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Abstract

Following the needs of industrial applications, virtualization has emerged as one of the most effective

approaches for the consolidation of mixed-criticality systems while meeting tight constraints in

terms of space, weight, power, and cost (SWaP-C). In embedded platforms with homogeneous

processors, a wealth of works have proposed designs and techniques to enforce spatio-temporal

isolation by leveraging well-understood virtualization support. Unfortunately, achieving the same

goal on heterogeneous MultiProcessor Systems-on-Chip (MPSoCs) has been largely overlooked.

Modern hypervisors are designed to operate exclusively on main cores, with little or no consideration

given to other co-processors within the system, such as small microcontroller-level CPUs or soft-cores

deployed on programmable logic (FPGA). Typically, hypervisors consider co-processors as I/O

devices allocated to virtual machines that run on primary cores, yielding full control and responsibility

over them. Nevertheless, inadequate management of these resources can lead to spatio-temporal

isolation issues within the system. In this paper, we propose the Omnivisor model as a paradigm

for the holistic management of heterogeneous platforms. The model generalizes the features of

real-time static partitioning hypervisors to enable the execution of virtual machines on processors

with different Instruction Set Architectures (ISAs) within the same MPSoC. Moreover, the Omnivisor

ensures temporal and spatial isolation between virtual machines by integrating and leveraging a

variety of hardware and software protection mechanisms. The presented approach not only expands

the scope of virtualization in MPSoCs but also enhances the overall system reliability and real-time

performance for mixed-criticality applications. A full open-source reference implementation of the

Omnivisor based on the Jailhouse hypervisor is provided, targeting ARM real-time processing units

and RISC-V soft-cores on FPGA. Experimental results on real hardware show the benefits of the

solution, including enabling the seamless launch of virtual machines on different ISAs and extending

spatial/temporal isolation to heterogenous cores with enhanced regulation policies.
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1 Introduction

The current approach to address the increasing number of functional requirements in industries

that deal with safety-critical systems such as automotive [8], avionics [73], and nuclear

fusion [25] is toward an integrated development model rather than a federated one, where

several services with varying degrees of criticality coexist on shared hardware platforms. These

software architectures are usually referred to as mixed-criticality systems (MCSs) [18, 17].

Developing mixed-criticality systems on multiprocessor architectures to reduce the size,

weight, power, and cost (SWaP-C) is a challenge that, despite strong community interest,

has not yet found a unique standard solution [3, 45, 19]. Among the proposed approaches,

one of the most valuable in the scope of high-performance real-time systems is the use of

real-time virtualization [22]. While traditional virtualization is a feature-rich technology

that allows efficient resource utilization, real-time virtualization leans toward minimalist

architectures focusing on safety, security, and predictability. In the wide spectrum of real-

time virtualization technologies [23], the minimal and safest virtualization approach is static

partitioning [64]. This partitioning-based approach is suitable for critical systems where the

lack of determinism can significantly increase the validation and certification cost.

This virtualization approach has shown outstanding isolation performance in symmetric

multi-core architectures, as evidenced in recent studies [47]. However, alongside symmetric

platforms, asymmetric architectures are increasingly gaining traction in the market; the

complexity and heterogeneity of multi-core systems and Commercial Off-The-Shelf (COTS)

boards are gradually increasing to meet the requirements of bleeding-edge industrial ap-

plications. Therefore, we are currently witnessing the growing adoption of asymmetric

MultiProcessor Systems-on-Chip (MPSoCs) in various industrial applications from auto-

motive [8, 16, 65, 39], to avionics [73], and nuclear fusion [25, 7]. With the increase in

hardware complexity within these systems, the already well-known challenges with predict-

ability and security are further exacerbated. Modern MPSoCs, such as AMD/Xilinx Zynq

UltraScale+ [78], Versal [77], NVIDIA Orin [56] and Xavier [57], Google Coral [33] and NXP

i.MX8 [58], embed a heterogeneous set of processing elements. These include general-purpose

microprocessor-level CPUs, sometimes referred to as Application Processing Units (APUs),

and microcontroller-level CPUs that are simpler and more predictable, such as those within

the ARM Cortex-M/R families. Additionally, some of these systems incorporate accelerators

(e.g., Graphical Processing Units – GPUs, and/or Tensor Processing Units – TPUs), and,

in some cases, also Field-Programmable Gate Arrays (FPGAs), that is, re-programmable

hardware capable of integrating various types of special-purpose accelerators or additional

cores (e.g., RISC-V soft-cores). All of these processing elements in the system are intricately

interconnected and share numerous platform resources. From now on, to be consistent with

ARM’s terminology, we will utilize the term “managers” to denote all hardware capable

of initiating memory transactions. Additionally, we will refer to all cores that are not

general-purpose application cores (main cores), as “remote cores” to be compliant with the

terminology used by Linux (e.g. remoteproc driver [44]).

To provide code running on such complex architectures with real-time guarantees, re-

searchers have focused on mitigating temporal interference due to resource contention across

MPSoCs. Over the years, considerable effort has been invested in exerting control over
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the memory hierarchy, including the last-level cache [42], DDR memory [80], and memory

controller [82]. Significant attention has also gone into minimizing interrupt latency [29] and

managing the sharing of memory channels among modules in the programmable logic [27].

However, comparatively less attention has gone into the inherent limitation of static parti-

tioning hypervisors in efficiently managing heterogeneous platforms. Specifically, modern

architectures present cores that manufacturers provide ad-hoc to execute specialized software.

Examples include Real-Time Processing Units (RPUs) used to run critical applications and

Deep Learning Processing Units (DPUs) used to improve the performance of AI applications.

In a mixed-criticality system, we expect the execution time of code running on RPUs to

remain unaffected by other independent applications, such as AI workload running on DPUs.

