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ABSTRACT
Internet-of-things (IoT) devices (e.g., micro camera andmicrophone)
are usually small form factor, low-cost, and low-power, which
makes them easy to conceal and deploy in the indoor environment
to spy on people for human private information such as location
and indoor activities. As a result, these IoT devices introduce a
great privacy and ethical threat. Therefore, it is important to reveal
these concealed IoT devices in the indoor environment for human
privacy protection.

This paper presents RFScan 1, a system that can passively detect,
fingerprint, and localize diverse concealed IoT devices in the indoor
environment by sensing their unintentional electromagnetic ema-
nations. However, sensing these emanations is challenging due to
the weak emanation strength and the interference from the ambient
wireless communication signals. To this end, we boost the emana-
tion strength through the non-coherent averaging based on the
emanation signal’s characteristics and design a novel suppression
algorithm tomitigate interference from thewireless communication
signals. We further profile emanations across frequency and time
that act as the emanation source’s unique signature and customize
a deep neural network architecture to fingerprint the emanation
sources. Furthermore, we can localize the emanation source with
an angle-of-arrival (AoA) based triangulation approach. Our ex-
perimental results demonstrate the efficiency of the IoT devices’
detection, fingerprinting, and localization across different indoor
environments.
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1 INTRODUCTION
Affordable and compact IoT devices [2, 6, 8, 11, 18, 19] are increas-
ingly portable, accessible, and easily concealed, making them ideal
tools for covert monitoring. Malicious actors can exploit these de-
vices to deploy hidden video cameras, audio recorders, or even radio
frequency (RF) receivers to observe private activities and conversa-
tions. For instance, a hidden camera could be placed in a victim’s
home or office to discreetly watch their daily activities [25], or a
small audio recorder could be concealed in a pocket to intercept
1RFScan represents Radio Frequency-based Scanning to sense the concealed IoT devices.
The GitHub repo for RFScan is https://github.com/ucsdwcsng/RFScan_emanations.git
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Figure 1: An attacker can stealthily use an IoT device concealed in
the vase to spy on people in an indoor environment. Our detector is
able to detect, fingerprint, and localize the concealed IoT device.

private conversations [49]. Therefore, it is essential to develop and
deploy sensing technologies and detection methods [50] to identify
and counteract these covert IoT threats.

Ideally, such a detector must detect a variety of devices, localize
the hidden device, and perform well in the presence of other elec-
tronic devices in the environment. To the best of our knowledge,
none of the existing approaches satisfy all these requirements. Com-
mercial off-the-shelf (COTS) detectors [38, 40] require the user to
turn surrounding electronic or wireless communication devices off.
The dedicated sensor-based detectors (e.g., LAPD [43]) which rely
on the light indicator of the camera, only detect hidden cameras
and further, do not work in non-line-of-sight scenarios. The traffic-
based detectors [12, 24, 48] assume that IoT devices have wireless
transceivers for data streaming, while most IoT devices only qui-
etly record and save data to local memory (e.g., SD card) to reduce
power consumption andmaintain a small form factor [2, 11]. Recent
work [34, 57] takes advantage of the unintentional electromagnetic
(EM) emanations from the IoT device as most IoT devices leak such
emanations. However, these EM emanations are usually weak and
not detectable in the presence of other electronic devices. There-
fore, prior work [34, 57] employs the excitation-probe framework
to magnify and detect the emanated signals. However, such active
sensing approaches can be easily detected and defended against by
the attacker, they are hardware-dependent (e.g., Memscope [46]),
and further confuse the detector by stimulating other legitimate
electronic devices.

In this paper, we propose RFScan, a system that can passively
detect, fingerprint, and localize concealed IoT devices by sniffing
their emanations as shown in Fig. 1. Our approach builds on the idea
of using EM emanations to detect hidden devices. However, it stands
out from previous work as it offers passive detection, fingerprinting,
and localization capabilities for diverse IoT devices. Unlike existing
methods, our approach doesn’t rely on network access or external
excitation to stimulate the IoT devices and is independent of the
hardware architecture of the diverse IoT devices. Therefore, RFScan
satisfies the aforementioned requirements, making it a versatile and
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No network access No external stimulation Localization ability Diverse devices
COTS detectors, e.g., [38] ✓ ✓ ✗ ✗

Sensor-based detection, e.g., [10] ✓ ✓ ✗ ✗

Traffic-based detection, e.g., [24] ✗ ✗ ✓ ✓

Active sensing, e.g., [45, 57] ✓ ✗ ✗ ✗

Memscope [46] ✓ ✓ ✗ ✗

RFScan (our approach) ✓ ✓ ✓ ✓

Table 1: Comparing the existing approaches vs. RFScan

effective detector. A comparison of RFScan with previous detectors
is presented in Table 1.

However, there are several challenges that RFScan has to over-
come to passively detect the hidden IoT devices. First, the em-
anations received by radio have a weak signal strength as they
are amplitude-modulated clock signals, which can quickly dissi-
pate when transmitted over the air. To this end, we employ a non-
coherent averaging technique to enhance the strength of the ema-
nation signals. Second, the emanations of a single device are often
dispersed across a wide frequency range as multiple periodic and
extremely narrowband signals or tones. Therefore, we employ a
frequency hopping technique to scan a wide range of frequencies
comprehensively and use a median filter to estimate and smooth
the noise floor in each band as the noise floor varies across bands so
that we can detect emanation spikes based on their power spectral
densities with greater accuracy and reliability. Further, we develop
an algorithm that uses a weighted pair-wised distance between
the emanation spikes to detect the dispersed tones of a single em-
anation. The third challenge arises from the presence of ambient
emanations generated by legitimate IoT devices, such as Amazon
Echo Dot and WiFi access points that are deployed by homeown-
ers for smart homes, as well as wireless communication signals
like cellular signals. RFScan must be able to distinguish the ema-
nation of covert IoT devices from such background signals in the
same frequency range. To address this challenge, we profile the
background signals, categorize them as "baseline", and distinguish
the signals introduced by the hidden IoT devices during the "test"
stage by eliminating the baseline ambient emanations and wireless
communication signals.

Once the emanations from hidden IoT devices are detected, RF-
Scan further characterizes the devices. First, we must know if the
observed emanations belong to one or more devices. To this end,
RFScan profiles the emanations across the frequency and time that
can uniquely characterize the concealed IoT devices. We further
customize an attention-based deep neural network that takes the
emanation profile as input to fingerprint the concealed IoT devices.
To further refine our detection capabilities, we equip our detector
with a directional antenna. This antenna enables us to scan the
wireless environment, providing us with the angle of arrival (AoA)
of the emanation source. By triangulating these AoAs, we can pre-
cisely pinpoint the location of the emanation source and remove
the hidden IoT devices from the indoor environment.

We summarize our contributions as follows:

• To the best of our knowledge, this is the first work of pas-
sively detecting, fingerprinting, and localizing concealed IoT

devices based on their unintentional electromagnetic ema-
nations in the indoor environment.

• We introduce a non-coherent averaging technique to en-
hance emanation signals while effectively suppressing wire-
less communication signals and ambient emanations through
a two-step subtraction process.

• We customize an attention-based deep neural network using
emanation profile across the frequency and time to uniquely
fingerprint IoT devices and further determine their locations
through AoA-based triangulation.

• Our experimental results show an average detection accu-
racy of around 0.95, an average fingerprinting accuracy of
around 0.96, and a localization error of about 2.62 feet with
a maximum detection range of 9.8 feet across different IoT
devices in different indoor environments.

