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Abstract: Domain structure of a fluid ferroelectric nematic is dramatically different from the
domain structure of solid ferroelectrics since it is not restricted by rectilinear crystallographic
axes and planar surface facets. We demonstrate that thin films of a ferroelectric nematic seeded
by colloidal inclusions produce domain walls in the shape of conics such as a parabola. These
conics reduce the bound charge within the domains and at the domain walls. An adequate
description of the domain structures requires one to analyze the electrostatic energy, which is a
challenging task. Instead, we demonstrate that a good approximation to the experimentally
observed polydomain textures is obtained when the divergence of spontaneous polarization -
which causes the bound charge is heavily penalized by assuming that the elastic constant of splay
in the Oseen-Frank energy is much larger than those for twist and bend. The model takes
advantage of the fact that the polarization vector is essentially parallel to the nematic director

throughout the sample.



1. Introduction

Solid ferroelectrics are polydomain. Within each domain, the spontaneous electric
polarization P aligns along a certain rectilinear crystallographic axis (1-4). As first proposed by
Landau and Lifshitz (5), the domains form in response to a finite size of samples in order to reduce
depolarization fields. Domains with a differently oriented P are separated by domain walls
(DWs), which are generally flat, as dictated by crystallographic axes and crystal facets (1-6).

The recently discovered ferroelectric nematic liquid crystal (Ng) (7-10) is a liquid with a
macroscopic spontaneous polarization P. This polarization is locally parallel to the director n =
—01, which specifies the average quadrupolar molecular orientation (11). The polarization
direction could be aligned by confining the material between two glass plates with rubbed
polymer coatings (9, 10, 12-20). In these samples, the DW shape is defined by the anisotropic
surface interactions with the “easy axis” of the substrate and by the orientational elasticity of N.
The DWs in a surface-aligned N are rectilinear (13, 19), zig-zag (12, 16-18) , lens-like (10, 18), or
smoothly curved (9, 10, 12, 15, 17, 18, 20). In samples with air bubbles, one observes incomplete
parabolic walls which separate concentric patterns of the polarization imposed by the air-nematic
interface and a uniform domain set by a rectilinear easy axis at the substrate (21). Experiments
with fully degenerate in-plane surface anchoring (22) reveal that the prevailing type of domains
not constrained by crystallographic axes and azimuthal anchoring are domains with (a) nearly
uniform polarization or (b) nearly circular polarization, which implies bend deformation of P.
Splay of P is diminished because it creates a bound (“space”) charge of bulk density p, =
—div P and thus increases the electrostatic energy. The avoidance of polarization splay in defect
textures has been described previously for ferroelectric smectics C by Link et al. (23). In the
azimuthally degenerate N¢ films, DWs separating a circular and a uniform domain are parabolas
(eccentricity e = 1), while DWs between two circular domains are hyperbolas (e > 1) (22). The
eccentricity can vary along the DW; as a rule, e < 1 near the tip of the DW. The observed

domain textures minimize the bound electric charge of bulk density p, = —divP and of the
surface density g, = (P, — P,) - k atthe DWs separating two neighboring polarization patterns

P, and P,. Here k is the unit normal to a DW, pointing towards domain 1 (22, 24). To reduce



o, a DW must bisect the angle between P; and P,, so that P; -k =P, -k, making the
projection of polarization onto k continuous across the DW, while the tangential component
changes sign. The remarkable bisecting properties of conics have been elucidated millennia ago
by Apollonius of Perga (25). However, the bound charges are still present when the polarization
realigns continuously in the plane of the sample along k over a finite DW width. The projection
P -k = P, of the polarization onto k yields a non-vanishing bound charge density —dP,,/dk.
This produces two oppositely charged sheets at the DW (21, 26, 27). The situation is reminiscent
of electrically charged Néel walls in solid ferroelectrics, in which the polarization realigns in a
plane perpendicular to the wall (28). The presence of some bound charge in the Ng samples is
also evidenced by observations of 2m soliton DWs with splay-bend realignment of P being
topologically protected (19) and of DWs separating circular domains with opposite sense of

polarization circulation (22).

A full description of polarization patterns with the bound charges should involve the
analysis of the (partially screened by ions) electrostatic energy (29), which is a difficult task. One
often uses a simplified model, in which the electrostatics is reduced to a renormalization of the
splay elastic constant (30-33), K; = K, o(1+ A3/&3). Here K;,~10pN is the bare splay

modulus of the same order as the one measured in a conventional paraelectric nematic (N),

f kgT . . , Kio . o .
Ap = % is the Debye screening length, &p = 88‘;—21’0 is the polarization penetration

length, &, is the electric constant, ¢ is the dielectric permittivity of the material, e =
1.6 X 10719 C is the elementary charge, n is the concentration of ions, kg is the Boltzmann
constant, and T is the absolute temperature. For the typical n = 10?3 m™3, ¢ =10 — 100
(34,35), P=6 x1072C/m? (10), and at room temperature, one finds A1p ~ (10 — 30) nm
and & = (1 —2) nm. Note that here we do not use the often-reported exaggerated values of
€ since these represent an artifact of dielectric measurements in N cells (34, 36). Since A, > &p

(10), K; inthe Neshould be much larger than K, inthe N and larger than the twist K, and

bend K; elastic constants in the Nr.

Experimental data on elastic properties of Ne-forming materials are scarce. Chen et al.

(18) measured K; = 10K, in the N phase of DIO and expected K; = 2 pN (33). Mertelj et. al.
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(37) reported that in the N phase of the ferroelectric material RM734, K, is even lower, about
0.4 pN. Since the bend elastic constant K; of Nf does not experience an electrostatic
renormalization, it is expected to be a few tens of pN; Mertelj et. al. (37) found K5 =10-20 pN
for the N phase of RM734. Therefore, the ratio K;/K5 in the Nf could be larger than 1, ranging
from single-digits to ~102. Studies of 2w DWs in N¢ (19) suggest K;/K; > 4.