Currently, remote cores are not managed by the hypervisors in the same way as the

main CPUs; rather, these cores are either ignored entirely or, at best, treated as I/O devices

allocated to virtual machines (VMs) running on primary cores. This means a VM controlling

one or more remote cores can load and execute any code on them. Unfortunately, a remote

processing core usually possesses enough privileges to access critical platform resources,

becoming a threat to the other VMs running on the board from a spatial and temporal

isolation point of view. In contrast, a hypervisor designed for heterogeneous MPSoCs should:

Offer a unified and transparent interface to the user to flexibly deploy virtual machines

on any core within the platform, regardless of the Instruction Set Architecture (ISA).

Guarantee comprehensive spatial and temporal isolation between VMs across the platform.

Research Question. The question that inspired this paper is: Can next-generation real-

time static partitioning hypervisors adapt to the evolving landscape of modern heterogeneous

platforms? Specifically, can they offer seamless and flexible mechanisms for deploying VMs

across heterogeneous processing cores, all while ensuring robust isolation guarantees for

mixed-criticality deployment?

Contribution. To tackle such a question, in this paper, we propose the Omnivisor model.

This model extends the traditional static partitioning hypervisor paradigm to take control

over heterogeneous cores in MPSoCs platforms. Thus, we make the following contributions:

We propose a novel model that generalizes the features of real-time static partitioning

hypervisors to integrate the management of heterogeneous cores, improving their flexibility

and usability in MPSoCs platforms.

We show how a combination of various hardware-software protection mechanisms can be

seamlessly orchestrated at runtime by our Omnivisor to ensure high isolation between

VMs running on heterogeneous cores.

We provide an open source reference implementation [61] and an evaluation of the proposed

model on a COTS board (AMD/Xilinx’s UltraScale+) by extending Jailhouse, a real-time

static partitioning hypervisor, to run virtual machines over remote cores with different

ISAs (Aarch32 RPUs and RISC-V soft-cores).

Experimental results on the board show that a user can seamlessly launch a VM on

heterogeneous cores via the Ominivisor with comparable boot times. These experiments

highlight the Omnivisor’s flexibility which enables compelling scenarios such as real-time

live migration [41], reboot after failure [51], system rejuvenation [1], and over-the-air (OTA)

updates [28, 36]. Experiments also demonstrate the isolation capabilities of the Ominivisor by

executing critical workload on remote cores in the presence of severe disturbances generated

by the other cores and the FPGA on the same board. Finally, by using realistic benchmarks,

we show how the Ominivisor can enforce a controlled degradation policy to keep real-time

guarantees while not limiting the overall system performance.

ECRTS 2024
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Paper Structure. In Sec. 2, we review modern hardware protection mechanisms on MPSoCs

and discuss traditional hypervisor models’ limitations. Sec. 3 introduces the Omnivisor model,

highlighting its benefits and differences from traditional models. We also discuss Omnivisor’s

requirements, responsibilities, and features. In Sec. 4, we walk through the implementation

of the Omnivisor on a Xilinx Ultrascale+ board, assessing strengths and weaknesses. Sec. 5

and 6 present experimental analysis and practical use cases. Sec. 7 compares Omnivisor with

related works.Conclusive remarks and future works are provided in Sec. 8.

2 Background and Motivations

Considering the high heterogeneity of processing elements deployed on MPSoCs that act as

managers – i.e., heterogeneous CPUs, GPUs, DMAs, and FPGAs sharing system resources

like the memory controller, memory storage, I/O devices – hardware manufacturers provide

a robust suite of hardware protection mechanisms to improve both spatial and temporal

isolation guarantees. Spatial isolation ensures that a processing element accessing a shared

resource prevents other processing elements from accessing its private data. Temporal

isolation guarantees that the time behavior of a processing element is not affected by (or

has a bounded effect on) the behavior of other processing elements, even if those (partially)

access the same shared resources.

This section aims to provide a comprehensive summary and categorization of the various

processor types and protection mechanisms employed on state-of-the-art MPSoCs, shedding

light on their roles and scope within the considered class of platforms. Following that, we

explain how traditional static partitioning hypervisors utilize these mechanisms only to

a limited extent, highlighting why this presents a significant constraint compared to the

extensive capabilities provided by modern COTS platforms.

2.1 MPSoCs processors classes

Embedded MPSoCs are nowadays characterized by heterogeneous clusters of CPUs that can

be categorized into three classes that feature different protection mechanisms:

microprocessor-level CPUs: Fully featured general-purpose multi-core CPUs character-

ized by all the modern hardware optimization techniques such as prefetching, branch

prediction, cache coherence, as well as memory virtualization (MMU-based, see Sec. 2.2.1).

These processors present at least three privilege levels to differentiate permissions and

registers belonging to the hypervisor, the operating system, and the user-level applications.

These are often referred to as Application Processing Units (APUs); an example is the

cores belonging to the ARM Cortex-A family.

microcontroller-level CPUs: Specific-purpose CPUs that do not have any mechanism

for memory virtualization (MPU-based). They exhibit reduced hardware optimization

techniques to improve simplicity and predictability. Furthermore, these microcontrollers

usually support less than three privileged levels. This is because the software deployed

on these CPUs is simpler and typically consists of a bare-metal application or, at most, a

real-time operating system (RTOS). An example includes the ARM Cortex-M and the

ARM Cortex-R family, and often referred to as Real-Time Processing Units (RPUs).

programmable logic CPUs: Highly specialized soft-cores deployed on re-programmable

hardware to run code with specific requirements. Although these processors are extremely

heterogeneous, their deployment on FPGA platforms enables communication with the rest

of the system, mediated by the SMMU (see Sec. 2.2.1). This category includes soft-cores

such as the AMD MicroBlaze [5], or the RISC-V Pico32 [79].



D. Ottaviano, F. Ciraolo, R. Mancuso, and M. Cinque 7:5

2.2 MPSoCs Protection Mechanisms

The MPSoCs protection mechanisms can be systematically categorized as follows.