2 THREAT MODEL
Attack scenario. The attacker wants to spy on private activities
or conversations of the subjects of interest. As shown in Fig. 1, the
attacker either conceals the IoT device in a specific location such as
the victim’s house or office, or carries the device in their pockets or
bags during a confidential or private conversation. In either case,
we assume there is a baseline state in which the IoT device is not
in the environment, for example, before the attacker places their
device in the house or before the attacker shows up in the meeting.
Attacker’s capability. The attacker may use different types of
IoT devices with different hardware architectures. We consider
three types of the most popular devices, namely, acoustic-based
devices, vision-based devices, and radio frequency-based devices.
The IoT device may also have different properties or capabilities.
For example, it may use wireless communications to leak out the
information or use internal storage (e.g., SD card) to record the data,
or it might be capable of detecting excitation signals activated by
the victim’s detector.

To this end, the detector should be able to detect the concealed
IoT devices passively by scanning the radio frequency signals, re-
gardless of what device the attacker uses. We can simply deploy
the detector in the indoor environment to continuously detect, fin-
gerprint, and localize the newly added concealed IoT devices. As
such, we can kick out these concealed IoT devices from the indoor
environment for privacy protection.
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Figure 2: Power spectral density in the anechoic chamber room with-
out spy camera deployment (i.e., baseline) and with the spy camera
deployment (i.e., test).

3 PRIMER ON EMANATIONS
Physical principle. Electromagnetic waves are usually uninten-
tionally leaked from IoT devices either through the electronic com-
ponents on the IoT devices or through the transceiver’s antennas
of the IoT devices. These leaked electromagnetic waves are termed
emanations. The physical principle of IoT devices’ emanations is
that the amplitude-modulated clock signals have leaked from these
IoT devices due to the computation activities performed on these
IoT devices (e.g., CPU or memory access). Since every IoT device
has a clock for synchronization purposes during computation, the
clock signals are going to be leaked whenever the IoT devices are
powered up. Specifically, these clock signals can be modulated by
the computation activities (e.g., CPU or memory access) of the IoT
devices, resulting in the amplitude-modulated squared wave signals
that are emanations.

The emanations exhibit the squared waves in the time domain
and periodical spikes (i.e., harmonics) in the frequency domain. The
periodicity of the emanation spikes indicates the clock frequency
of the emanation source. Let’s formally model the IoT device’s
emanations. The ideal squared wave using Fourier expansion with
a cycle frequency of 𝑓 over time 𝑡 can be represented as follows:

𝑥 (𝑡) = 4
𝜋

∞∑︁
𝑘=1

𝑠𝑖𝑛(2𝜋 (2𝑘 − 1) 𝑓 𝑡)
2𝑘 − 1

.

Its frequency-domain representation is shown in the following.

𝑥 (𝑓 ) =
∞∑︁

𝑘=−∞

2𝑠𝑖𝑛(2𝜋𝑘 𝑓0𝑇 )
𝑘

𝛿 (𝑓 − 𝑘 𝑓0),

where 𝑓0 =
1
𝑇
is the frequency of the fundamental harmonic, and

𝛿 (𝑓 − 𝑘 𝑓0) indicates the harmonic component at frequency of 𝑘 𝑓0
with amplitude of 2𝑠𝑖𝑛 (2𝜋𝑘𝑓0𝑇 )

𝑘
. As we can see, the squared wave

consists of an infinite number of sine wave components. Moreover,
since the emanations are amplitude-modulated, they can spread
over the spectrum. So, each sine wave component acts as a different
carrier for the modulation signals. However, in reality, suppose the
frequency of the modulated signals due to computation activities
is 𝑓𝑙 , which can be further mixed with the clock signals with the
frequency of 𝑓𝑐 . If the IoT device has a transceiver with the carrier
frequency of 𝑓𝑐𝑎𝑟𝑟𝑖𝑒𝑟 , these amplitude-modulated signals can be
converted to other frequency bands. As a result, the frequency
of emanation signals received over the air can be represented as

 

 

 

 

 

Figure 3: Workflow of RFScan consists of emanation strength boost-
ing module, wireless communication signal suppression module,
and emanation source fingerprinting and localization module.

follows.
𝑓𝑟 = 𝑝 · 𝑓𝑐𝑎𝑟𝑟𝑖𝑒𝑟 + 𝑞 · 𝑓𝑐 + 𝑟 · 𝑓𝑙 ,

where 𝑝, 𝑞, and 𝑟 are integers due to the mixing and amplification
of the emanations within the IoT devices. Note that not all of these
multiples are applied, which is highly dependent on the hardware
architecture and components (e.g., filters) of the circuit. Some IoT
devices may not even have RF transceivers, thereby the emanations
are emitted through the data lines (i.e., acting as antennas) on the
IoT device.
Showcasing. To demonstrate the squared waves of emanations
from the IoT devices, we only put a spy camera (i.e., OV5640 [11]) in
the anechoic chamber room where the RF signals are isolated. We
use a signal hound [47] as a spectrum analyzer that connects the
receive antenna [7] inside the anechoic chamber room. Fig. 2 shows
the power spectral density (PSD) of the received signals within the
frequency band of 3MHz-1GHz. As shown in the blue line, when
there is no spy camera deployed in the anechoic chamber room (i.e.,
baseline), the PSD is quite clean without any outstanding spikes.
However, there are periodical spikes in PSD that can indicate the
emanations from the spy camera as shown in the red line (i.e., test).
Note that the distances between two adjacent emanation spikes in
PSD indicate the clock frequencies of the spy camera, which are
24MHz and 48MHz.

4 OVERVIEW
Fig. 3 shows the workflow of RFScan, consisting of the emanation
strength boosting module, ambient wireless communication sig-
nals suppression module, and emanation source fingerprinting and
localization module. For example, in a typical indoor environment
(e.g., a home), our detector detects the new IoT device introduced
to the environment and localizes it. Then, the homeowner could
find out if this new IoT device is unrecognizable which should be
removed from the environment. Then, we can fingerprint this new
IoT device. We illustrate RFScan’s workflow in detail as follows.
Boosting emanation strength. Our detector obtains the power
spectral density (PSD) of the received signals through spectrum
scanning, which consists of the emanations and ambient wireless
communication signals. We first need to smooth the noise floor of
the derived power spectral density of the received signals for accu-
rate emanation detection. Then, we boost the emanation strength
through non-coherent averaging.
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Suppressing wireless signals. To remove the ambient wireless
communication signals (e.g., WiFi or cellular signals) and the ema-
nations from legitimate IoT devices, we first apply the subtraction to
the power spectral density of the received signals from the baseline
and test. Then, we detect the emanation spikes on the subtracted
PSD. To further eliminate the artifacts introduced by the wireless
communication signals, we propose the subtraction between the
spikes detected in the PSD from the baseline and test.
IoT device fingerprinting and localization. (1) Fingerprinting
IoT. We first profile the emanations across the frequency and time,
which can be used as the input of the customized deep neural net-
work for IoT device fingerprinting. As such, we can remove the
IoT devices that are unrecognizable. Specifically, our customized
deep neural network is trained on the common IoT devices that
we can purchase on the market. Therefore, we can have one extra
class with a small output probability to indicate the new IoT device
that has not been seen by the well-trained deep neural network. As
such, the softmax threshold is chosen based on the smallest softmax
output probability from the training set. During the fingerprinting,
if the new device is introduced to the environment, our deep neural
network flags it as the new class due to the small output probabil-
ity. Then, we can add this new device’s emanation profiles to the
current training dataset to retrain our neural network model. After
the IoT devices are fingerprinted, we can further localize them (2)
Localizing IoT. After we detect the new IoT device introduced to
the environment, we can further localize this new IoT device by
pinpointing the emanation source with the triangulation of the
emanation source’s angle of arrivals (AoAs). Specifically, we can
use a directional antenna instrumented on the detector to derive the
AoA information for localization. After we know the exact location
of this new IoT device, we can further check if this new IoT device
is malicious or not. We can look for this new IoT device using AoA
information and even localize it.

