated near
the right area, with left area being more empty. If we take the opti-
mized dense uniform deployment now, and apply to this asymmetric
setting, base-stations on the left would end up with higher than 2R/3
ranges, and lead to large overlaps (pink), whereas base-stations on
the right will have reduced coverage since building density is higher
than expected, and hence, creates large blind areas (cyan). Instead
of densifying uniformly, by knowing the explicit details of the envi-
ronment, densifying strategically more on the right side and less on
the left side, similar to Fig. 4b would be much more optimum. This
shows that there is no ‘one size fits all” approach to densification, and
one needs to know the explicit details on the exact urban setting and
building distribution in order to arrive to an optimized densification
level.

3.2 Coverage-optimized algorithms, comparison
with uniform densification

So, how can we capture the explicit environmental knowledge of the
given scene, and utilize it in a computational framework to arrive
at a optimum level of densification? The main problem with the
past solutions, even including those that take a worse than 2 path
loss exponent into account, is that, the path loss exponent only cap-
tures an overall trend of the path loss, obtained via averaging over
different paths around a base station and misses the fine-grained ex-
plicit details of the environment, crucial for detecting and alleviating
blockages and interferences. Instead of replying on such indirect
metrics, computational ray-tracing tools, in conjunction with fine-
grained maps and building data (height, size and shape) can directly
compute the coverage itself in a forward pass, and can explicitly
showcase blind areas, as well as interference where signal can be
recieved from multiple sources. In fact, today, we have such a con-
junction of open source tools available, with Sionna [15] being an
open-source ray-tracer that can integrate with Blender [29] + OSM
[28], which allows creating a digital copy of a physical scene and
study the wireless channel statistics thereof in the simulations (Fig.
7(a)).

Now, equipped with a ray-tracing tool, how can we approach
the optimized densification in a systematic way? Sionna ray-tracing
tool can directly measure the coverage map in a forward pass itself,
by tracing rays and modelling the electromagnetic phenomenon
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Figure 5: Workflow of the design. DensQuer utilizes Sionna framework
that provides building data, takes base-station height and transmit power
level as an input to generate a densified network output

like diffraction and penetration losses. In context of densification,
it directly allows to compute the coverage of a smaller base-station
placed at a certain location, with all the irregularities taken into
account. This makes the method robust to any assumptions, we do
not need to compute a coverage radius or simplify the coverage with
a circular fit. By testing multiple locations in the ray-tracing scene,
we can directly determine the created scene overlaps, as well as
missing areas compared to the single-large base-stations and hence
optimize the locations. But, do we need to test for each and every
location to determine the best locations in a brute force manner?

Instead of blowing up the complexity, and performing a brute-
force search across all the possible points, we introduce two innova-
tions: First, is a sub-sampling approach which exploits continuous
nature of wireless channel and break the entire scene into a discrete
grid of 15m spaced points (that is say we have a 150 X 150m scene,
we will sub-sample to create 10 x 10 grid points), and compute small-
cell coverage at each of these points. Second, once we break the
scene into discrete test grid points, we utilize a greedy algorithm to
select the N grid points which greedily maximizes the cumulative
coverage of N locations. We keep increasing N until the maximized
coverage for N chosen locations reach about 1.1x the coverage area
of the single higher-power macro cell deployment. This way, by
utilizing sub-sampling and greedy algorithm, we are able to effi-
ciently compute the minimum number of low-power low-coverage
base-stations, as well as their respective locations, to cumulatively
cover the entire large area of a macro base-station. This process is
illustrated in Fig. 5.

Next, we take a deeper look the the mathematical intricacies
behind the greedy algorithm design, why it is close to optimal, and an
alternate hill-climbing approach to test the performance of the greedy
algorithm. It is worth noting that the problem has an analogue to the
traditional sum of subsets problem, where the aim is to maximize the
sum of subsets beyond a certain given level [13, 30-32]. However, a
twist here is, that the subsets which represent the coverage maps of
different chosen locations, may also have intersections, i.e. common
areas between them. Hence, in our greedy step, while going from N-
th step to (N + 1)-th step, we minimize the overlap and maximize the
new coverage area brought in. The proposed algorithm to solve the
problem regarding the densification is explained in next following
steps. The problem itself can be written as follows:

