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Abstract

We report a gravitational-wave parameter estimation algorithm, AMPLFI, based on likelihood-free
inference using normalizing flows. The focus of AMPLFT is to perform real-time parameter
estimation for candidates detected by machine-learning based compact binary coalescence search,
Aframe. We present details of our algorithm and optimizations done related to data-loading and
pre-processing on accelerated hardware. We train our model using binary black-hole (BBH)
simulations on real LIGO-Virgo detector noise. Our model has ~6 million trainable parameters
with training times <24 h. Based on online deployment on a mock data stream of LIGO-Virgo
data, Aframe + AMPLFT is able to pick up BBH candidates and infer parameters for real-time alerts
from data acquisition with a net latency of ~6 s.

1. Introduction

It has been almost a decade since the discovery of gravitational waves (GWs) from compact binary
mergers [1], with the last few years seeing a steady increase in the number of discovered GW events. While
the first observing run of the Laser Interferometer Gravitational-wave Observatory (LIGO) reported only
three events [1, 2]°, the number count stood at 90 within a span of five years [3]. Furthermore, the current
ongoing fourth observing run (O4) of ground-based observatories LIGO/Virgo/KAGRA (LVK) has already
reported more than one hundred events discovered online®. The trend is expected to continue with the
instrument getting closer to design sensitivity in fifth observing run’.

In parallel, the scope of multi-messenger astronomy (MMA) with GWs has seen a steady increase in
terms of effort and infrastructure being invested for the joint follow-up of GW signals with electromagnetic
(EM) and other high-energy astrophysical counterparts. The online alert infrastructure of the LVK currently
reports GW discoveries along with follow-up data products in ~30 s after merger time [4]. Early-warning
searches [5] that can potentially pick up low-mass BNS systems up to ~1 min before merger have been
deployed online [6]. The alert distribution mechanisms, like NASA GCN®, have seen upgrades [7], and new
alert brokers like SCIMMA® have become available for the community to use. Publicly available services like
TreasureMap [8] have seen a steady adoption from observatories to share observed and scheduled fields to

> GW151012, initially labeled as low-significance, was later confirmed as a third event in O1.
6 See https://gracedb.ligo.org/superevents/public/O4/ for the most updated list.

7 See https://observing.docs.ligo.org/plan/ for observing plans.

8 https://gcn.nasa.gov/.

9 https://scimma.org/.
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orchestrate observations. Tools like SkyPortal [9] and TOM-Toolkit [10] have been developed to aid
target-of-opportunity followup.

All this development comes at a time when the number of GW discoveries have significantly increased
corresponding to the improvement in sensitivity of Advanced LIGO [11, 12], Advanced Virgo [13], and
KAGRA [14] instruments, and the sensitivity of time-domain telescope facilities allow for unprecedented
discovery rates. However, identifying GW counterparts jointly have been extremely challenging. The
discovery of GWs and multi-wavelength EM emission from the merger of the binary neutron star (BNS),
GW170817, [15, 16] remains the first and only success story, albeit a rarity, with most subsequent candidates
likely to be at much farther distances [17].

One primary step toward improving follow-up campaigns is the availability of fast, real-time Bayesian
parameter estimation (PE) of compact binary coalescence (CBCs) to provide accurate data products for GW
follow-up. The computationally expensive part of stochastic sampling techniques, like nested sampling
currently in use, involve the repeated computation of the likelihood. Techniques like reduced-order-
quadrature (ROQ) [18, 19] and focused-ROQ [20] have been developed in view of making real-time PE as
fast as possible. This is currently used in LVK to deliver update alerts from Bayesian parameter estimation on
the timescale of several minutes to hours. Other techniques like the use of accelerated hardware for stochastic
sampling has been reported in [21, 22], and mesh-free approximation for sky-localization, reported in [23,
24].

More recently, likelihood-free inference (LFI) using variational methods, have emerged as a different
paradigm with flexible neural network approximators being used to learn the posterior or the likelihood.
Their use has been demonstrated on GW data [25, 26], in particular with posterior estimation using
normalizing flows [27], such as in the DINGO algorithm. However, in order to relay discovery alerts for
prompt followup, the combination of search and inference needs to be considered together'’. Also
considering a live, real-time system design, several overhead costs like data transfer, file input/output
operations, communicating data to a remote server, and so on are often overlooked in isolated analyses, but
show up in the overall time-to-alert. It is also worth highlighting that traditionally in GW data analysis, the
search and PE components have been treated separately—match-filtering searches pick up the candidates
from the data stream using suitable detection statistic, and also provide important context like the best
matching template and the signal-to-noise ratio (SNR) time series, which is then used to compute
sky-localization maps [29] and EM-bright source properties [30] that are sent out in the sub-minute alerts
by the LVK [4]. The results are then updated based on Bayesian PE results, in few hours timescale.

Although machine-learning techniques like LFI bring promise, large model size and/or long training
times can be a barrier for operations. Also, given the slowly changing background over the course of days to
weeks, the algorithm should be re-trainable from a previous model state, preferably without investing on
expensive and dedicated online hardware for this purpose. This is currently lacking for online models like
DINGO, which report 10-day training time on a NVIDIA A100 GPU [27].

