2410.13818v2 [math.AP] 2 Apr 2025

.
.

arxiv

HARDY’S UNCERTAINTY PRINCIPLE FOR SCHRODINGER EQUATIONS
WITH QUADRATIC HAMILTONIANS

ELENA CORDERO, GIANLUCA GIACCHI, AND EUGENIA MALINNIKOVA

ABSTRACT. Hardy’s uncertainty principle is a classical result in harmonic analysis, stating
that a function in L?(R?) and its Fourier transform cannot both decay arbitrarily fast at in-
finity. In this paper, we extend this principle to the propagators of Schrédinger equations with
quadratic Hamiltonians, known in the literature as metaplectic operators. These operators
generalize the Fourier transform and have captured significant attention in recent years due to
their wide-ranging applications in time-frequency analysis, quantum harmonic analysis, signal
processing, and various other fields. However, the involved structure of these operators re-
quires careful analysis, and most results obtained so far concern special propagators that can
basically be reduced to rescaled Fourier transforms. The main contributions of this work are
threefold: (1) we extend Hardy’s uncertainty principle, covering all propagators of Schrédinger
equations with quadratic Hamiltonians, (2) we provide concrete examples, such as fractional
Fourier transforms, which arise when considering anisotropic harmonic oscillators, (3) we sug-
gest Gaussian decay conditions in certain directions only, which are related to the geometry of
the corresponding Hamiltonian flow.

1. INTRODUCTION

Uncertainty principles are classical results in harmonic analysis stating that, whenever a mean-
ingful definition of localization is given, a function f € L2(R%) and its Fourier transform f cannot
be both well-localized in their respective domains. The notion of localization we consider in the
present work is Gaussian decay, corresponding to Hardy’s uncertainty principle, formulated in
[17] by Hardy for functions in L?(R), and later generalized by Sitaram, Sundari and Thangavelu
to L2(R?) in the following synthesized form, [23].

Theorem 1.1. Let f € L?(RY), and a,b > 0. Assume that:
F@I e, zeRr?,
f©) e ™l gerd

Ifab > 1, then f =0. If ab=1 then f(z) = Ce—malzl”

This result is isotropic, as the decay of f and f is assumed to be the same along every
direction. In the last decades, Theorem underwent several generalizations, see for example
[1, 2]. Various uncertainty principles, including the one of Hardy, have been extended to the
setting of metaplectic operators with free symplectic projections in [111 [19] [27].

Metaplectic operators were introduced and studied by several authors in the last century
[21] 22] 25], 26], and they captured the attention of researchers in the last decades due to their
applications to signal analysis, PDEs, time-frequency and quantum harmonic analysis [T}, [16]
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24, [28]. Despite their very algebraic definition, the simplest way to view them analytically is as
compositions (up to phase factors) of three elementary operators: the Fourier transform itself,

f&) = [ fl@)e %y,  fe L'RY),
R4

the product operators:
pof(t) =" f(t),  fe L*(RY),
(Q € R¥™? symmetric) and the rescalings:
Tpf(t) = [det(B)[V2f (B, feL*RY),

(E € R4 invertible). The straightforward expression of these three generators should not
mislead the reader, as metaplectic operators are not limited to those non-trivial examples, covering
operators such as fractional Fourier transforms, and propagators of Schrodinger equations with
quadratic Hamiltonians. On the top of that, metaplectic operators also play a fundamental role
in the representation of Schrodinger propagators of equations with perturbed Hamiltonians, we
refer the interested reader to [7].

Any metaplectic operator S is naturally related to a symplectic matrix S, its projection, which
is usually studied in terms of its d x d block decomposition:

A B
(1) S = € R2dx2d A,B,C,D e R¥¥4,
C D

S is called free if the block B is invertible. In view of this relation, metaplectic operators are
relatively easy to handle and decompose, and the question arises whether it is possible to infer
their properties from the structure of the corresponding projection.

Hardy’s uncertainty principle for metaplectic operators with free projections [II, Theorems
23 and 28] highlights that the interplay between the directions where the function f decays
exponentially and the invertible block B is encoded in the matrix M BT N B. Precisely:

Theorem 1.2. Let S be a metaplectic operator with free symplectic projection S, and block
decomposition . Let M, N € Sym(d,R) be positive-definite matrices and f € L*(R?) be such
that:

[f(@)| Se7™™= zeRY,
ISFOIS ™, ¢eR?
If X > 1 for some eigenvalue A of MBTNB, then f = 0.

The metaplectic operators with free symplectic projections can be viewed as rescaled Fourier
transforms (see Remark below). The known generalizations of Hardy’s uncertainty princi-
ples to metaplectic operators employ this connection and are restricted to operators with free
symplectic projection.

The first aim of this work is to generalize Hardy’s uncertainty principle to every metaplectic
operator, regardless of the invertibility of the block B. Straightforward examples, as the following,
show that in these cases Hardy’s uncertainty principle features a directional selectivity depending
on the block B in ().

Example 1.3. Consider the metaplectic operator

SfEn) = Faf (€ + 20, —E + 1),
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Sf(€

FIGURE 1. The directional selectivity of Hardy’s uncertainty principle for meta-
plectic operators, involving ker(B)* and R(B), illustrated in Example

where FoF'(z,§) = fR2 F(z,y)e 2™ dy is the partial Fourier transform with respect to the second
variable. The associated symplectic matrix

1 0|0 =2
1 0|0 -1
S = )
0 1 ]-1 0
0 -172 0
has
n 0 2
ker(B)~— = span , and R(B) =span
1

Consider the function
2‘1ry2

fzy) = plx)e™™™",
represented in Figure (a), where ¢ € C*°(R) is supported on [—1,1]. Then,

SF(Em) = yp(-6 -+ 2)e T2,

that we represented in Figure (b). Observe that f is supported on the cylinder ([—1,1] x
{0}) + ker(B)*, whereas Sf is supported on ({0} x [-1,1]) + R(B).

Theorem [T.2] cannot be extended to metaplectic operators with symplectic projection having
B = 04. In fact, a stronger conclusion can be inferred:

Proposition 1.4. Let S be a metaplectic operator with B = 04. Then, there exists f € L2(R%)\
{0} such that f and Sf have compact support.
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In the context of Hardy’s uncertainty principle, the question arises whether there are other
non-elementary cases where the principle fails. In this paper, we answer this question by showing
that, whenever B # 04, Hardy’s uncertainty principle holds. In particular, if also B ¢ GL(d,R),
the directions in ker(B)* and R(B) play a special role. Let us state our main result, cf. Theorem
in Section [4 and the discussion at the beginning of Section

Theorem 1.5. Let S € Mp(d,R) be a metaplectic operator, and assume that B # 04. Let M
and N be positive-semidefinite matrices with

(2) ker(M) = ker(B) and R(N) = R(B).
Let f € L?(R?) satisfy the decay estimates

(3) If(z)] < e ™M, a.e. x € RY,

(4) ISF(E)| S e ™NEE, a.e. &£ € RY.

If X > 1 for some eigenvalue X of MBTNB, then f =0 almost everywhere.

We point out that under the above conditions , the matrix M BT N B is an isomorphism of
ker(B)*. We also remind that M BT N B is the product of two positive semi-definite matrices and
all its eigenvalues are real and non-negative. To conclude our presentation of Hardy’s uncertainty
principle for metaplectic operator, we prove that the directional decay in Theorem is sharp,
as detailed in Theorem [.§ below. The next example demonstrates the connection of Theorem
to the classical Hardy’s uncertainty principle.

