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Abstract: Spatially-varying alignment of liquid crystals is essential for research and applications. 10
One widely used method is based on the photopatterning of thin layers of azo-dye molecules, such 11
as Brilliant Yellow (BY), that serve as an aligning substrate for a liquid crystal. In this study, we 12
examine how photopatterning conditions, such as BY layer thickness (b), light intensity (I), irradia- 13
tion dose, and age affect the alignment quality and the strength of the azimuthal surface anchoring. 14
The azimuthal surface anchoring coefficient, W, is determined by analyzing the splitting of integer 15
disclinations into half-integer disclinations at prepatterned substrates. The strongest anchoring is 16
achieved for b in the range of 5-8 nm. W increases with the dose, and within the same dose, W 17
increases with /. Aging of a non-irradiated BY coating above 15 days reduces W. Our study also 18
demonstrates that sealed photopatterned cells filled with a conventional nematic preserve their 19
alignment quality for up to four weeks, after which time W decreases. This work suggests the op- 20
timization pathways for photoalignment of nematic liquid crystals. 21

Keywords: Azimuthal anchoring, Surface anchoring, Liquid crystals, Photopatterning conditions, 22

Alignment stability, Brilliant Yellow 23
24
1. Introduction 25

Alignment of liquid crystals (LCs) is crucial for their applications. While the unidi- 26
rectional alighment can be achieved by mechanical rubbing [1-5], alignment with spa- 27
tially-varying “easy axis” requires a more sophisticated approach. Spatially-varying 28
alignment becomes exceedingly important in many academic and applied projects, such 29
as the fabrication of planar optics elements [6-12], LC elastomer coatings with prede- 30
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Academic Editor: Firstname Last- signed topography [13-19], orientationally ordered environments that control collective 31
name and individual dynamics of microswimmers [20-25], and substrates that align living tis- 32
Received: date sues [26-29]. The most popular approach to achieving spatially-varying alignment of LCs 33
Revised: date is photoalignment [13,30-38]. Photoalignment allows one to design complex director pat- 34
Accepted: date terns with high spatial resolution [34,35,39], controllable surface anchoring [40], dynamic 35
Published: date director alignment [41], and the capability to pattern the alignment on flexible and curved 36

substrates [42-44]. Photoalignment does not induce impurities, electric charges, or me- 37
chanical damage to the treated surfaces, unlike conventional rubbing [45]. 38
Copyright: © 2024 by the authors. Brilliant Yellow is one of the azo-dye materials used for photoalignment [46-48]. Ex- 39
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when exposed to visible light. Nevertheless, the study by Yaroshchuk et al. [49] demon-
strated that BY has excellent stability when irradiated with ultraviolet light and kept at an
elevated temperature of 150 °C for one hour. Since BY allows one to produce high quality
alignment in a relatively easy process, it continues to attract interest in research and ap-
plications, see, for example, some recent publications in Refs. [33,49-54].

Azo-dye molecules undergo photoinduced reorientation when exposed to light
[50,55,56]. For irradiation with a linearly polarized beam, the probability of absorption is
P « cos?B where B is the angle between the long axis of the molecule in its trans state
and the light polarization direction. The absorption-reorientation process repeats itself
until the dye molecule aligns perpendicularly to the light polarization, f = m/2. Studies
by Wang et al. [57] and Shi et al. [58] show that alignment quality strongly depends on
exposure to humidity and only slightly depends on the type of surface used for depositing
BY. Our previous work showed that a longer light exposure produces a stronger in-plane
(azimuthal) surface anchoring [40]. However, the effect of other important factors re-
mained unexplored.