min N
st f(N A, y)li=1,2,..,N}) < em,
which N is the total number of low-power base-stations, and x;s and

y;s are the location of base-stations. In this problem, we consider
TX power 17 dBm, typical of femto cells [25], and a fixed height
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of 15m for all the low-power base stations, which is low-enough to
be considered as a street pole or a tree mounting. It should also be
noticed that f is a function whose output is the defined coverage
ratio. On the other hand, e, is the evaluation metric which can be
considered as the ratio of area covered versus total scene area, for a
high transmit power macro base station (47 dBm, 1000 times more
than that of femto) which is located at the height of 50m. In the
default Munich scene of Sionna, e, = 0.72, which represents that
the macro cell at 50m covered 72% of the entire scene.

The greedy step is formulated as follows: the best location for
the first base station based on the sub-sampled coverage maps is
achieved then for the next base stations, the coverage ratio is just
calculated over the area not covered by any previous base stations
(subtracting any overlaps). Mathematically, in the (N+1)-th iteration,
the formulation will be

max(f(N+1{(xi,y)li =1,2,.. N}) = f(N, {(xi, yi)|i = 1,2, N}))

st. fIN+L{(xiyi)]i=1,2,...k}) < em =0.72,

hence, the algorithm keeps adding base-stations greedily until
it covers 72% of the scene. Evolution of the algorithm with num-
ber of base-stations (N) is shown in Fig. 6. As explained previ-
ously, since this problem is analogous to the sum of subset prob-
lem, there is no clear global provable optimum solution. To give
evidence for the greedy algorithm being optimal, we also try a
hill climbing algorithm [33-35] that selects N + 1-th stage ran-
domly by perturbing initial solution, instead of greedily. That is, for
the (N + 1)-th iteration, N previously added base-station locations
are fixed and the (N + 1)-th location is trying to be tuned in the
map. For example, if f(j, {(xi,y:)|li = 1,2,..,N}) > apm,,, which
am 1s the algorithm evaluation metric like what we defined, then
mper = f U {(x1,yi)]i = 1,2,.., N + 1}), and for the next iteration

randomly . .
(Xjpersr Yjnerw) = (Xjo1a> Yjora): Since it explores a random

subset of solutions, across multiple iterations, hill-climbing increases
the complexity slightly, but we use it as a one-time process to check
closeness of greedy solution to optimum solution of hill climbing
approach. As seen in Fig. 6, clearly, hill-climbing and greedy ap-
proaches perform similar to each other, proving that greedy approach
brings us close to the optimum setting.

Further, as compared to the greedy and hill-climbing approaches,
which utilize the computational power of Sionna along with sub-
sampling approach and optimize coverage directly, we also compare
with the past approaches of densifying uniformly. Clearly, both the
coverage-optimized algorithms, which cover 72% of the scene, same
as that of macro base-station. by placing just around 30 femto base-
stations, outperform the uniform generation method, which requires
100 base-stations to achieve the same. The algorithm outputs for
greedy and uniform approach are also shown in the Fig. 7, with the
interference and missing areas from macro highlighted in pink and
cyan respectively.

Clearly, one can see that the greedy optimized strategy has lower
areas under interference, as well as lower missing areas, while plac-
ing 3x lower number of base-stations in the process (100 uniform
vs 30 strategic). The reason why there still are blind areas for both
algorithms is because when the height is reduced to 15 m some parts
of map remain under blockage, and since Sionna does not consider
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Figure 6: Comparison between different densification algorithms.

Clearly, the hill-climbing and greedy algorithms perform similar, and
are about 3x better than the uniform algorithm

penetration losses, they remain under blockage even though a base-
station is placed next to it. This is a limitation of the framework
as of now, however, once Sionna adds penetration, the algorithm
description as such would still remain the same.

3.3 Extending to user-device simulations and
transmit-power requirements

Moving ahead, we extend our computational network to populate
smart-phone devices within the coverage area, and utilizing the path-
loss measurements to reverse calculate the transmit power required
by the mobile to maintain a given Signal-to-Noise Ratio (SNR) at
the base-station.