In this work, we try to address the points highlighted above in the context of fast online search and
parameter estimation for MMA with GWs. We report AMPLFI'', a PE algorithm based on LFI using
normalizing flows. Though it can be run standalone, the primary focus of AMPLFT is to run alongside
neural-network based CBC search Aframe [31], and compute GW alert data products like skymaps and
other use source-properties to be sent out with LVK discovery alerts. Though the core principles of LFI and
its application are similar to efforts mentioned above, the technical implementation is independent and
focused toward online inference. In particular, there are several elements of GW data analysis that are
re-implemented as a part of m14gw (codebase: https://github.com/ML4GW/ml4gw), designed for running
on accelerated hardware like GPUs for fast and efficient training and inference. Some common set of tools
from m14gw are used by both Aframe (codebase: https://github.com/ML4GW/aframev2/) and AMPLFI
(codebase: https://github.com/ML4GW/amplfi), the latter being the focus of this work.

We outline the rest of the paper as follows. In section 2, we motivate our design principles toward
running search and PE together. In section 3, we mention optimizations related to data pre-processing and
implementing simulations on accelerated hardware which ensure that most of the computation is occurring
on the GPU. In section 4, we present the details of a data embedding network which is used to summarize the
data. This embedding is pre-trained using a self-supervised method to create data summary, marginalizing
parameters like time of arrival that are reported by the search. In section 5, we give the details of our
normalizing flow implementation. We present results and benchmarks in section 6, before concluding in
section 7.

10 This is done in case of stochastic signals offline, for example, see [28].

11 Accelerated Multimessenger Parameter estimation using LFT; pronounced ‘amp-li-fy
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2. Aframe + AMPLFI

In order to build as fast of a system as we can, we have made a number of design choices when building the
Aframe + AMPLFI framework that we highlight below:

e A modular design to perform search and PE. The search for GW signals in this case is done by Aframe.
Candidates from Aframe provide an estimate of the time of arrival and the significance via a false-alarm-
rate. This is unlike traditional match-filtering searches that provide, in addition, the best matching template,
and the corresponding SNR time series that is used by other annotation algorithms to provide skymaps [29]
and source properties [30] of binary systems. In the proposed framework, once a segment of data is found
to be of high-significance i.e. containing a GW signal, the parameters are inferred using AMPLFI. Hence,
Bayesian parameter estimation results are available along with the discovery of the candidate.

e Data is held in GPU memory to minimize overheads in communication between different components in
the low-latency alert infrastructure [4]. For example, Af rame runs as a service, maintaining a buffer'? of the
data in GPU memory. Once a trigger occurs, the relevant segment is passed to AMPLFT for inference. Based
on model size of Aframe and AMPLFI, both are able to be served on a single GPU like NVIDIA A30. This
reduces any inference overheads as the data is kept on the same device. However, the models may be served
as separate micro-services in case the model size or running on a single GPU turns out to be a barrier.

o The accuracy of the results are suited for ‘online’ purposes i.e. suitable for follow-up efforts, but not neces-
sarily the most refined. The aim is to provide data products like skymaps and source properties for real
time discovery alerts. Therefore, we restrict ourselves to GW waveform models that capture the inspiral-
merger-ringdown phases, but do not focus on physics of higher-modes, spin precession etc and prioritize
fast inference for data products required for follow-up.

For AMPLFI we use a normalizing flow to learn the posterior distribution directly using simulations of
binary black hole signals (BBHs). We also make some optimizations compared to previous efforts in light of
an online inference algorithm:

o We use real detector data from the LIGO GW instruments during training. Most previous efforts in LFI use
simulated, colored Gaussian noise (see, for example, [27, 32]).

e We use efficient data loading and whitening tools to minimize the data transfers back and forth between
CPU and GPUs (or other accelerators). We elaborate this below in section 3.

o We re-implement CBC waveform generation on the GPU memory to directly generate waveforms on-the-fly
during training.

3. Simulations on Accelerated Hardware

3.1. Waveform model
We use the IMRPhenomD phenomenological waveform model for our simulations [33]. This waveform model
contains the full inspiral-merger-ringdown physics, starting with the inspiral phase up to 3.5 post-newtonian
order in GW phase (known as TaylorF2; see [34] for a review), and using an ansatz for the merger and
ringdown, fitting them to numerical relativity results. One limitation of this waveform model is the
restriction to aligned spins i.e. BH spin components perpendicular to the orbital plane and therefore no
precession. Current online PE using stochastic sampling techniques use the IMRPhenomPv2 waveform
approximant, which contains precessing effects. Furthermore, high mass BBH systems use the
IMRPhenomXPHM approximant, which also includes higher modes of radiation. However, we note that
inference like sky-localization is insensitive to such effects. Also EM-brightness of a binary depends primarily
on the aligned spin components aside from the mass ratio. Hence, the use of aligned-spin is justified for
online purposes. In the future, however, we plan to implement and integrate the IMRPhenomPv2 waveform
model with our workflow.

In figure 1, we show the time-domain strain of a representative BBH system based on our
IMRPhenomD implementation and compare it with that implemented in 1alsimulation. The latter is a
part of the LIGO Algorithm Library [35], and provides the core components of GW data analysis with LVK
data. We find consistency between our implementation and that in lalsimulation, with the residual
errors below the signal by three orders of magnitude through most of the evolution. Such residuals are
unlikely to impact the results since the statistical errors of posterior is greater than systematic error due to

12 A snapshotter that only sends new data segments into GPU memory.
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Figure 1. A comparison of time-domain IMRPhenomD between that implemented in this study, as a part of the m14gw library. The
parameters of the waveform is M = 26 M ,q = 1.0, Dy = 1000 Mpc, x1,2 = 0.0. We find that while there are differences in the
waveform strain, the residuals are below three orders of magnitude compared to the signal for most of the evolution, except the
final few cycles where it is two orders of magnitude lower.