This study investigates the effect of photopatterning conditions, such as BY layer
thickness (b), light intensity (I), irradiation dose, and age of non-irradiated substrate, on
the alignment quality and the strength of azimuthal anchoring expressed by the anchoring
coefficient W in the surface potential %Wsinza, where «a is the angle between the align-

ment direction imposed by the patterned BY layer and the actual director specifying the
local orientation of the liquid crystal. The coefficient W is determined by analyzing the
splitting of integer disclinations into half-integer disclinations at photopatterned sub-
strates [26,40]. We find that b in the range 5-8 nm yields the strongest azimuthal anchor-
ing. W increases with the dose and with I when the doze is fixed. BY-coated substrates,
which are photopatterned within 15 days of substrate preparation (after BY spin coating
and baking, but before irradiation), show no significant change in W. However, sub-
strates aged for more than 15 days before irradiation exhibit a decline in W. Our study
also demonstrates that photopatterned cells filled with a conventional nematic LC and
sealed with epoxy glue preserve their alignment strength for about 4 weeks, but further
aging of the filled cell leads to a reduction of W. The results facilitate the optimization of
BY photoalignment for liquid crystal applications.

2. Materials and Methods

2.1. Cell Preparations

Indium tin oxide (ITO) coated glass plates are sonicated in water with a small
amount of detergent at 60 °C for 15 min. Although the studies do not require an applica-
tion of an electric field, the choice of ITO-coated plates is justified by the fact that most
applications of liquid crystals involve electro-optic effects thus the presence of the ITO
electrodes is often a necessity. The plates are rinsed with isopropanol, dried in an oven at
80 °C for 15 min, and exposed to UV in an ozone chamber for 15 min. The plates are spin-
coated with a solution of azo-dye BY in N, N-dimethylformamide (DMF), Figure 1(a)
(both purchased from Sigma Aldrich) at 3000 rpm for 30 seconds, and baked at 80 °C for
30 min. We use DMF solutions with various BY concentrations, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0,
2.0, and 4.0 wt%, in order to vary the thickness b of the resulting BY layer and to explore
its effect on the anchoring strength. All other experiments are performed with substrates
coated with a 0.5 wt% BY solution, resulting in b = 7.6 nm, which is in the optimal thick-
ness range of 5-8 nm that yields the strongest W. To avoid detrimental effects of humidity
on BY alignment [57], we control the relative humidity (RH) of the environment at less
than 20% during the spin coating and baking, and at 20-35% during substrate storage, cell
assembly, and photopatterning. During imaging, the sealed LC filled cells are kept at RH
of less than 50% and a constant temperature of 45 °C.
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Cells are assembled from two glass substrates with the BY-coated surfaces facing
each other; these are called BY-BY cells throughout the text. The gap is fixed using epoxy
glue NOA 65, without spacers, to achieve a thickness of ~1 um. The thickness h of the
gap between two plates is measured by an interferometric technique using a UV/VIS spec-
trometer Lambda 18 (Perkin Elmer).
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Figure 1. Chemical structures of materials and photopatterned defect array. (a) Pho-
toresponsive azo-dye Brilliant Yellow, liquid crystal CCN-47, and solvent N, N-dimethyl-
formamide. (b) Schematic of the photopatterning setup. Obj: objective, PMM: plasmonic
metamask. (c) Director pattern of the defects array. The blue dots represent the cores of +1
defects, and the red dots represent the cores of —1 defects. (d) A polarizing optical micro-
scope texture of the plasmonic meta mask with +1 radial defect array. (e) Polarized optical
microscope images of a portion of a photopatterned cell with a +1 radial defect on the left
and a -1 defect on the right. The cell thickness is 1.1 um. (f) The same polarizing micros-
copy with a full-wavelength optical compensator with the slow axis A. P and A represent
the polarizer and analyzer, respectively.