Example 1.6. Let L = ker(B) and R = R(B). We denote by P and @ the orthogonal projections
onto L+ and R respectively. Then, applying the above theorem for M = aP and N = bQ, we see
that the decay assumptions and imply f = 0 when ab > o(B)~2, where o(B) is the
largest singular value of B.

Since the propagators of Schrodinger equations with quadratic Hamiltonians are metaplectic
operators, the theory developed so far finds important applications in the so-called dynamical
version of Hardy’s uncertainty principle, which involves the Schrodinger evolution. In the context
of quantum mechanics, the Schrodinger equation is fundamental for describing the time evolution
of a quantum state. The analysis of quadratic Hamiltonians using symplectic and metaplectic
groups provides deep insights into the solutions of the Schrédinger equation. The Hamiltonian
can be represented using a real-valued symmetric matrix M:

) H(z) = 3 (Mz,2)

where z = (z,¢) € R??. Symplectic mechanics provides the framework for analyzing systems with
quadratic Hamiltonians. For a quadratic Hamiltonian, the time evolution of the quantum state
u(x,t) is governed by:

ou
(6) iha(a},t) = Hpu(x,t),
where Hp is the Weyl quantization of H:

(o) = [ i (T2 e) o) v

2 K
(see Section [B| for details). If we consider the equation (I}) with the initial condition u(z,0) =
up(), the solution can be expressed in terms of a metaplectic operator Si; := ¢ acting on the

initial state ug(x):
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u(z, t) = Stug(z).

The so-called dynamical version of the Hardy’s uncertainty principle establishes conditions under
which the solution must vanish, highlighting the interplay between symplectic geometry and
quantum mechanics. For a comprehensive interpretation of this dynamical version we refer to the
recent survey [I3], and to the pioneering works with Hp = A + V in [5, [12], see also [9]. More
recently, Cassano and Fanelli [3] [4] studied the special cases of the harmonic oscillator and of
systems with a magnetic potential as well as bounded perturbations of such systems. They have
proved uniqueness results for the Hamiltonian Hp = Ay + V(z,t), where the (electro)magnetic
Laplacian is Ay = (V—iA(z))?, with magnetic potential given by some coordinate transformation
A:R? — R Knutsen in [20] proved new results in this framework using the Hardy’s uncertainty
principle for the Wigner distribution.

Our main result in this direction is Theorem below, which generalizes Theorem 3.1 in [20]
in two ways:
(i) It gives sharp sufficient conditions for the uncertainty principle.
(ii) It works for every symplectic matrix with block B # 0.

The basic idea of Theorem is Hardy’s uncertainty principle for metaplectic operators in
Theorem which makes the proof of Theorem decidedly simple. To give a flavor of this
result, we state here the simplified case of a free symplectic matrix (det B # 0).

Theorem 1.7. Let u(x,t) be the solution to the Schrodinger equation with a quadratic Hamil-
tonian (1)), h = 1/(27), and initial datum uy € S(R?). Consider M,N € Sym(d,R) positive-
definite matrices. Suppose at timest =0 and t = t1 the solution satisfies:

(7) lu(z,0)] Se ™= 2 e RY and  |u(z,ty)| Se™VET 2 e RL

Assume that the symplectic projection S;} of the operator which satisfies u(x,t;) = S'E}uo is free
and has block decomposition with block B = B(t1). Let A1,...,Aq be (positive) eigenvalues of
MBT(t,)NB(t1). If there exists a j € {1,...,d} such that \; > 1, then ug = 0.

Outline. The rest of this work is organized as follows: Section [2| introduces the notation
and main theory used. Section [3| presents the key tool for proving Hardy’s uncertainty principle,
detailed in Section[4] accompanied with a discussion about directional selectivity and explicit non-
trivial examples. Finally, Section [f] covers the dynamic versions of Hardy’s uncertainty principle.
Some algebraic results are collected in the Appendices for the convenience of the reader.

2. NOTATION AND PRELIMINARIES

2.1. Linear algebra notation and change of variables. The standard scalar product in R?
is denoted by zy = -y = 27y, 2,y € R%. The Euclidean norm on R? is denoted by |- |, i.e.,
|z = Va -z

If £ € R4 ker(E) denotes its kernel and R(E) denotes its range. Recall that R(ET) =
ker(E)+. We also denote by E~'(X) the pre-image of a space X C R? under E. Moreover, if
E € R™X" BT denotes its Moore-Penrose inverse.

The group of d x d invertible matrices is denoted by GL(d,R). By Sym(d,R) = {P € R¥*4 :
PT = P} we denote the space of d x d symmetric matrices. Moreover, we denote by Sym , (d, R)
and Sym , (d,R) the set of d x d positive-definite and positive-semidefinite matrices, respectively.
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If £ C R? is a linear subspace of dimension 7, and E : R? — R? with E(£) having dimension
r, then

1
f(Ex)dr = —— f(y)dy,
/E 1c(E) Je)
whenever f : E(L) — C is measurable and the integral converges. The constant gz (E) is the
volume of the simplex generated by Evs, ..., Ev,, with vy, ..., v, being any orthonormal basis of

L. If £L=R% and A € GL(d,R), then gz (E) = | det(E)|.
If V:R" — L is a parametrization of £, then

/c flayde = \Jaea(vrV) [ f(vuya

[14, Theorem 11.25]. In particular, if V' maps the canonical basis of R” to an orthonormal basis
of £, then VTV = I,. and, consequently,

/ f(z)dx = fF(Vu)du.
c R™

2.2. The symplectic group. We denote by Sp(d, R) the group of 2d x 2d symplectic matrices.
Specifically, a matrix S € R??*24 is symplectic if it has block decomposition:

A B
(8) S= ;
Cc D
with the blocks A, B, C, D € R¥*? satisfying:
ATC =CT A,
(9) BTD = DTB,

ATD - CTB =1,.

We call S free if B € GL(d,R). There are two other equivalent definitions of the symplectic
group. Firstly, S € Sp(d,R) if ST.JS = J, where

(10) J = ,
o

and, secondly, S € Sp(d, R) is in the form (2.2)) and S~! has block decomposition:
DT —BT

(11) St =
—cT AT

Remark 2.1. The symplectic relations can be rephrased by plugging the blocks into
22):
CDT = DCT,
(12) ABT = BAT,
ADT — BCT = 1,.
Observe that if B is invertible, the second relation is equivalent to

B7'A=(B7'A)T.
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Remark 2.2. Sp(d,R) is generated by the matrices J, and

I; 04
(13) Vo = ; Q € Sym(d, R),
Q Ig
E-1 0g4
(14) Dg = , E € GL(d,R).
04 ET

Example 2.3. (a) For P € Sym(d,R), the upper block triangular matrix:

Iy P
04 Ig

(15) Up=VE =

is symplectic.
(b) More generally, if S € Sp(d,R), then also ST € Sp(d,R) and S~! € Sp(d,R).