such differences. We present some comparison results in section 6. Though we show comparison with a
single representative system in figure 1, several other combination of parameters are tested for consistency
with lalsimulation as a part of unit-tests of the m14gw codebase. '’

3.2. Data generation on the GPU

Generally, neural-network models are trained using batches (also called mini-batches) of data that is
pre-processed on the CPU and then transferred to the GPU (or other co-processor) to carry out the
forward/backward passes, and updating the model weights. However, this may leave the GPU under utilized
if the pre-processing and data transfer between the CPU/GPU takes greater time compared to the operations
to train the model. This is especially important in the context of LFI since efficient training relies on
providing unique combinations of parameters and data to approximate the distribution. We therefore take a
different approach by performing the data generation on the GPU, which allows generation of batches of
data directly on the device, which is faster and avoids the data transfer overheads. Additionally, all data
pre-processing, like fourier transforms, power spectra estimation, data whitening, are carried out on the
GPU. This ensures consistent high GPU utilization. Also, we can take advantage of the fact that GPU
architecture today provide large memory to generate large batches of data. Our workflow involves:

e Transferring a chunk of two detector (Hanford and Livingston, subsequently HL) time-domain strain data,
typically quarter of a day, sampled at 2048 Hz to the GPU before commencing training. The power spectra
is fit to this background chunk. During training, N small background chunks, each of 4 s duration, are lazily
loaded from the total training chunk, where N is the training batch size.

e We generate N points from our parameter prior and generate the IMRPhenomD waveforms directly on the
GPU, as mentioned in section 3.1. This step is fast, for example, generating N = 1000 waveforms ~0.15 s
on a NVIDIA A40 GPU.

e We then inject the signals into the background chunks, obtaining the data batch. We whiten the batch using
the estimated power spectra and pass it along with the parameters for training/validation/testing. Examples
of the whitened data with the injected waveform overlayed is shown in the panels of figure 2.

13 found at https://github.com/ML4GW/ml4gw/blob/v0.5.0/tests/waveforms/test_cbc_waveforms.py.
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Figure 2. The figure shows the whitened time-domain background strain from Hanford and Livingston (HL) in two different
colors. This is a stretch of data from May 2019 (early O3). A simulated BBH waveform, h(t), is injected, shown by the dashed
curve. The left y-axis denotes the range of the whitened data after injection, while the right y-axis denotes the waveform strain
h(1). In the bottom panel, we see the same background strain with a time-shifted waveform injected, the parameters of which are
otherwise the same as the top panel. The time shift is random up to 1 s compared to the top panel, indicated by the shading. We
summarize our data views like d and d’, and embed them jointly. Subsequently, for LFI, we only use d’-like views.

We call this implementation InMemoryDataset in m14gw. We also note that though we have used GPUs as
the co-processors in this work, our software framework can also be ported to other accelerators, like TPUs or
HPUgs, supported by the pytorch-lightning [36] framework that we use.

4. Embedding Network

The input to the neural network model is a 2-channel Hanford-Livingston (HL) 4 s whitened time-domain
strain. This is projected into a lower-dimensional representation using a embedding network before
performing LFI. The coherent analysis of both channels of data is important for some aspects of GW
parameter estimation, like sky-localization since it depends on the difference in time of arrival in the
different instruments. Our embedding network follows the ResNet architecture used in Aframe. The
implementation closely resembles that of the torchvision library, with some differences.

Firstly, 1-D convolutions are used for time-series, instead of 2D variants used for images. We use group
normalization [37] instead of batch-normalization. In Aframe, the architecture closely resembles a 34-layer
residual network [38]. We, however, avoid the final 512-channel stack of convolution blocks (see figure 3 in
[38]) since we do not find performance improvement after including the same. Thus our layer stacks contain
blocks of 64, 128, and 256-channel residual convolution blocks. The number of convolution layers in each
block is determined by hyper-parameter optimization (HPO) using Variance-Invariance-Covariance
Regularization (VICReg) [39] loss, detailed below in section 4.1. Details about the HPO are presented in
appendix A. The best configuration resembles an analogous 24-layer ResNet. A final fully-connected layer
projects to a representation dimension, D,, also determined as a part of the HPO.

4.1. Self-supervised learning of nuisance parameters

We pre-train the embedding network to marginalize over uncertainties in arrival time up to 1 s. This is done
since the peak of the detection statistic reported by Aframe may differ from the true arrival time up to tens of
milliseconds. We choose 1 s as a conservative upper bound for the same. The pre-training is done via
self-supervised learning (SSL) by identifying two ‘views’ of the data as being the similar, and training the
embedding network to minimize VICReg. Examples of two different views, d and d’, are shown in figure 2,
where the upper panel shows a signal that is injected at a fixed reference time, while the lower panel shows a
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time-shifted signal i.e. all signal parameters being the same except the time of arrival, which is chosen
randomly up to 1 s in this case. We should emphasize that the views shown in figure 2 do not affect the
relative times of arrival between the detectors which is crucial for sky-localization, but instead are a shift in
the geo-center time of arrival by up to 1 s. Two batches of views are then forward-modeled through the
embedding network and projected down to the resulting space. This projection, T, is performed in two
different steps. First, the ResNet f, mentioned above, projects the inputs in to v € RP~. Following this,
another fully-connected expander network, A, takes v to a (N x D.,)-dimensional space x € RN*Dv The
resulting composition is given by I' = h o f,

y=fd); v =f(d); x=h(v); ' =h(v'). (1)

We follow the prescription mentioned in [39] and compute the Lyicpeg loss in the expanded dimension as,

Lyicreg (x,x") = Ay MSE (x,x") + A2 {\/Var (x) + e+ /Var (x') + e}
+ A5 [C(x)+C(x")]. (2)

Here, MSE is the mean-squared error between the two projected views. The second term involves the
variances of the individual batches, regularized by a tolerance to prevent collapsing to zero. Finally, the third
term is the quadrature sum of the off-diagonal entries in the individual covariance matrices of the views. The
A1 2,3 are relative weights of each term, which is also tuned as a part of HPO. We would like to note that the
expander network, A, is only required for this pre-training step, and is not required for the subsequent
posterior estimation step.