The goal of this work is to explore whether a model with a strong disparity of the elastic
constants, K; > K,, K3, can explain the experimentally observed polarization patterns with DWs
in the shape of conic sections. In Section 2, we present the experimental optical microscopy
textures of these patterns. In Section 3, we propose a model which employs the well-known
director-based Oseen-Frank energy with splay, bend, twist, and saddle-splay terms

Eor(R): = [, [ (div )2 + 2 (f - curl @)2 + 22 |fi X curl ]

+%(tr (Vii2) — (div n)?) ] dx; dx, dx;,
for a nematic liquid crystal occupying a region (). However, since in the materials under
consideration, the polarization vector tends to align with the director n, we replace i with P
when modeling these ferroelectric nematic textures, and ignore associated orientability issues
that may arise. This Oseen-Frank type energy for the polarization is supplemented by a potential
term that serves to set the preferred value for the magnitude of polarization, and by an anchoring
term that strongly favors tangential anchoring on the surface of the sample, thus penalizing the
component of P normal to the surface. Most crucially, we pursue an asymptotic regime where
the cost of splay is dominant over the other terms in the elastic energy density, that is K; >

K,, K5. To simplify the model further, we ignore saddle splay by setting K, + K, = 0.

2. Experiments

We explore two Nf materials, abbreviated DIO (8) and RM734 (7). On cooling from the
isotropic (I) phase, the phase sequence of DIO, synthesized as described previously (19), is
|—174°C —N—82°C —SmZp—66°C —Nf—34°C —Crystal, where SmZa is an antiferroelectric
smectic (18). RM734 of purity better than 99% is purchased from Instec, Inc. The material is

additionally purified by silica gel chromatography and recrystallization in ethanol. Its phase
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sequence is [—188°C —N—133°C —Ng—84°C —Crystal. The Nr samples are of three types:

(i) DIO films with degenerate azimuthal surface anchoring are prepared by depositing
a small amount of DIO onto the surface of glycerol (Fisher Scientific, CAS No. 56-81-5, assay
percent range 99-100% w/v) with density 1.26 g/cm3 at 20 °C in an open Petri dish. A piece of
crystallized DIO is placed onto the surface of glycerol at room temperature, heated to 120 °C, then
cooled down to the N phase at a rate of 5 °C/min. DIO spreads over the surface and forms a film
of an average thickness h defined by the known deposited mass M and the measured area A of
film,h = M /pA, where p=(1.32-1.36) g/cm3is the density of DIO (5). The film shows two types
of domains: domains of nearly uniform polarization and domains with circular polarization; both
tend to avoid splay of P, Fig.1(a-c). To gain a better control on the occurrence of circular domains
and to facilitate comparison with the numerical simulations, in which the circular domains should
be introduced artificially, say, by boundary conditions, in some samples we seed circular vortices
of polarization by a small number of colloidal SiO; silica spheres. The spheres of a diameter 6 um
are added to the liquid crystal in the N phase; upon cooling to the N phase, each sphere induces
a circular domain of P, Fig.1(d-g).

(ii) Flat cells of RM734 are assembled from glass plates spin-coated with thin (50 nm)
layers of polystyrene, separated by a distance h=(1-10) um and sealed with an epoxy glue
Norland Optical Adhesive (NOA) 65. Polystyrene aligns P tangentially (22, 38). Silica spheres are
added to some samples, Fig.2.

(iii) Freely suspended DIO films formed in square openings of metallic grids used as
holders for samples in transmission electron microscopy. A 5wt% solution of DIO in dodecane is
heated to 90 °C and then spread across the openings. After solvent evaporation, freely suspended
DIO films form.

Below we analyze the shape of the DWs and the type of deformations they carry.

2.1. Bend and splay of polarization in DWs.
To analyze the textures, we use both the conventional polarizing optical microscopy and PolScope
approach, invented by Oldenburg (39, 40), applications of which to liquid crystals has been

described in Refs. (41, 42). Briefly, a PolScope represents a polarizing optical microscope with a



variable optical compensator(s), which might be a nematic liquid crystal cell controlled by an
electric field. The image of a sample is recorded in polarized light multiple times with different
settings of the optical compensator; the numerical analysis of the set of transmitted light intensity
maps reconstructs the two-dimensional maps of the optical axis (in projection onto the plane of
imaging) and optical retardance. The approach assumes that the optic axis does not change along
the light propagation direction. The PolScope observations in this study are performed by the
Exicor Microimager (Hinds Instruments) operating at four wavelengths, 475 nm, 535 nm, 615 nm,
655 nm, which allows one to characterize samples with optical retardance up to 3500 nm.

The textures in samples (i) and (ii) show that the colloidal spheres trigger circular domains of
polarization and DWs of parabolic shape separating such a circular domain from a domain with a
nearly uniform polarization, Fig.1. In particular, Figure 1(a) shows the in-plane map of the optic
axis, which is parallel to the directorand to P in the studied materials. The DW shapes are fitted
with an equation of a conic, written in polar coordinates (r,1y) with the origin at the core of a
circular vortex,

g = i— cosy, (1)
where e is the eccentricity, and d is the distance from the core to the directrix. The fitted values
are listed in Figs.1, 2, and 3; the accuracy is better than 5%. The eccentricity of DWs separating a
circular vortex and a uniform domain is close to 1, hence the name “P-wall”, where “P” stands
for the “parabolic” (22). The tip region is often an exception since there e can be much smaller
than 1; for example, e = 0.12 at tip of the DW in Fig.1(f). This region is called a “T-wall” (22) to
stress that the polarizations P; and P, on opposite sides of the wall are tangential to it (and
antiparallel to each other), Fig.1(a). In the samples with colloidal seeds, the eccentricities deviate
from 1 rather strongly, by +0.25, Fig.1(d-g) and Fig.2. An apparent reason is the meniscus
around the colloidal spheres, which implies a nonzero dihedral angle between the surface of the
sphere and the Nr interfaces with air and glycerol in Fig.1(d-g) and polystyrene-coated glass
plates in Fig.2. The resulting thickness gradients create a torque forcing P to be perpendicular
to the gradient direction, in order to avoid splay (43).