2.3. Metaplectic operators. For a classical introduction to metaplectic operators, we refer the
reader to [8, [15]. In view of the techniques used in this work, we prefer to follow [24], and define
metaplectic operators in terms of the cross-Wigner distribution [8] [15]

l l —2miE-
Wi = [ 1(e4g)a(o-g)eea woer,
Rd
f,g € L2(RY). Let S € Sp(d,R). There exists a unitary operator S on L2 (R?) so that

(16) W(S£,89)(x,6) = W(f.9)(S™"(z.€))

holds for every f,g € L?(R%) and (x,¢) € R?%. Any such operator is called metaplectic operator;
S in is uniquAely deterAminedA up to a phase factor, meaning that if A is also satisfied by
another operator S, then S” = ¢S for some ¢ € C, |¢| = 1. The group {5 : S € Sp(d,R)} admits
a subgroup, denoted by Mp(d, R), consisting of exactly two operators for each symplectic matrix
S, namely £5. The projection 77 : § € Mp(d,R) — S € Sp(d,R) is a group homomorphism
with kernel ker(mMP) = {+id;-}.

Remark 2.4. Observe that our notation is slightly different than the one adopted in [24]. Specif-
ically, for A € Sp(d,R) ter Morsche and Oonincx consider A so that

(17) W(Af, Ag)(w.&) = W(f,9)(A(x,€)),  fge L*RY), (2,6) €R*,
see [24] Theorem 1]. By comparing (2.3) and (2.4), we see that this is equivalent to using the

projection ™MP(A) = A, instead of m™MP(A) = A. Hence, the results in [24] are still valid in
our framework, up to choosing

A A pT BT
(18) A— 11 2]
A21 .A22 —CT AT

in the statements and formulae therein.

Example 2.5. (a) The Fourier transform F, defined for every f € S(RY) by

FIO=1©) = | f@e?"de, R,
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is a metaplectic operator. Its projection is 7MP(F) = J, defined in (2.2).
(b) If Q € Sym(d,R),

(I’Q (t) — eiert-t
is the corresponding chirp, and the operator
pof(t) =2t f(t),  feL*RY),

is metaplectic, with projection 7P (pg) = Vo, defined in (2.2).
(¢) If E € GL(d,R), the rescaling operator:

Tef(t) = |det(B)V2f(B),  feL*(RY),

is metaplectic, with projection #MP(Tg) = D, defined in (2.2).
(d) If P € Sym(d, R), the multiplier operator:

mpf=F Y2 pf), feL*RY
is metaplectic, with 7P (mp) = Up, defined in (2.3).

Other examples, such as fractional Fourier transforms, are displayed in the following sections.

3. A REPRESENTATION FORMULA FOR S‘f

3.1. Integral representation of ter Morsche and Oonincx. In this work, we will use the
following integral representation proved by ter Morsche and Oonincx in [24], that we reformulate
with our notation. Let us consider the constant

1
e \/ Gr(s)+ (AT)o(B)’

where we recall that grp). (A7) is the volume of the (d — r)-simplex spanned by the vectors

ATvy, ..., ATvy ., where vy, ...,v4_, is any orthonormal basis of R(B)', whereas o(B) denotes
the product of the non-zero singular values of B.

For the remainder of this section, S € Mp(d,R) is a metaplectic operator with projection
S = 7MP(S) having block decomposition (2.2). We will always assume that 1 < rank(B) < d.

Proposition 3.1. Let S and S be as above. Then, for every f € L2(R?) we have:
(19) SH© = pse™P"EE [ ey DT A nc ey
ker(B)+

where we recall that Bt denotes the Moore-Penrose inverse of B. The formula above is understood
as the equality of two L?(R?) functions.

Proof. Tt is a restatement, using our notation, of the formula in Remark (2) of [24], Section 5]. In
fact, in Remark (2) of [24] Section 5] it is proved that

~ ]_ . T . + .
Sf 5 — 67271'./411./4215'5/ f t+ A 5 67““422Alzt't€72ﬂ1A21§'tdt7
( ) \/ler(.A12)<A22)U(-A12) R(A1») ( 1 )

where, according to the notation of [24],

All -A12
-/421 »A22

A:
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is the symplectic matrix such that

W(SF,59)(x.€) = W(f.9)(A,€)),  f.geL*RY), (x,6) e R*.
By Remark we have A = S~!, whose blocks are related to the blocks of S by . Thus,
by (2.4),
1

S _ z’7rDCT§~§/ ++pT —irAT(BT)*t-t 2m‘CT£~tdt
£ \/chr(m)< FaFTak iy T DT ¢

1 i DCT§-§/ T e\, —irBT At 2miCTet
= e ft+ D &e™T e dt,
\/qR(B)J-(AT)J(B) ker(B)+

where we used that ker(BT) = R(B)* and o(BT) = o(B). This completes the proof.

d

3.2. Metaplectic operators as partial Fourier transforms. Loosely speaking, the main tool
to prove Hardy’s uncertainty principle for metaplectic operators consists of an integral representa-
tion formula obtained by rewriting as the Fourier transform of the restriction of f to an affine
subspace parallel to ker(B)*. To prove it, we need to decompose & = &; + &, where & € R(B)
and & € A(ker(B)). For expository reasons, we postpone the proof that such decomposition
exists to Lemma [3.4] below.

Corollary 3.2. Let f € L*(RY) and & = & + & be as above. Then, the following integral
representation holds:

(20)  Sf(§)=puse™PB e rDCTEE) / F(t+ DTgy)einB Att—2milBres—CTea) gy
ker(B)L

The formula above is understood as the equality of two L?(R?) functions.

Remark 3.3. If B € GL(d,R), then us = |det(B)|~"/? and B* = B~!, so that formula
(13.2) reads as the well-known integral representation of metaplectic operators with free symplectic
projections:

gf(f) _ |det(B)|—1/2ei7rDB’1§'§/ f(t)eiTrB’lAt~te—27rz'B*1§.tdt, € c RY.
R

Proof of Corollary[3.4 Starting from formula (3.1) in Proposition and observing that the
change of variables u + DT¢; =t (¢, € R(B)) leaves ker(B)* invariant by Corollary (1), we
have:

S _ chTg.g/ pT DT inBY Au-u 27riC’Tf'ud ’
1@ = nse oy, T+ e+ De)e ¢ u

:-( eichTg‘g Ft+ DT§2) ein+A(t—DT§1)~(t—DT§1) eQTriCT§~(t—DT§1) dt.
Cor. [B.2[(¢ — r

or B M ke @) @)

Let us focus on the exponents of the chirps (1)-(3). Trivially, since DCT is symmetric, (1)
becomes

DC'¢-€=DC"¢ &+ DCT& - & +2DCTE - 6.
As far as (2) is concerned:

BTA(t—DT¢) (t—DT¢)=BYAt -t — DBYAt- & — BYADT¢, -t + DBTADTE, - ;.
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Finally, (3) is:
207¢-(t = DT&) =2CT (& + &) - (t - DT&)
=2(CT¢ -t —DCT¢ - &+ CT& -t — DO - &).

Consequently,

Sf(€) = pg m(FPOTE+DBTADTE) &+ DC & 6)

4)
x / flt+ DT€2)ein+At-t eim(=(DBTA)T 61 -BTADT €1 +20761)t 2miCTéa0t gy
ker(B)+ 5

A straightforward calculation, using the symplectic relation ADT — BCT = I; in (2.1)), the
commutativity between the Moore-Penrose inverse and transposition, and Corollary (1), allows
us to rewrite the exponent in (4) as

(22) —DCT¢ &+ DBYADTE, - & + DCT¢y - &, = DBTE - & + DCTE, - &s.

