The Omnivisor: A Real-Time Static Partitioning
Hypervisor Extension for Heterogeneous Core
Virtualization over MPSoCs

Daniele Ottaviano &
Universita degli Studi di Napoli Federico II, Italy

Francesco Ciraolo &
Boston University, MA, USA

Renato Mancuso &
Boston University, MA, USA

Marcello Cinque &
Universita degli Studi di Napoli Federico II, Italy

—— Abstract

Following the needs of industrial applications, virtualization has emerged as one of the most effective
approaches for the consolidation of mixed-criticality systems while meeting tight constraints in
terms of space, weight, power, and cost (SWaP-C). In embedded platforms with homogeneous
processors, a wealth of works have proposed designs and techniques to enforce spatio-temporal
isolation by leveraging well-understood virtualization support. Unfortunately, achieving the same
goal on heterogeneous MultiProcessor Systems-on-Chip (MPSoCs) has been largely overlooked.
Modern hypervisors are designed to operate exclusively on main cores, with little or no consideration
given to other co-processors within the system, such as small microcontroller-level CPUs or soft-cores
deployed on programmable logic (FPGA). Typically, hypervisors consider co-processors as I/0O
devices allocated to virtual machines that run on primary cores, yielding full control and responsibility
over them. Nevertheless, inadequate management of these resources can lead to spatio-temporal
isolation issues within the system. In this paper, we propose the Omnivisor model as a paradigm
for the holistic management of heterogeneous platforms. The model generalizes the features of
real-time static partitioning hypervisors to enable the execution of virtual machines on processors
with different Instruction Set Architectures (ISAs) within the same MPSoC. Moreover, the Omnivisor
ensures temporal and spatial isolation between virtual machines by integrating and leveraging a
variety of hardware and software protection mechanisms. The presented approach not only expands
the scope of virtualization in MPSoCs but also enhances the overall system reliability and real-time
performance for mixed-criticality applications. A full open-source reference implementation of the
Omnivisor based on the Jailhouse hypervisor is provided, targeting ARM real-time processing units
and RISC-V soft-cores on FPGA. Experimental results on real hardware show the benefits of the
solution, including enabling the seamless launch of virtual machines on different ISAs and extending
spatial/temporal isolation to heterogenous cores with enhanced regulation policies.

2012 ACM Subject Classification Computer systems organization — Real-time system architecture
Keywords and phrases Mixed-Criticality, Embedded Virtualization, Real-Time Systems, MPSoCs
Digital Object Identifier 10.4230/LIPIcs. ECRTS.2024.7

Supplementary Material Software (ECRTS 2024 Artifact Evaluation approved artifact):

https://doi.org/10.4230/DARTS.10.1.4

Software (Source Code): https://github.com/DanieleOttaviano/Omnivisor [61]
archived at swh:1:dir:c2960f93aad49329bb2deecdedb7b74692ec494d

Funding This work is partially supported by the Italian Ministry of Enterprises and Made in Italy

(MIMIT) under the GENIO Project (CUP B69J23005770005), and it has been carried out within the

EUROfusion Consortium, funded by the European Union via the Euratom Research and Training

© Daniele Ottaviano, Francesco Ciraolo, Renato Mancuso, and Marcello Cinque;
5v licensed under Creative Commons License CC-BY 4.0

36th Euromicro Conference on Real-Time Systems (ECRTS 2024).
Editor: Rodolfo Pellizzoni; Article No. 7; pp. 7:1-7:27

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

7:2

The Omnivisor

Programme (Grant Agreement No 101052200 - EUROfusion) and by the National Science Foundation
(NSF) under grant number CNS-2238476. Views and opinions expressed are however those of the
author(s) only and do not necessarily reflect those of the EU or the European Commission or the

NSF. Neither any of earlier can be held responsible for them.

1 Introduction

The current approach to address the increasing number of functional requirements in industries
that deal with safety-critical systems such as automotive [8], avionics [73], and nuclear
fusion [25] is toward an integrated development model rather than a federated one, where
several services with varying degrees of criticality coexist on shared hardware platforms. These
software architectures are usually referred to as mixed-criticality systems (MCSs) [18, 17].
Developing mixed-criticality systems on multiprocessor architectures to reduce the size,
weight, power, and cost (SWaP-C) is a challenge that, despite strong community interest,
has not yet found a unique standard solution [3, 45, 19]. Among the proposed approaches,
one of the most valuable in the scope of high-performance real-time systems is the use of
real-time virtualization [22]. While traditional virtualization is a feature-rich technology
that allows efficient resource utilization, real-time virtualization leans toward minimalist
architectures focusing on safety, security, and predictability. In the wide spectrum of real-
time virtualization technologies [23], the minimal and safest virtualization approach is static
partitioning [64]. This partitioning-based approach is suitable for critical systems where the
lack of determinism can significantly increase the validation and certification cost.

This virtualization approach has shown outstanding isolation performance in symmetric
multi-core architectures, as evidenced in recent studies [47]. However, alongside symmetric
platforms, asymmetric architectures are increasingly gaining traction in the market; the
complexity and heterogeneity of multi-core systems and Commercial Off-The-Shelf (COTS)
boards are gradually increasing to meet the requirements of bleeding-edge industrial ap-
plications. Therefore, we are currently witnessing the growing adoption of asymmetric
MultiProcessor Systems-on-Chip (MPSoCs) in various industrial applications from auto-
motive [8, 16, 65, 39], to avionics [73], and nuclear fusion [25, 7]. With the increase in
hardware complexity within these systems, the already well-known challenges with predict-
ability and security are further exacerbated. Modern MPSoCs, such as AMD /Xilinx Zynq
UltraScale+ [78], Versal [77], NVIDIA Orin [56] and Xavier [57], Google Coral [33] and NXP
1.MX8 [58], embed a heterogeneous set of processing elements. These include general-purpose
microprocessor-level CPUs, sometimes referred to as Application Processing Units (APUs),
and microcontroller-level CPUs that are simpler and more predictable, such as those within
the ARM Cortex-M/R families. Additionally, some of these systems incorporate accelerators
(e.g., Graphical Processing Units — GPUs, and/or Tensor Processing Units — TPUs), and,
in some cases, also Field-Programmable Gate Arrays (FPGAs), that is, re-programmable
hardware capable of integrating various types of special-purpose accelerators or additional
cores (e.g., RISC-V soft-cores). All of these processing elements in the system are intricately
interconnected and share numerous platform resources. From now on, to be consistent with
ARM'’s terminology, we will utilize the term “managers” to denote all hardware capable
of initiating memory transactions. Additionally, we will refer to all cores that are not
general-purpose application cores (main cores), as “remote cores” to be compliant with the
terminology used by Linux (e.g. remoteproc driver [44]).