In solid ferroelectrics, the DW are often of the Ising type. For example, in a m-wall of the

Ising type separating two domains with antiparallel polarizations, the polarization remains



parallel to the same crystallographic axis, but its magnitude decreases to zero, |P| = 0, in the
middle of the wall (28). The parabolic DWs in our experiments are different from the Ising DWs
as they do not show any significant decrease of the polarization magnitude, as revealed by strong
birefringence observed within the entire width w~10 um of the DW, Fig.1(a). The optical
retardance across the wall changes continuously and smoothly, Fig.1(a), lacking the abrupt
discontinuity expected in an Ising wall. Beside strong birefringence, another argument against a
“polarization melting” within the wall is a high energy of such a melting, which can be estimated,
following a similar approach proposed by de Gennes for the nematic-to-isotropic transition (11),
as kgT/V ~ 6 x 10°]/m3, where kz = 1.38 X 10723 ]J/K is the Boltzmann constant, T ~
400 K isthe approximate temperature of the phase transition from the N to an antiferroelectric
or paraelectric phase, and V =~ 1 nm? is the molecular volume. This energy density is much

higher than the elastic energy density of reorientation of P within the DW, estimated as
%~10 J/m3, where K is some average of the bend and splay elastic constants, taken for the

purpose of this comparison to be of an exaggerated value 103 pN. Instead of complete
polarization melting, the prevailing mode of connection of two neighboring polarization domains
P, and P, is through realignment of the polarization, as in the Bloch and Néel walls of solid
ferromagnets; some variation of the absolute value of P should not be excluded.

The overall parabolic shape of the P-wall separating a domain with a uniform polarization
P, and a domain with a circular polarization P, is explained by the avoidance of the bound
chargeonit, i.e., o, = (P, — P,) k=0, Fig.3. The last condition is fulfilled when the angle 6,
between P; and the DW is equal to the angle 6, between P, and the DW, 6, =6, =0,
Fig.3(a). These two angles increase as one approaches the vertex of the parabola, located at the
origin (x,y) = (0,0) of the Cartesian coordinates: 6; =6, =0 = arctanm, where f is
the distance between the vertex and the focus, i.e., the center (f,0) of the circular domain,
Fig.3a. However, instead of the cusp-like singularity at the merging P; and P,, the polarization
vector within the DW realigns smoothly from P; to P, over a finite width w = (10-30) pm

of the wall, Fig.1(a).
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Fig.1. DWs in DIO Nf films at glycerol. (a) PolScope Microimager texture of a parabolic DW with
two -1/2 disclinations near the tip. The ticks show the local orientation of the optic axis which is
parallel to P. The high retardance at the core of the circular domain is an artefact caused by the
crossover into a different interference order. DIO film of thickness h = 4.3 um. (b,c) Parabolic
DW shape of eccentricity e =0.93 fitted by Eq.(1). (d) Polarizing optical microscopy texture of an
Nrfilm, h = 6 um; crossed polarizers. (e) The same, no analyzer. (f,g) DW shapes fitted by Eq.(1).
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Fig.2. DWs in RM734 N cells bounded by two polystyrene coated glass plates. (a) Polarizing
optical microscopy texture; crossed polarizers; h = 7 um. (b,c) DW shape fitted by Eq.(1).

The inner structure of the parabolic DW is different far away from the vertex, where e =
1 and near it. Far away from the vertex, P realigns from P, to P; byasmallangle 6 = m —

20, Figs.1(a), 3. As is easy to see, 6(x —» o) —» 0 and the associated elastic energy is low. As



one approaches the vertex, the bend angle increases, §(x —» 0) —» m, and the polarization
realignment resembles a hairpin of a high elastic energy, Fig.3(a), thus necessitating restructuring
of the DW. A common type of restructuring is the appearance of two -1/2 disclinations separating
the parabolic DW branches with e = 1 from the tip of the DW, Fig.3(a). The -1/2 disclinations
are clearly seen in PolScope Microimager texture in Fig.1(a). The tip region sandwiched between
the two -1/2 disclinations is the T-wall. It is much more narrow (a few micrometers) and of a
sharper optical contrast than the P-branch of the DW, Fig.1(d,e), which allows one to distinguish
the two segments of DW even if the entire DW can be fitted by a conic of a constant eccentricity,
Fig.1(b,c). Within the T-branch, the polarizations P; and P, tend to be antiparallel to each
other and parallel to the wall, while at the P-branch of the same DW, the polarization crosses the
wall while realigning from P; to P, that are not collinear. This realignment involves
energetically costly splay, which might be the reason why the P-branch is wider than the T-
branch. Sometimes, the -1/2 disclinations coalesce so that the T-wall degenerates into a -1
disclination (22). Similarly, the +1 core of the circular domain sometimes splits into a pair of +1/2
defects, for example, as a result of shear in the film. Note that the combination of one +1 defect
at the center of a circular domain and two -1/2 disclinations (or two -1/2 and two +1/2, etc.)
produces a zero topological charge of the entire structure; the far field of polarization is
topologically trivial. Each -1/2 disclination replaces a hairpin with a large bent angle § = m — 26
of polarization along the P-branch with a much smaller misalignment of P, and P,, 20 =
260(x - 0) — 0 along the T-branch of the same DW, Fig.3(a). Since on one side of a T-wall there
is a domain of a circular polarization P,, it explains why its shape is elliptical or nearly circular,
with e << 1. The nearly circular T-wall creates a bend in the domain of a nearly uniform
polarization P,, Fig.1(a). This bend produces a “ghost” parabola, which extends outside the

prime parabolic DW and often originates from the cores of the -1/2 disclinations, Fig.4.
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Fig.4. A parabolic DW with a T-wall at the tip creating a ghost parabolic DW in RM734 Nr confined
between two polystyrene coated glass plates. (a-c) Polarizing optical microscope textures with
the polarizer and analyzer making an angle 120°, 90°, and 60°, respectively. The cell thickness
h = 4.3 um. (d) The fitted shapes of the DWs. (e) The corresponding eccentricities e and distance
d to directrices fitted with Eq. (1).
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2.2. Twists of polarization in DWs.

Solid ferroelectrics exhibit Néel DWs, in which the polarization experiences splay-bend
realignment in the plane perpendicular to the wall, and Bloch DWs, in which the polarization
twists along the axis perpendicular to the wall (28). The parabolic DWs in our study reveal splay-
bend deformations of P in the plane of the sample, as discussed in the previous section, Figs.1-
3, but also twists.