2.2 Photopatterning

We use the plasmonic metamask (PMM) technique introduced by Guo et al. [33,34]
to pattern the substrates with an array of +1 and -1 defects (these defects should not be
confused with “defects” induced by mishandling of the samples or with dust particles).
PMM is an aluminum film with a thickness of 150 nm containing an array of nanoslits,
each with a length of 220 nm and a width of 100 nm. When an unpolarized light beam
passes through a nanoslit, the transmitted light becomes polarized along the short axis of
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the nanoslit. The degree of polarization of the transmitted light depends on the wave- 123
length. Guo et al. [34] demonstrated experimentally and through numerical simulations 124
that the polarization contrast ratio exceeds 7 dB for wavelengths ranging from 400 to 800 125
nm. The transmitted light beam irradiates the cells, as shown in Figure 1(b). We use two 126
types of cells in this work: BY-BY and BY-PS cells. The BY-PS cells are assembled with one 127
BY-coated substrate and one polystyrene (PS) coated substrate, with the coated surfaces 128
facing each other. Preparation of the PS-coated substrates is explained later in the text, 129
section 3.1. During photoalignment, BY-PS cells are positioned so that the BY-coated sub- 130
strate is closer to the light source. Irradiated light aligns azobenzene molecules perpen- 131
dicularly to the light polarization direction. As a result, a desired pattern, which replicates 132
the pattern of nanoslits in the PMM, is produced in the azo-dye layer. The BY molecule 133
exhibits an absorption range of 350-500 nm, with a peak at 432 nm [49]. We use a light 134
source EXFO X-Cite with a wavelength range of (320-750) nm, which covers fully the ab- 135
sorption spectrum of BY. The light beam propagates along the normal to the PMM and 136
the cell, Figure 1(b). The light intensity I is measured at the point of cell incidence using 137
a power and energy meter console PM 100D (THORLABS). 138

A periodic square lattice of defects with strength +1 and -1 is designed by using a 139
superposition rule for the in-plane director, figy = (nx, Ny, O) = (cos ¢, sin ¢,0), where 140
¢ =Y, Xj_,(=1D)"arctan (%), x and y are the Cartesian coordinates, p and q are 141
the numbers of defects in rows and columns, respectively, p = q = 10; a =b =200 pm 142

is the distance between the defects along the x and y directions, respectively. The +1 de- 143
fects in the pattern are of a radial type, so that the director around them experiences 144

mostly splay, Figure 1(c). 145
146
2.3 Nematic material 147
148

The photopatterned cells are filled with 4-butyl-4-heptyl-bicyclohexyl-4-carbono- 149
nitrile (CCN-47), Figure 1(a), by capillary action in the isotropic state at the temperature 150
70 °C. The material exhibits the following phase transitions upon heating: Smectic A 29.9 151
°C Nematic 58.5 °C Isotropic. After filling the cells, they are kept at 45 °C during the ex- 152
periments using a Linkam hot stage. At 45 °C, the elastic constants K; of splay and K; 153
of bend of CCN-47 are equal, K; = K3 = K = 8 pN [59,60], which allows one to use the 154
superposition rule for the director field and to analyze the elastic properties of the patterns 155

in the so-called one-constant approximation [61]. 156
157
2.4 Optical microscopy characterization 158
159

Optical textures of photopatterned LC cells are recorded using a polarized optical 160
microscope (Olympus BX51) equipped with a Basler (acA1920-155um) digital color cam- 161
era, Figure 1(e,f). A full-wavelength (530 nm) optical compensator is used to reconstruct 162
the director field, Figure 1(f). Regions where the director aligns parallel to the slow axis of 163
the compensator, exhibit a blue interference color, while areas where the director is per- 164
pendicular to the slow axis appear yellow. The left defect in Figure 1(e,f) is a +1 radial 165
defect, while the right is a -1 defect. The separation distance between half integer defects, 166

d, is measured using the open-source software package Fiji/Image]. 167
168
2.5 Theoretical background 169
170

Defects of strength +1 tend to split into pairs of +1/2 to reduce their elastic energy 171

[61]. In the so-called one-constant approximation, the elastic repulsive potential of two 172
+1/2 or two -1/2 defects is weakly dependent on their separation d: Fg = —HTKhln %, 173
where K is the average Frank elastic modulus, h and 7, are the cell thickness and the 174

radius of the disclination core, respectively [26,61]. In a photopatterned cell, the separation 175
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1.0 wt% BY

of the defects is resisted by surface anchoring that tends to enforce the patterned +1 de-
fects. The elasticity-anchoring balance determines the equilibrium separation distance d
of the semi-integer cores. The surface anchoring energy of a patterned cell can be found
by integrating the Rapini-Papoular potential, Fs5 = 2 f02n fod%W[l — (fgy ' figc)?] rdrde
which yields Fs = 2aWd?; here iy is the actual director field of a split defect pair, figy
is the ideal radial pattern of the easy axis at the substrates, & = 0.184 is a numerical coef-
ficient, and the factor 2 reflects anchoring at both plates [26,40,61]. The equilibrium value
of d allows one to calculate the anchoring strength as W = nKh/(8ad?). For cells assem-
bled with one photopatterned surface and the second plate providing degenerate in-plane
anchoring, W = nKh/(4ad?).