More specifically, we populate a large number of smartphones
(10000) randomly scattered across the coverage area for both single
macro cell base-station placed at 50m, and also the 30 femto-base
stations with locations output from the greedy algorithm. We cal-
culate the transmit power required by the mobile to offset the path
loss, and maintain a SNR of about 15 dB to the base-station which
has highest received power at the UE (typically the UE would select
the best base-station from which it gets highest receive strength).
The assumed sensitivity of macro base-station is -100 dB (About
3 dB lower than reported commerical levels [24]), and femto base
station -90 dB (About 3 dB higher than reported commercial val-
ues [24]), since the macro may have slightly better hardware and
more sensitive. However with even 10dB unfairness given to sen-
sitivity, we see that across the 10,000 randomly generated points,
the computed mean transmit power needed for macro deployment
is 18 dBm, whereas for femto is 2 dBm, showing about a 16 dBm
reduction. Further, note that this impressive reduction happens even
if we are slightly unfair to femto base-stations, since the modern
5G base-stations have similar sensitivities across different class of
base-stations [24, 25], however since the gains are impressive, it also
entails femtocells can be made with lower sensitivites to save some
R&D cost if need be.
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4 Evaluation

In this section, we first present hardware measurements of path-loss
with a base-station deployed in our university, which confirm that
the sionna simulation framework by at large follow the hardware
measurement trends. After confirming the sionna framework, we
present an estimate on net power savings at both smart-phones and
base-stations made possible with DensQuer approach of densify and
conquer. Specifically, on the smartphone side, we collect logs from
an actual smartphone (Pixel 7a) connected to a commercial base-
station, as well as characterize its transmit power with a spectrum
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analyzer, to showcase the possible power savings due to smartphones
being located closer to base-stations. On the base-station side, we
present a case-study by looking into various classes of base-stations
(macro/micro/pico/femto) and their respective power consumption
to translate the results of our ray-tracing simulations to estimated
power savings.

4.1 Verfying the path-loss modeling of Sionna

As detailed in Section 3, we utilize Sionna ray-tracing computational
framework to bring-in the explicit features in a given urban environ-
ment. The sanity of these simulations rely on correct modelling of
the wireless signal path loss with distance, and hence we present
results that verify if the simulations follow the trends observed in
hardware measurements.

In Fig. 9(a) we show that the path-loss observed in the default
Munich scene in Sionna by-and large follow the popular Ericsson
channel model [36] used in typical urban scenes. Another important
point to note is that when we simulate an empty scene in Sionna,
it follow the theoretical Friis path loss equation that theoretically
predicts R? decay. This proves that sionna is able to adjust to a par-
ticular scene and calculate path-loss behaviour for a particular scene.
Proceeding ahead, we collect path-loss and GPS measurements us-
ing LTE discovery android app [37] from a base-station deployed by
our university dedicated for wireless experimental research in CBRS
band (3.5 GHz), by walking uptill 500m in a 40° sector, as plotted
in Fig. 9(b), with the imported scene in Sionna (via OSM [28] and
blender [29]) shown in 9(c). The path loss hardware measurements,
fit and sionna simulations are shown in Fig. 9(d). It is notable that
when we zoom into the exact 40° sector in the simulations, sionna
is able to fit very well with the hardware measurements, and is also
able to predict some fading losses observed at 250m mark. Since, our
university setting is more spread out and sparser than Munich scene,
and Sionna correctly puts the curve in middle of the empty scene and
Munich scene measurement. Further, we see that the hardware mea-
surements follow the trend captured in simulations as well which
further confirms that Sionna is capable in modelling the explicit
details of a given map.
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4.2 Base station power analysis

In this subsection, we will evaluate the total power consumption
for the 30 femtocell base-station network, all located at 15m height
in the Sionna scene, and also vary the transmit power to find the
behaviour of how many base-stations are needed to populate the
scene for a given transmit power. Then, we utilize popularly reported
power measurements for different class of base stations from [12] to
convert the tranmsit power versus number of base-stations curve, to
anet power consumption curve, in order to better quantify the energy
footprint savings at the UE side. We also show similar measurements
for the university scene, and also two different frequencies, to show
that the performed computation generalizes fairly well.