To provide code running on such complex architectures with real-time guarantees, re-
searchers have focused on mitigating temporal interference due to resource contention across
MPSoCs. Over the years, considerable effort has been invested in exerting control over

D. Ottaviano, F. Ciraolo, R. Mancuso, and M. Cinque

the memory hierarchy, including the last-level cache [42], DDR memory [80], and memory
controller [82]. Significant attention has also gone into minimizing interrupt latency [29] and
managing the sharing of memory channels among modules in the programmable logic [27].
However, comparatively less attention has gone into the inherent limitation of static parti-
tioning hypervisors in efficiently managing heterogeneous platforms. Specifically, modern
architectures present cores that manufacturers provide ad-hoc to execute specialized software.
Examples include Real-Time Processing Units (RPUs) used to run critical applications and
Deep Learning Processing Units (DPUs) used to improve the performance of AI applications.
In a mixed-criticality system, we expect the execution time of code running on RPUs to
remain unaffected by other independent applications, such as Al workload running on DPUs.
Currently, remote cores are not managed by the hypervisors in the same way as the
main CPUs; rather, these cores are either ignored entirely or, at best, treated as I/O devices
allocated to virtual machines (VMs) running on primary cores. This means a VM controlling
one or more remote cores can load and execute any code on them. Unfortunately, a remote
processing core usually possesses enough privileges to access critical platform resources,
becoming a threat to the other VMs running on the board from a spatial and temporal
isolation point of view. In contrast, a hypervisor designed for heterogeneous MPSoCs should:
Offer a unified and transparent interface to the user to flexibly deploy virtual machines
on any core within the platform, regardless of the Instruction Set Architecture (ISA).
Guarantee comprehensive spatial and temporal isolation between VMs across the platform.

Research Question. The question that inspired this paper is: Can next-generation real-
time static partitioning hypervisors adapt to the evolving landscape of modern heterogeneous
platforms? Specifically, can they offer seamless and flexible mechanisms for deploying VMs
across heterogeneous processing cores, all while ensuring robust isolation guarantees for
mized-criticality deployment?

Contribution. To tackle such a question, in this paper, we propose the Omnivisor model.
This model extends the traditional static partitioning hypervisor paradigm to take control
over heterogeneous cores in MPSoCs platforms. Thus, we make the following contributions:
We propose a novel model that generalizes the features of real-time static partitioning
hypervisors to integrate the management of heterogeneous cores, improving their flexibility
and usability in MPSoCs platforms.
We show how a combination of various hardware-software protection mechanisms can be
seamlessly orchestrated at runtime by our Omnivisor to ensure high isolation between
VMs running on heterogeneous cores.
We provide an open source reference implementation [61] and an evaluation of the proposed
model on a COTS board (AMD/Xilinx’s UltraScale+) by extending Jailhouse, a real-time
static partitioning hypervisor, to run virtual machines over remote cores with different
ISAs (Aarch32 RPUs and RISC-V soft-cores).

Experimental results on the board show that a user can seamlessly launch a VM on
heterogeneous cores via the Ominivisor with comparable boot times. These experiments
highlight the Omnivisor’s flexibility which enables compelling scenarios such as real-time
live migration [41], reboot after failure [51], system rejuvenation [1], and over-the-air (OTA)
updates [28, 36]. Experiments also demonstrate the isolation capabilities of the Ominivisor by
executing critical workload on remote cores in the presence of severe disturbances generated
by the other cores and the FPGA on the same board. Finally, by using realistic benchmarks,
we show how the Ominivisor can enforce a controlled degradation policy to keep real-time
guarantees while not limiting the overall system performance.

7:3

ECRTS 2024

7:4

The Omnivisor

Paper Structure. In Sec. 2, we review modern hardware protection mechanisms on MPSoCs
and discuss traditional hypervisor models’ limitations. Sec. 3 introduces the Omnivisor model,
highlighting its benefits and differences from traditional models. We also discuss Omnivisor’s
requirements, responsibilities, and features. In Sec. 4, we walk through the implementation
of the Omnivisor on a Xilinx Ultrascale+ board, assessing strengths and weaknesses. Sec. 5
and 6 present experimental analysis and practical use cases. Sec. 7 compares Omnivisor with
related works.Conclusive remarks and future works are provided in Sec. 8.

2 Background and Motivations

Considering the high heterogeneity of processing elements deployed on MPSoCs that act as
managers — i.e., heterogeneous CPUs, GPUs, DMAs, and FPGAs sharing system resources
like the memory controller, memory storage, I/O devices — hardware manufacturers provide
a robust suite of hardware protection mechanisms to improve both spatial and temporal
isolation guarantees. Spatial isolation ensures that a processing element accessing a shared
resource prevents other processing elements from accessing its private data. Temporal
isolation guarantees that the time behavior of a processing element is not affected by (or
has a bounded effect on) the behavior of other processing elements, even if those (partially)
access the same shared resources.

This section aims to provide a comprehensive summary and categorization of the various
processor types and protection mechanisms employed on state-of-the-art MPSoCs, shedding
light on their roles and scope within the considered class of platforms. Following that, we
explain how traditional static partitioning hypervisors utilize these mechanisms only to
a limited extent, highlighting why this presents a significant constraint compared to the
extensive capabilities provided by modern COTS platforms.