The twists along the normal to the sample, i.e., along an axis in the DW plane, are easy to
uncover under a polarizing optical microscope with decrossed polarizers, Fig.5. In Fig.5, segments
1,3,5 of the parabolic DW and segments 2,4 alternate in brightness when the analyzer is rotated
clockwise, Fig.5a, and counterclockwise, Fig.5c, with respect to the polarizer. The observations
suggest that P in the segments 1,3,5 experiences a right-handed twist around the z-axis
normal to the film, while segments 2,4 exhibit a left-handed twist. Since the twist z-axis is in the
plane of the wall, the parabolic DW is different from the twist Bloch walls in solid ferroelectrics,
in which the twist axis is perpendicular to the wall. The regions with opposite twists are separated

by line defects, Fig.5.
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Fig.5. Alternating twists within the parabolic DW DIO film on glycerol, monochromatic light. (a-c)
Polarizing optical microscope textures with the polarizer and analyzer making an angle 120°, 90°,
and 60° respectively. Film thickness h = 7 um. (d) The fitted shapes of the DWs. (e) The
corresponding eccentricities e and distance d to directrices as fits to Eq. (1).
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Alternating left and right-handed twists of P around the z-axis normal to the film exist
even in the geometry when a uniform unidirectional alignment, say, P = (0, P,0) corresponds
to the Oseen-Frank elastic (but not the electrostatic) energy minimum. These twisted states are
observed in films with one surface providing a unidirectional alignment and the opposite surface
being azimuthally degenerate (as the surfaces in the present study) (44). Although the twists
increase the elastic energy, they reduce the electrostatic energy (44).

Twists are also apparent in the T-walls, as these walls do not show complete extinction in
the segments that are parallel to the polarizer or analyzer. This feature also suggests that the
polarization does not form a homeotropic region P = (0,0,P) in the center of the wall, as
would be the case for a pure Bloch wall. It is likely that the z-component of polarization varies
with z within the DW and thus introduces twist along a horizontal axis accompanied by splay-
bend near the interfaces, as described for 2 walls previously (19). The twist with a non-zero z-
component reduces the elastic energy of splay necessitated by the in-plane m —realignments of
P (19). The small width of the T-walls makes it difficult to decipher the complex deformation
field solely by optical microscopy. Nevertheless, it is safe to conclude that the T- and P-walls

represent a complex mix of all three bulk deformations, splay, bend, and twist.

2.3.  Walls or surface disclinations.

Twist deformations are a common feature of other DWs in the Ng, as they have been
previously identifiedin 2m (19)and m (45) DWs. In the latter case,a m DW that separates two
antiparallel orientations of P in a unidirectionally rubbed cell splits into two surface
disclinations. These disclinations are shifted with respect to each other in the plane of the sample,
which results in a twist around the normal to the sample. The splitting of DWs into surface
disclinations can also be observed in conventional nematics in unidirectionally rubbed cells [40].
Whether the defect represents a wall or two surface disclinations depends on the balance of
elasticity and in-plane anchoring, as explained by Kléman (46). To verify whether the DWs in our
experiments can be split into pairs of surface disclinations, we created in-plane shears by shifting
one plate with respect to the other. The shear does not result in separation of the DW images,

neither of the P-walls, nor the T-walls, which suggests that these walls are not split into surface
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disclinations. The issue of walls vs. disclinations is briefly discussed below to clarify the reason for
conflicting reports in the literature (19, 45).
Consider a balance of surface anchoring and elasticity of an N DW with a polarization

realignment by 7 from an in-plane easy direction, say, along the x-axis, to the direction (-x). In
the N, in-plane anchoring is polar (12) and can be described by a potential W (@) = %sinzgo -
Wp (cosg — 1), where ¢ isthe angle between P andthe x-axis, W, and W, are polarand
guadrupolar anchoring coefficients, respectively (19). Within the wall of a thickness w along the

y-axis, P realigns from ¢@=0to ¢ =m in the (xy) plane perpendicular to the wall; the z-

component of P iszero. The anchoring energy is (Wp + %) w per unit length of the wall. The

elasticenergyis (K/w?)wh = K(h/w), where K issome average of the bend and splay elastic

constants. The equilibrium width of the domain wall is then w = , while the wall

energy is E, = 2\/I?h (WP +%). This energy should be compared to the elastic energy

estimate of two surface disclinations, which is roughly F,; ~ 2K. A possible model of surface
disclinations involves twists of opposite handedness along the normal to the cell and splay-bend
in the bulk which yields a non-singular P orthogonal to the rubbing direction in the middle of
the cell. Such a twist might expand to the rest of the sample, which would reduce the electrostatic
energy, as recent experiments demonstrate (44). If the twist elastic energy and the electrostatic

energy balance each other, the wall would split into two surface disclinations when the cell is

thick, h > K/ (WP +%). It is reasonable to expect that K is at least 107! N (37);

according to Basnet et al. (19), in unidirectionally rubbed Nf cells, Wpfv%fle‘6 J/m?2.

Therefore, the splitting of uncharged @ DW:s into two disclinations is possible when h > 5 um.
Thinner cells exhibit DWs that do not split into disclinations, as described by Basnet et al. (19),
while thicker (or strongly rubbed cells with higher anchoring strength) cells could feature DWs
split into surface disclinations, as described by Yi et al. (45). In our experiments with the
degenerate anchoring, Wy, = W, = 0, and the analysis above suggests that the DW should be

of infinite width, which contradicts the experimental observations in Figs. 1, 2, 4, and 5. The
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reason for the finite width of the DWs in the absence of in-plane anchoring is electrostatics: a
nonzero —dP,/dk produces two oppositely charged sheets at the DW, and their mutual
attraction stabilizes the finite w against spreading favored by orientational elasticity (21, 26, 27),

Fig.3(b).

2.4. Wallsinfreely suspended films.
The texture of freely suspended films of DIO show that the polarization P is parallel to the edges
of the square opening, forming bend DWs along the diagonals, Fig.6. This arrangement is
supported by the geometrical anchoring effect of the meniscus and by a strong tendency of P
to align tangentially to any Nr interface, which avoids a strong surface charge. Even a small tilt
Y~5° of P from the xy plane of a bounding plate or an interface would produce a surface
charge density P,~P;,~6x 1073 Cm™%, which is larger than the typical surface charge
(107* —107°>) Cm~2 of adsorbed ions reported for the N (47, 48). Recent experiments (49)
with curved capillaries filled with the N and subject to a longitudinal electric field provide firm
evidence of a strong tangential anchoring at the Nf interfaces. As in the case of the parabolic
DWs, the diagonal DWs are of a finite width, stabilized by the electrostatic effect. As described
by the models below, disparity of the elastic constants is capable of reproducing the finite DWs

width.