Next, let us focus on the exponent corresponding to the cross term (5). Applying the symplectic
relation ABT = BAT in (2.1)) to « = (BT)*t, where t € ker(B)* as above, we find:

(23) At = BAT(BY)Tt,  tcker(B)*t.

Moreover, using , and observing that DT¢; € ker(B)* by Corollary (i), we find:
AT(BTY*DT¢, -t + BTADT¢ -t —2C07¢, -t = 2BTADT¢, -t —2C7¢; - t.

Using the relation ADT — BCT = I, we conclude that:

(24) AT(BTY*DT¢, -t + BYAD ¢, -t —2C7T¢, -t =2BY¢, - t.

Formula follows by plugging and into .

(21)

a
The following lemma justifies the decomposition R? = R(B)® A(ker(B)) in the above corollary.
Lemma 3.4. Let S € Sp(d,R) with blocks (2.2). Then, R = R(B) @ A(ker(B)).

Proof. First, we show that R(B) + A(ker(B)) = R?, then we prove that the dimensions of the
two spaces sum up to d. Let us denote by S; and Sy the components of S:

g z\ (A B z\ (Az+Bg| Si(x,§)
£ C D £ Cx + D¢ Sa(x, &)

Since S is surjective, R(S;) = R%. For x € R? we write # = 1 + 22 with 1 € ker(B)*
and zo € ker(B). As a consequence of Corollary illustrated in Table (v), we have
A(ker(B)1) C R(B) and, consequently, for every z, & € R,

Si(x,€&) = Axy + Az + BE € R(B) + A(ker(B)),
It follows that R(S;) = R? C R(B) + A(ker(B)). It remains to show that
dim(A(ker(B))) + dim(R(B)) = d.
If we write dim(R(B)) = r, we only need to check that
dim(A(ker(B))) =d —r.
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Since dim(ker(B)) = d — r, it is enough to prove that the restriction of A to ker(B) is injective.
Let 1,29 € ker(B), satisfying Ax; = Ax,.

Az = Axg & 11 — 29 € ker(A) C ker(B)?*,

by the straightforward consequence of Corollary reported in Table [BI] (vii). Consequently,
r1 — 29 € ker(B) Nker(B)1 = {0}, and we are done.
O

Example 3.5. In general A(ker(B)) £ R(B), as the following example illustrates. Let

0 0 -1 2
P= , E =
0 1 -1 1
Then, the symplectic matrix
1 -2 0 =2
. E-' E'P I -1 0 -1
S=DgVp = = ,

O2x2  ET 0 0 |-1 -1
0 0 2 1

where Dg and Vp are defined as in ([2.2) and ([2.3)) respectively, has

1 1
ker(B) = ker(P) = span =  A(ker(B)) = span ,
0 1
whereas:
2 . —1
R(B) = span = R(B)~ =span
1 2

Clearly, even if R? = R(B) @ A(ker(B)) as expected, R(B)* N A(ker(B)) = {0}.
Lemma 3.6. Let S € Sp(d,R) with blocks (2.2). Then, R% = ker(B)+ @& DT A(ker(B)).

Proof. Tt is clear that the sum of the dimensions of the subspaces is less than or equal to
dim(ker(B))* + dim(ker(B)) = d. It suffices to show that for each € R? there is a decom-
position z = x; + x5 such that z; € (ker(B))* and xo € DT A(ker(B)). Moreover, clearly, it is
enough to construct such decompositions for z € ker(B). But by (2.2)), we have I, = DTA—BTC
and z = —BTCx + DT Az, where —BTCz € R(BT) = (ker(B))* and DT Az € DT A(ker(B)).

a

To set up the Euclidean framework and compute the integrals over ker(B)+ above, we restate
Corollary using a linear parametrization of ker(B)*. We fix an arbitrary parametrization
V : R" — ker(B)* mapping the canonical basis of R” to an orthonormal basis of ker(B)*. In
this case, the Moore-Penrose inverse of V coincides with V7, and VTV = I,..
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Corollary 3.7. Under the notation of Corollary[3.3

1SF(€)| = psla(VTBY &),
where §€ = & + &2, & € R(B) and & € A(ker(B)), and § is the Fourier transform on R” of the
function

(25) g(u) — f(Vu 4 DT§2)ei7r(VTB+AVu.u—2VTcT§2.u), = R".

Proof of Corollary[3.7 It is a straightforward restatement of formula (3.2)), using the change of
variables defined through V. In fact,

SF(E) = pee™PP DTG E) / F(t + DT&y)etm BT At g=2mi(BT&1+C &)t gy

ker(B)+

em(DB+§1.§1+DCT§24§2) F(Vu+ DT&)eiﬂVTB+AV"'“e_2’Ti(VTB+51+VTCTE2)'tdt
R™

in(DBY €161+ DCT€5-62) / —2mi(VI B &)t gy

g(u)e

r

= pse

where g is defined as in (3.7). This concludes the proof.

4. THE UNCERTAINTY PRINCIPLE

In this section, we prove Hardy’s uncertainty principle for general metaplectic operators, re-
gardless of the invertibility of the block B of the corresponding projection.

4.1. Formulation of the main result. In view of the following remark, we may exclude the
case B # 04 in our analysis.

Remark 4.1. The case B = 04 is of little interest, trivial in many respects. Indeed, if B = 04
n , then D = AT by , and
g A Og4 _ A 04 Iy Oq
c AT 0g AT ATC I,
Consequently, up to a sign,
S1(6) = |det(A)| "2 mOATE (A1), e RY,
which is basically a rescaling.

In stating our generalization of Theorem we use the decompositions of R? obtained in

Lemma [3.4] and 3.6
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Theorem 4.2. Let S € Mp(d,R) be a metaplectic operator with projection S = WMP(S) having
block decomposition (2.2). Let 1 <r =rank(B) < d. Consider M,N € Sym_ (d,R) satisfying
(26) ker(M) = ker(B),
(27) R(N) = R(B).

Let f € L*R%) \ {0}. Assume that for almost every o € DT A(ker(B)) and almost every
& € A(ker(B)) (with respect to the Lebesgue measure on R”), f satisfies the decay estimates

(28) (21 + 22)| < a(wa)e ™™™ 2y € ker(B)™,
(29) |Sf(€1 + 52)‘ < 5(52)677”\[51.61, 51 € R(B)a
where o and [ are measurable almost everywhere finite functions. Let A1, ..., A be the non-zero

eigenvalues of MBTNB. Then,
(1) Aj <1 foreveryj=1,...,7.
(#7) If = ... =X\ =1, then,

f(zl + 1,2) _ ,Y(I)efw(M+iB+A)x1-w1627riCTAz-zl7 T € ker(B)J‘,
for some v € L?(ker(B)), where x5 = DT Az and = € ker(B).
As a corollary to Theorem we obtain:

Corollary 4.3. Under the assumptions of Theorem |4.2, if \j > 1 for some j = 1,...,r, then
f =0 almost everywhere.

Let us comment on the statement of Theorem

Remark 4.4. The matrices M and N, which are allowed to be positive-semidefinite, track the
decay of f and Sf along the directions of ker(B)* and R(B), respectively. This is encoded in
and , which have fundamental consequences also on the properties of the eigenvalues of
MBTNB, as outlined in Lemma .

Remark 4.5. The spaces DT A(ker(B)) and A(ker(B)) can be replaced with any pair of subspaces
L1,L2 C R? complementing ker(B)L and R(B). We will return to this fact in Subsection
where we will prove that the directions outside ker(B)* and R(B) cannot contribute actively to
any uncertainty principle for metaplectic operators, see Theorem [[.8 below.