2.1 MPSoCs processors classes

Embedded MPSoCs are nowadays characterized by heterogeneous clusters of CPUs that can

be categorized into three classes that feature different protection mechanisms:
microprocessor-level CPUs: Fully featured general-purpose multi-core CPUs character-
ized by all the modern hardware optimization techniques such as prefetching, branch
prediction, cache coherence, as well as memory virtualization (MMU-based, see Sec. 2.2.1).
These processors present at least three privilege levels to differentiate permissions and
registers belonging to the hypervisor, the operating system, and the user-level applications.
These are often referred to as Application Processing Units (APUs); an example is the
cores belonging to the ARM Cortex-A family.
microcontroller-level CPUs: Specific-purpose CPUs that do not have any mechanism
for memory virtualization (MPU-based). They exhibit reduced hardware optimization
techniques to improve simplicity and predictability. Furthermore, these microcontrollers
usually support less than three privileged levels. This is because the software deployed
on these CPUs is simpler and typically consists of a bare-metal application or, at most, a
real-time operating system (RTOS). An example includes the ARM Cortex-M and the
ARM Cortex-R family, and often referred to as Real-Time Processing Units (RPUs).
programmable logic CPUs: Highly specialized soft-cores deployed on re-programmable
hardware to run code with specific requirements. Although these processors are extremely
heterogeneous, their deployment on FPGA platforms enables communication with the rest
of the system, mediated by the SMMU (see Sec. 2.2.1). This category includes soft-cores
such as the AMD MicroBlaze [5], or the RISC-V Pico32 [79].

D. Ottaviano, F. Ciraolo, R. Mancuso, and M. Cinque

2.2 MPSoCs Protection Mechanisms

The MPSoCs protection mechanisms can be systematically categorized as follows.

2.2.1 Spatial Isolation
Address Translation (MMU/SMMU). The Memory Management Unit (MMU) is the most

known and used memory isolation mechanism for address translation. It is a component
integrated into most microprocessor-level CPUs, serving a fundamental role in virtual memory
management. The MMU maps virtual addresses to physical addresses, enabling applications
(or guest OSes) to access memory locations in a manner that is transparent and independent
of the physical memory layout. In the context of heterogeneous MPSoCs, the System Memory
Management Unit (SMMU) is an extension of the MMU, tailored to manage memory and
address translation for DM A-capable devices and accelerators. However, not all processing
elements that can potentially assume the role of a manager on these boards are equipped with
an MMU/SMMU. Consequently, if not properly configured, certain managers can potentially
access other managers’ data in a manner that poses inherent security risks and/or results in
poor fault containment, as evidenced in our evaluation.

Accesses Protection (MPU/SMPU/SPPU). Address translation mechanisms are not the
only means of achieving spatial isolation. Microcontroller-level CPUs typically employed
to run bare-metal software or Real-Time Operating Systems (RTOS) do not necessitate
address translation mechanisms. This is due to both the inherent cost of such mechanisms
in terms of space occupation and energy consumption and the temporal unpredictability
that MMU-based mechanisms introduce [62]. In these scenarios, CPUs are equipped with
more straightforward mechanisms known as Memory Protection Units (MPUs). These are
implemented as hardware tables deployed between the manager (CPU) and the subordinate
(Memory). Using the tables, an MPU enforces specific permissions to fixed address space
regions.In heterogeneous MPSoCs, given that not all processing elements within these
platforms possess address translation mechanisms, a comprehensive spatial isolation strategy
is implemented by deploying system MPU-based protection mechanisms at the access port
of important system resources. We term these system-level protection mechanisms System
Memory Protection Units (SMPUs) when used to protect memory; we use the term System
Peripheral Protection Units (SPPUs) when they are used to protect memory-mapped 1/0.

2.2.2 Temporal Isolation

Hardware Bandwidth Allocation. In modern ARM-based platforms, Quality of Service

(QoS) support offers a mechanism to manage memory traffic at the level of bus managers.

Communication between a manager and a subordinate within an ARM-based platform is
facilitated through the AXI protocol. The latest iteration of the AXI protocol, the AXI4
standard, incorporates a set of signals, specifically ARQOS and AWQOS, which convey traffic

prioritization details essential to enforce bandwidth regulation in QoS-aware on-chip memory.

The QoS technology was initially introduced into MPSoCs with the primary objective of
achieving load balancing. However, numerous studies have subsequently demonstrated its
versatility and effectiveness in ensuring temporal isolation [67, 32]. However, there is a
common trend in existing QoS-enabled platforms [69]: multi-core CPUs are typically treated
as a unified manager. As a result, QoS support is primarily employed to regulate the
aggregate traffic generated by all CPUs collectively. While this observation holds for main
cores, it differs in the case of remote cores. These remote processors are usually equipped
with distinct QoS ports for each CPU, a crucial distinction leveraged in the Omnivisor model
to achieve temporal isolation between heterogeneous cores.

7:5

ECRTS 2024

7:6

The Omnivisor

Software Bandwidth Allocation. Despite the QoS limitation in managing individual CPUs
in a multi-core cluster, software solutions exist to regulate the bandwidth of the multi-core
processors, offering per-CPU granularity that an Omnivisor shall leverage [81] [82].

2.3 From Traditional to Static Partitioning Hypervisors

Traditional Hypervisors. In the traditional hypervisor model, a virtualization layer is set
between multiple software environments, namely virtual machines (VMs), and the underlying
hardware. The responsibility of this layer is to abstract the physical hardware resources
to the VMs to give them the illusion of running alone on the platform. To realize such
abstractions, modern hypervisors take advantage of a combination of software mechanisms,
including hypercalls and the trap-and-emulate technique. In addition, they leverage hardware
mechanisms such as advanced MMU systems with dual stages of translation and support for
multiple privilege levels within processor cores. This approach is designed to ensure spatial
isolation between VMs, preventing one VM from accessing the data belonging to another
VM while striving to maintain high performance and resource utilization levels. On top of
this layer, hypervisors provide an interface for managing the VMs, allowing a high-privilege
user to create, stop, and control the resources assigned to VMs at run-time. Well-known
open-source hypervisors that follow this model are KVM [40], Xen [11], and many others.
These are widely used, and researchers have extended their capabilities to accommodate
various use cases, including real-time scenarios [2, 30].