We calculate W by measuring d and h and using the known values of K and «,
Figures 3, 5-7. The resolution of the optical microscope is sufficient for precise measure-
ments, as the experiments show that the parameter d is higher than 3 pm even for the
highest achieved anchoring. The distance between neighboring photopatterned +1 and -1
defects is set to be ~200 um, which is sufficiently large to prevent any interactions be-
tween them. The experiments are designed with thin cells to ensure core splitting is the
prevailing director structure as opposed to the escape in the third dimension [40,62]. Each
data point for d and W represents the average value obtained from 50 defects of the
same sign within the array, with the errors calculated as the standard deviation [63].

3. Results

3.1 Effect of BY layer thickness on photoalignment

The thickness b of BY coatings affects the anchoring strength. Therefore, BY coat-
ings with different thicknesses are produced by spin coating solutions with different BY
concentrations. The thickness b is measured using a digital holographic microscope
(Lyncée Tec.) in a reflection mode with a vertical resolution better than 1 nm. A portion
of the BY coating is removed by wiping the substrate with water, followed by isopropanol
using a cotton bud, exposing the glass surface to serve as the reference for thickness meas-
urement, Figure 2(a). After imaging the surface, the height difference between the coating
and the glass substrate is measured using the open-source software package Fiji/Image],
Figure 2(b). Thickness is measured at 10 different locations on the coated surface, and the
average of these measurements is used as b. Changing the BY concentrations (0.2, 0.4, 0.5,
0.6, 0.8, 1.0, 2.0, and 4.0 wt%) in DMF results in different values of b, ranging from 3.2-
80.9 nm, Figure 2(c). The thickness b was also verified by scratching the BY-coated glass
with a sharp blade to create a groove; the depth b of the groove is measured by a digital
holographic microscope. The b values obtained by the two methods are in good agree-
ment with each other, being within the measurement error.

(©
BY concentration, wt% By laye;]t]l:ickness,
o\ "y 02 32401
A k 0.4 5.5:0.2
0.5 7.6+0.2
j 0.6 8.2+0.2
0.8 12.5+0.2
M A M 1.0 17.1+£0.3
AT 20 373£0.9
50 100 150 200 250 300 4.0 80.9+ 1.8

Distance from A to B (um)

Figure 2. Brilliant Yellow layer thickness measurement. (a) An image of a 1.0 wt% BY-
coated, partially wiped surface taken using a digital holographic microscope. The left side
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400

of the image shows the BY coating, while the right side shows the glass surface after wip-
ing off the coating. (b) The surface profile plot along the line AB marked in (a), and (c) BY
layer thicknesses for different BY concentrations in the spin-coated solutions.

Alarger b reduces the intensity of light that reaches the second plate that is further
away from the source due to absorption by the BY layer on the front plate. To explore the
effect, we prepare the BY-PS cells with one BY-coated substrate as the front plate and a
polystyrene (PS) coated glass plate as the back substrate. During photoirradiation, the
pattern is focused on the BY-coated front plate. PS-coated plates yield a negligibly weak
azimuthal anchoring, Wps~1071° J/m? « W [64]. Thus, it is the patterned substrate that
dictates the director orientation and the separation distance between the defects. The an-
choring coefficient for these BY-PS cells is calculated as W = (zKh)/(4ad?). The PS-
coated plates are prepared by spin-coating (3000 rpm, 30 s) a solution of 0.5 wt% PS in
chloroform (Sigma-Aldrich, >98%) on clean glass substrates. The plates are kept at 80 °C
for 30 min to evaporate the solvent. All cell preparation steps and observations are done
on the same day. The cells are photopatterned with I = 5.50 x 102 Wm™2 for 30 min.