5 SYSTEM DESIGN
5.1 Boosting the emanation strength
Noise floor smoothing. The power spectral density (PSD) of the
received wireless signals across the frequency bands has different
noise floor levels, which can affect our emanation spikes detection.
As we discussed in Section 3, the emanations exhibit periodical
spikes in the frequency domain, which we need to extract for ema-
nation detection. Therefore, we first need to smooth the noise floor
across the frequency bands to mitigate the emanation spike detec-
tion error with the move median filter. Basically, we use a window
sliding over the PSD. Then, we calculate the median value within
the sliding window, which can be subtracted by the PSD to smooth
the noise floor across the frequency bands. To demonstrate the
effectiveness of our noise floor smoothing with the move median
approach, we scan the wireless spectrum from 3MHz to 1GHz in a
typical office room. This is because the emanations from the hidden
IoT devices are usually within this frequency band. Fig. 4 shows
the power spectral density of the spectrum within a 3MHz-1GHz
frequency band in the office room. As we can see, the noise floor
across the frequency bands is quite varying. After we use our move
median approach for noise floor smoothing, as shown in Fig. 5, the

 

 

 

 

 

Figure 4: PSD of the received sig-
nals without noise floor smooth-
ing.

 

 

 

 

 

Figure 5: PSD of the received sig-
nals with noise floor smoothing.

noise floor across the frequency bands becomes flat and smooth,
which is beneficial to accurate emanation spikes detection.
Non-coherent averaging. Since the IoT device’s emanations are
amplitude-modulated clock signals, it spreads across a wide spec-
trum band. It is impossible to scan the GHz spectrum band [22].
Therefore, we can scan a MHz spectrum band with frequency hop-
ping for GHz spectrum band sensing. However, this frequency-
hopping approach may introduce different levels of noise floor
across multiple frequency hops, which can confuse our emanation
spikes detection. This is because the emanations are amplitude-
modulated clock signals, which can spread across a wide frequency
band. To further boost the emanation strength, we can do non-
coherent averaging of the received wireless signals over multiple
time sweeps. This is because emanations exhibit the same pattern
(i.e., amplitude-modulated clock signals) across the time sweeps,
while the noise can be averaged out.

5.2 Suppressing Ambient Wireless Signals
Subtraction on PSD. To eliminate the ambient artifacts of wireless
communication signals, we first collect the received wireless signals
in the ambient wireless environment, which can be regarded as the
baseline dataset. As time goes on, new IoT devices may be intro-
duced to the environment. We continuously collect the received
wireless signals, which can be regarded as the test dataset. Then,
we can obtain the power spectral density of the baseline and test
datasets, which is averaging over time to strengthen the emana-
tions. Since the goal of our emanation detection is to extract the
intermediate frequency of these emanations in PSD, we need to
suppress the power spectral density of the artifacts. Therefore, the
subtraction of PSD from the baseline and test dataset can remove
the ambient wireless communication signals and emanations in the
environment.
Subtraction on detected spikes. To further eliminate the effect
from the ambient artifacts, we first detect the spikes in the PSD
from the baseline dataset. The frequencies of those detected spikes
are supposed to indicate the ambient emanations and wireless com-
munication signals. We use 𝐹𝑏𝑠 to represent the frequencies of those
detected spikes. Furthermore, we detect the spikes in the subtracted
PSD, where the frequencies of the detected spikes mainly represent
the emanations from the IoT devices. We use 𝐹𝑝𝑠 to represent the
frequencies of the detected spikes in the subtracted PSD. Then, we
can do the subtraction between the frequencies of the detected
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Figure 6: Detected emanation
spikes in the office room and
anechoic chamber room after
suppressing the wireless com-
munication signals.

 

 

 

 

 

Figure 7: Periodicity detection of
the spy camera’s emanations.

spikes in baseline and subtracted PSD to mitigate the artifacts as
follows:

𝐹𝑒 = {𝑓1 | |𝑓1 − 𝑓2 | < 𝑇ℎ,∀𝑓1 ∈ 𝐹𝑏𝑠 , 𝑓2 ∈ 𝐹𝑝𝑠 }
𝐹𝑒 = 𝐹𝑝𝑠 \ 𝐹𝑒

where 𝐹𝑒 represents the frequencies of the detected emanations
from the object of interest (e.g., spy camera) and 𝑇ℎ indicates the
threshold for the same emanation spike identification that is con-
figured as 1 by default in our experiments.

To further demonstrate the effectiveness of our two-step subtrac-
tion approach for artifact removal, we collect the baseline dataset
in a typical office room without spy camera deployment. Then, we
collect the test dataset in this office room with the hidden cam-
era being deployed. We conduct our two-step subtraction for the
camera’s emanation detection. As shown in Fig. 6, the detected
spikes after two-step subtraction match with the emanation spikes
obtained from the experiments in the anechoic chamber room (i.e.,
the ground-truth emanations). This is because the wireless com-
munication signals are usually stable over time and the ambient
emanations are also stable as long as there are no new electronic
devices introduced to the environment. The mismatched emana-
tion spikes come from the noise and imperfect signal cancellation.
More importantly, our emanation spike detection is designed to be
resilient to noisy spikes by leveraging the periodicity of the emana-
tion spikes. Moreover, we can also frequently update our baseline
dataset over time to ensure that our subtraction can mitigate the
artifacts introduced by the ambient wireless communication signals
and emanations.

5.3 Emanation Source Detection Using Clock
Frequency

Pair-wised distance extraction through weighting. To detect
the emanations, we propose to compute the pair-wised distances
of the emanation spikes detected in two-step subtracted PSD. Ob-
viously, one of these pair-wised distances can indicate the clock
frequency or fundamental periodicity of these emanation spikes.
Then, our problem becomes how to make the clock frequency or
fundamental periodicity outstanding among all those pair-wised
distances. To do so, we propose to use the power of the detected

 

 

 

 

 

Figure 8: PSD of camera’s ema-
nations.

 

Figure 9: PSD of microphone’s
emanations.

spikes contributed to the pair-wised distance (i.e., periodicity) as
the weight. The intuition is that the emanation spikes can have high
power in comparison to the other noisy spikes due to false positive
spike detection. However, since we use the pair-wised distances
between the detected emanation spikes, we can see pair-wised dis-
tances that are multiple times to each other have a similar weight,
which can make it difficult for us to identify the clock frequency or
fundamental periodicity.
Re-weighting the pair-wised distance through folding. To
make the pair-wised distance that can indicate the clock frequency
more outstanding, we can further fold the pair-wised distances that
are multiple times to each other. Specifically, we add the weight of
the pair-wised distance 𝑑 to the weight of the pair-wised distances
that are multiple times 𝑑 . In this way, we can make the pair-wised
distance indicating the clock frequency to havemoreweights, which
can be outstanding among all the pair-wised distances. Fig. 7 shows
the histogram of the pair-wised distance (i.e., periodicity ) for the
camera’s emanation detection with our two-step artifact removal
and clock frequency detection. As we can see, the highest bar in the
histogram indicates the periodicity of 48MHz which is the camera’s
clock frequency. The second-highest bar in the histogram indicates
a periodicity of 24MHz which is another clock frequency of the
camera. This demonstrates the feasibility of our clock frequency
detection approach.