As shown in Fig. 10(a), by lowering the height of the base station
to 15 m, covering the target 72% of the scene requires placing 7
Macro base stations, since lowering the height creates blind spots
scattered around, requiring an increase and decentralized distribution
of the macro base-station. Thus, it makes sense to lower the transmit
power and then densify, and we see a transition from increased
power consumption because of reduce height, versus power savings
near micro base-station level. As we go further to femto and pico,
the power consumption flattens out to about 300 W, which is 3x
lower than the power consumption of a single macro base-station at
50m height (1000W). The green curve is calculated by taking the
known transmit powers of different base-station classes (macro: 47
dBm, 1000W consumption; micro: 38 dBm, 144W consumption;
pico: 21 dBm, 14.7 W consumption; femto: 17 dBM, 10.4 W as
used in prior work [11, 12]), and multiplying with number of needed
base-station in blue curve of Fig. 10(a). The blue curve basically
tells how many base-stations are needed to gurantee 72% coverage
area for a given chosen transmit power. For example, if a base station
with 17dBm transmit power should be employed, 30 base stations
are needed to achieve the coverage metric satisfaction which needs
30 X 10.4 = 312W, something more than 3 times power saving
over the single macro base-station. However, note that we have not
computed power required in backhauling, and as a result the expected
power savings might be slightly lower. It has been shown that wired
networks are about 10 times more energy efficient than wireless
networks, and hence our expectation is that a wired backhaul would
not add a lot of energy requirements to the 30 femtocell deployment
strategy[38].

Now, when we know the number of base stations to achieve the
similar performance as a Macro base station located at the height of
50m, we can see how greedy algorithm by adding base station try to
increase the coverage metric beyond the required 72% requirement,
in an optimum way. As shown in Fig. 10(c), by increasing the number
of femto base stations, the coverage metric is also increasing till
the point enough number of base stations has been added. Till this
point, all the simulations were done in center frequency of 3.5 GHz.
On the other hand, this simulation can be done for other center
frequency such as 1.7GHz, and we can see due to lower path loss
in this frequency the ratio curve with adding the similar number of
femto base stations will be above the 3.5GHz frequency; however,
due to the coverage metric used in greedy algorithm which itself is a
function of frequency, the total number of base stations to satisfy this
metric wont be very different for two different frequencies. Also, we
repeat the simulations at these two frequencies for the self-generated
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respectively, along with the Signalhound measured transmit powers

university scene that we previously used for sionna verification.
Since this scene is sparser than the Munich scene, the coverage
achieved by the macro cell bumps to about 90%, and hence the target
coverage also increases. The algorithms evolve in a similar manner,
and show that in the university scene, the same performance can
be met with 25 base-stations. This shows that the greedy algorithm
presented in the paper generalizes fairly well to different scenes and
frequencies of operation.

4.3 UE power saving verification

Next, we present the possible power-savings on the smartphone
side as a consequence of connecting to a closeby base-station as
compared to a farther away base-station. Further, we want to quantify

the possible power-savings at the smartphone side and map the
predicted 15 dB transmit power savings to impact on battery life.
Furthermore, by collecting system traces from an actual smart-
phone connected to a commercial base station, at three locations
(100m 300m and 500m, GPS plot shown in Fig. 11) as well as mea-
suring the mobile transmit power, we quantify how much savings
are possible because of densification. To enable this, we create a
measurement setup consisting of (1) Pixel7A phone [39], (2) Sig-
nalhound BB60D spectrum analyzer [40] connected to an antenna
mounted next to Pixel7A and (3) Windows Laptop connected to both
the components and pulling in the system logs from android phone
via ADB and spectrum analysis data from the signalhound. The setup
image is shown in Fig. 13. Pixel phones 6 and above [41] implement
the On-Device Power Measurement (OPDM) power measurement
rails, which report the hardware measured power of different com-
ponents (Cellular consisting of RF sub-6 GHz front end, modem,
mmWave front end, display power, compute power consisting of
CPU+GPU, memory access power etc). To ensure that we collect cel-
lular power data, we initiate a SMbps iPerf3 via Termux shell [42]
on the phone, let it stabilize and then initiate a system trace col-
lection. We utilize Perfetto python API [43] to parse through the
system trace and obtain the power rails measurement reported by
OPDM. In conjunction with transmit power measurements via the
spectrum analyzer, we are able to see a reduction in front end power
(which synthesizes the transmit signal) by about 7 times, as transmit
power is lowered by 15 dB (Fig. 12(b)). Further, the modem power
reduces by about 1.5 times (Fig. 12(a)), which could be because of
MIMO modes getting enabled as the mobile goes farther. In these
measurements the only thing which changes is the distance between
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consumption is clearly because the modem+RF front end trying to