2.2.1 Spatial Isolation

Address Translation (MMU/SMMU). The Memory Management Unit (MMU) is the most

known and used memory isolation mechanism for address translation. It is a component

integrated into most microprocessor-level CPUs, serving a fundamental role in virtual memory

management. The MMU maps virtual addresses to physical addresses, enabling applications

(or guest OSes) to access memory locations in a manner that is transparent and independent

of the physical memory layout. In the context of heterogeneous MPSoCs, the System Memory

Management Unit (SMMU) is an extension of the MMU, tailored to manage memory and

address translation for DMA-capable devices and accelerators. However, not all processing

elements that can potentially assume the role of a manager on these boards are equipped with

an MMU/SMMU. Consequently, if not properly configured, certain managers can potentially

access other managers’ data in a manner that poses inherent security risks and/or results in

poor fault containment, as evidenced in our evaluation.

Accesses Protection (MPU/SMPU/SPPU). Address translation mechanisms are not the

only means of achieving spatial isolation. Microcontroller-level CPUs typically employed

to run bare-metal software or Real-Time Operating Systems (RTOS) do not necessitate

address translation mechanisms. This is due to both the inherent cost of such mechanisms

in terms of space occupation and energy consumption and the temporal unpredictability

that MMU-based mechanisms introduce [62]. In these scenarios, CPUs are equipped with

more straightforward mechanisms known as Memory Protection Units (MPUs). These are

implemented as hardware tables deployed between the manager (CPU) and the subordinate

(Memory). Using the tables, an MPU enforces specific permissions to fixed address space

regions.In heterogeneous MPSoCs, given that not all processing elements within these

platforms possess address translation mechanisms, a comprehensive spatial isolation strategy

is implemented by deploying system MPU-based protection mechanisms at the access port

of important system resources. We term these system-level protection mechanisms System

Memory Protection Units (SMPUs) when used to protect memory; we use the term System

Peripheral Protection Units (SPPUs) when they are used to protect memory-mapped I/O.

2.2.2 Temporal Isolation

Hardware Bandwidth Allocation. In modern ARM-based platforms, Quality of Service

(QoS) support offers a mechanism to manage memory traffic at the level of bus managers.

Communication between a manager and a subordinate within an ARM-based platform is

facilitated through the AXI protocol. The latest iteration of the AXI protocol, the AXI4

standard, incorporates a set of signals, specifically ARQOS and AWQOS, which convey traffic

prioritization details essential to enforce bandwidth regulation in QoS-aware on-chip memory.

The QoS technology was initially introduced into MPSoCs with the primary objective of

achieving load balancing. However, numerous studies have subsequently demonstrated its

versatility and effectiveness in ensuring temporal isolation [67, 32]. However, there is a

common trend in existing QoS-enabled platforms [69]: multi-core CPUs are typically treated

as a unified manager. As a result, QoS support is primarily employed to regulate the

aggregate traffic generated by all CPUs collectively. While this observation holds for main

cores, it differs in the case of remote cores. These remote processors are usually equipped

with distinct QoS ports for each CPU, a crucial distinction leveraged in the Omnivisor model

to achieve temporal isolation between heterogeneous cores.

ECRTS 2024
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Software Bandwidth Allocation. Despite the QoS limitation in managing individual CPUs

in a multi-core cluster, software solutions exist to regulate the bandwidth of the multi-core

processors, offering per-CPU granularity that an Omnivisor shall leverage [81] [82].

2.3 From Traditional to Static Partitioning Hypervisors

Traditional Hypervisors. In the traditional hypervisor model, a virtualization layer is set

between multiple software environments, namely virtual machines (VMs), and the underlying

hardware. The responsibility of this layer is to abstract the physical hardware resources

to the VMs to give them the illusion of running alone on the platform. To realize such

abstractions, modern hypervisors take advantage of a combination of software mechanisms,

including hypercalls and the trap-and-emulate technique. In addition, they leverage hardware

mechanisms such as advanced MMU systems with dual stages of translation and support for

multiple privilege levels within processor cores. This approach is designed to ensure spatial

isolation between VMs, preventing one VM from accessing the data belonging to another

VM while striving to maintain high performance and resource utilization levels. On top of

this layer, hypervisors provide an interface for managing the VMs, allowing a high-privilege

user to create, stop, and control the resources assigned to VMs at run-time. Well-known

open-source hypervisors that follow this model are KVM [40], Xen [11], and many others.

These are widely used, and researchers have extended their capabilities to accommodate

various use cases, including real-time scenarios [2, 30].

Static Partitioning hypervisors. Real-time static partitioning hypervisors (SPHs), such as

Jailhouse [63], Bao [48], Xtratum [49], and Quest-V [74], moves from traditional hypervisor

model by adding resource separation constraints bearing the cost of less efficient use of

resources to meet the requirements of real-time applications. In the SPH model, temporal

isolation is as important as spatial isolation; therefore, they statically partition hardware

resources between VMs to minimize shared components and mitigate temporal interference.

According to this model, each VM gets a subset of the platform’s resources; therefore,

the CPUs are statically assigned to the VMs, and so are the memory, I/O devices, and

accelerators.

2.4 SPH Shortcoming over Asymmetric MPSoCs

SPHs are currently designed to operate exclusively on microprocessor-level CPUs, with

little or no consideration given to remote cores within the system, such as microcontrollers

or soft-cores on FPGAs. In this scenario, deploying code on remote cores requires the

system programmer to manually load the code and start the core. This is currently possible

using two approaches: (I) using the bootloader and thus at boot time or (II) using the

Linux remoteproc driver on a VM at runtime. However, the former approach sacrifices

the flexibility of dynamically halting and reloading code on the remote cores as needed,

and the latter gives a VM full access to remote cores that can easily introduce time delays,

interferences, or even system failures. Specifically, the remote cores are not isolated by default

from the other virtual machines, and the code running on them can cause temporal and/or

spatial isolation issues for the other VMs by accessing the shared resources. To address

this, a system programmer can manually configure and enable platform-specific hardware

protection mechanisms, such as SMPU/SPPU and QoS, to isolate the cores from the other

VMs. Although effective, this approach diminishes the flexibility of the hypervisor and

requires significant effort and specialized expertise. To actually maintain the isolation, every
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time a new VM is created, and every time a new code is loaded in the remote cores, the

system developer must promptly reconfigure these mechanisms to isolate resources, otherwise

risking data corruption or possible interference between cores.