The anchoring coefficient is measured for BY-PS cells with different b, Figure 3(a-c).
For a thin BY layer of 3.2 nm, W is weak ~0.2 X 107® Jm~2, Figure 3(c). Anchoring in-
creases sharply with b and reaches a maximum of 0.98 X 107¢ Jm~2 for b ranging from
5.5 nm to 8.2 nm, Figure 3(c). For layers with b = (12.5 — 37.3) nm, W sharply decreases
to around 1077 Jm™? and remains constant for thicker BY layers, Figure 3(c).

% 10 I = 550X 10%Jm~2
% } 1 o8 f 7 = 30 min
c}lE ® +] defect
= 0.6
I=550x102Jm=2 | L ? o -1 defect
7 = 30 min 04
=
i ® +] defect ] 0.2 2 i
LP) o -1 defect . .
0.0L. : . . .
20 40 60 80 0 20 40 60 80
b, nm b, nm

Figure 3. Effect of Brilliant Yellow coating thickness on photoalignment in BY-PS cells.
(a) Optical microscopy textures of photopatterned cells with different BY layer thick-
nesses, b. h = 2.2+ 0.2 um. Cells are photopatterned with I =5.50 X 10* Wm™2 and a
dose of 9.90 X 10°Jm™2, corresponding to an irradiation time 7 =30min. Cell
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preparation and observation steps are performed on the same day. (b) dz/ pand () W,
as functions of b. Each data point represents the average value obtained from 50 defects
of the same sign within the array, with the errors calculated as the standard deviation.

The weak W at the thinnest BY coatings (h = 3.2 nm) is most likely caused by the
surface roughness of the glass, ITO, and the coating itself. As clear from Fig.2b, the thick-
ness 3.2 nm is within the range of the measured variations of the coating’s surface, which
implies that in some places there might not be enough BY molecules. Another potential
reason for weak anchoring at thin coatings is a formation of hydrogen bonds between the
BY molecules and the hydrophilic UV/Os treated ITO surface. As noted by Wang et al.
[57], BY films of a thickness 3 nm on a hydrophilic substrate of polyvinyl alcohol (PVA)
demonstrated a low degree of orientational order as compared to thicker films. The effect
was attributed to the formation of hydrogen bonds between the BY molecules and the
hydroxide OH group of PVA which hinders the trans-cis isomerization of BY molecules
needed for light-induced alignment [57,65].

The weak W at thick BY layers is attributed to weaker light intensity received by BY
molecules at the interface with the LC, due to absorption by BY along the light path. The
light transmittance through BY layers of varying thicknesses is measured at wavelength
410 nm using a UV/VIS spectrometer Lambda 18 (Perkin Elmer). The data show 90% of
incident light is transmitted by the BY layers when b < 6 nm, but the transmission is re-
duced to 22% for b = 80.9 nm, Figure 4(b). As a result, the light intensity received by BY
molecules on the surface that will meet the LC is substantially reduced, Figure 4(a,b). As
the effective intensity decreases, the effective dose also decreases; both factors yield a
weaker W. Since BY layers with thicknesses less than 8 nm transmit over 85% of the inci-
dent light, and the thickness of 5- 8 nm results in stronger azimuthal anchoring, a 7.6 nm
thick BY coating layer (spin coated with a 0.5 wt% BY solution) is used for the rest of
experiments, presented in Figures 5,6,7. For a BY-BY cell, each with a 7.6 nm thick BY
layer, the substrate that is further from the light source receives 87% of the incident light
intensity during photoalignment. In such a cell, both BY surfaces that will later meet the
LC are aligned with the same light intensity, 87% of the incident light. As shown in Figure
3(c), this intensity is sufficient to achieve the strongest anchoring. Therefore, all subse-
quent experiments are performed using BY-BY cells assembled with two BY-coated glass

substrates.
b
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Figure 4. Transmittance measurements of different Brilliant Yellow layer thicknesses. 280
(a) Schematic illustration of BY-coated glass. Here, I; is the incident light intensity and 281
oyt is the intensity of light transmitted through BY layer. (b) Transmission as a function 282

of BY coating thickness. The wavelength of light is 410 nm. 283
284

3.2 Effect of light dose and intensity on photoalignment 285
286

The BY-BY cells are photopatterned with four different light irradiation doses. The 287
dose is defined as a product of irradiation time (7) and the light intensity I. 7 is changed 288
to vary the dose while I is kept constant. When studying the effect of I, the dose is kept 289
constant by varying 7. The cell preparation and characterization are completed withina 290
maximum of two consecutive days to minimize the effects of aging. 291