offset the larger path losses, which is then also confirmed by our 5> Discussion and Limitations

spectrum analysis via the signalhound. Sionna Inaccuracies in very far distances (>1km): In the paper, we
We also collect similar results for 4G, where the measurement show that Sionna is able to map the wireless channel path loss really
shows similar reduction in RF front end power as the base-station well for distances < 500m. However, for farther distances (> 1km),
(Fig. 12(d)), however in 4G there are two differences (1) in 4G at the generated rays by sionna become sparser and the framework
medium/far locations, the PHY layer is unable to deliver 5 Mbps, and predicts inconsistent results. In this paper, we utilized an in-house
the modem is only able to support 2/0.5 Mbps respectively (2) as a server with 4 A10 Nvidia GPUs to run sionna. However, to gurantee
consequence, modem power decreases slightly (Fig. 12(c)), whereas dense rays at 1-km distance, the number of rays required would be
in order to offset the larger path losses, the RF front end power 30e6, which would expend the memory limit of an Nvidia A10 GPU.
shows similar trend to 5G. Hence, it is clear from these measure- however with a larger scale compute, simulating more than 1 km
ments that 5G is able to support the SMbps throughput everywhere, should also be feasible.
however at an expense of increased power-consumption. We also Indoor, Elevation not considered: In the design, we optimize the
show the total average power consumption across all the different base station deployment only considering the regions which are
power rails in Fig. 14, computed over 30seconds, and clearly, the outside the building. This assumption is largely fine, since cellu-
cellular power consumption is the highest contributor in 5G phones. lar connections are typically meant for outdoor coverage. However,
With our measurements, the SG phone while communicating 5 Mbps there is a trend towards indoor 5G, and in the future, we can attempt
data, consumed on an average 2600mW when it is located 500m augmenting Sionna dataset with indoor hardware measurements.
away, and 1500mW when it is located 100m away. Hence, consid- Further, right now Sionna has only flat ground plane, whereas in re-
ering the 5800mAh battery capacity (3.7 V nominal voltage, which ality landscape would also play a major role in base-station location
makes it ~21Wh), the 5G phone located 500m away will expend the selection. This requires better environment modelling, and perhaps
total battery in 6 hours, whereas it will take 9 hours if it is located some hills can be modelled as smoother buildings, and valleys can
100m away. Typical range of operation for femtocell is 100m, and be modelled as an area surrounded by higher buildings. However
thus, in our proposed femtocell network, the maximum range will be this is left as a future work for now.
around 100m. This implies that i the femtocell network, the smart- Adding MIMO to the framework: Refer to Fig. 7, there is still un-
phones will observe about a 50% increase in the battery life when deniable interference happening in middle (pink spot), even though
they communicate via the cellular network, and about 7-8 times our design minimizes the interference. However this could be solved
reduction in the RF front end power consumption, as well about 1.5 with MIMO by enabling spatial isolated beams supporting users in
times reduction in the modem consumption. pink spot. Further, the algorithm can be augmented to work with
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MIMO which means adding one more variable to the optimization
output that is the beam pattern of the base station, which can further
help with adding more nLoS path to the coverage area of smaller
cells and increase the coverage of the base stations as well as reduc-
ing the interference of the base stations.

Unconfirmed MIMO measurement results: Refer to Fig. 7(e) we
did UE side power measurement comparing 4G/5G on Modem and
RF front end. Although we can explain that in both 4G/5G cases, due
to distance, the further UEs need to transmit more power (as shown
RF front end power consumption increases as distance increases),
however the significant increasing in Modem power consumption,
which happens only in 5G case, is out of our expectation. MIMO
would be a possible reason for that, however, this needs to be verified
by further studies.