Static Partitioning hypervisors. Real-time static partitioning hypervisors (SPHs), such as
Jailhouse [63], Bao [48], Xtratum [49], and Quest-V [74], moves from traditional hypervisor
model by adding resource separation constraints bearing the cost of less efficient use of
resources to meet the requirements of real-time applications. In the SPH model, temporal
isolation is as important as spatial isolation; therefore, they statically partition hardware
resources between VMs to minimize shared components and mitigate temporal interference.
According to this model, each VM gets a subset of the platform’s resources; therefore,
the CPUs are statically assigned to the VMs, and so are the memory, I/O devices, and
accelerators.

2.4 SPH Shortcoming over Asymmetric MPSoCs

SPHs are currently designed to operate exclusively on microprocessor-level CPUs, with
little or no consideration given to remote cores within the system, such as microcontrollers
or soft-cores on FPGAs. In this scenario, deploying code on remote cores requires the
system programmer to manually load the code and start the core. This is currently possible
using two approaches: (I) using the bootloader and thus at boot time or (II) using the
Linux remoteproc driver on a VM at runtime. However, the former approach sacrifices
the flexibility of dynamically halting and reloading code on the remote cores as needed,
and the latter gives a VM full access to remote cores that can easily introduce time delays,
interferences, or even system failures. Specifically, the remote cores are not isolated by default
from the other virtual machines, and the code running on them can cause temporal and/or
spatial isolation issues for the other VMs by accessing the shared resources. To address
this, a system programmer can manually configure and enable platform-specific hardware
protection mechanisms, such as SMPU/SPPU and QoS, to isolate the cores from the other
VMs. Although effective, this approach diminishes the flexibility of the hypervisor and
requires significant effort and specialized expertise. To actually maintain the isolation, every

D. Ottaviano, F. Ciraolo, R. Mancuso, and M. Cinque

time a new VM is created, and every time a new code is loaded in the remote cores, the
system developer must promptly reconfigure these mechanisms to isolate resources, otherwise
risking data corruption or possible interference between cores.

An SPH on heterogeneous MPSoCs should ensure holistic protection across the entire
board, transparently to the user. It should handle isolation seamlessly, avoiding the need for
manual programming of specialized hardware protection mechanisms and providing a more
user-friendly and robust solution for running code on asymmetric multi-core systems.

3 The Omnivisor

In this paper, we introduce the Omnivisor, a novel hypervisor model that generalizes static
partitioning hypervisors to enable the transparent execution of VMs on heterogeneous cores
over commercial off-the-shelf (COTS) MPSoCs. The model aims to streamline the deployment
process and simplify the programming model of such complex architectures while providing
strong spatial and temporal isolation as required by mixed-criticality systems.

Model Purpose. As depicted in Fig. 1, while conventional hypervisors are designed to
manage microprocessor-level CPUs, our model extends its control to include microcontroller-
level CPUs and soft-cores on programmable logic (FPGA). To achieve this, the Omnivisor
assumes control over different hardware mechanisms to ensure isolation, both temporally
and spatially, of the VMs. Three primary objectives underpin the Omnivisor model:
1. To offer users a consistent, transparent, and easy-to-use interface for managing virtual
machines on both primary and remote cores.
2. To reorganize the privilege levels of the software running on heterogeneous cores in
order to build a holistic privilege hierarchy across the platform.
3. To seamlessly administer spatial and temporal isolation between virtual machines,
regardless of the specific core on which they are deployed.
According to this novel model, remote cores are no longer mere I/O devices; instead, they
are elevated to primary CPUs capable of running self-contained, strongly isolated VMs.

Clarification of Terminology. Before delving into the specifics of the Omivisor, it is import-
ant to clarify why we chose to use the term “Virtual Machine” to denote the code executed
by the Omnivisor on all the types of cores. We acknowledge that the code running on remote
cores does not execute atop an actual hypervisor, meaning that there is no scheduler, and
the code has complete control over the core itself. However, we have opted to label them
VM for two main reasons. First, they are encapsulated by the Omnivisor, which is capable
of isolating the accessible resources in the system, similar to how SPHs handle traditional
VMs. Second, we provide users with a unified and transparent method for utilizing remote
cores, mirroring the process of launching a VM on application cores.

3.1 Requirements

The Omnivisor model is based on the assumption of having at its disposal a fully featured
MPSoC with the following characteristics:
Multiple Core Clusters: Two or more heterogeneous clusters of cores, and at least one of
the clusters is a multiprocessor-level CPU cluster.
Address Translation: An MMU featuring two levels of translation in front of each
multiprocessor-level CPU cluster and an SMMU placed between DMA-capable peripher-
als/accelerators and shared resources.

7:7

ECRTS 2024

7:8 The Omnivisor

Hypervisor Omnivisor
Microprocessors Microcontrollers Programmable logic
CPUs CPUs CPUs
VMs . [vm] - {vi]
<
CPUs ..
— _
. Address
2 [Translation
L
£ | Temporal
=)
£ | 1solation [Gos | o[aos] [@os | - aos]
C o
= | Spatial
Isolation @ '
o
Mem =]
3l | | | |
H UART SPI CAN
§ 1O DMA
| — |
D NS—

Figure 1 A block diagram illustrates the Omnivisor model, showcasing varied temporal and
spatial isolation mechanisms across CPU clusters, emphasizing their heterogeneity. The arrows
indicate the flow of a request from an initiator to the accessed resource (memory or I/0).