Previous work using LFI reported other techniques, like group equivariance, to tackle such
symmetries [40]. We, however, take a different approach since parameters like time of coalescence as reported
by the search, despite having some uncertainty associated, is sufficient for follow-up. Hence, we marginalize
over it and perform inference on parameters like masses and sky location which are also needed for
follow-up. For more details on this technique, the reader is referred to [41]. This technique can be extended
to other nuisance parameters in case of GWs, for example the coalescence phase. This is left to future work.

5. Posterior Estimation

Posterior estimation in LFI involves learning the posterior, p(®|d), using an approximator, q,,(®|d), using
simulations {©;,d,}. The parameters  are adjusted to maximize the likelihood of the simulations, which is
mathematically equivalent to minimizing the Kullback-Leibler (KL) divergence between the true posterior
and the approximator. The loss function used is,

1
N, sims.

~InL(p) = - Y lng, (©]d), (3)

i Esims.

where the simulations are forward modeled to calculate their likelihood, which is then maximized during
training. The density evaluations are done by learning a set of variable transforms that take the original
variables © to variables of a simpler base distribution, like a standard normal, which we use here. Several
techniques are used to build flexible transforms and preserve the probability density at each stage. We refer
the reader to a review article on normalizing flows and the different implementations [42]. In our case the
parameter space is 8-dimensional,

®:{M7q7DL79]N7a757¢571/}}' (4)

Here, M = (m;m;)>/® /(m; 4 m,)'/? is the chirp mass of the binary, g = m,/m, is the mass ratio of the
binary defined to be less than unity, Dy is the luminosity distance of the source, )y is the inclination of the
orbit w.r.t. the line-of-sight, o and ¢ are right ascension (RA) and declination respectively, ¢, is the
coalescence phase, and 9 is the polarization angle. The prior distribution used for generating the simulations
is mentioned in table 1. Note that the time of coalescence is not a part of parameter set since it is
marginalized over. Although the IMRPhenomD supports BH spins, we have ignored it for the current work.
This will be relaxed in subsequent versions of the code and reported in a future work. The data, d, consists of
4 s of whitened time-domain strain sampled at 2048 Hz containing a BBH signal, as illustrated in figure 2.
When training the normalizing flow, we condition the parameters on the data representation, -, as shown
equation (1). This uses only the ResNet, f. The expander, h, is not required subsequently. Also, we leave the

6
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Table 1. Prior distributions of parameters. Note that the distance prior is a power-law with index 2 i.e. uniform in volume; cosmological
effects are not included.

Parameter Prior

M (Chirp mass) Uniform(10, 100) M,

q (Mass ratio) Uniform(0.125, 1)

Dy, (Lumin. dist.) Uniform in Vol.(100, 3000) Mpc (~Dr?)
On (Inclination) Sine(0, )

a (RA) Uniform(0, 27)

6 (Dec.) Cosine(—m /2, w/2)

¢¢ (Coal. phase) Uniform(0, 27)

1 (Pol. angle) Uniform(0, )

weights of f to change further as a part of training the normalizing flow. Hence, our normalizing flow
maximizes,

“IL(p) =~ 3 Ing, (O;1f(d). 5)

sims. i E€sims.

where the difference between equation (3) vs. equation (5) is the conditioning on the data summary (see
equation (1)), pre-trained to marginalize time of arrival. It should be mentioned that the pre-training step
with VICReg loss is significantly cheaper compared to training the normalizing flow. In our experiments, we
found the pre-training requiring few-tens of epochs of training, which took less than an hour to reach
early-stopping condition on a NVIDIA A40 GPU.

5.1. Autoregressive Flows for LFI

Our normalizing flow implementation uses inverse auto-regressive transforms [43]. This kind of
auto-regressive transforms can be sampled in one forward pass. However, evaluating the density requires
D-forward passes, where D is the dimensionality of the parameter space i.e. D = 8 from equation (4). Masked
auto-regressive transforms [44] on the other hand use similar masked linear layers [45], but on the contrary
the density evaluation takes a single forward pass and sampling is D-times as expensive. Although
auto-regressive flows are universal approximators [42], our choice of using inverse auto-regressive flow (IAF)
is because our inference requires fast sampling, which is achieved in a single pass with the IAE. In addition to
IAF, coupling transforms were also considered. However, in our experiments, we found such transforms to
perform less optimally when constrained to the same number of trainable parameters.