5.4 IoT Device Fingerprinting
To demonstrate the feasibility of fingerprinting IoT devices using
their emanations, Fig. 8 and Fig. 9 show the emanation pattern of
common IoT devices (i.e., cameras and microphones). As we can see,
the intermediate frequencies of the emanations from cameras and
microphones are different due to their different circuit architectures
and components. Since these emanation spikes are periodical, the
straightforward idea is to use periodicity (i.e., clock frequency) to
characterize these emanation spikes. However, different IoT devices
may have the same CPU clock. As a result, we cannot simply use the
clock frequency extracted from the IoT devices to fingerprint them.
So, we propose to extract the features from IoT devices’ emanation
profiles. Then, we design a deep neural network architecture for
IoT device fingerprinting based on the extracted features.

5.4.1 Feature engineering. The emanation signals exhibit periodic
properties across frequencies, which are highly dependent on the
IoT devices’ hardware architectures. Therefore, we mainly extract
the emanation frequency spikes as the features for IoT devices’
fingerprinting. To do so, we need to identify the emanation spikes
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Figure 10: The left figure shows frequency features and over-time
frequency features extracted from the spectrogram. The right fig-
ure shows the overall framework of RFScan’s attention-based mul-
timodal deep neural network architecture consisting of multiple
dense layers, a softmax layer, and an attention layer.

in the power spectral density of the emanation profile. Fig. 6 shows
the emanation spike detection on the power spectral density of the
emanation signals collected from the camera. The frequencies of
the identified emanation spikes can formulate a frequency series,
which can be used as the input of the deep neural network for
IoT fingerprinting. Since different IoT devices exhibit emanations
at different frequencies, the size of the extracted frequency series
is not consistent across different IoT devices. Therefore, we need
to equalize the length of the extracted frequency series through
interpolation.

To further enhance our fingerprinting, we leverage the over-
time frequency features. Specifically, we slice out the emanation
spike in the spectrogram and further infer its emanation pattern.
Each emanation spike either exhibits a squared wave or tone-like
property. So, we create a series of 0-1 vectors to represent this
over-time frequency feature. For example, let’s assume there are
two emanation spikes in the emanation profile. One emanation
spike exhibits a squared wave over time and another one exhibits
a tone-like signal. We can have a vector of two elements, where
element 0 represents a tone-like signal and element 1 represents
a squared wave. At last, we have a feature of two vectors f and
s, where 𝑓𝑖 represents 𝑖−th emanation at the frequency of 𝑓𝑖 and
𝑠𝑖 is the corresponding over-time frequency feature. We process
the over-time frequency features with spline interpolation, which
should give us the features with the same length and further be
used for IoT fingerprinting.

We propose to combine these two features for IoT device fin-
gerprinting as shown in Fig. 10. For the sake of simplicity and
visualization, we just concatenate the frequency and over-time fre-
quency features and further use these combined features to see if
they can be used to differentiate the IoT devices.

5.4.2 Deep neural network architecture. To fingerprint the IoT de-
vices, we mainly leverage the frequency and over-time frequency
features that we extract from the frequency-domain emanation
signals. So, we propose the multimodal deep neural network archi-
tecture to model the frequency and over-time frequency features
separately, which can be fused to fingerprint IoT devices. Atten-
tion mechanism [37] has been exploited to enable the deep neural
network to focus on the essential features by adjusting the impor-
tance weights. To exploit the role of these two features, we also

 

Figure 11: Multipath reflection
results in the wrong AoA estima-
tion.

 

Figure 12: When the emanation
source is within the directional
antenna’s beam, the received
emanation signal strength be-
comes larger.

introduce the attention layer in our deep neural network architec-
ture. Since the over-time frequency features indicate the over-time
characteristics of the emanation spikes in the frequency domain,
these over-time frequency features are highly related to the fre-
quency features. So, we mainly rely on the frequency features and
exploit the over-time frequency features to highlight the frequency
features that are important for IoT fingerprinting. Specifically, the
attention mechanism learns a mapping from the frequency and
over-time frequency features to the weights of the frequency fea-
tures, which can highlight the features that are important for IoT
device fingerprinting. We illustrate this process with the following
equations.

w = 𝜇 (af , bt) (1)

cf =
𝑁∑︁
𝑖=1

(wi × afi ) (2)

where 𝜇 represents the attention layer that takes the over-time
frequency features bt and frequency features af as the input to
generate the weight that can characterize the importance of the
frequency features. cf indicates the weighted frequency features
that can be used to fuse with the over-time frequency features for
IoT fingerprinting.

Our deep neural network architecture is shown in Fig. 10, which
consists of five layers. The frequency and over-time frequency
features can first be used as the input of the dense layer with 512
neurons separately. Then, the attention layer is used to highlight the
important frequency features and generate the weighted frequency
features, which can be concatenated with the over-time frequency
features. Then, three dense layers are used with the number of
neurons of 256, 128, and 64 respectively, which can generate the
features for classification with the softmax layer. We train our deep
neural network with the categorical cross-entropy loss function
and Adam optimizer.

5.5 Localizing Hidden IoT Device
After we have detected the existence of IoT devices, we need to
localize these IoT devices in the environment so that we can re-
move them out to protect our privacy. The straightforward idea is
to leverage the widely used wireless localization algorithms (e.g.,
MUSIC [17] algorithm) to localize the IoT devices based on their
emanations, while this is not feasible. Because these algorithms
require wireless channel measurements across receive antennas on
the array, which is not available for emanations as we do not know
what the emanation leakage looks like. Moreover, these algorithms
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Figure 13: Experi-
mental setup in the
typical office room.

Figure 14: IoT devices
used in our experi-
mental evaluation.

 

Figure 15: Experi-
mental setup in an
anechoic chamber
room.

require an antenna array and since emanations usually occur in
sub-GHz down to MHz bands, the antenna array must be very large
and impractical.

To do so, we can use a directional antenna instrumented on the
detector and automatically scan over the physical environment. In
the typical multipath-rich indoor environment, the emanation sig-
nals may be reflected off different objects (e.g., walls, chairs, desks,
etc.) in the indoor environment. As such, the detector instrumented
with the directional antenna may detect the emanation source in
the wrong direction as shown in Fig. 11. Therefore, we need to
rotate our detector’s directional antenna over 360 degrees to scan
the environment. As a result, when the emanation source is within
the directional antenna’s beam direction, the received emanation
signal strength becomes larger (i.e., around 3dB increase) as shown
in Fig. 12. Therefore, we can find the correct angle of arrival (AoA)
of the emanation source after scanning the 360-degree direction.
However, this can only allow us to know the coarse-grained AoA
of the emanation source. To further localize the emanation source,
we can put our detector at another different location to scan the
wireless environment, which can give us another AoA of the ema-
nation source. Then, the crossing point of the AoAs can help us to
pinpoint or triangulate the location of the emanation source.

6 IMPLEMENTATION AND EVALUATION
RFScan’s detector. We built our RFScan prototype with signal
hound [47] as the detector, which is instrumented with the omnidi-
rectional antenna [53] for IoT device detection as shown in Fig. 13.
For IoT device localization, we use a directional antenna [1, 9] to
automatically scan the wireless environment, which is mounted on
the ComXim Turntable [14] with an angle resolution of 1 degree.
We scan the frequency band from 100MHz to 1GHz, where the ema-
nations are. The detector scans the spectrum with a frequency hop
of 100MHz and a sampling rate of 200MHz. Within each frequency
hop of the 100MHz spectrum band, the detector collects 32768 data
samples. Therefore, we sweep 9 frequency bands with a bandwidth
of 100MHz. To strengthen the emanations, the detector sweeps the
spectrum 500 times (i.e., an experimental parameter) to average
out the noise, resulting in the power spectral density across the
frequency band from 100MHz to 1GHz. As a result, it takes about
0.8s to collect all the IQ samples for detection. To improve the em-
anation spike detection accuracy, we can use more time sweeps,
while it introduces the processing delay and a large amount of IQ
samples. Therefore, we find that a 500-time sweep is a good bal-
ance. Then, we employ the workflow elaborated in Section 5 for
emanation source detection, identification, and localization, which

 

 

 

 

 

Figure 16: Spectrogram presents
the ambient emanations and
wireless communication signals
in the typical office room.