An SPH on heterogeneous MPSoCs should ensure holistic protection across the entire

board, transparently to the user. It should handle isolation seamlessly, avoiding the need for

manual programming of specialized hardware protection mechanisms and providing a more

user-friendly and robust solution for running code on asymmetric multi-core systems.

3 The Omnivisor

In this paper, we introduce the Omnivisor, a novel hypervisor model that generalizes static

partitioning hypervisors to enable the transparent execution of VMs on heterogeneous cores

over commercial off-the-shelf (COTS) MPSoCs. The model aims to streamline the deployment

process and simplify the programming model of such complex architectures while providing

strong spatial and temporal isolation as required by mixed-criticality systems.

Model Purpose. As depicted in Fig. 1, while conventional hypervisors are designed to

manage microprocessor-level CPUs, our model extends its control to include microcontroller-

level CPUs and soft-cores on programmable logic (FPGA). To achieve this, the Omnivisor

assumes control over different hardware mechanisms to ensure isolation, both temporally

and spatially, of the VMs. Three primary objectives underpin the Omnivisor model:

1. To offer users a consistent, transparent, and easy-to-use interface for managing virtual

machines on both primary and remote cores.

2. To reorganize the privilege levels of the software running on heterogeneous cores in

order to build a holistic privilege hierarchy across the platform.

3. To seamlessly administer spatial and temporal isolation between virtual machines,

regardless of the specific core on which they are deployed.

According to this novel model, remote cores are no longer mere I/O devices; instead, they

are elevated to primary CPUs capable of running self-contained, strongly isolated VMs.

Clarification of Terminology. Before delving into the specifics of the Omivisor, it is import-

ant to clarify why we chose to use the term “Virtual Machine” to denote the code executed

by the Omnivisor on all the types of cores. We acknowledge that the code running on remote

cores does not execute atop an actual hypervisor, meaning that there is no scheduler, and

the code has complete control over the core itself. However, we have opted to label them

VM for two main reasons. First, they are encapsulated by the Omnivisor, which is capable

of isolating the accessible resources in the system, similar to how SPHs handle traditional

VMs. Second, we provide users with a unified and transparent method for utilizing remote

cores, mirroring the process of launching a VM on application cores.

3.1 Requirements

The Omnivisor model is based on the assumption of having at its disposal a fully featured

MPSoC with the following characteristics:

Multiple Core Clusters: Two or more heterogeneous clusters of cores, and at least one of

the clusters is a multiprocessor-level CPU cluster.

Address Translation: An MMU featuring two levels of translation in front of each

multiprocessor-level CPU cluster and an SMMU placed between DMA-capable peripher-

als/accelerators and shared resources.

ECRTS 2024
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Dom0 in Xen [70]. The Omnivisor provides the PVM with the same interface for managing

VMs for both the main and remote cores. For instance, as shown in Fig. 2, the PVM only

needs to request the VM launch, and then the Omnivisor takes charge of programming the

underlying resources to serve the request for the specified processor. Other than launching a

VM, the Omnivisor provides methods for stopping and restarting a VM and an interface for

monitoring the current status of the VMs.

Omnicall. Most state-of-the-art hypervisors implement hypercalls to expose functionalities

to virtual machines, akin to how operating systems implement system calls for processes.

Despite the current implementation of Omnivisor restricting this mechanism to virtual

machines running on the APUs, we aim to propose a design for extending this service to

VMs running on remote cores, which we will refer to as “Omnicalls”. To implement this

mechanism, the Omnivisor needs to provide three additional features:

1. Event signaling from the Omnivisor to VMs on remote cores.

2. Event signaling from VMs on remote cores to the Omnivisor.

3. A real-time protocol for inter-VM communication.

For the first functionality, we need to differentiate between processing elements that support

interrupt delivery, like APUs, and those that do not support them, such as hardly restricted

soft-cores. To signal an event to the former category, the Omnivisor can leverage Software

Generated Interrupts (SGI). Meanwhile, signaling events to the latter requires the remote

VM to periodically check for Omnivisor-originated pending events (polling).

Regarding the second functionality, the Omnivisor can grant the VMs on remote cores

access to a subset of the interrupt controller’s configuration space, enabling the generation of

SGIs toward the cores where the Omnivisor operates. Currently, the Omnivisor supports

restricted access to the interrupt controller configuration space for these VMs.

Lastly, using shared memory for data exchange is already implemented in most legacy

SPHs. We extended this feature to remote cores in the Omnivisor, but enhancing the

real-time performance of the communications requires a tailored mechanism. To provide

real-time guarantees, one existing solution consists of using an external processing element

as a broker to orchestrate the communications between VMs. This has been theoretically

proved and tested on a heterogeneous MPSoC by Schwäricke et al. [66], and the Omnivisor

can easily integrate the broker as a VM running on a remote core while using its features to

isolate it both temporally and spatially from the other VMs.

Dynamic Address Translation. In traditional hypervisors, when a new VM is created on the

APU, address translation is typically implemented using the MMU. The Omnivisor extends

this functionality to soft-cores by utilizing the SMMU. It’s worth noting that the SMMU is

already employed by SPHs to perform address translation for I/O devices associated with

VMs. However, the Omnivisor changes the perspective and utilizes the same mechanism

to implement self-contained translation specifically for soft-cores, which are treated as

self-contained VMs in this context.