Our transforms are implemented using the open source library pyro [46]. The complete transform is
composed of 60 individual affine-autoregressive transforms. Each transform has 6 masked linear layers; each
layer having 100 hidden units. More complex transform functions like monotonic splines and neural-
network with positive weight exist in the literature. However, we use the affine transforms for simplicity and
lower number of trainable parameters. We train the network with a batch size of 800, with 200 batches per
epoch using the AdamW optimizer [47] with initial learning rate of 1 x 10~% and weight decay of 2 x 107>,
The learning rate is scheduled to reduce by a factor of 10 upon plateauing of the validation loss with a
patience of 10 epochs. These configurations are decided after hyper-parameter tuning over a combination of
several hundred parameter combinations detailed in B. Our trainer is scheduled to terminate training once
the validation loss saturates with a patience of 50 epochs. In terms of training time, we find training 2200
epochs with the above configuration takes ~20 — 24 h depending on a single 40GB NVIDIA A40/40GB
NVIDIA A100 GPU. We note that because our dataset is generated on-the-fly, distributed training does not
provide any benefit across multiple devices in terms of training time, however, the training sees more data by
a factor of the number of devices used. We, however, did not find significant differences in model
performance by training across one vs. multiple devices. In terms of number of trainable parameters, the
embedding network contains ~2.6 million parameters, while the auto-regressive transforms contain ~3.2
million parameters, totaling to ~6 million parameters. We would like to note that with on-the-fly data
generation on the GPU, a typical training run sees 22200 epochs X200 batches per epoch
% 800 batchsize ~32 million unique simulations. This implies that unlike most ‘large’ neural-networks in the
literature today, our network is not over-specified in the sense that training data samples exceed the number
of trainable parameters by about a factor of five.

In terms of inference, average sampling time for drawing 20 000 posterior samples, conditioned on new
data, takes ~0.05 s on NVIDIA A40 GPU. The same on a Intel Core i7 with 16 cores, takes ~1 — 2 s.
However, it should be noted to create a sky-localization map in the HEALPix format [48], used in the GW
data analysis, the density needs to be evaluated across all pixel coordinates. We find the average time to
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Figure 3. Example posterior for a signal with parameters { M = 45M¢,q = 0.7,D;, = 1000 Mpc, fjx = 30 deg., e = 1 rad.,

& = O rad.} injected in 20 different background instances, sampled using AMPLF1I is shown in sky blue . All posteriors are
consistent with one another. Posteriors from the same signal injected in 5 different background instances (same background
stretch as the AMPLFI injections) and analyzed via nested sampling with Bilby, is overlayed in varying Orange-red colors. The
values mentioned above each marginal distribution correspond to the AMPLFI median with the 5th and 95th percentiles. We pick
one out of the 20 cases for the values mentioned since there is overall agreement amongst them. We find that parameters like M
and g are consistent in terms of detection uncertainties across different runs. Extrinsic parameters, especially the sky-location,
though consistent with the true parameters, shows larger uncertainty with AMPLFI.

drawn 20 K samples, and then evaluate the density across all pixels on the sky for a HEALPix resolution of
NSIDE = 32 is ~0.6 s. This is due to the choice of the inverse auto-regressive flow, sampling is possible via
one forward pass, but evaluating the density is done sequentially across each component. Doubling the
resolution, i.e. using NSIDE = 64 takes ~1.2 s and NSIDE = 128 takes ~2.4s.

6. Results and Performance

We show example posteriors in figures 3—5 from representative higher and lower mass BBH source under
different conditions. In all cases, the signal injection is performed in a background different from that used
during training. The same signal is injected 20 times at different background segments and samples are
drawn. The posteriors are shown in the blue colormap. We also perform inference on the same system via
nested sampling using Bilby [49, 50] and Dynesty [51] with 1500 live points and identical priors as when
training AMPLFI, repeating 5-times on different background segments. This is shown in the red colormap.
We see that there is consistency amongst the AMPLFI posteriors i.e. distributions in blue colormap fall on top
of each other. For higher masses, like the M = 45 M, shown in figure 3, we find the recovery accuracy of
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Figure 4. Example posterior for a signal with parameters { M = 15M¢,q = 0.9, D;, = 1000 Mpc, O)x = 30 deg., e = 1 rad.,
& = O rad.} injected in 20 different background instances, sampled using AMPLF1I is shown in sky blue. All posteriors are
consistent with one another. Posteriors from the same signal injected in 5 different background instances (same background
stretch as the AMPLFI injections) and analyzed via nested sampling with Bilby, is overlayed in varied Orange-red colors. The
values mentioned above each marginal distribution correspond to the AMPLFI median value with the 5th and 95th percentiles.
We pick one out of the 20 cases since there is overall agreement amongst them. We find that parameters like M and g are
consistent in terms of detection uncertainties across different runs. Extrinsic parameters, especially the sky-location, though
consistent with the true parameters, shows larger uncertainty with AMPLFI.

the chirp mass to be comparable to nested sampling. Also, considering all nested sampling runs, the
mass-ratio accuracy from AMPLFI is comparable. However, extrinsic parameters like the inclination, or the
sky location are not recovered with the same accuracy as nested sampling, although broad features like the
‘ring’ pattern in the skymap are evident. The same is also true for the inclination posterior, where the
inference is degenerate between the true inclination angle, and its supplementary angle. In case of the nested
sampling runs, though this degeneracy is broken, the inference does not always select the right ‘peak’ for the
inclination which can be expected for two-detection observations (see section IV of [52], or [53]). Thus,
overall, we find consistency of the AMPLFT results with the true parameters of the injection and with nested
sampling results, though not as accurate for some parameters.