 

Figure 17: PSD of the ambient
wireless signals collected at dif-
ferent times in the hallway of a
typical office building.

(a) Setup in office room 1. (b) Setup in office room 2.

 

(c) Setup in the cafe. (d) Setup in the meeting room.

Figure 18: RFScan’s set up in different indoor environments, where
the black dots indicate the spy IoT device’s position and the black
star indicates the detector’s position.

are processed in MATLAB on a ThinkPad P1 laptop connected with
the signal hound through a Thunderbolt Ethernet adapter.
IoT devices.We tested 14 IoT devices as shown in Fig. 14, consisting
of video recorders (i.e., cameras), voice recorders (i.e., microphones),
and RF-based sensing radios. Those IoT devices are chosen that can
cover the major types of IoT devices on the market such as Amazon,
including cameras (e.g., ov5640 [11], ov2640 [6], HZVS4730 [3],
and AIY-camera [18]) and microphones (e.g., google home [20],
AIY-microphone [19]) that can collect private activity, facial, and
speech information about the human beings in the environment.
Anechoic chamber room. The ground-truth emanations of IoT
devices are measured in the anechoic chamber room as shown
in Fig. 15. We only deploy the detector’s receive antenna in the
chamber room and the detector outside the chamber room to avoid
signal interference from the detector itself. To obtain the ground-
truth emanations from the IoT devices, the distance between the
detector’s antenna and the IoT device is around a half meter. This
ground-truth emanations from the IoT devices can be provided by
the IoT device manufacturers.
Open and real-world indoor environments. To evaluate the
performance of RFScan, we mainly conduct the experiments in
two office rooms, one meeting room, and one cafe as shown in
Fig. 18. Each office room is about 3x4 meters, the meeting room is
about 5x6 meters, and the cafe is about 4x5 meters. Note, these are
typical rooms in the enterprise building, thereby there are diverse
IoT devices such as computers, printers, TV monitors, cameras,
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Figure 19: Emanation spikes de-
tection without stimulating the
emanation source, resulting in
false positive emanation spikes
detection.

 

Figure 20: Emanations from the
hidden camera with the distance
of 20cm, 40cm, and 60cm away
from the receive antenna of the
detector.

TV controllers, phones, etc. in the environment. As such, there
are different kinds of ambient wireless communication signals and
electromagnetic emanation signals in these room environments as
shown in Fig. 16. Moreover, since they are typical rooms in office
buildings, people may move around during the experiments and
introduce new IoT devices (e.g., 3-5 people carrying smartphones
or laptops) to the environment.
Experimental settings. The signal cancellation-based approach
requires that the ambient wireless communication signals be con-
sistent over time. To demonstrate this, we deploy our receiver in a
typical office building and receive the ambient wireless signals at
different times in one day over the frequency band between 100MHz
and 1GHz. Specifically, we first collect the wireless signals at 10:06
am which is indicated as time 1, and re-collect the wireless signals
at 11:10 am which is indicated as time 2 in the hallway of a typical
office building. As shown in Fig. 17, the power spectral density of
the ambient wireless signals is quite consistent over hours. We note
that the power density of wireless signals at the specific frequency
band is slightly changing over time due to the multipath effect in
the dynamic wireless environment, which can not affect our signal
cancellation over frequencies. This is because the wireless signals
are consistent over the wide frequency band. Even though there
are some abrupt wireless communication signals, we can mitigate
them by averaging over a long time duration of data collection.
Therefore, the emanations from any new IoT devices introduced
to the environment can be profiled for detection, while the com-
munication signals cannot affect our system performance. This is
because the background wireless signals are consistent over time.
The communication signals from the new IoT device may occupy
the same frequency band as the existing ones, resulting in efficient
interference cancellations.

In the office rooms and cafe, we mainly conduct experiments
for IoT device detection and fingerprinting by instrumenting the
omnidirectional antenna [53] at the detector. Specifically, we deploy
our detector’s receive antenna at the center of the room to scan the
existence of the IoT devices in the room, such that we can detect
the emanations in all directions. In the meeting room, we mainly
conduct experiments for IoT device localization. Specifically, we
instrument the directional antenna [1, 9] at the detector to scan the
wireless environment for the emanation source’s AoA estimation
with ComXimTurntable [14].We randomly select 10 spots to deploy

the IoT devices and evaluate RFScan’s detection accuracy as shown
in Fig. 18. As such, we can cover almost all the areas in the indoor
environment. At each location, we collect the emanations from
each IoT device as one experimental trial. The average distance
between the detector’s antenna and 10 spots is around 2.5 meters.

During the end-to-end system evaluation, we can first profile the
emanations of the common IoT devices purchased on the market,
which can be used to train our deep neural network for IoT fin-
gerprinting. Our detector should be continuously monitoring the
wireless environment. Whenever a new IoT device is detected, we
can further localize it through triangulation using AoA information.
Then, we can further fingerprint this new IoT device. If it does not
exist in the current training dataset, we can regard it as a new class
of IoT device and add its emanation profiles to the training dataset.

To demonstrate the performance of our IoT device fingerprinting,
we collect emanations from multiple devices with the same type or
brand (e.g., Raspberry Pi and mmWave radar devices). Specifically,
we repeat experiments for emanation signal collection 25 times in
each indoor environment. As a result, we are able to have 50 fre-
quency feature vectors and 50 over-time frequency feature vectors
for each IoT device. We repeat the above experiments in two dif-
ferent indoor environments. In total, we collect 675 measurements.
Then, we conduct the feature extraction to obtain the features for
IoT device fingerprinting with the deep neural network. In compar-
ison, the conventional machine learning models (e.g., SVC, logistic
regression, KNN, etc.) for IoT fingerprinting are developed with
the sklearn [15] library. We also leverage the XGBoost classifier in
Python to fingerprint the IoT devices. We further split the collected
dataset into 80% for training and 20% for testing.

7 EXPERIMENTAL RESULTS
To evaluate the RFScan’s system performance, We first conduct
system-level evaluations in the practical indoor environment for
IoT device detection, fingerprinting, and localization. Then, we
conduct the microbenchmarks to understand and show the impact
of different factors on IoT device detection.

7.1 End-to-End System Evaluation
7.1.1 Detection Performance. To measure the IoT device detection
accuracy with RFScan, we do the experiments in three indoor places
such as office rooms and cafes. The detection accuracy is defined as
the ratio of the correct detection trials to the total trials. The correct
IoT device detection is made if we can correctly detect its clock
frequency. Since they are typical indoor environments, there are
some legitimate IoT devices (e.g., phones, TV monitors, computers,
etc.) deployed in the rooms. Specifically, the detector is deployed at
the center of the room and we randomly select ten spots to deploy
the IoT devices (e.g., spy camera HZVS4730).
Result. Fig. 21 shows the IoT device (e.g., spy camera HZVS4730)
detection accuracy in three indoor areas. As we can see, the de-
tection accuracy in office room 1, office room 2, and the cafe is
around 0.97, 0.95, and 0.98 respectively, which indicates the good
performance of our RFScan on IoT device detection. Moreover, the
detection accuracy across different indoor areas is close to each
other, which indicates that our detection approach is resilient to
different physical environments. Even though the different physical
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Figure 21: IoT devices detection
accuracy in office rooms and
cafes.

 

 

 

 

 

Figure 22: Showcasing different
IoT devices’ detection accuracy.

 

Figure 23: Combined feature-
based clustering for the IoT de-
vices in the hallway and office
room environments using TSNE
algorithm.