DIO; 60 °C

Fig.6. Textures of freely suspended films of DIO. Observations with (a) polarizers along the sides
of the square hole; (b) polarizers oriented along the diagonals of the opening. Side length of the
opening is 90 pm.
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3. Modeling

In this section we will propose a mathematical model which sits within a standard
approach to describe equilibrium configurations of nematic liquid crystals. A key aspect of our
model is an assumption that the energetic cost of splay deformations far exceeds those of bend
and twist. With such a theory in hand, we can capture a wide variety of experimentally observed
morphologies. Success in this endeavor should also enable a reverse process of predicting
material parameters of ferroelectric nematics on the basis of experimental observations.

As was already alluded to in the introduction, in modeling the experimental set-up, we
propose an energy based on a vector-valued order parameter P representing the local
polarization of the ferroelectric nematic sample. We then pursue analysis of an Oseen-Frank type
of energy. However, in light of the fact that polarization may vanish in the neighborhood of
defects or walls, we invoke a Landau-de Gennes (or Ginzburg-Landau) type of potential favoring
unit vectors as opposed to a hard constraint that |P| = P, everywhere in the sample. Here P,
denotes a preferred value for the magnitude of the polarization vector.

It would also be natural to model the experiments discussed in this article using an energy
based on both polarization and a nematic director, but as we shall indicate through numerous
computational experiments in the subsequent section, our model based solely on P =
(PM, P?), pB)y already successfully captures an array of morphologies that emerge in the
laboratory.

Given that the experiments are carried out on a thin domain, we take as our sample the

set
Q={(x1,x2,x3):0<x; <L, 0<x, <L, _% <x3 < %},
where L =0(1) and 0 < h « 1.Then for P:Q - R3 we introduce the (dimensional) elastic
energy
E(P): = [, 2 (divP)? + 2 (P - curl P)2 + [P X curl P|2 (2)

+=(IP|? = P§)? dx; dx, dxs +§f(

X1,%2)EQ,x3=1%

ﬁ (P(3))4 dx1 dxz.
2

This is the analog of the Oseen-Frank energy for nematic liquid crystals written for

polarization where we ignore electrostatic interactions. It is supplemented with the penultimate
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potential term fixing the preferred value for the magnitude of the polarization vector.

To explain the final surface anchoring term appearing in Eq. (2), we note that at the
interface of an apolar nematic and an isotropic fluid, the only angular dependence that could
enter the surface energy density is via a term proportional to (fi - ¥)2, where fi is the director
and V isthe normal to the surface. For the anisotropic surface tension ay; to yield a minimum

at some “easy cone” 0 < @, < /2, the term (A - V)? should be supplemented by higher-

order terms,e.g. oy, = y(i- V)2 + % (fi - ¥)* + const, which can be rewritten as

YT, -~ ~ A 2
On; = 0p T 5[(“ -9)2 — (g - 9)?],

aslongas —1 <y/y <0. Here ﬁeqis the “easy axis” making the equilibrium angle ¢,, with

V, defined from coszrpeq = —%. If n,, is tangential to the interface, then ¢,, = m/2 and

n., -V =0, thus

On; = O +§(ﬁ -0
A similar consideration is valid for the ferroelectric nematic with P replacing i and V =
(0,0,1) as in Fig.7. This justifies the term with %(P“))“‘ describing the zenithal surface

anchoring.

P= (P(1)7P(2),P<3))

>
—

Fig.7. Boundary schematics. Here P is the polarization vector and V is the surface normal.

By setting
K2:K3:K1_M:K, K2+K4:O, WheT‘e M>O,
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we arrive at the following simplified expression for the elastic energy
E(P):= [, 2 (divP)? + Z[VP|2 + Z(|P|2 — P})? dx, dx, dxs

+ 14 E (P(3))4 dxl dxz.
2

2 (o1, x2)€EQx5=%

This version of the model captures the experimentally observed features of ferroelectric
nematics. Since a key feature of the ferroelectric nematics under consideration here is the
relatively high energetic cost of splay, we assume that M > K where we note thatin the second
term above we are effectively folding the cost of twist and bend into one equal constant term.
Because of the degenerate planar anchoring, the angle between the polarization and any
bounding surface is essentially zero and, therefore, the anchoring strength y > 1.

Taking a characteristic diameter of () to be, say L, we identify two small dimensionless

parameters:
h K
60:=—- and &= i, (3)
L LP,
with two more dimensionless parameters
LM .— YPo
W= TPoiRa and T: N (4)

whose size will be selected in the sequel. Here the smallness of § and ¢ follow respectively

from the high aspect ratio of the film and smallness of the ferroelectric nematic correlation
length, &, = —VI;/a, relative to the width L of the film.
0

Then rescaling the spatial variables via

X1 X2
Xi=, yi=T and z:=-=,

and polarization by

P.=_p
Py

and finally dividing E by hLVKa and dropping tildes, we arrive at a dimensionless expression

for the energy (which we still denote by E):

1 2 2 1
E(P)=fﬂox(_%%)%(Px(l)+Py(2)+EPZ(3)) +2(1Pe2 + [Py + 55 1P, 12)

(5)
+-(IPI> —1)* dx dydz+3fQ

(PCH* dx dy,

ox{23}

for a polarization vector P defined for (x,y) € Q, and z € (—%,%). Here (, is a square of
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unit side length and the subscripts x,y, and z denote derivatives with respect to these
variables.

We seek minimizers of E with bounded energy. Because § and & are small, while u
and I' are both 0(1), we observe that dependence of P on the variable z, the nonvanishing
third component of P and deviations of |P| from 1 all incur very high energy cost. In light of
the first fact, in what follows we make a further simplification that the polarization P is

independent of z, leading to the reduced energy

_ Lip@ , p@)\ , ¢ 2
E-(P) —fnox(—§,§)E(Px +B7) + S (1Pl + [Py ) (6)
1 2T
+—(IPI* = )2 dx dy + ?fﬂo (POY* dx dy,

Now, the behavior of a configuration that minimizes Eq. (5) is dictated by relative sizes of ¢ and
6.