As aforementioned, Theorem was proved by Dias, de Gosson and Prata for metaplectic
operators with free projections, i.e., having B € GL(d,R), cf. [II, Theorem 29]. In what follows,
we only need this result for the Fourier transform.

Theorem 4.6. Let M,N € Sym__ (r,R) and g € L*>(R") \ {0} be such that:
g S e ™M ueRT,
Gl S eI, e R,
Let A1, ..., A denote the eigenvalues of MN. Then, the following theses hold true:

(1) A,y A < 1.
(i) If \y =...=\. =1, then

g(u) = Cem™Muwu, u € R"
for some C € C.
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4.2. Proof of the main result. We use the results of Section [l to deduce Theorem from
Theorem We claim that for almost every x € ker(B) the following inequalities hold:

|f(z1 + DT Az)| < @(a)e™ ™M [Sf(€ + Ax)| < Bla)em ™V,
where z; € (ker(B))* and & € R(B). Let g.(u) be given by ([3.7) for & = Az. Then, by
Corollary [3.7 we have
S f (& + Az)| = us|g. (VI B &).
We note that B* is the inverse of B on R(B). Reformulating the decay conditions in terms of
gz, we conclude that for almost all z € ker(B),

|92 (u)| < @(a)e ™V MVwu Ly e R
162(n)| < Bla)e ™V BINBVE ) e R

We wish to apply Theoremto g, with matrices VI MV and VT BT NBV . First, we show that
(a) VIMV,VTBTNBV € Sym, _ (r,R),

(b) VTMVVTBTNBV = VT MBTNBV.

Proof of (a). Since M and N are positive-semidefinite, the products VMV and (BV)TNBV
are also positive-semidefinite. Moreover, since V and BV are parametrizations of ker(B)* and
R(B), respectively, and ker(M)t = ker(B)t and R(B) = R(N), we have that VT MV and
VIBTNBV = (BV)TN(BV) define isomorphism of R” and, consequently, they are positive-
definite matrices.

Proof of (b). This follows trivially observing that VV* = VV7 is an isomorphism on ker(B)*
and that for every u € R", BTNBVu € ker(B)*, so that

(VVTYBTNBVu = B' NBVu.
This proves (b).

Applying Theorem for z in a set of full measure, we obtain that if \{,...,\. are the
eigenvalues of V' M BT NBV, then

() AMyeeos A < 1.

(i) if Ay =... =\, =1, then g, (u) = 'y(x)e*“VTMV“'“.
To finish the proof of Theorem [4.2) we note that the eigenvalues of V7 M BT NBV coincide with
non-zero eigenvalues of M BT N B, see Appendix C, and that for the case (i) A\; = ... = A, = 1,
we get

f(z1 + DT Az) = ~(z)e Mz1m1 gmin(BT Azy o0y =207 Away)

Since f € L?(R%), we conclude that v € L?(ker(B)).

4.3. Considerations about the decay directions. A straightforward argument shows that
the decompositions of R¢:

(30) RY = ker(B)* @ DT A(ker(B)) = R(B) @ A(ker(B)),

that simplified the proof of Hardy’s uncertainty principle, can be relaxed by replacing DT A(ker(B))
and A(ker(B)) with any pair of (d—r)-dimensional subspaces £1, L2 C R? such that the identities:

(31) R =ker(B)r @ £, = R(B) @ L,

hold. Providing extensive details on this point would unnecessarily burden the discussion, so we
limit it to a few lines to convince the reader of its validity.
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e Under the assumption ([4.3), Lemma and Lemma hold for £, in replacing ker(B)
with the very same proofs.

e Observe that R? = ker(B)* @ DT A(ker(B)) implies also that dim(D7 A(ker(B)) =
dim(ker(B)) and, consequently, DT A : ker(B) — DT A(ker(B)) is an isomorphism.

e The decay conditions and are invariant when applying a linear isomorphisms
to DT A(ker(B)) and A(ker(B)), up to modify a and 3 accordingly.

However, the same cannot be inferred for ker(B)1 and R(B), that cannot be replaced in
with any other r-dimensional subspaces of R?.

This flexibility in choosing the spaces complementing ker(B)+ and R(B) in and ,
allows us decomposing:

(32) R¢ = ker(B)* @ DT(R(B)*) = R(B) ® R(B)™.

Remark 4.7. It follows by applying Lemma to S~t that DT : R(B)* — DT(R(B)') iso-
morphically, so if K C DT(R(B)*) is compact, then D~T(K) is also compact in R(B)*, where
D~T is the inverse of DT|R(B)L.

We are ready to establish the sharpness of (4.2]) and (4.2)).

Theorem 4.8. Let S € Mp(d,R) have projection S with block decomposition (2.2)). Let 1 < r =
rank(B) < d. Then, for every compact K C DT (R(B)1) there exists a function f € L*(R?) such
that supp(f) C {z : w2 € K} and supp(Sf) C {€:& € DT(K)}.

Proof. As observed above, let us decompose R? as in (4.3]). The integral representation (3.1]) ap-
plied to a function that tensorizes as f(r1+x2) = fi(z1) f2(z2), 21 € ker(B)*, 22 € DT(R(B)%1),
gives:

SfE + &)= ,use”DCTE-E/ A f(z+DT¢ + DT€2)6”B+Az'%2”CT§'Idx
ker(B)

inDCTE. inBT Az-z _2niCT ¢z
= pge™PC 55/ file 4+ DT&) fo(DT&y)emB ArwemiC e gy,
ker(B)+

= MSGiﬂDCTf'ffz(DT€2> / fi(z + DT§1)eiﬂB+Aw'x€2ch5'xd$,
ker(B)+

where &€ = £, +&, & € R(B), & € R(B)*. Consequently, Sf vanishes wherever f,0 DT vanishes.
The assertion follows by choosing any function f; € L*(ker(B)*) N L?(ker(B)*) and

1 ifas €K,

0 otherwise,

fa(wa) = XK (12) = {

the characteristic function on K.
O

Remark 4.9. The importance of Theorem [[.8 is not limited to Hardy’s uncertainty principle.
Indeed, it provides a negative result for any uncertainty principle for metaplectic operators: the
directions outside ker(B)* and R(B) do not contribute actively to uncertainty principles.

4.4. Examples for Hardy’s uncertainty principle.
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4.4.1. Metaplectic multipliers. A straightforward example concerns metaplectic multipliers, as
defined in Example (d). Let P € Sym(d,R) and

mpf=F H(@_pf),
where ®p(t) = e~"Pt is a chirp. The associated projection is the matrix Up defined in (2.3)),
having:
A:Id, B:P7 CZOd and D:Id.

Since P is symmetric and A is the identity, we have

R(B) = ker(B)* = ker(P)*,
and A(ker(B)) = ker(P). Consequently, conditions (4.2) and (4.2) can be rephrased as:
(33) [f(@)] < alzz)e ™%, ae. xeR,
(34) SFO] < Bl&)e™™, ae € ER,
where r = 1 + x2 and £ = & + &5, as usual.
Corollary 4.10. Let mp be defined as above, and 1 < r = rank(P) < d. Let M,N € Sym_ (d,R)
with

ker(M) = ker(N) = ker(P).
Let f € L*(R%)\ {0} satisfy (A.4.1) and (E4.1), and \i,..., . be the positive eigenvalues of
MPNP. Then,

(1) Aiye oy A < 1.
(ii) If \y = ...=\. =1, then

F(x) = y(ag)e " MFiPT T a.e. x €RY,

where y € L?(ker(P)).