 

 

 

 

 

Figure 24: Performance of the
IoT fingerprinting when Ar-
duino, echo dot, or spy camera is
missing in the training dataset
indicated as A, B, or C respec-
tively.

Precision Recall F1-score Accuracy
XGB Classifier 0.8 0.77 0.77 0.77

Logistic regression 0.46 0.46 0.44 0.46
SVC 0.73 0.72 0.71 0.72
KNN 0.84 0.81 0.8 0.81
DTC 0.85 0.83 0.82 0.83
RFC 0.88 0.85 0.85 0.85

RFScan 0.96 0.95 0.95 0.95

Table 2: Precision, recall, F1-score, and accuracy of fingerprinting IoT
devices with conventional machine learning models and attention-
based multimodal deep neural network using frequency and over-
time frequency features.

environments exhibit different multipath effects, it can not affect
our IoT device detection. This is because this multipath effect can
only affect the received signal strength at our detector due to the
destructive or constructive signal addition at our detector’s receive
antenna. However, it can not affect our detector’s detectability as
long as our detector can receive the emanation signals. Fig. 22 shows
the detection accuracy for five different IoT devices (i.e., HZVS4730,
OV5640, Arduino elegoo, OV2640, and AIY mic) in the office room.
We chose them because these IoT sensors represent different spy
camera sensors, microcontrollers, and assembled sensors. As we
can see, the detection accuracy across different IoT devices is similar
with an accuracy of around 0.97, which demonstrates the efficiency
of our hidden IoT device detection approach. This is because our
RFScan is resilient to the diversity of IoT devices.

 

Figure 25: CDF of the IoT
device localization error using
directional antennas with a
beamwidth of 100 degrees or 45
degrees.

 

Figure 26: Emanations from the
camera in LOS and NLOS scenar-
ios.

7.1.2 Fingerprinting Performance. To demonstrate the efficiency
of RFScan on IoT fingerprinting, we compare its performance with
the conventional machine learning models. For the conventional
machine learning models, we simply concatenate the frequency and
time features and then we conduct the TSNE algorithm on the con-
catenated features. As such, two important features are extracted
and used for fingerprinting. However, RFScan uses the multimodal
deep neural network with an attention layer to model the frequency
and over-time frequency features for IoT fingerprinting.
Result. Fig. 23 shows the scatter plot using the combined features,
where dimensions 1 and 2 indicate the two important feature di-
mensions extracted by the TSNE algorithm. As we can see, different
IoT devices can be differentiated through the combined features
extracted from their emanation signals. However, some IoT devices
cannot be accurately differentiated, as their combined features are
overlapped. This indicates that we need to use a deep neural net-
work to exploit the frequency and over-time frequency features for
fingerprinting.

Fig. 24 shows the performance of IoT fingerprinting on 14 devices,
while the deep neural network is trained on 13 devices. We consider
there is only one class of IoT devices missing. This is because we
add one new IoT device to the training dataset as time goes on.
As such, the deep neural network outputs a lower probability on
the new device that is not seen during the training process. As
we can see, the precision, recall, F1-score, and accuracy are pretty
high, even though the deep neural network is trained only on 13
devices. This is because the deep neural network can model 13
devices’ emanations very well and regard the unseen device as the
new device. Moreover, for different missing devices in the training
process, the deep neural network presents a similar performance,
demonstrating the resilience of our deep neural network model.

Table 2 shows the performance of IoT fingerprintingwith attention-
based multimodal deep neural networks and conventional machine
learning models. Our attention-based multimodal deep neural net-
work achieves a precision of 0.96, recall of 0.95, F1-score of 0.95, and
accuracy of 0.95. As we can see, RFScan with the attention-based
multimodal deep neural network can achieve high classification
accuracy in comparison to the other conventional machine learn-
ing models. This is because the deep neural network exploits the
feature importance and relations for IoT fingerprinting.
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Figure 27: Maximum detection
distance for different IoT devices.

 

 

 

 

 

Figure 28: Strength of emana-
tions over IoT device-receiver dis-
tance.

7.1.3 Localization Performance. To demonstrate the performance
of IoT device localization, we do experiments in ameeting room. The
detector’s directional antenna is mounted on the turntable which
can have an angle resolution of 1 degree. Since the beamwidth of
the directional antenna can affect the AoA estimation accuracy, we
conduct the experiments with two different directional antennas
with a beamwidth of 100◦ [1] and 45◦ [9]. The IoT device is de-
ployed in this meeting room and the detector can scan the physical
environment by rotating the directional antenna’s direction with
the turntable. The emanation’s AoA is obtained during the direc-
tional antenna’s rotation when the detector can accurately detect
the clock frequency of the IoT device. To localize this IoT device,
we can move the directional antenna to another spot and re-scan
the environment to detect the IoT device’s clock frequency. Then,
the location of the IoT device is pinpointed by the triangulation of
emanation’s AoAs.
Result. Fig. 25 shows the CDF of the localization error for the IoT
devices. As we can see, the median localization error is around
0.85m across different IoT devices using a directional antenna
with a beamwidth of 100 degrees and a directional antenna with
a beamwidth of 45 degrees. The localization error using the direc-
tional antenna with a beamwidth of 100 degrees is larger than the
directional antennawith a beamwidth of 45 degrees. This is because
the directional antenna with a narrower beamwidth can provide us
with a more accurate AoA estimation, resulting in smaller localiza-
tion errors. We can further use a directional antenna with an even
narrower beamwidth to increase our localization accuracy.

7.2 Microbenchmarks
7.2.1 Impact of the Ambient Wireless Signals. To demonstrate this,
we put a camera in the office room, which is deployed around 1m
away from the detector’s receive antenna. We choose the distance
of 1m as an example, as we only want to measure the impact of the
ambient wireless signals. We try to exhibit the spectrogram of the
received signals in the spectrum band between 100MHz and 1GHz.
These ambient artifacts can interfere with the emanation source
detection, as the emanations are spreading across a wide frequency
band.
Result. Fig. 16 shows the spectrogram in the typical office room.
As we can see, the cellular communication signals are shown in
the spectrogram within the frequency band between 600MHz and
900MHz. Since the amplitude-modulated clock signals are spread

over a wide frequency band, the normal wireless communication
signals can affect emanation detection when the emanation spikes
are overlayed by these wireless communication signals. Moreover,
we can see that the ambient emanations from legitimate IoT de-
vices (e.g., TV monitors, computers, phones, etc.) can be mixed
up with the spy camera’s emanations within the frequency band
between 200MHz and 400MHz, which can significantly affect the
camera’s emanation detection. As shown in Fig. 19, the emana-
tion spike detection in the ambient wireless environment can be
very challenging, as the ambient wireless communication signals
and background emanations from the legitimate IoT devices may
occupy the same frequency band as the emanations from the IoT
device of interest due to the frequency spread of the amplitude-
modulated clock signals. Therefore, this can motivate us to leverage
our core technique of signal cancellation to remove interference
from the normal wireless communication signals and emanation
signals in the wireless environment. Incorporating our findings of
stable ambient wireless signals in Fig. 17, our signal cancellation ap-
proach should accurately eliminate the interferences for emanation
detection.