We find that the inference for lower mass, M = 15 M BBH system, shown in figure 4, is worse
compared to higher mass. For example, in figure 4, we see that the M posteriors recovered by AMPLFT is
broader compared to that recovered from nested sampling. The extrinsic parameter recovery follows similar
pattern as the high-mass example. Though broad features of the sky location like the ‘ring’ pattern for two
detector is evident, the recovery is not at the level of nested sampling results. The greater consistency of the
intrinsic parameters compared to the extrinsic parameters suggests one potential avenue of improvement
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Figure 5. Example posterior for a signal with parameters { M = 15M¢,q = 0.9, D, = 400 Mpc, O)x = 30 deg., v = 1 rad.,

6 = O rad.} injected in 20 different background instances, sampled using AMPLF1I is shown in sky blue. All other parameters are
kept the same as in figure 4. The choice of D, = 400 Mpc ensures that the optimal SNR of this source is similar to that used for
figure 3. The analysis with nested sampling in 5 different background instances is performed as in the previous cases and is
overlayed in varied Orange-red colors. We find that parameters though the parameter recovery is consistent, the width of M and
q do not change significantly compared to figure 4. However, the Dy, posterior is more constrained, and closer to the nested
sampling posterior.

being to further augment our dataloader in the extrinsic parameters («, d, ) which is used to project the
signal onto the GW antennae. Signal projection as implemented in m14gw performs this operation on-the-fly
on the GPU, hence oversampling the corresponding priors and creating a larger batch is feasible without
compromising data generation time, and will be considered in a future implementation.

We also compare the two representative systems at similar SNR in figure 5, where the M = 15 Mg
system is simulated at Dy, = 400 Mpc keeping other injection parameters the same as for figure 4. We repeat
the analysis done in figures 3 and 4. We find that the widths of the M and g posteriors do not change
significantly when compared to the D;, = 1000 Mpc injections. This is contrary to the general expectation
that the posterior widths scale as 1/SNR. However, we find that inference on Dy, does show that behavior and
is more consistent with nested sampling runs. Overall we find consistency among the different AMPLFI draws
suggesting the algorithms’ sanity on small changes to background.

In figure 6, we show parameter recovery consistency with true values via a percentile-percentile (PP) plot
for 500 simulated BBHs. The parameters of these are sampled from the same prior as that used during
training. Like the previous examples above, for these injections, the background is different from the training
background. The diagonal trend of the plot shows that there is no bias in the inference with AMPLFI across
the parameter space i.e. 10% of the testing data are in 10% credible level, 20% of the testing data in 20%
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Figure 6. Left: Percentile-percentile (PP) plot showing recovery accuracy for 500 BBH injections performed in a testing
background, different from training background. The different lines track the cumulative fraction of events within a
corresponding confidence interval for the parameters mentioned in equation (4). The shaded bands represent the 1, 2, 3-0
confidence bands, in decreasing opacity, with respect to a uniform distribution. The mentioned p-values are from a KS test done
with respect to a uniform distribution. Right: Sampling times for AMPLFI vs. nested sampling runs done on injections using
Bilby, with identical waveform model and prior settings. The nested sampling runs were done with a CPU pool size of 24, and
correspond to the runs using in figure 4. The standard GW likelihood model is used. The AMPLFI sampling times correspond to
the 500 injections used for the P-P plot on the left.
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Figure 7. Searched area for a representative system with M = 45M and M = 15M at Dy, = 1 Gpc done across the sky. We
note that, as expected, larger chirp mass give better searched area as a result of being louder signals. However, the median searched
area is O (1000)deg?.

credible level and so on. The shaded regions in the figure represent 1,2,3-¢ confidence bands with respect to
a uniform distribution. The numbers within parenthesis are p-values from KS test done with respect to a
uniform distribution. In figure 7, we show the searched area distributions for the two representative higher
mass BBH and lower mass BBH placed at a fiducial distance of Dy, = 1000 Mpc. The searched area measures
the number of pixels between the peak of skymap posterior and the pixel containing the injection in a
HEALPix map, when ranked according to the probability density in each pixel. We see the expected trend of
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getting a better search area statistic for higher mass system compared to a lower mass system due to their
larger amplitude. However, the searched area is several O(1000) degrees for the two detector model because
of the larger error-bars on the sky coordinates mentioned above.

6.1. Comparison with BAYESTAR skymaps

In this section, we run our model on several O3 events using the data from the Gravitational Wave Open
Science Center (GWOSG; see https://gwosc.org/) and compare the sky-localization with the corresponding
rapid localization method, BAYESTAR [29]. Since our model is trained on only 2-detector (HL) data, we
re-run BAYESTAR on the events using only HL SNR timeseries for this comparison. We show the skymap,
along with the 90% localization area, for several O3 events that were detected online in figure 8. The left
(right) panel shows the reconstruction using AMPLFI (BAYESTAR). The choice of the selected events is that
their event parameters, as published in GWTC-3, lie within the prior range used by us during training, and
the events are spread over the most of O3 from May 2019 to March 2020 (the event identifiers carry the date
of discovery). While our training background is a half-day chunk at the start of O3, we test on events which
had been detected over the duration of the entire run. This is done to obtain a qualitative assessment of the
impact of changing background i.e. if the model performance greatly degrades when supplied with data
several months away from the training background. We find that there is broad similarity in the skymaps
between AMPLFI and BAYESTAR. There is no trend in terms of the skymaps being more/less constrained.
However, given that the events used for figure 8 range from May 2019 to March 2020, (recall that training
background is limited to half a day in May 2019), we conclude that the model validity is maintained for
different background up to several months. This does not imply that the model once trained, may be optimal
for the entire run. In fact, one of the requirements for AMPLFT is the ability for periodic re-training; however,
we anticipate that such re-training may converge quickly given the preliminary observations mentioned here.
The suitable re-training cadence is yet to be determined and will be reported in the future, however, we
report a preliminary case in the section below.