4.4.2. Fractional Fourier transforms. Let ¥ = (01,...,94) € R, The fractional Fourier trans-
form Fy is a metaplectic operator in Mp(d, R) with projection
cosy ... 0 sindy ... 0
0 ... costy 0 ... sindy Ay B
(35) Sy = (7
—sinty ... 0 cos?y ... 0 Cy Dy
0 ... —sindy 0 ... costy

We stress that here we allow sind; = 0. If By € GL(d,R), we retrieve the fractional Fourier
transform in [24], simply observing that in this case R(By) = ker(By)* = R, and writing the

integral representation (3.2)) for (4.4.2]).
Let J = {j :sind; # 0} and J°={1,...,d} \ J. We have:

ker(By) ={z €R:2;,=0, j € J} = Ty,

and
ker(Byg)t = R(By) ={z:2; =0, j€ J} = T7.
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We assume that sin(d;) # 0 for at least one j € {1,...,d}, so that r = rank(By) > 1. If
M,N € Sym_ (d,R) are positive-semidefinite matrices with
ker(M)* = R(N) =T,

we need to consider the positive eigenvalues of M BN B. In particular, if M = al; and N = bl 7,
where a,b > 0 and [ 7 is the diagonal matrix with diagonal entries

1 ifjeJ,
wm—{ b

0 otherwise,

then the eigenvalues of MBNB are \; = 0 if j € J¢ and \; = absin® ¥, if j € J. Let us also
denote I;. = I; — I 7, and observe that the products I;x and I 7.z are the vectors of R? having
their coordinates indexed by J¢ and J replaced with 0, respectively.

Considering that ker(C) = ker(B) in this context, and consequently CT Az = ATCx = 0 for
every x € ker(B), Theorem for fractional Fourier transforms takes the following form.

Corollary 4.11. Under the notation above, if f € L?>(R%)\ {0} satisfies
|f(z)] < a(I\ycx)e*mlIJmP, a.e. x €RY,

1S£(6)] < BIze€)e ™7 g ¢ e RY,

for some a, 8 : T 7¢ — (0, +00), then:
(i) absin®9; <1 for every 1 < j < d.
(ii) If sin®9; = 1/ab for every 1 < j < d, we have

f(@) =~v(Izcx) H eimlaticotd)lz;|* a.e. x € RY,
jeT
for some v € L3(T 7¢).
4.4.3. Tensor products of metaplectic operators. For 5‘17 Sy € Mp(d,R), we consider the unique

metaplectic operator S € Mp(2d,R) such that S(fl ® f2) = Sy f1® S fo for every fi, fo € L2 (RY),
cf. [0, Appendix BJ]. The related symplectic matrix is

A 0q | By 04
04 A2 | 04 Ba
Ci 0q | Cs 04
04 Co | 04 Do

where A;, ..., D; are the blocks of S; = WMP(SJ'), j =1,2. Consequently, B = diag(B1, Bs),
R(B) = R(B1) x R(B>)
and, consequently,
ker(B)* = R(BT) = R(BT) x R(BY) = ker(B;)* x ker(Bs)*,

and
A(ker(B)) = Aj(ker(B1)) x Aa(ker(Bs)).
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Moreover, if r; = rank(B;), j = 1,2, then r = rank(B) = r1 + ro. Let us consider M;, N, €
Sym, (d,R), j = 1,2, with
ker(M;) = ker(B;) and R(N;) = R(Bj),
and set M = diag(My, M), N = diag(N1, N2) € Sym_ (2d,R). Then,
ker(M) = ker(B) and R(N)= R(B),
the positive eigenvalues of M BTN B are Ai,..., Ap,, fi1, .- . fhry, Where i, ..., \,, are the positive

eigenvalues of MlB?NlBl and 1, ..., by, are the positive eigenvalues of MQBQTNQBQ.
In this setting Theorem {4.2| can be rephrased as:

Corollary 4.12. Let f € L*>(R?¥)\{0}. Assume that for almost every (xa,y2) € ker(By) xker(By)
and almost every (§2,m2) € Aj(ker(By)) x Aa(ker(Bz)) there exist axa,y2), 5(E2,m2) > 0 such
that:

|f(z,9)] < a(wa,yo)e ™Moo emm Moy (z1,71) € ker(B;)® x ker(By)*,
1SF(& )| < B(&a,mp)e” N8 E1emmNamom, (&1,m) € R(B1) x R(Bz).
If \j > 1 or u > 1 for some j and k, then f = 0 almost everywhere.

5. DYNAMICAL VERSIONS OF HARDY’S UNCERTAINTY PRINCIPLE

5.1. Schrodinger evolutions with quadratic Hamiltonians. We apply the theory above
to generalize the so-called dynamical version of the Hardy’s uncertainty principle exhibited by
Knutsen [20, Theorem 3.1].

First, we exhibit how the symplectic and metaplectic group relate to the Schrodinger equa-
tion with quadratic Hamiltonian H, following the terminology in [20]. The general Hamiltonian
equations determining the time evolution of a point z = (x, &) is

oy Y 4 D4 T2
(36) ot og, 0 ot T oxy
for j =1,2,...,d. More compactly,
0z
“c _ JVH
5 JV

with

v-(2 2 0 9
=\ oe om0 0
If we consider the Hamiltonian of the form H(z) = 3(Mz, z) in (1)), where M is a real-symmetric

matrix, the Hamiltonian equations reduce to

0z

Starting at time ¢ = 0 from the point 2(0) = zq, the solution to (5.1]) is
z(t) = Si(z0) with S;:=exp(tJM).

We now consider the symplectic algebra sp(d,R), that is the Lie algebra of the symplectic group
Sp(d,R), which consists of all matrices X such that

XJ+JXT =o.
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The matrix JM (and also tJM, for every ¢ € R) belongs to sp(d,R). Conversely, for any
X € sp(d,R), we have that JX is symmetric. Hence, any quadratic Hamiltonian H can be
expressed as

1
H(z) = —§<JXz,z> for some X € sp(d,R).

Since the exponential maps the symplectic algebra into the symplectic group, the operator S; =
exp(tX) is symplectic for any fixed ¢, and, in turn, the family {S;},>¢ is a one-parameter subgroup
of Sp(d, R).

Denoting by mp(2n,R) the Lie algebra of the metaplectic group (the metaplectic algebra), we
observe that the metaplectic algebra mp(d, R) is isomorphic to sp(d, R), which follows from the
fact that Mp(d, R) is a two-fold covering group of Sp(d,R) [I0, Chapter 15]. In particular, there
is an explicit isomorphism

F :sp(d,R) — mp(d,R)
so that the diagram

mp(d, R) £ sp(d, R)

J{exp J{eXP

Mp(d, R) " Sp(d, R)

commutes. Therefore, we can describe the solution of the Schrodinger equation (|1)) with quadratic
Hamiltonians as a lift of the flow ¢ — S% in Sp(d, R) into the unique path ¢ — S; in Mp(d,R) so
that §0 = Id.