7.2.2 Effect on the Detection Range. To measure the effect on ema-
nation detection range, we did experiments in the anechoic chamber
room and typical office room with diverse IoT devices. Basically,
we measure the power spectral density of the emanation spikes in
the anechoic chamber room when the IoT device is deployed 20cm,
40cm, and 60cm away from the detector’s receive antenna. We also
did experiments in the typical office room to measure the detection
range and emanation strength of different IoT devices.
Result. Fig. 20 shows the emanations from the camera which is
20cm, 40cm, and 60cm away from the detector’s receive antenna.We
can see that the detected emanation spikes are not linearly related
to the distance between the receive antenna and the camera. This is
because of the multipath effect in the anechoic chamber room that
can cause the constructive or destructive emanation signals addition
at the detector. This also affects the maximum emanation detection
distance. For example, in the anechoic chamber room, we find that
a camera (i.e., ov5640) can be detected at 5 meters away from the
detector’s receive antenna. However, in the office environment,
we can detect it at most 3 meters away from the detector’s receive
antenna due to the multipath effect and the inference of the wireless
communication signals that can not be fully eliminated. Moreover,
we find that different IoT devices have different maximum detection
ranges due to different circuit architectures and components. For
example, the microphone (i.e., Fillman microphone) can be detected
at most 50cm away from the detector’s receive antenna in the office
room.

Fig. 27 shows the maximum emanation detection distance for
six different IoT devices with and without RFScan. As we can see,
different IoT devices have different maximum emanation detection
distances due to their heterogeneous hardware architectures. For
some spy camera devices (e.g., ov2640), we can even detect its ema-
nations 5m away using RFScan for noncoherent averaging to boost
the emanation strength, while its emanations can only be detected
within 2.1m without RFScan. We can see that the detection range
is increased by 2× with RFScan. Fig. 28 shows the strength of the
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Figure 29: The clock frequency
detection result for the camera
with a one-hour time gap for
baseline and test dataset collec-
tion.

 

 

 

 

 

Figure 30: The clock frequency
detection result for the camera
with baseline and test dataset
collected on different days.

 

Figure 31: The clock frequency
detection result for camera and
microphone deployed in the of-
fice room.

 

Figure 32: The clock frequency
detection result for two different
cameras deployed in the office
room.

emanation signals decreases as the IoT device-receiver distance in-
creases. This is because the emanation signals have been attenuated
over the air. As we can see, the strength of the emitted emanation
signals from the ov2640 is much higher than the other IoT devices
(e.g., Arduino elegoo and HZVS54730), which are dependent on the
strength of the clock signals generated by these IoT devices.

7.2.3 Impact of Non-line-of-sight Emanations. To demonstrate the
impact of the NLOS emanation propagation, we do experiments in
the anechoic chamber room with a camera deployed 50cm away
from the detector’s receive antenna. We chose the distance of 50cm
as an example, as we want to measure the impact of non-line-
of-sight emanations. We first measure the emanation detection
when there is only a line-of-sight path between the camera and
our detector’s receive antenna. Then, we deploy some paper boxes
(i.e., 45𝑐𝑚 × 45𝑐𝑚 × 25𝑐𝑚) around our setup to create the NLOS
environment, resulting in constructive or destructive signal addition
at the detector. Using a paper box to create the non-line-of-sight
environment for the performance evaluation is also employed by
the prior work [54]. Note that we use this paper box as the reflector.
The other reflectors such as metal boxes could also work to create
a multipath wireless environment.
Result. Fig. 26 shows the detected emanations within the frequency
band of 400MHz and 500MHz in LOS and NLOS scenarios in the
anechoic chamber room. As we can see, the emanation spikes from
the camera in the LOS and NLOS scenarios are matched very well,
as we use the same emanation source in both scenarios. We also
find that some emanation spikes in the NLOS scenario have larger
power densities than the emanation spikes in the LOS scenario
due to constructive signal addition, and some emanation spikes
in the NLOS scenario have smaller power densities than the em-
anation spikes in the LOS scenario due to the destructive signal
addition. This is because of the multipath effect which can affect
our emanation spike detection.

7.2.4 Effectiveness of Suppressing Wireless Signals. To measure the
effectiveness of our two-step subtraction, we collect the baseline
and test datasets with a time gap. We put the camera at a distance
of 80cm away from the detector’s receive antenna. We chose the
distance of 80cm as an example as we want to measure the impact
of the wireless signals. Our findings could be easily generated to the
other distance choices. We expect that the artifacts in the wireless
environment should be consistent even with a large time gap in data

 

 

 

 

 

Figure 33: The Spy camera is shielded by plastic and aluminum in
the anechoic chamber room for emanation detection.

 

 

 

 

 

Figure 34: Power spectral density (PSD) of the emanation spikes
from three different IoT devices, when they are shielded by different
materials.

collection, which can be canceled out with our artifacts removal
approach.
Result. Fig. 29 shows the histogram of clock frequency detection
for the camera in the office room, when we collect the baseline and
test dataset with a time gap of an hour. The two highest spikes in
the histogram indicate the detected clock frequencies. As we can
see, our algorithm can accurately detect two clock frequencies of
the camera which are 24MHz and 48MHz. Since we collected the
baseline and test dataset with a time gap of an hour, this result could
demonstrate the effectiveness of our artifacts removal approach.

To further demonstrate the efficiency of artifact removal with
our two-step subtraction approach, we collect the baseline and test
dataset with a time gap of tens of hours. Specifically, we collect the
baseline dataset on one day and test the dataset on another day.
Fig. 30 shows the emanation source’s clock frequency detection
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result with camera ov5640. As we can see, the two highest bars in
the histogram indicate the clock frequency of 24MHz and 48MHz,
which matches the camera’s clock frequencies that we used during
our experiments. We find that we can still correctly identify the
clock frequencies of the camera in the office room. This is because
the wireless signals in the environment are usually quite consistent.
Even though there are some bursty wireless communication signals,
they can be captured through baseline dataset collection with a
longer time duration. More importantly, we can regularly update
our baseline dataset for artifact removal, when we find that there
are no periodical emanation spikes in the result of two-step PSD
subtraction.

7.2.5 Impact of Multiple IoT Devices. To demonstrate the perfor-
mance of RFScan on detecting multiple IoT devices. We first deploy
one camera and one microphone in the office room to see if RFS-
can can accurately detect the IoT device by predicting their clock
frequencies. Furthermore, we deploy two different cameras in the
office room to see if we can still discover them.
Result. Fig. 31 shows the clock frequency detection result with a
histogram for the camera (i.e., ov5640) and microphone (i.e., Fillman
mic). As we can see, the highest spikes in this histogram have
the periodicity values of 11.6MHz, 23.6MHz, and 47.6MHz, which
is close to the ground-truth clock frequencies of the camera and
microphone are 24MHz and 48MHz for the camera and 12MHz
for the microphone. Fig. 32 shows the clock frequency detection
result with a histogram for two different cameras (i.e., ov5640 and
ov2640) deployed in the office room. Since the clock frequency of
the ov2640 camera is 5MHz and the clock frequency of ov5640
is 24MHz and 48MHz, their clock frequencies are almost integer
multiples of one another. As a result, we can see that the highest
spike in the histogram has a periodicity value of 4.7MHz which is
close to 5MHz. Since the clock frequencies of the ov5640 camera are
almost integer multiples of the ov2640 camera, we can only see one
outstanding peak in the histogram. However, RFScan can still detect
IoT devices in the environment due to the periodical emanation
spikes in the PSD profile, even though we can not distinguish them
based on their clock frequencies. Moreover, we can detect one of the
cameras and localize it to kick it out of the environment. Then, we
can detect and localize another one. In this way, we can expose all
the possible IoT devices deployed in the environment, even though
they share similar clock frequencies.

We discuss the impact of the multiple IoT devices on detection,
fingerprinting, and localization. As long as the IoT devices have
different clock frequencies, they can be detected and separated
as different devices, no matter if they appear at the same time or
not. This is because we can detect emanation spikes and further
identify the clock frequencies to differentiate them. However, if
the devices have similar clock frequencies, RFScan still detects the
presence of a device but does not separate the devices with similar
clock frequencies (i.e., fingerprinting fails). If more than one new
device is introduced, RFScan cannot simultaneously localize all of
them. However, we can localize and remove them one by one as
explained above. Therefore, eventually, it can be able to localize all
new devices if they have different clock frequencies. Please note
that this can not be a problem for existing trusted devices in the
environment as they have been removed in the prior baseline stage.