Accesses Protection: SMPU/SPPU hardware protection mechanisms to shield shared
resources (memory, system registers, and peripherals).
Bandwidth Regulation: A hardware QoS-like bandwidth allocation mechanism for each
core cluster and DMA-capable peripherals that access shared resources.
Power Management Firmware: A board-specific firmware that exposes an interface to
the hypervisor for heterogeneous cores power management.
These specified characteristics represent the foundational prerequisites for a platform to
be deemed Omnivisor-ready. Although these requirements may initially appear as limit-
ing factors, they effectively align with the design standards of modern embedded system
platforms [78, 77, 58], tailored to meet industrial demands.

3.2 Responsibilities

The Omnivisor operates as holistic software running at the highest privilege level on the
board. It delivers services to software running at lower privilege levels. Therefore, its primary
responsibility is to prevent the escalation of VM privileges, regardless of the used cores.

AMP privilege enforcement. The coexistence of multiple cores with varying architectures
in an MPSoC precludes the application of a Symmetric Multi-Processing (SMP) approach.
In SMP, all cores are orchestrated by a single software instance sharing a common address
space. Instead, MPSoCs imply the use of an Asymmetric Multi-Processing (AMP) approach,
where different core clusters operate independently, each with a unique address space. Given
that constraint, similar to traditional hypervisors in SMP configuration, the Omnivisor
must ensure that VMs running in AMP configuration do not access resources outside of the
boundaries of the partitions. However, while traditional hypervisors can leverage multi-core
hardware extensions to manage the privilege levels of VMs, the Omnivisor must employ
a combination of distinct hardware mechanisms tailored to the specific core cluster it is
managing. For instance, while soft-cores deployed on FPGA can be protected using the

D. Ottaviano, F. Ciraolo, R. Mancuso, and M. Cinque

[Microprocessor-level CPUs | Remote CPU

PVM

o
SN | |] |] PN Launch VM o
T | Create VM Destroy Vm Restart VM Stop VM Monitor Hypercall/ o =
= {} VM Status Omnicall [Omnivisor z|e g
. Load . Protect Power On) E
| OMNIVISOR | a P
T -|2
Config. Config. Config. Req.
=
Load/Store i Add A Req. CPUs
o ith CPUs q =)
VM All i Trar i Pr i Status Power Man. B
o < - [Isolation Layer | 2‘
[1 S
Mem.l ‘ Qos ‘ S'\:A":AUU 2’:,'53 ‘ FIRMWARE ‘ gl ——] | 3

Figure 2 Omnivisor feature set (left) and remote core VM startup process (right).

SMMU, the Omnivisor must leverage SMPUs to shield the resources from the VMs running
on microcontroller-level CPUs. Consequently, as shown in Fig.2 (right), every time a new
VM is launched on a remote core, before starting the core, the Omnivisor must configure
an isolation layer that restrains the capabilities of the newly-created VM restricting access
to both higher privileged resources (e.g., system registers) as well as resources belonging
to different VMs (e.g., I/O peripherals, memory regions). The arrows in Fig.2 (right) are
color-coded based on the operation and are enumerated in temporal order.

DMA-capable 1/0. The cores are not the only platform managers within the system.
Indeed, DMA engines could have access to all system resources, potentially jeopardizing
inter-partition spatio-temporal isolation. To address this risk, the Omnivisor must prevent:

1. DMA engines from having unrestricted and unregulated access to memory resources.

2. A core from programming the DMA to access memory regions it does not own.

As depicted in Fig. 1, the Omnivisor addresses the first issue by employing SMMU mechanisms
to enforce address translation and access protection for DMA, much like traditional SPHs.
Additionally, the QoS is employed to provide temporal isolation.

Typically, when an SPH allocates the DMA to a VM, it configures the SMMU to allocate
the same memory regions to both. Therefore, a VM cannot exploit the DMA to access
inaccessible regions. However, If a second virtual machine is running on a remote core without
MMU/SMMU protection (microcontroller-level CPUs), it can freely access the address region
of the DMA registers. Therefore, it could potentially program the DMA to gain unauthorized
access to memory areas belonging to the first VM. To avoid that, addressing the second issue,
the Omnivisor employs a strategy wherein SMPUs are configured to restrict access to the

DMA registers exclusively to the Omnivisor itself and to the VM that is supposed to use it.

In a broader context, the Omnivisor applies a similar strategy to restrict permissions of
remote cores to protect other critical address regions, including those for configuring the
SMMU, SMPUs, and QoS.

3.3 Features

The Omnivisor provides a set of features that includes that of the traditional SPHs while
expanding them to encompass heterogeneous processing elements (see Fig. 2). Given the
diversity among existing hypervisors, defining the minimum feature set and how they are
extended for effective operation on asymmetric architectures is crucial.

The Privileged Virtual Machine (PVM) interface. First, we introduce the Privileged VM
(PVM), which is a known concept in hypervisor’s literature [54], and is the only VM with
the ability to manage other VMs. A few examples are the root-cell in Jailhouse [63], and the

7:9

ECRTS 2024

7:10

The Omnivisor

Dom0 in Xen [70]. The Omnivisor provides the PVM with the same interface for managing
VMs for both the main and remote cores. For instance, as shown in Fig. 2, the PVM only
needs to request the VM launch, and then the Omnivisor takes charge of programming the
underlying resources to serve the request for the specified processor. Other than launching a
VM, the Omnivisor provides methods for stopping and restarting a VM and an interface for
monitoring the current status of the VMs.

Omnicall. Most state-of-the-art hypervisors implement hypercalls to expose functionalities
to virtual machines, akin to how operating systems implement system calls for processes.
Despite the current implementation of Omnivisor restricting this mechanism to virtual
machines running on the APUs, we aim to propose a design for extending this service to
VMs running on remote cores, which we will refer to as “Omnicalls”. To implement this
mechanism, the Omnivisor needs to provide three additional features:

1. Event signaling from the Omnivisor to VMs on remote cores.

2. Event signaling from VMs on remote cores to the Omnivisor.

3. A real-time protocol for inter-VM communication.

For the first functionality, we need to differentiate between processing elements that support
interrupt delivery, like APUs, and those that do not support them, such as hardly restricted
soft-cores. To signal an event to the former category, the Omnivisor can leverage Software
Generated Interrupts (SGI). Meanwhile, signaling events to the latter requires the remote
VM to periodically check for Omnivisor-originated pending events (polling).