Proposition 5.1 (Corollary 2.1 in [20]). Let the Hamiltonian H be quadratic, and let t — S; be
the lift to Mp(d,R) of the flow t — S;. Then for any ug € S(R™), the function

(38) u(z,t) = §tu0(x)
is a solution of the initial value problem
iﬁ%(x,t) = Hpu(z,t), wu(z,0)=up(z).

We have now the background to extend Theorem 3.1 in [20]. For any ¢; > 0, we assume that
aMP(S,,) = S,,, where

At1 Bt1
Cy, Dy

(39) Stl =

Theorem 5.2. Let u(z,t) be the solution to the Schrédinger equation with the quadratic
Hamiltonian given by H(z) = —3(JXz,z2), for some X € sp(d,R), h = 1/(27), and initial
datum uy € S(R?). Suppose at time t = 0 and t = t; > 0 the solution u satisfies the decay
conditions

[u(x1 + 29,0)| < a(wg)e ™Moo z1 € ker(By, ), a2 € D} Ay, (ker(By,)),

|U/(§1 + 6271‘;1)' < 5(52)6_71'1\[51'&17 51 S R(Bt1)7 52 € At1 (ker(Bt1))7

where Br is the upper-right-side block in (5.1), M,N € Sym,(d,R) are positive-semidefinite
matrices satisfying (4.2)) and (4.2) with B = By,. Assume that r = rank(By,) > 1 (By, # 0q). If
A, ..., A are the non-zero eigenvalues of MBENBM, then
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(1) A\j <1 foreveryj=1,...,r.
(i) If \y = ... =\ =1, then,

UO(xl + l‘g) _ fy(x)e—‘n'(M—i-iB:rl Atq )3:1‘3:162771'031 Atlx‘xl’ x € ker(Btl)L,

for some v € L?(ker(By,)), where xo = D{, Az and x € ker(By,).

Proof. Observe that u(z1 + x2,0) = up(z1 + z2) and, using the equality (5.1)), u(& + &2,61) =
St,u0(€1 + &2). Consequently, the thesis follows from Theorem a

The case r = d yields Theorem in the introduction.

Remark 5.3. Hardy’s uncertainty principle for metaplectic operators with free projections have
made the proof of Theorem very simple. This result improves Theorem 3.1 in [20], where the
assumptions (1.7) are simplified to

[uo(x)] < e~l*l®  and lur(x)] < e Pl gz eRY,
and
(40) (RPIB(E) 2,08 > 1,
where B(t1) = By, in our setting and h = 1/(27). Using our notations:

M=21; and N=21,
™ ™

Recall that || By, |lop = +/p(BE By,) where, if ~;, j = 1...d, are the (positive) eigenvalues of
BgBtl, the spectral radius p is defined by
T _ | .
P(By, Br,) = max |y;| = max 3;.
The assumption (5.3) becomes
(41) p(B{ By, )aB > 7.

Since the eigenvalues A; of MBZNBM are given by
_ab

Aj = ;’Yja
to get ug = 0 Knutsen’s condition (5.3) requires

) 2
(©9) ggz,7 > 7

i.e.,

Our setting proves the sharpness of the above condition, c.f. (i) in Theorem . Furthermore, it
displays the form of the solution ug depending on the values of A1, ..., Aq, c¢f. the theses (i) and

(ii) of Theorem[{.3

5.2. Examples of Schrodinger evolutions.
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5.2.1. Anisotropic harmonic oscillator. A basic example which is covered by Theorem is the
Cauchy problem for the anisotropic harmonic oscillator. This case, to our knowledge, is not
considered by the previous literature. For simplicity, we state the case in dimension d = 2, but it
could be generalized to any dimension d > 2. For = (21,22) € R X R, ¢t € R, we study

(42) 10yu = Hpu,
u(0, ) = uo(z),
where
I 2
Hp = —Eam + mas.

By inspection the related quadratic Hamiltonian is given by

22+ €2
H(x1>x25517§2):27627
and the symmetric matrix M is
0 0 0O
01 00
M:
0 0 0O
0 0 01

The corresponding element X in the symplectic algebra is

0 0 0 O
0 0 O
X=JIM= € sp(1,R).
0O 0 0 O
0 -1 0 0
For shortness, we define
0 0
Q =

0 1

For the power series exp(tX) = > 72, tk—k!X k. we distinguish between the matrices with even and
odd exponents. By induction and observing that Q% = Q, for every k € N, they are given by

Q0 0 Q
X% = (—1)k and X%l = (—1)k
0 Q -2 0
Thus,
& (_1)kt2k Q0 & (_1)kt2k+1 0 0O

EXP“X):I;J @l \o o +kz::0 @+ |\ o

Moving the summation inside the matrix (since 2 is diagonal), and writing
Ay B
Ci Dy

exp(tX) = SY =
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we obtain
o ) 2k+1
t 0 0 0 o0
(43) Z Qk i 1 = kg2t = .
0 > 0 (2k+1)' 0 sint

Using the Taylor series for the sine and cosine functions we work out the other blocks:

0 O

Ay =Dy = and C; = —
0 cost

itH _

Thus, the solution u(t, z) = ey, with initial datum v in S(R?), has the propagator e~
S, which is a one-parameter family of metaplectic operators with symplectic matrices

0 0 0
cost | 0 sint

1
0
0 0 1 0
0

teR.

—sint | 0 cost

Observe that the Bg-block (5.2.1)) satisfies By # 0 if and only if ¢ # km, k € N (we consider ¢ > 0).
Moreover, for t # km,

1
ker(B;) = span = A (ker(By)) = ker(By),

whereas:

0
R(B;) = span =  R(B;) = ker(B;)™*
1

The matrices M, N € Sym_ (1,R) can be written as

0 0
M = and N =
0 a 0 0

for any a,b > 0. For t # km, the pseudo-inverse B;" is

0 O 0 0
Bf = and B A, =
1 0 <o t
sint sint

Furthermore, the eigenvalues of M B! N B; are given by A\; = 0 and \y = ab sin? t.
Theorem (5.2)) applies to this case and provides the following Hardy-type estimate:

Corollary 5.4. Let u(-,t) € S(R?) be the solution of the Schrédinger equation (5.2.1). Suppose
at time t =0 and time t = t1 > 0, the solution u satisfies the decay conditions
|u(z,y,0)| < oz(gc)e_‘”y2 and |u(z,y,t1)| < B(x)e_b”yZ,

for every x,y € R, for some constants a,b > 0 and where «a,5 : R — (0,400) are positive
functions. Then,

(i) If absin®t; > 1 then u = 0.
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(ii) If absin®t; = 1, then

—w(a+i% +isin(2t1))y?

UO(iﬂ,y) :P)/(x)e y LY ER,
for some function v € L*(R).
Observe that the condition absin?t; > 1 implies ¢; #+ k.

5.2.2. Harmonic Oscillator. The standard harmonic oscillator was treated by Knutsen [20, Ex-
ample 4.2]. The Hamiltonian is

1 m
H(z) = o (& + -+ &) + 5 Wizl + - +wizg)
where z = (z,&). The associated Schrodinger equation reads
. Ou h? m
(44) zha (z,t) = <2mA + 5 (wizf+- -+ wgmg)) u(x,t).

The matrix exp(tX) was computed in [20, Example 4.2]. The B;-block reads

1 in(w;t

B, = L ding (Sm@w)) |

m Wi

The other blocks are
A; = D, = diag (cos(w;t)) and C; = —mdiag (w;sin(w;t)).