7.2.6 Impact of the IoT device shielding. To evaluate the impact
of the IoT device shielding on emanation detection, we mainly
measure the power spectral density of the emanation spikes when
the IoT devices are not shielded or shielded by plastic and aluminum.
This is because the existing IoT devices are usually shielded by
plastic or metal and some commercial-of-the-shelf IoT devices are
not even shielded at all as shown in Fig. 33. To do so, we use
three IoT devices (i.e., Amazon Echo Dot, Arduino, and spy camera
HZVS4730) deployed in the anechoic chamber room and cover them
with plastic or alumni for power spectral density measurements of
the emanations spikes.
Result. Fig. 34 shows the power spectral density (PSD) of the de-
tected emanation spikes from three different IoT devices, when they
are not shielded or covered by plastic and aluminum in the anechoic
chamber room. Specifically, since there are multiple emanation
spikes, we mainly measure the average PSD of all the emanation
spikes. As we can see, the different IoT devices without shielding
show different average PSD. The strength of the emanation spikes
becomes weaker as the IoT devices are covered by plastic and alu-
minum. This is because the emanation signals are attenuated by
the plastic and aluminum. However, since we cannot fully cover or
shield the IoT device, the emanations can still be received by the
detector afar.

8 RELATEDWORK
Dedicated detectors. The dedicated detectors [4, 5, 38, 40] have
been widely used for camera and microphone detection, which
requires us to thoroughly scan the wireless environment and shut
down all the legitimate IoT devices in the background. Moreover,
the users need to hold the detector and walk around in the indoor
area to detect potential IoT devices. As a result, it needs heavy hu-
man workloads and can interrupt the existing IoT device’s wireless
communication, which disables it from being widely used. More-
over, these dedicated detectors detect spy cameras based on the
signal’s strength, which cannot distinguish between multiple de-
vices. However, our RFScan can passively and automatically scan
the wireless environment to detect all kinds of IoT devices.
Sensor-based detection. Prior works also use the camera to detect
the hidden camera in the environment [10, 21, 23, 27, 30–32, 39, 41,
43, 51, 52, 56]. The basic idea is that the hidden camera usually has
a light indicator when it is turned on, which can be detected by
our camera or dedicated sensor such as laser sensor [43]. These
camera-based detection approaches usually leverage the hand-held
smartphone and use its camera to detect the light indicator on
the camera. However, these camera-based detection approaches
heavily rely on the light indicator of the hidden camera, which can
be easily hidden by the attacker at the software level. For example,
the attacker can turn off this light indicator to avoid being detected.
More importantly, we still need to hold the camera and walk around
in the environment to accurately detect the hidden camera due to
the camera’s line-of-sight restriction and weak light signals.
Traffic-based detection. The traffic-based detection approaches
target wireless cameras, which can transmit wireless signals over
the air [12, 13, 24, 26, 28, 33, 35, 36, 42, 44, 48, 55]. As a result, we
can sense the variation of the wireless traffic pattern to detect if
the wireless camera is recording. Specifically, these works require
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the detector to make movements (i.e., motion triggering) or use
light signals (i.e., light triggering) to trigger the wireless camera’s
recording and then detect the variation of the wireless traffic pat-
tern. For example, MotionCompass [24] triggers the motion sensor
of the wireless camera, which can introduce a sudden variation
of the wireless traffic generated by the camera. This sudden vari-
ation of the wireless traffic can be captured to detect if there is a
camera around and further localize it by triggering the camera in
different indoor places. Unfortunately, these traffic-based detection
approaches cannot detect the hidden camera without a wireless
transceiver, which is widely used to spy on people.
Excitation-probe detection. Recently, some works have tried to
excite spy cameras with light or radio frequency signals to sense
the electromagnetic wave leakage from them [45]. For example,
Digitus [16] mainly leverages the emanations to fingerprint the IoT
devices (e.g., Arduino Unos and STM 32s) with deep learning, which
requires to design well-trained machine learning models without
accurately extracting the clock frequency features from these IoT
devices. Moreover, it suffers from the impact of the ambient artifacts.
CamRadar [34] uses light signals to scan the environment to excite
the cameras and sense the emanations from them. The underlying
assumption is that the emanations become stronger as the camera
captures the bright scenes. E-eye [29] uses the mmWave signals as
the excitation source for IoT device detection, as the electronic com-
ponents on the IoT device can introduce the nonlinear harmonics
due to the interaction with the impinged mmWave signals. Similar
to CamRadar and E-eye, DeHiREC [57] exploits electromagnetic
interference or ultrasound to excite the hidden microphones and
further detect them based on their strengthened emanations. Even
though the excitation source can stimulate the hidden cameras or
microphones, they can also excite the other legitimate IoT devices
in the environment [29] which can aggravate the difficulty of dis-
tinguishing between the ambient emanations from the legitimate
IoT devices and emanations from the IoT devices. Memscope [46]
exploits the emanations from the device’s memory to fingerprint
the devices. Most importantly, the typical wireless communication
signals can significantly interfere with the emanations from the
cameras and microphones. However, all of these works have not
discussed how to de-clutter the ambient noise and inference in the
wireless environment for camera or microphone detection without
excitation. As a result, we cannot directly apply them to detect the
diverse IoT devices, as we cannot use one excitation source to stim-
ulate all the IoT devices. More importantly, the excitation signals
can be easily detected by the attackers to prevent themselves from
being detected, while our RFScan is fully passive for IoT devices
detection which is agnostic to the attackers.

9 CONCLUSION, DISCUSSION, AND FUTURE
WORK

In this paper, we present RFScan, a system that can detect, identify,
and localize hidden IoT devices using unintentional electromagnetic
emanations. Specifically, we propose to use non-coherent averaging
to boost the emanation strength and design a novel algorithm to
eliminate the ambient wireless communication signals, which can
be used to sense the hidden IoT devices in the cluttered indoor

environment. Further, we design a novel clock frequency detec-
tion algorithm for IoT device fingerprinting and localize the IoT
devices through AoA-based triangulation. Below, we discuss some
limitations of our RFScan’s design and propose future potential
development opportunities.
Long-range emanation sensing. One great challenge of emana-
tion source detection, identification, and localization is the weak-
ness of emanation signals, which can restrict our emanation detec-
tion range. The existing work of using emanations to achieve long-
range detection either through exciting the emanation source or
relying on the transceiver architecture of the device [34, 45, 46, 57],
which can be either easily defended or hardware dependent. Since
the wireless communication signals may also cover the emana-
tion signals, we need to further de-cluttering the impact of the
normal wireless communication signals. Therefore, it is important
to suppress these wireless communication signals and strengthen
the emanation signals based on their signal patterns with machine
learning models or advanced signal filtering techniques, which can
further boost emanations for detection, identification, and localiza-
tion. Note that our RFScan takes the first step to achieve passive
emanation sensing for diverse IoT devices.
Fine-grained emanation source localization. To localize the
IoT device in the cluttered wireless environment, RFScan mainly
leverages the directional antenna for the emanation source’s AoA
estimation. However, RFScan’s directional antenna-based AoA esti-
mation is coarse-grained, which is highly dependent on its beam
width. Since antenna array-based AoA estimation has been exten-
sively exploited in the wireless localization domain, we can use an
antenna array for fine-grained AoA-based emanation source local-
ization. However, the localization accuracy is compromised by the
length of the antenna array, especially considering the emanations
in low-frequency bands.
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