Regarding the second functionality, the Omnivisor can grant the VMs on remote cores
access to a subset of the interrupt controller’s configuration space, enabling the generation of
SGIs toward the cores where the Omnivisor operates. Currently, the Omnivisor supports
restricted access to the interrupt controller configuration space for these VMs.

Lastly, using shared memory for data exchange is already implemented in most legacy
SPHs. We extended this feature to remote cores in the Omnivisor, but enhancing the
real-time performance of the communications requires a tailored mechanism. To provide
real-time guarantees, one existing solution consists of using an external processing element
as a broker to orchestrate the communications between VMs. This has been theoretically
proved and tested on a heterogeneous MPSoC by Schwiricke et al. [66], and the Omnivisor
can easily integrate the broker as a VM running on a remote core while using its features to
isolate it both temporally and spatially from the other VMs.

Dynamic Address Translation. In traditional hypervisors, when a new VM is created on the
APU, address translation is typically implemented using the MMU. The Omnivisor extends
this functionality to soft-cores by utilizing the SMMU. It’s worth noting that the SMMU is
already employed by SPHs to perform address translation for I/O devices associated with
VMs. However, the Omnivisor changes the perspective and utilizes the same mechanism
to implement self-contained translation specifically for soft-cores, which are treated as
self-contained VMs in this context.

Dynamic Accesses Protection. Protection mechanisms on MPSoCs, such as SMPU/SPPU,
are commonly configured statically at boot time by high-privilege and secure software (e.g.,
first-stage bootloader). These configurations typically remain unchanged throughout the
system’s lifetime. However, to enable the seamless execution of isolated VMs on remote cores,
the Omnivisor dynamically determines how to configure all access protection mechanisms.
This approach ensures dynamic system-level protection that adapts during runtime based on
the specific VMs currently active.

D. Ottaviano, F. Ciraolo, R. Mancuso, and M. Cinque

Dynamic Bandwidth Allocation. Traditional SPHs ensure that resource assignments remain
static between PVM management calls. This implies that everything can be dynamically
reassigned by these calls, remaining static until the next call. The Omnivisor maintains
consistency by applying the same approach to bandwidth allocation. Hence, every time
a new VM is launched, it is possible to dynamically allocate the bandwidth to that VM.
Moreover, to enable mission-critical reconfiguration scenarios and ease parameter tuning, the
Ominivisor implements bandwidth allocation as a settling call that the user can leverage
to modify the temporal behavior of the VMs to a new static configuration. Once more, the
Omnivisor shifts the paradigm regarding resource utilization. Unlike SPHs, which primarily
focus on protecting VMs solely on the APU, the Omnivisor extends its scope to encompass
VMs on other remote processors. Consequently, bandwidth regulation mechanisms like QoS
are not only employed on accelerators to maintain service quality for APUs but also for
remote cores, even if they are soft-core deployed on FPGA.

4 Omnivisor Implementation

The Omnivisor model is designed to apply to a wide range of existing partitioning hypervisors;
nonetheless, our reference implementation is built on top of the Jailhouse hypervisor [63]
because it has low overhead [47] while maintaining an easy-to-use interface to manage VMs at
runtime. Furthermore, the Jailhouse-RT branch, overseen by Minerva Systems [50], already
implements MemGuard-like regulators for the APUs, page coloring, and basic SMMU drivers.
It also provides a rudimental interface to control ARM Quality of Service (QoS) regulators.

The implementation was carried out with testing focused on the ARM-based Zynq
Ultrascale+ board from Xilinx. This MPSoC aligns with all the requirements outlined in
Sec. 3.1: it features a quad-core ARM Cortex-A53 (APUs), a dual-core ARM Cortex-R5F
(RPUs), and a 16nm FinFET + Programmable Logic (FPGA). Additionally, the platform is
equipped with protection mechanisms for both temporal isolation (QoS), address translation
(MMU, SMMU), and access permissions (SMPUs, and SPPUs). From now on, we will refer
to this platform with the ZCU+ notation. Moreover, to use the correct terminology, the
SMPUs/SPPUs on the board are named Xilinx Memory Protection Units (XMPU) and
Xilinx Peripherals Protection Units (XPPU).

This section aims to illustrate key Omnivisor technical details, providing a comprehensive
discussion of strengths and limitations. To achieve this, we first briefly describe the Jailhouse
hypervisor, and the additional functionalities introduced by the Omnivisor extension. Then,
we walk through the compiling and start processes of a VM from the user’s perspective while
explaining how the Omnivisor manages the system under the hood.

Jailhouse in a Nutshell. A pivotal design choice in Jailhouse is to initiate the hypervisor
from a running Linux instance. Specifically, by utilizing a Linux kernel module, users can

load the hypervisor into memory and initiate a series of procedures to prepare the system.

Upon initialization on each core, the hypervisor takes control of the underlying hardware,
transforming the running Linux into the first virtual machine within the system, referred
to as the root-cell. For its bootstrap, the hypervisor requires only a configuration file that
lists the resources allocated to the root-cell. Next, to create reservations (cells in Jailhouse
jargon) for the creation of additional VMs (inmates), the hypervisor reallocates hardware
resources (e.g., CPU(s), memory, PCI or MMIO devices) from Linux to the new cells as
detailed in other cell-specific configuration files. From now on, we will use the term “VM” to
refer to the cell plus inmate pair and “PVM” to refer to the root-cell.