Dynamic Accesses Protection. Protection mechanisms on MPSoCs, such as SMPU/SPPU,

are commonly configured statically at boot time by high-privilege and secure software (e.g.,

first-stage bootloader). These configurations typically remain unchanged throughout the

system’s lifetime. However, to enable the seamless execution of isolated VMs on remote cores,

the Omnivisor dynamically determines how to configure all access protection mechanisms.

This approach ensures dynamic system-level protection that adapts during runtime based on

the specific VMs currently active.



D. Ottaviano, F. Ciraolo, R. Mancuso, and M. Cinque 7:11

Dynamic Bandwidth Allocation. Traditional SPHs ensure that resource assignments remain

static between PVM management calls. This implies that everything can be dynamically

reassigned by these calls, remaining static until the next call. The Omnivisor maintains

consistency by applying the same approach to bandwidth allocation. Hence, every time

a new VM is launched, it is possible to dynamically allocate the bandwidth to that VM.

Moreover, to enable mission-critical reconfiguration scenarios and ease parameter tuning, the

Ominivisor implements bandwidth allocation as a settling call that the user can leverage

to modify the temporal behavior of the VMs to a new static configuration. Once more, the

Omnivisor shifts the paradigm regarding resource utilization. Unlike SPHs, which primarily

focus on protecting VMs solely on the APU, the Omnivisor extends its scope to encompass

VMs on other remote processors. Consequently, bandwidth regulation mechanisms like QoS

are not only employed on accelerators to maintain service quality for APUs but also for

remote cores, even if they are soft-core deployed on FPGA.

4 Omnivisor Implementation

The Omnivisor model is designed to apply to a wide range of existing partitioning hypervisors;

nonetheless, our reference implementation is built on top of the Jailhouse hypervisor [63]

because it has low overhead [47] while maintaining an easy-to-use interface to manage VMs at

runtime. Furthermore, the Jailhouse-RT branch, overseen by Minerva Systems [50], already

implements MemGuard-like regulators for the APUs, page coloring, and basic SMMU drivers.

It also provides a rudimental interface to control ARM Quality of Service (QoS) regulators.

The implementation was carried out with testing focused on the ARM-based Zynq

Ultrascale+ board from Xilinx. This MPSoC aligns with all the requirements outlined in

Sec. 3.1: it features a quad-core ARM Cortex-A53 (APUs), a dual-core ARM Cortex-R5F

(RPUs), and a 16nm FinFET + Programmable Logic (FPGA). Additionally, the platform is

equipped with protection mechanisms for both temporal isolation (QoS), address translation

(MMU, SMMU), and access permissions (SMPUs, and SPPUs). From now on, we will refer

to this platform with the ZCU+ notation. Moreover, to use the correct terminology, the

SMPUs/SPPUs on the board are named Xilinx Memory Protection Units (XMPU) and

Xilinx Peripherals Protection Units (XPPU).

This section aims to illustrate key Omnivisor technical details, providing a comprehensive

discussion of strengths and limitations. To achieve this, we first briefly describe the Jailhouse

hypervisor, and the additional functionalities introduced by the Omnivisor extension. Then,

we walk through the compiling and start processes of a VM from the user’s perspective while

explaining how the Omnivisor manages the system under the hood.

Jailhouse in a Nutshell. A pivotal design choice in Jailhouse is to initiate the hypervisor

from a running Linux instance. Specifically, by utilizing a Linux kernel module, users can

load the hypervisor into memory and initiate a series of procedures to prepare the system.

Upon initialization on each core, the hypervisor takes control of the underlying hardware,

transforming the running Linux into the first virtual machine within the system, referred

to as the root-cell. For its bootstrap, the hypervisor requires only a configuration file that

lists the resources allocated to the root-cell. Next, to create reservations (cells in Jailhouse

jargon) for the creation of additional VMs (inmates), the hypervisor reallocates hardware

resources (e.g., CPU(s), memory, PCI or MMIO devices) from Linux to the new cells as

detailed in other cell-specific configuration files. From now on, we will use the term “VM” to

refer to the cell plus inmate pair and “PVM” to refer to the root-cell.
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Omnivisor Extension Overview. Starting from a vanilla Jailhouse, besides the small modi-

fications integrated all over the code to transparently unify the interface of Jailhouse with the

new services, the Omnivisor extends the hypervisor with new low-level functionalities. First,

the power management of remote cores has been implemented, encompassing shut-down,

stop, and start functionalities for both microcontroller-level and soft-cores. Second, spatial

isolation management has been enhanced to include dynamic control of XMPUs/XPPUs.

Moreover, temporal isolation management has been refined through the integration of QoS

regulator control. Finally, the compiling procedure for remote cores VMs has been integrated

into the hypervisor offline workflow. The usage of these functionalities is detailed below.

4.1 Omnivisor Usage Workflow

One of the key objectives of the Omnivisor is to simplify the utilization of complex hetero-

geneous architectures for users. Therefore, the Omnivisor provides a unified approach for

managing VMs on both main and remote cores. In our implementation, based on the ZCU+,

alongside the legacy APUs we have integrated all the necessary code to run VMs on two

types of remote cores: RPUs (ARM32-CortexR5F) and RISC-V soft-cores (Pico32 [79]). To

streamline our discussion, we will utilize the term “rCPUs” to refer to any remote core, while

we will delve into the implementation for RPU and RISC-V cores only when required.

4.1.1 VM Compiling Process (Offline)

The initial step involves the user compiling a specific VM application to run on a remote

core. The offline compiling procedure, along with its input and output, is depicted in Fig. 3.