6.2. Performance on O1 background and GW150914

In this section, we further test the performance of our algorithm on background from the first observing run,
O1. We re-train a model using the same architecture and training strategies as in the previous sections except
using a 4096-second stretch of background data from September 12, 2015 available in GWOSC. In left panels
of figure 9 we show the posterior distributions of { M, g, Dy, } and the sky-localization when 4-second data
around the coalescence of GW150914 [1] is inferred using our model. The solid curve in the corner plot
shows the results as reported in GWOSC. The colormap in the mollweide plot shows the sky-localization
reported by BAYESTAR for GW150914; the dashed curves in the same plot are the 90% contours from our
algorithm. We also 9itter’ the data by a small amount and perform inference, represented by the different
colored curves in both the corner plot and the mollweide projection. Specifically, the data used for inference
is between [ty — 3 s, ) + 1 s] with the reported coalescence time of GW150914 being f, = 1126259462.4. We
consider a few representative jitters of o shown in the figure legend, within the 1 s time-shifts used for
pre-training the embedding network. This is done to emulate the scenario where the uncertainty in time of
coalescence reported by the search does not affect the inference strongly. In particular, for Aframe the
uncertainty can be upto several tens of milli-seconds, but well within 1-second, which motivates our choice
here. We find that all the dotted curves are generally consistent with each other, showing that the data
representation is agnostic to small shifts as desired.

For the right panels of figure 9, we consider a background segment from 15 September 2015 and re-train
the model starting with the model checkpoint from the above model, we use the identical training
configuration except starting with initial learning rate lower by a factor of 10. While the original model
early-stopped in 2200 epochs, the latter model achieves the lowest validation loss in in ~40 epochs. We do
the inference of GW150914 data in the same way as in the previous case, and find the result mostly consistent,
with the sky localization showing some differences but broadly consistent between the two models. We did
not use the data from 14 September 2015, since the duration of two-detector data in science mode was
minimal due to the poor duty cycle of L1 detector (see analysis ready segments available in GWOSC).

7. Conclusion and Future Work

In this work, we presented a GW parameter estimation algorithm, AMPLFI, using likelihood-free inference.
This work is one of the efforts to integrate Al algorithms in GW data analysis using tools build as a part of
ml4gw—Ilike data cleaning using DeepClean [54], search of CBCs using Aframe [31], anomaly detection
algorithm GWAK [55]. The use case of AMPLFT is to run alongside recently reported neural-network based
CBC search, Aframe. The intended design is for both Aframe + AMPLFT to run online, preferably on the
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Figure 8. Left: AMPLFI skymaps Right Bayestar maps from events, using HL data, spanning different months of the third
observing run, O3. We find that the skymaps are broadly consistent, although there is no clear trend of one being more
constraining. However, it demonstrates model validity to differing backgrounds up to several months from that used in training.

same hardware to minimize any communication overhead and reduce the time-to-alert. While to date we
have focused on this integration of neural-networks in order to achieve very low-latency outputs, there is no
reason in principle that AMPLFI could not also be paired with any other search pipeline that provides an
estimated time of arrival. An important future product of this research will be a standalone version of the
software that can be run simply with the provision of trigger time, enabling easy adoption for searches that
want to use it. Current real-time GW alert data products include sky-localization and EM-bright source
properties apart from the significance, and a derived data-product, P-astro, based on rate of foreground and
background triggers. We have not discussed the EM Bright source properties in this work since the analysis,
so far, is limited to BBH signal which are expected to be EM-dark. However, the availability of the posterior
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Figure 8. (Continued.)

samples in real-time allows for their straightforward computation by binning the posterior samples, or
marginalizing them over several equations of state (see section C.2 of [4]).

As a part of routine end-to-end testing, the LVK has set up a streaming mock data challenge (MDC) with
injections over a 40-days chunk of O3 background. This was used to profile latencies in several components
in the alert infrastructure, reported in [4]. Preliminary work has been done toward the online deployment of
Aframe + AMPLFT to analyze this MDC. Based on preliminary testing, we find the net latency of data
acquisition by Aframe, evaluating significance, passing data to AMPLFI, followed by generating posteriors
and skymaps takes ~6 s. At the time of writing, candidates are reported to a test instance of GraceDB, the
candidate database used by the LVK, however, the view for the same is not public. As a follow-up to the
methods reported here, the performance of Aframe + AMPLFI will be reported on the MDC constructed in
[4] in a future work. The MDC dataset contains O(1000) BBHs, for which several match-filtering searches
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Figure 9. Left panels: The posteriors for {M, ¢, D1} and sky-localization of GW15019 using an AMPLFI model trained on O1
background. The different colors represents jitter’ in the data segments chosen for inference around the to = 1126259462.4 for
GW150914. The solid black curve corresponds to the posteriors reported in GWOSC. We find that the results are consistent
although with wider confidence intervals, a trend reported in figures 3—5. The consistency of the distributions from AMPLFI
shows the invariance to small time shifts. Right panels: Same as left, except with a model which is retrained with background data
from September 15, 2015 starting with the model state from the left panel after training. We find that the results generally agree
with the former and that from GWOSC. Some differences in the sky-localization is observed, although the general trend of ‘ring’
pattern is maintained.

and annotation pipelines including BAYESTAR was run. In the future we plan to conduct a systematic
comparison with BAYESTAR on the simulated BBHs in the MDC, along with comparison with online PE
results reported in [4].