Suppose first that § < €. In this case we can conclude that the last term in Eq. (5)
dominates unless the third component of P vanishes. Therefore, we can impose the condition
that P lies in xy-plane. Under these assumptions, to leading order we find that the resulting
energy £, can be described through a two-component vector field p= (p™ (x,y), p® (x, ))
via

E:(p) ~ [, & (divp)? +|Vpl? + —(IpI? — 1)? dx dy. (7)

The assumption of z-independence aligns with the experimental observations carried
out in thin samples sandwiched between two interfaces. However, interestingly enough,
numerical simulations and formal asymptotics indicate that this reduction from Eq. (6) to Eq. (7)

is far from being mathematically straightforward and thus will not be discussed here.
Now, instead let & <« §. Then the integral of 4%(|P|2 —1)? will be the largest

contributor to the energy E, so that we are justified to assume that |f5| =1 in Q,. Writing

P® in terms of other components of P then gives

(p(s))4 = (1 — (p(l))2 — (13(2))2)2 = (1 - |p|®)=

We also have
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PV + P =divp,

because p isindependent of z. Substituting these expressions into (6), we obtain the energy
. 2 2r
F(@) ~ [y, 5 (ivp)? +5(1vp1? + [vPO) + Z(Ip[? - 1)% dx dy, (8)

where [p[2 + (P®) =1 in Q.

We observe that the expressions for Eq. (7) and Eq. (8) are mathematically very similar
even though the potential terms originate from two unrelated sources. The differences arise from
the presence of the gradient of the third component in Eq. (8) and different relationships
between the parameters. From the physical perspective, the energy in Eq. (8) allows for twist
deformation—in particular, within a wall—while Eq. (7) only permits splay and bend. In the next
subsection we discuss asymptotics for Eq. (7). Then, in the following section devoted to numerics,

we will present examples of energy-minimizing configurations for both Eq. (7) and Eq. (8).

3.1. Asymptotic analysis

In this section we indicate how to mathematically analyze energy minimizing
configurations for Eq. (7), taking advantage of the smallness of ¢. In particular, we describe
analytical techniques for constructing elastic walls for given anchoring conditions on the two-
dimensional polarization p. This subsection aims to provide the mathematical justification for
the numerical results presented in the next section.

The energy in Eq. (7) penalizing splay over bend has been analyzed in (50) . The most
salient observation in (50) is that, as & — 0, the minimization problem (7) approaches a sum of

bulk splay cost and a wall cost given by
Eo(p):= Jy, 5 (@ivp)? dxdy + [, Ipy —p-I*ds (©)
where p has prescribed values on 0, and satisfies |p| =1 everywhere in Q,. The symbol
Jp represents the domain wall, that is, a curve across which p jumps in order to save on the
cost of splay, and p, and p_ denote the values of the polarization on either side of the wall.
A mathematical subtlety we wish to highlight with regard to the energy &, isthateligible
vector fields p that exhibit jump discontinuities across such a curve J, must nonetheless

respect the integration by parts formula (i.e. the Divergence Theorem). This induces a
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requirement that the normal component of p remains continuous across the wall. Since the
potential term in Eq. (7) forces the polarization field p to be of a unit magnitude away from the
wall for € < 1, it follows that the tangential component of p simply switches sign on either
side of the wall. Thus, we see that the physical requirement that a domain wall be uncharged, as
discussed in the introduction, is manifested in our model through an application of integration
by parts.

A simple example that illustrates the utility of this continuity condition is in order.
Suppose that a wall separates two distinct states with zero splay, for example, a state where p =
const and a state where p has a circular vortical pattern. In view of Eq. (9), then all of the
energy of such a configuration will be concentrated on the wall. Then the placement of the wall
is dictated by the requirement that across it, the tangential component of polarization switches
sign.

To be specific, suppose that the constant state is p = (1,0) and the divergence-free
circular vortical state is

p = (—sind, cosB). (10)

Let us describe the wall in terms of its distance, say p(6), from the origin which serves as the

center of the vortex. That is, as a function of the polar angle 8, suppose the wall is given by
0 — p(6)(cosb, sind).
Then a tangent vector to the wall is given by
T(6): = p'(8)(cosb, sinb) + p(8)(—sinb, cosh),
and the condition of sign-switching tangential component and continuous normal component
can be expressed as
(1,0) - T = —(—siné, cosO) - T.

This equation simplifies to the separable ODE

p’ __ sinf-1

p  cos@’

which can be readily solved to find that the wall is given by

p(6) =

Observing that Eq. (11) is the polar equation of a parabola, we see that a these two divergence-

c
1+sin6

for some constant C. (12)

free states must be separated by a parabolic domain wall, also known as a P — wall, as already
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discussed in the introduction and in the experimental part. Numerical simulations conducted
through minimization of &£, for & small confirm that this geometry emerges for appropriate
boundary conditions. What is more, this arrangement conforms with the expeccted emergence
of conics dicussed in the introduction and is consistent with experimental observations as well,
giving support for the validity of the model (cf. (20), Fig. 7).

Another configuration consistent with splay-free bulk, and one that emerges
experimentally as well, is the appearance of domain walls in a triple junction configuration. In the
simplest scenario, consider three rays, meeting at the origin and separated from each other by
an angle of 120°, i.e., at angles 0°, 120° and 240° with the x-axis. Within each 120°
sector, place a uniform state so that the director makes an angle of 150° with the x-axisin the
first sector, an angle of —90° with the x-axis in the second sector and an angle of 30° with
the x-axis in the third sector. Just as in the previous example, the entire energy of this state is
concentrated on the walls and the configuration respects the continuity condition of the normal
component of polarization across all walls. Another example comes from exchanging the
constant states from the previous example with three circular vortices. Once again, all of these
configurations may be observed experimentally.

One can also use Eqg. (9) to construct walls in more complicated settings where, for
example, the divergence does not vanish on either side of the walls; again see (50). For this
pursuit, we observe that a minimizer of &, satisfies the criticality condition

pt-V(divp) =0 in Q,\J,, where pt=(—p®,p®), (12)
along with the requirement |p| = 1. Writing p locally as p(x,y) = (cosf(x,y),sinf(x,y))
and defining the scalar

n:=divu, (23)
one has that Egs. (11)-(12) is equivalent to the following system of partial differential equations
for the two scalars 8 and 7:

—sinf 6, + cost 6, =1, (14)

—siné n, + cosf n,, = 0. (15)
This system of first order partial differential equations has a fairly simple solution obtainable by

the method of characteristics, cf.(51). Starting from any initial curve in (), parametrized via
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s (x9(5),yo(s)) along which 8 and n take known values 6,(s) and ny(s) respectively,
the characteristic curves parametrized by t are given by

x(s, t) = ﬁ [cos(mo(s)t + 64(5)) — cosBy(s)] + x4(s),
y(s,t) = —=[sin(1o(s)t + Oo()) = sinbo ()] + Yo (s),

for each s whenever 1n,(s) # 0. The corresponding solutions fand 7 are then given by
0(s,t) = no(s)t +6o(s), n(s,t) =mno(s),

so that the characteristics are circular arcs of curvature 1n,(s) and carry constant values of the

divergence. In case the divergence vanishes somewhere along the initial curve, i.e. 1y(s) =0,

then the characteristic is a straight line.