Downlink cellular power consumption: Although in this work, we
showcase importance of considering cellular power consumption
(Figs. 2, 14), the benefits of densification are mainly limited to
saving uplink power consumption. There is however, an extra aspect
of MAC layer improvement that needs to be explored further. It could
be that if smartphones are located closer to the base-stations MAC
can become more efficient and lead to power savings. However, this
requires finer data collection and improved setup that can provide
MAC layer logs, like Keysight WaveJudge [44].

Backhauling requirements: It is undeniable that success of the
densified network would depend on a good backhaul network, and
this can be either a wired backhaul by utilizing the already vastly laid,
and underutilized optical fiber network [45], or try to do a wireless
backhaul using upcoming technologies like mmWave fixed wireless
access (FWA) [46, 47]. A rigorous analysis is needed by adding
bakchaul power consumption to better quantify the power savings at
base-station network level by considering backhaul network as well.

6 Related Work

Path loss, as a key motivation of our work, has been also studied
by other researchers from different perspectives. In [48], authors
have tried to enhance the simulated path loss result by combining
machine learning and real world data. Also in [49], authors have tried
to calibrate the material properties using local phase error estimates.
Due to its promising advantages (like energy efficiency, through-
put, etc), densification for base station deployment is always a hot
topic in nextG communication. In [11], authors defined PLE param-
eter as a metric which can be used to figure out to what extent cell
densification can work toward decreasing power consumption by
base stations as well as showing the simulation result which confirms
the power consumption drop. Moreover, authors in [50] and [51] an-
alyzed the exetent of cell densification which can improve saving the
power. On the other hand, in some other literature, results showing
the benefits of using cell densification exist. In [16], authors used
area power consumption as a system performance metric to assess
the performance improvement of using micro base stations replacing
macro base stations. Moreover, authors in [27] and [52] showed the
effect of LoS and nLoS impact in dandified cellular network.
Researchers also tried to understand the UE side power savings.
As discussed in [53], user distance from the base station can de-
crease the maximum bit rate as signal strength gets lower and noise
increases which enforce using high signal power. Unfortunately,
users usually are located near edges which can make this evidence
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closer to reality. Although this paper talks about the improvements

can be achieved using cell densification, no solid result using this ap-

proach is mentioned. Moreover, authors in [54] showed the potential

benefits the using small-cell networks can bring into system, how-

ever, they also take into account the challenges such as interference
management and mobility.

Furthermore, authors in [55] characterized the throughput as a
function of the cell size and showed that densification which can lead
to a higher throughput is also dependant on other factors. However,
this work did not consider anything beyond free space path loss
such as shadowing and fading. In [56], authors showed the spectral
efficiency is a logarithmic function of base-station density as number
of base-stations grows.

As well as power saving capability at the base station side, some
papers researched about tecniques which can lower the power con-
sumption. In [57], they propose a sleep/awake mode technique which
can increase the power saving in base station side. Furthermore, in
some works like [58], authors showed the impact of the cell densi-
fication on UE side. However, they just considered three different
scenarios.

Other than our approach in saving base station power, researchers
also believe that techniques like sleep-mode control [59, 60], MIMO
[61, 62] can also make base stations energy efficient..

7 Conclusion

In this paper, we presented DensQuer, that utilizes a ray-tracing
framework to strategically place densified, low-power base-stations
that cumulatively cover the entire area of a high power base-station.
We show that such a densification strategy conquers two key prob-
lems, it can potentially save about 3x power savings by avoiding
large wireless signal losses due to high range, and also lead to 50%
improved battery life for the connected smartphones on the dense
network as a consequence of being located closer and at a smaller
height to them. DensQuer is able to quantify these impressive gains
because it is the first work performing base-station densification
studies by utilizing the recently released Google’s OPDM power rail
measurement tool to profile hardware power measurements at an-
droid phones, and NVidia Sionna open source ray-tracing framework.
With increasing carbon footprint of wireless networks, and primary
contributors being the operating energy costs of base-station and the
embodied footprint of smartphones, we believe DensQuer approach
can lead to a more greener development of wireless networks, as we
leap forward to 6G in the upcoming years.
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