Certain aspects of the model requires improvements, for example, the inference on the extrinsic
parameters like sky location, and the extension to use spinning waveforms. This will be considered in a future
work. Also, we note that the focus has been on BBHs due to their shorter signal duration. However, the main
focus of MMA is BNS and neutron star black hole systems for which the signal duration can be O(min)
depending on the starting frequency. This makes the input arrays larger by an order of magnitude compared
to the ones considered here, and therefore expensive in terms of memory and compute. However, low mass
systems inspiral for most of that duration and the frequency evolution is described analytically, primarily at
newtonian order. Thus, feature extraction of the inspiral from the time-series data, or alternative data
representations like g-transforms can be a possible approach toward search and parameter estimation.

Finally, the framework for AMPLFT is not limited to CBC signals, and can be extended to burst signal
morphologies like sine-Gaussians. This is relevant for running parameter estimation on candidates picked up
by pipelines like GWAK that look for unmodeled events [55]. In this case, a sine-gaussian parameter
estimation may lead to measurement of fundamental features like central frequency or duration.
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Appendix A. Hyperparameter tuning of the embedding network

To determine the configuration to be used for the embedding network mentioned in section 4, we perform
an extensive hyperparameter optimization over the search space of the layers of ResNet, the convolutional
kernel size of the ResNet, the dimensionality of the representation, D., the dimensionality of the expanded
space where the VICReg loss is computed; this is tune by a factor, N, i.e. the dimensionality of the expanded
representation is N x D.,. We use Stochastic gradient descent optimizer and also sample over the learning
rate, the weight decay and the momentum terms of the optimizer. A total of ~250 training runs were
performed using asynchronous hyperbanding with early-stopping [58] using the ray . tune library [59].
This technique stops poor performing trials allowing more favorable trials to continue. We use a grace period
of 3 epochs before half of ongoing trials are stopped. The experiment was carried over 8 workers over 4 A40
GPU taking ~40 h. We show the top 10 trial configuration in table A1 and show the epoch-average VICReg
validation loss for the same in the left panel of figure A1. The right panel of the figure shows the
training/validation of the best model configuration trained until early-stopping condition is met.

Table Al. Top 10 hyper-parameter configurations for hyper-parameter optimization runs for the embedding network. The best trial
configuration is shown in boldface.

ResNet conf.  kernelsize A1 A2 A3 Dy LR Momentum wt. decay N VICReg.
(5,3,3) 5 1 1 5 7.16-10~* 8.07-107° 4.42-107% 3 0.48
(4,3,3) 7 1 1 1 11 8.97-107* 5.75-107° 9.01-107° 3 0.528
(4,5,3) 7 1 1 1 2.08-107* 2.60-107* 3.72-107% 3 0.539
(4,3,3) 7 1 1 1 10 2.62-107* 3.69-107° 1.16-107° 3 0.543
(4,5,3) 5 5 1 1 8 3.48-107* 6.10-107* 737-100% 5 0.553
(5,5,4) 3 5 1 1 8 1.31-107* 1.75-107° 1.67-107* 3 0.578
(3,4,4) 3 5 1 5 9 5.38.107* 1.42.107° 1.67-107°> 5 0.610
(4,5,3) 3 1 1 5 10 9.76-107* 2.69-107* 420-107> 4 0.627
(4,3,4) 3 1 1 1 9 1.37-107* 5.46-107° 1.33-10° 3 0.677
(4,5,3) 5 5 5 1 8 1.64-107* 9.47-107* 1.61-107° 3 0.707
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Figure Al. Left: Avg. VICReg validation loss as a function of training epoch from the top 10 HPO runs in table Al. The best
configuration is plotted in thick solid line; corresponding configuration is boldfaced entry in table Al. Right: Training/Validation
loss for best model configuration from the left panel until early-stopping.

Appendix B. Hyperparameter tuning of the normalizing flow

Hyper-parameter optimization is done for ~100 configurations involving the number of transforms, the
configuration of each transform, learning rate, batch size, optimizer weight decay and momentum
parameters shown in table B1 using asynchronous hyper-banding with early stopping [58] using the
ray.tune library [59]. This stops under-performing runs in favor of allowing better performing runs to
continue. We carried out the HPO runs over 4 A40 GPUs which took ~15 h. The average validation loss over
validation epoch for the top 5 runs are shown in the left panel of figure B1. The right panel of the figure
shows the training/validation loss of the best model configuration trained until early-stopping condition is
met. While all the runs were allowed to run for 30 epochs, most of them are stopped early. The validation loss
for the top ten performing runs are shown in the figure. We use the topmost configuration in table B1 for the
results of the paper. The training and validation for this configuration, trained until early-stopping is shown
on right panel of Figure B1.

Table B1. Top 10 hyper-parameter configurations for run involving 30 epochs. Validation loss is noted at the end of the 30th epoch.

# transforms # blocks # hidden feat. LR batch size wt. decay val. loss
60 6 100 0.00129 800 0.00241 8.52
100 6 150 0.000636 1000 0.000263 8.63
60 6 120 0.00242 800 0.00471 8.65
60 8 150 0.000488 1000 0.000553 8.70
80 6 120 0.000442 1000 0.00161 8.71
60 7 150 0.00103 1000 0.000271 8.72
80 7 120 0.000318 800 0.000173 8.78
80 6 100 0.00093 1000 0.00332 8.83
80 8 100 0.000873 1200 0.00453 8.86
60 6 120 0.000297 1000 0.0509 8.87
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Figure B1. Left: Validation loss from the top 10 HPO runs in table B1. Right: Training/Validation loss for best model from the left
panel until early-stopping.
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