Given the nature of the remote cores, the applications we run are either bare-metal or built

on top of simple RTOSes. In both cases, linking some libraries may be a requirement for the

code to work correctly on a specific core. For instance, the traditional compiling approach

for RPUs on ZCU+ entails using Xilinx-provided libraries. To streamline the utilization

of rCPUs and align with the Jailhouse methodology, we have integrated the libraries for

compiling VMs targeting RPU and RISC-V cores into the Omnivisor code. Consequently,

the user only needs to integrate the application-specific code into the Omnivisor code, as

all the necessary libraries are already provided, similar to how Jailhouse includes libraries

for compiling APU-based VMs. Additionally, the user must provide a configuration file for

the VM, specifying the required resources. This configuration should include details on the

core(s) used by the VM, whether they are main cores or remote cores, as well as information

about memory regions and peripherals the VM will access. Furthermore, the configuration

must list the IDs with which the VM’s managers (e.g., CPUs/rCPUs and DMA-capable

devices) are recognized in the system. Once the user has prepared the application code and

the configuration file for the VM, they can be compiled together with the Omnivisor code.

To do it, the user must provide a list of cross-compilers, with one compiler designated for

each core with a different ISA in the system. For instance, in the case of the ZCU+, this

would entail using the AArch64 compiler for main cores, the AArch32 compiler for RPUs,

and the RISC-V 32-bit compiler for the soft-cores. The output after compilation will consist

of the Omnivisor binary along with the binary images for the VMs.

4.1.2 VM Start-Up Process (Online)

Omnivisor Enable. Before starting an inmate, since the Omnivisor generalizes Jailhouse,

we need to enable it from a Linux instance as explained in Sec. 4. Different from the vanilla

Jailhouse, the configuration in our Omnivisor may also include a field for the rCPUs. If
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to determine the suitable bandwidth for each VM, as this choice heavily relies on the

application’s requirements. However, using the tools offered by the Omnivisor, it is possible

to empirically evaluate the parameters needed to enforce a specific maximum slowdown for

a given VM. An example of a simple offline policy to automatize the choice of bandwidth

parameters is provided in the experimental section.

Start. Finally, using the start command, the user initiates the VM start-up. Different

MPSoC’s architectures have different standards for power management of cores, such as

the ARM PSCI [6] or the Intel ACPI [38]. However, the functionalities provided by these

standards are similar. Therefore, the Omnivisor implements a series of generic power

management procedures that are subsequently customized to the specific platform and core.

We have implemented the procedures for the RPUs (ARM32-CortexR5F) and for a RISC-V

soft-core (Pico32) deployed on the FPGA. In the ZCU+ the RPUs are overseen by the

Platform Management Unit (PMU) core, which exercises control over their execution and

power state. The only software with enough permission to call PMU services is the PSCI layer

within the ARM trusted firmware. Consequently, we implement a specific ZCU+ module to

communicate with the PSCI to request the wake-up and power-off of the RPUs. Regarding

the soft-core(s), instead, we have implemented a memory-mapped configuration port in

FPGA, and we expose this port to the Omnivisor to control the reset state of each soft-core.

5 Use Cases

In this section, we report a few use cases that inspired us toward the creation of the Omnivisor.

Real-time control in nuclear fusion power reactors. Nuclear fusion is foreseen as a

promising clean energy source for the next century, and the ITER tokamak reactor (iter.org)

is set to be the first fusion device with a net-positive energy output. In a tokamak, magnetic

confinement of the plasma is achieved using several magnetic fields generated by the electric

current that flows in an array of external coils. These currents are controlled by the so-called

plasma control system (PCS) [68], which is a complex and multi-input-multi-output control

system. The PCS includes several subcomponents, each aiming to control a specific plasma

feature with different requirements in terms of reliability, latency, and needed computational

resources. The ITER project intends to use MPSoCs [7] to run multiple control loops and

signal conditioning algorithms with different sampling times and reliability requirements

on the same system [60]. Being an experimental facility, one of the missions of ITER is to

test the efficiency of advanced control schemes, e.g., using reinforcement learning, running

side-by-side with basic control loops, for safety reasons.

The use of the Omnivisor in this context can speed up the development and testing phases

by enabling the deployment of advanced and computationally heavy control algorithms,

launched as VMs on the APUs, along with stable safety controllers, launched as VMs on

RPUs or soft-cores, while assuring spatial and temporal isolation between them.

MPSoCs for advanced system management research. Researchers adopt heterogeneous

architectures to run computation-intensive applications in safety-critical [19] and mission-

critical scenarios, such as vision control units for self-driving vehicles [20]. Moreover, the

real-time community has shown significant interest in leveraging MPSoCs resources, like

remote cores, for monitoring and management. Executing monitoring or management tasks

on the same platform as the monitored applications can introduce overhead and interference,



D. Ottaviano, F. Ciraolo, R. Mancuso, and M. Cinque 7:15

while remote monitoring (e.g., over a network connection) suffers from communication

latency [24]. Therefore, utilizing on-board resources, when available, is a good compromise.

For instance, the work described in [82] utilizes RPUs on a ZCU+ to finely monitor memory

transactions and control the bandwidth of APUs using the board’s debug infrastructure.

In [32], instead, authors employ QoS setups on the memory controller to ensure high-degree

isolation of critical applications across heterogeneous cores. Additionally, in [21], the progress

of a critical application running on APUs is monitored by an RPU on a ZCU+ to provide

online regulation based on the application’s state.

Integrating an Omnivisor can greatly simplify utilizing these cutting-edge mechanisms in

real-world industrial scenarios by providing an easy way to deploy and isolate the applications.

Furthermore, it can speed up the experimental phase for researchers aiming to implement

complex applications on heterogeneous platforms.

6 Experimental Analysis

In this section, we provide an evaluation of the Omnivisor model and its implementation.

The reference implementation, along with a set of scripts to reproduce the experiments, is

openly available as open-source software [61]. The platform under test is the ZCU+ described

in Sec. 4. The evaluation aims to address the following questions:

Is the boot time of a VM on a remote core comparable to that on main cores?