Examples of employing this method can be found in (50). In particular, consider a
rectangular domain where the polarization points to the right on the top, to the left on the
bottom and is periodic on the vertical sides of the rectangle. For certain parameter regimes,
minimizing configurations for the energy in Eq. (7) can be shown to be characterized by the
presence of walls, as shown in Fig. 8. The respective level plots of the angle of inclination of
polarization with the x-axis, and of the divergence of polarization are shown in Fig. 9. Note that
the divergence concentrates along two nearly parallel and close stripes that embrace the DW,
Fig.9a; we associate these stripes with a nonzero bound charge —dP,/dk which is maximized

near the wall and changes sign from positive to negative as one crosses the wall.

22



0.5
0.4
0.3
0.2
0.1

-0.1
-0.2
-0.3
-0.4

-0.5

-0.4

-0.2

0
X

0.2

0.4

0.9
0.8
0.7
0.6
0.5
0.4
0.3

Fig. 8: A solution p of the Euler-Lagrange equation associated with the energy functional in Eq.

(7) in the rectangle (—0.3,0.3) X (—0.5,0.5) subject to periodic boundary conditions on
{—0.3,0.3} x (—0.5,0.5) and assuming that p(x,+0.5) = (+1,0). Here u =1 and ¢ =

0.005. Both p and |p| are shown.
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Fig. 9: Level curves for the divergence of p (a) and the angle 6 (b), where p = (cos#@, sinf)

is depicted in Fig. 7.
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This configuration was obtained numerically in (50) using the finite elements package
COMSOL (52) by solving the full system of partial differential equations that describe the critical
points of Eq. (7). In this case, the walls have a simple shape of a cross, but the morphology of the
polarization field is fairly complex. Nonetheless, the same solution can be constructed analytically
by using the method of characteristics described above. The corresponding plots are shown in
Fig. 10 for the top right quarter of the rectangle and they clearly have the same behavior as the

numerically derived result in Fig. 9.
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Fig. 10: Level curves for the divergence of p (a) and the angle 8 (b), where p = (cos8, sinf)

is a solution obtained using characteristics.

4. Numerics
In this section, we demonstrate that the minimizers of the two-dimensional energy in Eq.
(7) correctly describe behavior of polarization in real ferroelectric nematic films. The observed
domain wall structures are triggered by the boundary conditions, presence of impurities and
inclusions.
To benchmark our model, we will begin by looking for an optimal configuration of Eq. (7)

in a rectangular domain with boundary conditions corresponding to a circular polarization on the
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bottom edge of the rectangle and the constant state p = (1,0) on the other three sides.

(b)

Fig. 11: A parabolic wall in a ferroelectric nematic film induced by the boundary conditions. The
arrows represent the two-dimensional polarization vector p and the color corresponds to |p|.

Here ¢ =0.03, ©u =10 (a)and ¢ =0.03, u = 1000 (b).

It is well known that the energy minimizer in this case is characterized by the presence of
a parabolic wall, Fig. 11 that indeed forms in the domain during the gradient descent for Eq. (7).
This outcome also corresponds to the analysis in the previous section, cf. Eq. (11).

Next, we will consider inclusions that have sizes comparable to the thickness of the film.

To this end, consider the situation shown in Fig. 12.

Fig. 12. A meniscus forming around an inclusion orients the polarization field P.
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Here, a spherical inclusion penetrates the top and the bottom of the film at the interfaces
with air and glycerol and therefore a meniscus forms on each boundary. As alluded to previously,
because the polarization vector P wants to remain parallel to these interfaces, in order to
minimize the elastic energy in three dimensions P orients along the normal to the thickness

gradient.
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Fig. 13. The component P®) of the polarization vector (a); the projection p of polarization P
onto the plane of the film. The color corresponds to |P| (b). Here u =6, € =0.002, T =1,
and 6 =0.12.

Therefore, we expect that the polarization should be pinned in a circular pattern around
the inclusion on both surfaces of the film, cf. Fig. 12. In order to model a polarization field in a
ferroelectric nematic film with inclusions within the 2D-framework, we can then excise a disk
corresponding to the inclusion along with the meniscus and impose tangential anchoring on the
boundary of the disk.

Now we consider a rectangular domain with a hole representing an excised disk around
an inclusion. We impose constant boundary conditions P = (1,0,0) on the boundary of the
rectangle and tangential boundary conditons, P = (—siné, cosf,0) on the boundary of the disk
for a polar angle 8 with respect to the center of the disk. We then find the energy-minimizing

configuration of polarization by using steepest descent for the energy Eq. (8), as shown in Fig. 13.
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We observe a parabolic downward-pointing wall with a faint upward parabolic "ghost" wall.
These features have also been observed in experiments, Fig.4. Note that in this case the elastic
deformation at the tip of the wall is dominated by twist around the axis in the xy-plane. As
already discussed, such a twist under the condition of z-independent polarization might be
prevented by electrostatics at most interfaces. Experiments suggest that the details of the fine
structure of domain walls involve all three types of deformations, including variations along the
z-axis, which reconcile the twist in the bulk with tangential anchoring at the boundaries (19).
However, we do not exclude a possibility that in the future a homeotropic or strongly titled
anchoring might be achieved at some Ne-substrate interfaces, in which case such a twist across
the entire thickness of an N slab could be observed.

Figures 14 and 15 confirm that our modeling approach also produces the correct behavior
in the system consisting of two particles imbedded in a ferroelectric nematic film. Figures 1(d-g)
show the corresponding experimental image. The plot in the Figs. 14 and 15 are, respectively,
minimizers of the energy (8) and (7) in the region exterior to these disks. It is apparent that, while
the wall morphologies in the two figures match experimental observations, there are some subtle

differences, e.g., the secondary walls are present only in Fig. 15.
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27



indicates the value of P, while the arrows represent the projection p of polarization onto

the plane of the film.
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Fig. 15. Morphology of a ferroelectric nematic film with two inclusions: an energy minimizing

= 0.004. The color indicates the value

(p(l), p@)

configuration for the energy Eq. (7). Here © =8 and ¢

=p.