Increasing the dose from 1.65 x 10° Jm™2 to 9.90 X 10° Jm™? results in an increase 292
of W, Figure 5(a-d rows) and Figure 5(e); W saturates at doses higher than 293
4.6 x 10° Jm™2. This behavior is consistent with the previous study on the effect of pho- 294
topatterning time on W [40]. 295

Increasing I from 1.25 x 102 Wm™2 to 7.25 x 102 Wm™2 at a fixed dose increases 29
W and creates better alignment, Figure 5(i-v columns) and Figure 5(f). It is notable that 297
although dose and [ are interrelated, both must be set properly to achieve a high quality 298
patterning. For instance, photopatterning with a high dose of 9.90 x 10° Jm™2 and a low 299
I of 1.25x 102 Wm™? results in a poor alignment (Figure 5(d.i)), and aweak W = 0.36 + 300
0.02 X 107® Jm~2, Figure 5(e,f). However, a moderate dose of 2.25x 10°Jm™2 at [ > 301
5.50 x 102 Wm™2 results in a better alignment with W > 0.4 x 107¢ Jm~2. Using W val- 302
ues, one can establish criteria for setting irradiation conditions to achieve a good align- 303
ment. The results also show that W can be tuned by adjusting the dose and 1. 304

At a constant dose, photopatterning with high I for a short 7 is more efficient than 305
low intensity irradiation over a prolonged 7 (compare columnsiand v in Figure 5),Figure 306
5(f). This indicates that the total number of photons is not the single decisive factor 307
defining the anchoring strength. The intensity-dependent behavior of W suggests that 308
photoisomerization occurs as a collective process, where the isomerization of individual 309
BY molecules depends on the isomerization probability of neighboring molecules. 310
Schonhoff et al. [66] obeserved a similar dependency of molecular photoreorientation on 311
intensity for 4-(4'-N-octadecylamino)phenylazocyanobenzene (amino azobenzene) films 312
irradiated by polarized light with varying intensity but a constant dose and concluded 313
that photoreorientation is a pronounced collective effect. 314

315
316
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Figure 5. Effect of dose and light intensity on photoalignment in BY-BY cells. (a-d) Op- 319
tical microscopy textures of photopatterned cells at different irradiation doses and light 320
intensities. The images show a pair of +1/2 defects split from a photopatterned +1 defect. 321
h=13£03um and b = 7.6 nm. Cell preparation and characterization are performed 322
within two consecutive days. (e) Azimuthal surface anchoring coefficient, W, as a func- 323
tion of dose for various light intensities. (f) W as a function of I for different doses. Colors 324
indicate different intensities and doses in (e) and (f), respectively. Filled circles represent 325
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+1 defects, and open circles represent -1 defects. Each data point for W represents the
average value obtained from 50 defects in the array, with the errors calculated as the
standard deviation.

3.3 Effect of aging of non-irradiated BY coatings.

The glass substrates, which were spin-coated with BY and then baked, are stored in
a Humidity and Temperature-Controlled Cabinet (SIRUI HC series) for up to 310 days at
relative humidity (RH) 25-35%, and 23 °C. Then BY-BY cells are assembled using two
aged, non-irradiated BY-coated plates. After a predetermined aging time, the BY coatings
are photopatterned with an I of 5.50 X 102 Wm™2 for 30 min. The cells are filled with the
nematic material, sealed and analyzed under the optical microscope