What degree of spatio-temporal isolation does the Omnivisor guarantee for remote VMs?

Can the Ominvisor be a turnkey solution to achieve controlled degradation?

It’s important to note that the additional functionalities introduced in our Omnivisor, as

described in Section 4, are only invoked during the startup of newly created VMs, not

at runtime. Therefore, the overhead of Omnivisor is consistent with prior findings on

Jailhouse [47]. Consequently, we do not present runtime overhead results in this paper.

6.1 Boot Time Performance Assessment

This section shows that booting a VM on a remote core using Omnivisor is comparable in time

to booting a VM via Jailhouse on a main core. Thus, with Omnivisor, users can deploy VMs

on either main or remote cores with negligible differences in boot times, enabling flexibility

for scenarios like real-time migration [41], reboot after failure [51], system rejuvenation [1]

and OTA updates [28, 36].

Fig. 4 shows the boot times obtained by deploying a VM on RPU and RISC-V soft-core,

using the Omnivisor, compared to the boot time on APU using vanilla Jailhouse. In each case,

the binary contains the identical bare-metal application. However, running the application

on the APU with the Jailhouse hypervisor necessitates linking a tiny ’inmates’ library for

initialization whose overhead is negligible during boot times. To obtain the boot time values,

the root-cell acquires the initial value from a global platform timer just before initiating

the new cell (Create). The same timer is used to measure the length of the load sequence

(Create + Load). Finally, the newly started cell captures the third timer sample (Create +

Load + Start), representing the boot time, and records it in a shared memory page. The

described process has been repeated 100 times for ten different VM image sizes, specifically

from 1 to 90 megabytes. It is possible to observe in Fig. 4 in more detail the three phases

that comprise the boot times: create (blue line), load (orange line), and start (green line).

We first compare the boot times of a cell on APU and RPU. The results exhibit significant

similarity, indicating that starting a VM on a microcontroller-level CPU does not result in

performance losses. On the contrary, the RPU boot shows a slight speed advantage during
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As discussed in Sec. 4.1.2, the Omnivisor provides the knobs to regulate the memory

bandwidth of different managers in the system by leveraging a QoS and MemGuard imple-

mentation. Since there are already papers exploring these mechanisms in detail [67, 32, 69],

in this experiment, we are interested in demonstrating that the Omnivisor can use these

mechanisms to reduce the temporal interference caused on a VM running on remote cores.

To isolate the VM running on rCPU from the other managers, the Omnivisor first

configures the QoS for the FPGA and RPUs channels. In this experiment, each channel has

a request rate bounded to 11, which, using the formula from [69], translates to a memory

bandwidth of 4.7 MB/s. Regarding the APU, on the other hand, we enabled a MemGuard

regulation of 78 cache refills each millisecond for all the cores, which corresponds to having

4.997 MB/s of available bandwidth. Combining the two approaches strongly reduces the

performance impact on the rCPUs, as shown in Fig. 6d. Specifically, the maximum slowdown

drops from 142% to 7% on RPU and from 85% to 6% on RISCV.

Integrating state-of-the-art monitoring and profiling applications into real safety-critical

systems is often sidestepped in favor of legacy methods. This hesitation primarily stems from

the difficulty in demonstrating that these applications don’t disrupt the temporal behavior

of the critical application under observation. However, with the Omnivisor, integrating

such mechanisms becomes significantly easier, thanks to the utilization of a fully temporally

isolated VM running on remote cores.

6.3 Parameter Tuning for Controlled Degradation

To comprehensively evaluate and demonstrate the usability of the Omnivisor beyond synthetic

benchmarks, we execute a realistic benchmark suite on the remote cores. Specifically, our

choice has gone towards using the benchmark set called TACLeBench provided in [31]. It

is a collection of 56 benchmark programs from several research groups and tool vendors

worldwide. However, while we were able to execute all the benchmarks on the RPU, due to

the limitations related to the absence of a floating-point extension of the RISC-V processor

(Pico32) deployed on FPGA, we used a subset of them for our RISC-V experiments.

The objective of this evaluation is twofold: first, to demonstrate how the Omnivisor

can induce controlled degradation in the execution time of a VM running on remote cores,

and second, to elucidate how the Omnivisor streamlines the parameter tuning process for

achieving an acceptable performance degradation level. Therefore, we first determine the

bandwidth allocation required to ensure unrestricted memory transactions on every manager.

Specifically, leveraging findings from [69] and experimental evaluations, we established that

a bandwidth limit of 950 MB/s for each manager is sufficient to maintain a comparable rate

of memory transfers to what was observed without regulation. Then, using these values as a

starting point, we developed a script iterating the execution of the benchmarks employing a

binary search algorithm to calculate the bandwidth allocation parameters. Specifically, we

search for those parameters that ensure a maximum slowdown of 20% for each benchmark.

Still, the script is generic and can be used to find the parameters for any value of degradation.

The slowdown is calculated in comparison with the observed maximum execution time over

thirty repetitions of the benchmarks without any interference. Furthermore, in between each

change of parameters, we execute thirty repetitions and consider the worst result as the target

value for the slowdown; when the target value is below the decided threshold, we consider

the bandwidth allocation quota used in that iteration as a possible candidate. However, we

stop the binary search after 15 iterations or when the slowdown is strictly between 19% and

20%. Fig. 7 presents the slowdown over thirty repetitions for each benchmark under two

scenarios. First, the slowdown without any bandwidth regulation is depicted. Next, the
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on Xen focusing microprocessor-level cores, Omnivisor addresses the challenge of applying

partitioning to asymmetric core platforms by leveraging different isolation mechanisms for

each category in a coordinated manner. Although this work’s focal point is not about

certification, the Omnivisor aims at establishing the blueprint of a partitioning hypervisor

for heterogeneous systems which is the first step for future certification endeavors.