7:11

ECRTS 2024

7:12

The Omnivisor

Omnivisor Extension Overview. Starting from a vanilla Jailhouse, besides the small modi-
fications integrated all over the code to transparently unify the interface of Jailhouse with the
new services, the Omnivisor extends the hypervisor with new low-level functionalities. First,
the power management of remote cores has been implemented, encompassing shut-down,
stop, and start functionalities for both microcontroller-level and soft-cores. Second, spatial
isolation management has been enhanced to include dynamic control of XMPUs/XPPUs.
Moreover, temporal isolation management has been refined through the integration of QoS
regulator control. Finally, the compiling procedure for remote cores VMs has been integrated
into the hypervisor offline workflow. The usage of these functionalities is detailed below.

4.1 Omnivisor Usage Workflow

One of the key objectives of the Omnivisor is to simplify the utilization of complex hetero-
geneous architectures for users. Therefore, the Omnivisor provides a unified approach for
managing VMs on both main and remote cores. In our implementation, based on the ZCU+,
alongside the legacy APUs we have integrated all the necessary code to run VMs on two
types of remote cores: RPUs (ARM32-CortexR5F) and RISC-V soft-cores (Pico32 [79]). To
streamline our discussion, we will utilize the term “rCPUs” to refer to any remote core, while
we will delve into the implementation for RPU and RISC-V cores only when required.

4.1.1 VM Compiling Process (Offline)

The initial step involves the user compiling a specific VM application to run on a remote
core. The offline compiling procedure, along with its input and output, is depicted in Fig. 3.
Given the nature of the remote cores, the applications we run are either bare-metal or built
on top of simple RTOSes. In both cases, linking some libraries may be a requirement for the
code to work correctly on a specific core. For instance, the traditional compiling approach
for RPUs on ZCU+ entails using Xilinx-provided libraries. To streamline the utilization
of rCPUs and align with the Jailhouse methodology, we have integrated the libraries for
compiling VMs targeting RPU and RISC-V cores into the Omnivisor code. Consequently,
the user only needs to integrate the application-specific code into the Omnivisor code, as
all the necessary libraries are already provided, similar to how Jailhouse includes libraries
for compiling APU-based VMs. Additionally, the user must provide a configuration file for
the VM, specifying the required resources. This configuration should include details on the
core(s) used by the VM, whether they are main cores or remote cores, as well as information
about memory regions and peripherals the VM will access. Furthermore, the configuration
must list the IDs with which the VM’s managers (e.g., CPUs/rCPUs and DMA-capable
devices) are recognized in the system. Once the user has prepared the application code and
the configuration file for the VM, they can be compiled together with the Omnivisor code.
To do it, the user must provide a list of cross-compilers, with one compiler designated for
each core with a different ISA in the system. For instance, in the case of the ZCU+, this
would entail using the AArch64 compiler for main cores, the AArch32 compiler for RPUs,
and the RISC-V 32-bit compiler for the soft-cores. The output after compilation will consist
of the Omnivisor binary along with the binary images for the VMs.

4.1.2 VM Start-Up Process (Online)

Omnivisor Enable. Before starting an inmate, since the Omnivisor generalizes Jailhouse,
we need to enable it from a Linux instance as explained in Sec. 4. Different from the vanilla
Jailhouse, the configuration in our Omnivisor may also include a field for the rCPUs. If

D. Ottaviano, F. Ciraolo, R. Mancuso, and M. Cinque

OFFLINE 5 ONLINE
()
Compile VM Start VM APUs | RPU [RISC-V (Soft-Core)
USER ™) 1 Creat
o
Cross-Compilers A3 2 Load

Cell Config. ‘ Omnivisor-Jailhouse

TCPU model 2 1 !
Memory Regions 2 3
Peripherals
Stream-IDs

CC-Arm64
CC-Arm32
CC-RISC-V

3 Start

JTEMIJOS

I

[Omnivisor-Jailhouse Code] +rCPUs Libs}

%&@I

feo}
3
&)
B
E‘E!l 3
(xpPU] [xPPU] /S
\M‘ rCPUCell.bin [} 5
=] | =
[=]

(

Figure 3 Architectural view of VM compiling and start procedures using the Omnivisor imple-
mentation on top of Jailhouse and the Zynqg Ultrascale+ board.

this is the case, the Omnivisor verifies whether the remote cores are already active, and if
they are, it proceeds to shut them down. After that, it statically assigns their ownership to
the PVM so that it can later assign the cores to other VMs. Additionally, the Omnivisor
disables all the access permissions to the resources protected by the XMPUs such as memory
and system registers. Then it configures the first entry of each XMPU's table to allow only
the PVM to access those regions specified in its configuration file. This means that every
manager outside the Omnivisor control can not access any resource in the system.

While the Omnivisor is up and running, launching a VM for the user involves using three
simple commands, as depicted in Fig. 3: (1) create, (2) load, and (3) start, reviewed below.

Create. The create command takes as input the configuration file of the VM, which is
parsed to generate per-VM data structures. Resources are then carved out from the PVM and
mapped to the new VM. For example, the requested remote and main cores are hot-plugged
and detached from the PVM to be assigned to the new VM. After that, the isolation layer is
configured. First, the MMU is programmed to manage the APU’s memory region accesses.
However, the rCPUs lack protection from the MMU and, if left unprotected, have direct
access to all memory-mapped regions. Therefore, XMPUs are dynamically re-programmed
to allow access permissions only to the resources requested in the configuration, avoiding
unexpected accesses to sensible memory-mapped registers (e.g. DMA registers) and memory
regions belonging to other VMs. Finally, in the case of soft-cores over FPGA, the Omnivisor
configures the address translation by leveraging the SMMU.

Load. The load command requires as input the VM image. Initially, it verifies the image
size against the carved-out memory reservation. Then, if the available memory is sufficient,
it loads the VM image into memory. Moreover, before starting the VM, the user can
optionally regulate the memory bandwidth assigned to the managers to provide specific
temporal guarantees to the VMs. The Omnivisor provides the knobs to do it, leveraging the
aforementioned QoS and MemGuard interfaces in Jailhouse-RT [50]. This step is integrated
into the load command during the start-up of a VM to avoid adding another PVM call
between load and start. However, the Omnivisor also implements a PVM call for bandwidth
allocation separately from the load to enable mission-critical reconfiguration scenarios. When
selecting parameters for bandwidth allocation, it is the system integrator’s responsibility

7:13

ECRTS 2024

7:14

The Omnivisor

to determine the suitable bandwidth for each VM, as this choice heavily relies on the
application’s requirements. However, using the tools offered by the Omnivisor, it is possible
to empirically evaluate the parameters needed to enforce a specific maximum slowdown for
a given VM. An example of a simple offline policy to automatize the choice of bandwidth
parameters is provided in the experimental section.