In [20, Example 4.2] only the free case was considered, that is the values t; for which %jtl) #0
for all j € {1,...,d}. Here we can improve Corollary 4.2. in [20] as follows.

Corollary 5.5. Let u(-,t) € S(R?) be the solution of the Schridinger equation (5.2.2) corre-
sponding to the harmonic oscillator h =1, m = 1/2. Suppose at time t = 0 and time t = t1, the
solution u satisfies the decay conditions

|u(z,0)] < Ke=el#l®  qnd lu(z, t1)] < Ke Blzl®
for some constants o, 5, K > 0. If

sin(wjtl) 2

16 max > 1,
J

wj
then u = 0.
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APPENDIX A.

Here, we state a linear algebra tool, which is already known in the literature, and report its
proof for the sake of completeness.

Lemma A.1. (i) If M,N € Sym_ (d,R) and B € R%*?  then MBTNB has non-negative eigen-
values.

(ii) If M, N € Sym_ , (d,R) and B € GL(d,R), then the matriz MBTNB has positive eigenval-
ues.



24 ELENA CORDERO, GTIANLUCA GIACCHI, AND EUGENIA MALINNIKOVA

Proof. If M and N are positive-semidefinite, then BT N B is positive-semidefinite for every B €
R4, By [I8, Theorem 7.6.2], M BT N B has non-negative eigenvalues. This proves (i).

To prove (it), observe that if M7 and Ms are positive-definite d x d matrices, then the eigen-
values of M; M, are real and positive. In fact, as already observed in [II], Sec. 2.1], the prod-
uct matrix M; M, has the same eigenvalues as the positive-definite matrices Ml1 / 2M2M11 /% and

M21/2M1M21/2. Consequently, if M and N are positive-definite and B € GL(d,R), then BTNB
is also positive-definite and the product M BT N B has positive eigenvalues.
d

APPENDIX B.

In this section of the Appendix, we list many important relations between the blocks of a
symplectic matrix. The result from which they can be inferred is the following restatement of
[24, Property 1], using that R(BT) = ker(B)>.

Lemma B.1. Let S € Sp(d,R) have block decomposition (2.2). Then,
(i) DT (ker(B)') = R(B), where DT denotes the pre-image under DT,
(ii) D(ker(B)) = R(B)*.
Lemma [BI] has three straightforward implications.

Corollary B.2. Let S € Sp(d,R) have block decomposition . Then,
(i) D(R(B)) C ker(B)".

(ii) D :ker(B) — R(B)* is an isomorphism.

(iii) R(B)* C R(D).
Proof. (i) Since D=1 (ker(B)*) = R(B) and DT (D~T (ker(B)1)) C ker(B)*, we find DT (R(B)) C
ker(B)*.
(ii) ker(B) and R(B)* have the same dimension and D : ker(B) — R(B)" is surjective by Lemma
(#4). Consequently, D is also injective.
(iii) Let £ € R(B)*L. By the surjectivity claimed in (i7), there exists = € ker(B) such that £ = Dx.
Hence, £ € R(D).

a

Analogous considerations can be obtained for other blocks of S, by applying Corollary to
SJ, JS, JSJ and their inverses, as illustrated in Table

APPENDIX C.

Here we prove the following:
Lemma C.1. Let S € Sym(d,R) be such that B # 04 in its block decomposition (2.2)). Let
M,N € Sym, (d,R) be such that ({4.2)) and (4.2) hold, i.c.,
(45) ker(M) = ker(B), R(N) = R(B).
Let r = rank(B), and V : R" — ker(B)* be a parametrization of ker(B)*. Assume that VTV =
L.. The following statements are equivalent:

(i) X is an eigenvalue of VIMBTNBV.
(i) X is an eigenvalue of MBTNB‘ker(B)L,
(iii) X is a mon-zero eigenvalue of M BT NB.

Let us collect a few remarks.
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Reference matrix Corresponding relations
DT(R(B)) C ker(B)*.
| 4B (R(B)) (B)
(4) S = o D D : ker(B) — R(B)* is an isomorphism.

R(B)* C R(D).

B 2 CT(R(A)) C ker(A)*.
(i7) SJ = ( b C) C : ker(A) — R(A)* is an isomorphism.
- R(A)L C R(C).
o BT(R(D)) C ker(D)~.
(#i1) JS = ( s B) B : ker(D) — R(D)* is an isomorphism.
o R(D)* C R(B).
b AT(R(C)) C ker(O)* .
(iv) JSJ = ( B A) A :ker(C) — R(C)* is an isomorphism.

R(C)* C R(A).
( DT —BT) A(ker(B)*) C R(B).
(v) STt = AT : R(B)* — ker(B) is an isomorphism.
S—tJ =
JSt =

—CT AT
ker(B) C ker(A)*.

: R(D)* — ker(D) is an isomorphism.

C(ker(D)Y) C R(D).
( BT DT ) -

—AT —CT
ker(D) C ker(C)*.

o T B(ker(A)Y) C R(A).
DT BT> BT : R(A)* — ker(A) is an isomorphism.
ker(A) C ker(B)*.

D(ker(C)+) C R(C).
—AT CT) DT

(vid)

: R(O)* — ker(C) is an isomorphism.
ker(C) C ker(D)*.

TABLE B1. Block relations derived by applying Corollary to S and the
reference matrices listed in the second column.

(viii) JSU:(
-BT _pT

Remark C.2. (a) We are considering the action of MBT NB € R¥*? only on ker(B)*.

(b) The assumptions of Lemma are not merely conditions under which the conclusion
of Lemma follows easily. They are indeed necessary for MBTNB to map ker(B)* to it-
self. Actually, under these assumptions, MBTNB is an isomorphism of ker(B)* to itself, as
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composition of isomorphisms. Namely,
ker(B)t —£— R(B) = R(N) = R(NT) = ker(N)*,
so that:
ker(N): —— R(N) = R(B) = ker(BT)+ SECEEN R(BT) = ker(B)* = ker(M)*,
and, finally,
ker(M)t —2— R(M) = R(MT) = ker(M)+ = ker(B)*.

(d) The eigenvalues {\1,..., A} of MBTNBh(er(B)L are all positive real numbers, since they are
non-negative and MBTNB|ker(B)L s an isomorphism.

Proof of Lemma[C.1l We prove that (i) = (ii). Let A be an eigenvalue of VI M BTNV and
x € R"\ {0} be such that VIMBTNBVz = Az. We show that there exists y € ker(B)* so that
MBTNBy = \y. For, let y = V. Since R(V) = ker(B)*, y € ker(B)* \ {0}. We have:

MBTNBy=MBTNBVz.
Since R(M) = ker(B)™*, as displayed in Remark (b), and VVT is the identity on ker(B)*,
MBTNBVz =VVITMBNBTVz,
so that:
MBTNBy=MBTNBVz
=V(VTMBTNBV2)
=V ()
=\Vx
= \y.

Next, we prove that (i4) = (i). For, let A be an eigenvalue of MBTNBh(er(B)L, and let y €

ker(B)* \ {0} be such that MBTNBy = \y. Consider z = VTy € R"\ {0}. Since V is a

parametrization of ker(B)*,

ker(VT) = R(V)* = ker(B),
so VVT is the identity on ker(B)+. Therefore,

VIMBTNBVz =VITMBTNBVVTy
=VTMBTNBy
=VT(ny)
=AV"y)
= \x.

This concludes the proof. |
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