Asymmetric Multi-Core Architectures. The management of asymmetric multi-core archi-

tectures is a well-explored field within the systems software community, which has proposed

OS designs [9, 10, 43, 13] and hypervisors [37, 59] capable of fully leveraging heterogeneous

platforms. However, these existing works are not directly comparable to the Omnivisor, since

they often overlook the isolation challenges that heterogeneous cores can introduce, making

them unsuitable for mixed-criticality scenarios. In [12] the authors discuss the challenges and

opportunities of asymmetric architectures, proposing the OpenAMP framework as a solution

for remote core communication and power management. Despite the framework is not meant

for mixed-criticality, the works in [26, 60] and [4] explore the possibility of using such a

framework in critical scenarios. Both approaches focus on real-time communication with

remote cores, overlooking the interference between cores. In contrast, the Omnivisor aims

to provide spatio-temporal isolation between asymmetric cores, offering a complementary

solution that will incorporate real-time communication in the future.

MPSoCs Hypervisors. Some recent works have been proposing techniques to virtualize

heterogeneous platforms featuring programmable logic (FPGA) as well as heterogeneous

processors, to realize reliable mixed-criticality systems. Moratelli et al. propose a real-

time full-virtualization technique for MPSoCS [52]. While this work provides a solution

to run unmodified software on a traditional hypervisor with real-time requirements, the

Omnivisor is an extension for partitioning systems where the resources are statically allocated

to virtual machines and there is no need for schedulers. Gracioli et al. [34] explore the

capability to run mixed-criticality systems in MPSoCs where an SPH is deployed on APUs

to isolate resources. The paper outlines how the rich hardware features provided by modern

heterogeneous SoCs can reduce the contentions between partitioned applications. However,

while this work analyzes the optimal utilization of heterogeneous resources such as diverse

scratchpad memories, aspects not considered in our work, it overlooks the threat posed

by unrestrained microcontroller-level CPUs. In contrast, Omnivisor focuses specifically on

addressing temporal and spatial isolation issues between asymmetric cores and it also offers

flexible and seamless control over remote cores through the hypervisor. CHIPS-AHOy is

a predictable holistic hypervisor [53] that aims to satisfy temporal predictability and high-

performance requirements of software running over MPSoCs while simultaneously handling

energy efficiency, thermal bound, and system lifetime. The authors’ goal is to address the

most relevant source of unpredictability in MPSoCs, such as the memory hierarchy, the I/O

subsystem, and the hardware variability, by using techniques such as cache coloring and I/O

throttling. However, the authors do not provide a common interface to manage heterogeneous

VMs and neither consider using bandwidth regulation mechanisms to improve temporal

isolation. Biondi et al. present the SPHERE project [14], an integrated framework to abstract

the hardware complexity of MPSoCs and simplify the management of heterogeneous hardware.

The work explores the interesting possibility of using the dynamic partial reconfiguration

of the FPGA to provide efficient implementations for cryptography modules, as well as

hardware acceleration for deep neural networks in a hypervisor-based system. However, the

authors do not explore asymmetric ISA cores as the Omnivisor, and instead focus solely

on accelerators. While there is a strong effort in the literature to develop virtualization
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systems that utilize FPGA, existing works primarily focus on sharing the FPGA among

Virtual Machines running on the main cores [75, 46]. In contrast, Omnivisor acknowledges

the presence of cores in FPGA, which run entire and isolated VMs.

Although the Omnivisor model has similar objectives to those described in related work,

that is, to realize a mixed-criticality system with strong real-time guarantees for critical

VMs and to streamline the use of heterogeneous systems, it may be distinguished primarily

by three points. First, it is the first hypervisor model that considers running isolated

VMs on cores with heterogeneous ISAs as equal from the point of view of the hypervisor

interface. This simplifies the adoption of such complex platforms and improves the overall

system reliability. Secondly, unlike other solutions, it dynamically coordinates a combination

of modern heterogeneous hardware protection mechanisms at runtime (including MMU,

SMMU, SMPU/SPPU, and QoS) to provide spatial-temporal isolation to heterogeneous

cores, transparently to the user. Finally, it is the first approach that considers using the

soft-cores deployed on FPGA as isolated domains where to run VMs.

8 Conclusions

The increasing complexity of next-generation industrial applications has led to the widespread

adoption of feature-rich heterogeneous MPSoCs. However, as the number of features within a

single hardware platform increases, so does the complexity of deployment and the challenges

of maintaining temporal guarantees for software. In this paper, we have introduced the

Omnivisor, a novel model that extends static partitioning hypervisors to manage heterogen-

eous processing elements within asymmetric architectures. Our experimental results have

demonstrated that deploying this model on a real system enables the seamless deployment

of virtual machines on cores with heterogeneous ISAs (ARM and RISC-V) within a single

platform, even if some or all are implemented as soft-cores in FPGA. Furthermore, the solu-

tion ensures robust spatial and temporal isolation of VMs, achieved through a combination

of software/hardware mechanisms. Additionally, we have showcased how the Omnivisor

enhances the user’s control over MPSoCs. Specifically, we utilized Omnivisor features to

precisely regulate the degradation of a real-time virtual machine executing on a remote core.

For future research directions we intend to (1) integrate a library of remote core utilities

sourced from open-source scientific works in order to enhance the monitoring and management

capabilities of MPSoCs. Following this (2), we aim to elevate the flexibility of these platforms

to the next level by introducing dynamic FPGA hardware reconfiguration at the hypervisor

level. Our objective is to integrate the capability to reconfigure portions (tiles) of the

programmable logic as an additional Omnivisor feature, enabling the instantiation of soft-

cores ad-hoc and on the fly to launch a VM with specific requirements.

Overall, our work showcases the potential of the Omnivisor in addressing the challenges

posed by modern industrial applications, offering a promising solution for the efficient

utilization of heterogeneous MPSoCs.
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