O). Note that here P

)

P =

of |P|, while the arrows represent the polarization

The model Eq. (7) is based on a two-component polarization vector and therefore the

walls in Fig. 15 are of the bend-splay type. On the other hand, because the model Eq. (8) involves

three components, the corresponding wall structure is allowed to exhibit twist and indeed, this

is what occurs in Fig. 14 as can be discerned from the deviations of the third component of P

away from zero in the interior of the wall. In Fig. 16 we show a similar configuration for four

inclusions.
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Fig. 16. The component P®) of the polarization vector (a); the projection P of polarization P

onto the plane of the film. The color corresponds to |P| (b). Here u =6, € =0.002, ' =1,
and 6 = 0.12.

The plot on the right in Fig. 17 is obtained by using steepest descent of the energy Eqg. (8)
starting from initial data with regions of both clockwise and counterclockwise twist of the
polarization. This plot shows a single inclusion with an associated parabolic wall. However there
is a difference with Fig. 13 in that the left half of the wall has positive twist, while its right half has
negative twist.

These halves are separated by a point defect at the tip of the parabola. Similar structures
can be observed in experimental images in Fig. 1(d). The same phenomenon can be induced by
considering a strip (—1,1) X (=1/2,1/2) with antipodal boundary conditions on horizontal
components of the strip, i.e., P(x,—1/2) = —P(x,1/2) = (1,0,0).
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Fig. 17. The component P®) of the polarization vector (a); the projection p of polarization P
onto the plane of the film. The color corresponds to |P| (b). Here u =6, € = 0.002, T =1,
and 6 =0.12.
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Fig. 18: An energy minimizing configuration in a periodic strip with antipodal orientation of the
polarization vector on the top and the bottom. The color represents the value of P, Here

u=0.2 =0.008 I'=1,and § =0.2.
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Suppose that the polarization field satisfies periodic boundary conditions on the vertical
sides of the strip. Starting from initial data containing twist of both signs and using gradient
descent leads to a local minimum of the energy in Eq. (8) with a wall along the axis y = 0 such
that the twist alternates as one moves along the wall, Fig. 18. Once again, the intervals of
opposite twist are separated by point defects.

Finally, to model freely suspended films of DIO, we consider the energy (7) over a square
domain where the direction of the polarization vector on the boundary is parallel to the boundary
itself. The results are shown in Fig. 19 and demonstrate formation of bend-splay domain walls
along the diagonals of the square, which one can compare favorably to the experimental findings

in Fig. 6.
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Fig. 19: An energy minimizing configuration in a square domain with the polarization vector

parallel to the boundary. The arrows represent the polarization p and the color corresponds

to the contours of |p|. Here u =10 and ¢ = 0.03.
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6. Conclusions
As compared to their solid counterparts, ferroelectric nematics show a rich variety of polarization
domain structures not constrained by crystallographic axes. The polarization patterns P(x,y, z)
are controlled by the avoidance of bound charge associated with the divergence of the
spontaneous polarization and by surface anchoring; the anchoring shows a strong tendency of
P to be tangential to the Nr interfaces. Thin N films with degenerate in-plane anchoring exhibit
circular domains of P separated from the domains of a uniform P by DWs in the shapes
resembling parabolae, which help to reduce the bound charge. The DWs are of finate width, even
when there is no in-plane (azimuthal) anchoring, which is the case of the films on the glycerol
surface and in freely suspended films. The finite width of the DWs is stabilized by electrostatics.

Except near the tip of the DW in azimuthally-degenerate slabs, the eccentricity is close to
1, hence the name “P-wall”. The P-wall structure is complex, with the bend and splay of P in
the (x,y) plane of the film and a twist of P along the normal z to the film. Along the P-wall,
the left- and right-handed twists alternate, being separated by defect lines along the z-direction.
As one approaches the tip of the DW, the realignment trajectory of P starts to resemble a sharp
U-turn with a high splay-bend energy; the geometry of the P-wall is replaced by the new
structure, called the T-wall, in which the polarization vectors of the two domains are both
tangential to it. The T-branch is separated from the P-branches by two -1/2 disclinations. The T-
branch is more narrow than the P-branches, which might be explained by a smaller amount of
splay in it; the prevailing deformation appears to be the twist along the horizontal and vertical
axes with some elements of splay-bend near the bounding plates. Since the T-wall embraces the
circular domain on the inside, its eccentricity is less than 1; the curved T-wall causes bending of
P in the outside domain, which produces a “ghost” parabola.

We show that these experimentally observed shapes are well described by a version of
the Oseen-Frank energy functional in which the splay elastic constant is much larger than the
twist and bend constants. Whenever the third component of the polarization vector is set to vary,
the model allows for the presence of both twist- and bend-splay DWs. This approach recovers
principal features of ferroelectric nematic morphologies, such as the secondary “ghost” domain

walls and mixed handedness of the twist of the polarization vector along the DW. Within the
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modeling, the finite width of domain walls is attributable to the large disparity between the
elastic constants, in that the system accommodates the splay by forming structures with strong
bend and/or twist. The finite width of domain walls in the model is fully supported by the
experiments, as evident from the comparison of parabolic walls produced by simulations in Figs.
11, 13-17 and their experimental textures in Figs. 1,2,4,5. Similar agreement is evident by
comparing the experimental textures of rectilinear domain walls in films freely suspended in
square openings, Fig.6, and their simulated structure in Fig.19.

We also note that model (7) allows for bend and splay within the walls, while (8)
incorporates all elastic modes, including twists, yet both produce the same DW morphology and
director distribution outside of the DWs. At the same time, within the walls, the director
configurations are different and are dominated either by bend or by twist. Further, note that in
numerical experiments ghost walls seem to appear only in the bend dominated walls, therefore
conceivably one could try to use the presence of ghost walls in physical experiments as an
indicator of a bend deformation within DWs. Needless to say, the models described in this work
are not uniformly applicable in that they fail to capture all the features of ferroelectric nematic
configurations when the dependence on the z-coordinate cannot be ignored. In particular, this
shortcoming applies to the details of the wall structure that in fact might be three-dimensional.
The present model also does not capture the expected presence of double layers of bound
charges of a density —dP,/dk embracing the parabolic DWs, although these are visible around
straight DWs in Fig. 9a. The full three-dimensional inner structures of DWs will be addressed in a

future investigation.
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