Aging of the non-irradiated BY layer impacts photopatterning in two phases. For BY
layers irradiated within 15 days after the layers were spin-coated, dried and baked, W
remains constant at ~(0.88 + 0.01) x 107® Jm~?, Figure 6. This suggests that BY-coated
substrates can be safely stored at controlled humidity conditions (at RH 25-35%) for
around two weeks without a noticeable effect on their photopatterning quality. However,
for older BY layers, W decreases continuously with age and reduces to 0.08 x 1076 Jm™2
for substrates photopatterned 310 days after preparation, Figure 6. A possible reason
could be the water absorption by the BY layers during storage. As already noted, we con-
trol the RH of the environment at less than 20% during the spin coating and baking, but
during the storage, the RH is at higher levels 20-35%. Absorption of water during the pro-
longed storage can result in aggregation of BY molecules into J-structures, a process called
by Shi et al. [58] “hydrogen-bond-assisted self-assembly of BY molecules with water mol-
ecule insertion”. The molecules in J-aggregates are less likely to undergo an efficient trans-
to-cis isomerization. Accumulation of water at the substrate-BY interface with a suppres-
sion of isomerization through hydrogen bonds might also contribute to the effect of aging.
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Figure 6. Effect of non-irradiated BY-coated layer aging on photoalignment in BY-BY
cells. (a) dz/ - and (b) W, as a function of non-irradiated BY layer aging time. Each data
point represents the average value obtained from 50, +1 and 50, -1 defects within the array,
with the errors calculated as the standard deviation. h = 1.1 £ 0.2 um and b = 7.6 nm.
Cell assembly, photopatterning, and characterization are performed on the same day.
Cells are photopatterned with I = 5.50 x 102 Wm™2 and dose of 9.90 x 10° Jm™2.

3.4 Surface patterning stability of aged LC-filled cells.
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A photopatterned BY-BY cell is filled with CCN-47, and the edges of the cell are
sealed with epoxy glue after the filling. Photopatterning is performed with I =
5.50 x 102 Wm™2 for 30 min. The LC-filled BY-BY cell is maintained in an environment
with RH<50% at 45 °C for 72 days. While maintaining the temperature at 45 °C to stabilize
the nematic phase, optical textures of the cell are recorded over time as the cell ages.

The distance d remains ataround 10.4 + 0.3 um for 26 days, correspondingto W =
(0.82 £0.01) x 107° Jm™?, Figure 7(a,b). Maintaining the cell for a longer period (around
72 days) results in a slight decrease in W to 0.76 x 107¢ Jm~2, Figure 7(b). This result
suggests that filling the photopatterned cell with LC and sealing it helps to preserve the
quality of photopatterning. The observed decline could be due to the gradual dissolution
of LC into the BY coating [67,68] or the dissolving of epoxy glue into the LC over time [69].
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Figure 7. Surface patterning stability of aged LC-filled BY-BY cells. (a) d?/h, and (b) W,
as functions of the age of the LC filled cell. Each data point represents the average value
obtained from 50 defects of the same sign within the array, with the errors calculated as
the standard deviation. h = 1.5 £0.02 pum and b = 7.6 nm. The cell is photopatterned
with I =5.50 X 10* Wm™2 and a dose of 9.90 X 10° Jm™~2. Cell preparation steps are per-
formed on the same day and observation is done as the cell ages.

4. Conclusions

We have demonstrated how various photopatterning conditions, including the thick-
ness b of the azobenzene alignment layers the intensity I of the light used for photopat-
terning, the irradiation dose, and substrate aging, affect the anchoring strength of a pho-
topatterned nematic LC. Our results show that BY layers of thickness b =5-8 nm produce
the strongest anchoring coefficient W. Moreover, W increases with both irradiation dose
and I. Also, aging of non-irradiated substrates beyond 15 days significantly reduces W.
However, if the cell is filled with a LC immediately after photopatterning of the BY layer,
W remains constant for up to 4 weeks. This work provides practical strategies for enhanc-
ing the azimuthal strength of the photopatterned anchoring of nematics. The results offer
guidelines for optimizing BY photoalignment parameters and storage.

The method to measure the azimuthal anchoring coefficient described in this paper
is based on the properties of topological defects produced by photopatterning; it does not
require one to use a second plate, for example, a rubbed polyimide plate, with an anchor-
ing much stronger than the photoalignment anchoring [47,51,70]. It also does not require
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one to use any external fields [71-73] or to prepare wedge samples of varying thickness
[74-76]. Within a broader prospectus, our approach to measuring the azimuthal anchoring
coefficient can be extended to other photoalignment materials, such as SD-1 that does not
feature absorption peaks in the visible spectral range [49] and thus might be better suited
for applications that require a long-term stability.
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