Start. Finally, using the start command, the user initiates the VM start-up. Different
MPSoC’s architectures have different standards for power management of cores, such as
the ARM PSCI [6] or the Intel ACPI [38]. However, the functionalities provided by these
standards are similar. Therefore, the Omnivisor implements a series of generic power
management procedures that are subsequently customized to the specific platform and core.
We have implemented the procedures for the RPUs (ARM32-CortexR5F) and for a RISC-V
soft-core (Pico32) deployed on the FPGA. In the ZCU+ the RPUs are overseen by the
Platform Management Unit (PMU) core, which exercises control over their execution and
power state. The only software with enough permission to call PMU services is the PSCI layer
within the ARM trusted firmware. Consequently, we implement a specific ZCU+ module to
communicate with the PSCI to request the wake-up and power-off of the RPUs. Regarding
the soft-core(s), instead, we have implemented a memory-mapped configuration port in
FPGA, and we expose this port to the Omnivisor to control the reset state of each soft-core.

5 Use Cases

In this section, we report a few use cases that inspired us toward the creation of the Omnivisor.

Real-time control in nuclear fusion power reactors. Nuclear fusion is foreseen as a
promising clean energy source for the next century, and the ITER tokamak reactor (iter.org)
is set to be the first fusion device with a net-positive energy output. In a tokamak, magnetic
confinement of the plasma is achieved using several magnetic fields generated by the electric
current that flows in an array of external coils. These currents are controlled by the so-called
plasma control system (PCS) [68], which is a complex and multi-input-multi-output control
system. The PCS includes several subcomponents, each aiming to control a specific plasma
feature with different requirements in terms of reliability, latency, and needed computational
resources. The ITER project intends to use MPSoCs [7] to run multiple control loops and
signal conditioning algorithms with different sampling times and reliability requirements
on the same system [60]. Being an experimental facility, one of the missions of ITER is to
test the efficiency of advanced control schemes, e.g., using reinforcement learning, running
side-by-side with basic control loops, for safety reasons.

The use of the Omnivisor in this context can speed up the development and testing phases
by enabling the deployment of advanced and computationally heavy control algorithms,
launched as VMs on the APUs, along with stable safety controllers, launched as VMs on
RPUs or soft-cores, while assuring spatial and temporal isolation between them.

MPSoCs for advanced system management research. Researchers adopt heterogeneous
architectures to run computation-intensive applications in safety-critical [19] and mission-
critical scenarios, such as vision control units for self-driving vehicles [20]. Moreover, the
real-time community has shown significant interest in leveraging MPSoCs resources, like
remote cores, for monitoring and management. Executing monitoring or management tasks
on the same platform as the monitored applications can introduce overhead and interference,

D. Ottaviano, F. Ciraolo, R. Mancuso, and M. Cinque

while remote monitoring (e.g., over a network connection) suffers from communication
latency [24]. Therefore, utilizing on-board resources, when available, is a good compromise.
For instance, the work described in [82] utilizes RPUs on a ZCU+ to finely monitor memory
transactions and control the bandwidth of APUs using the board’s debug infrastructure.
In [32], instead, authors employ QoS setups on the memory controller to ensure high-degree
isolation of critical applications across heterogeneous cores. Additionally, in [21], the progress
of a critical application running on APUs is monitored by an RPU on a ZCU+ to provide
online regulation based on the application’s state.

Integrating an Omnivisor can greatly simplify utilizing these cutting-edge mechanisms in
real-world industrial scenarios by providing an easy way to deploy and isolate the applications.
Furthermore, it can speed up the experimental phase for researchers aiming to implement
complex applications on heterogeneous platforms.

6 Experimental Analysis

In this section, we provide an evaluation of the Omnivisor model and its implementation.
The reference implementation, along with a set of scripts to reproduce the experiments, is
openly available as open-source software [61]. The platform under test is the ZCU+ described
in Sec. 4. The evaluation aims to address the following questions:

Is the boot time of a VM on a remote core comparable to that on main cores?

What degree of spatio-temporal isolation does the Omnivisor guarantee for remote VMs?

Can the Ominvisor be a turnkey solution to achieve controlled degradation?
It’s important to note that the additional functionalities introduced in our Omnivisor, as
described in Section 4, are only invoked during the startup of newly created VMs, not
at runtime. Therefore, the overhead of Omnivisor is consistent with prior findings on
Jailhouse [47]. Consequently, we do not present runtime overhead results in this paper.

6.1 Boot Time Performance Assessment

This section shows that booting a VM on a remote core using Omnivisor is comparable in time
to booting a VM via Jailhouse on a main core. Thus, with Omnivisor, users can deploy VMs
on either main or remote cores with negligible differences in boot times, enabling flexibility
for scenarios like real-time migration [41], reboot after failure [51], system rejuvenation [1]
and OTA updates [28, 36].

Fig. 4 shows the boot times obtained by deploying a VM on RPU and RISC-V soft-core,
using the Omnivisor, compared to the boot time on APU using vanilla Jailhouse. In each case,
the binary contains the identical bare-metal application. However, running the application
on the APU with the Jailhouse hypervisor necessitates linking a tiny ’inmates’ library for
initialization whose overhead is negligible during boot times. To obtain the boot time values,
the root-cell acquires the initial value from a global platform timer just before initiating
the new cell (Create). The same timer is used to measure the length of the load sequence
(Create + Load). Finally, the newly started cell captures the third timer sample (Create +
Load + Start), representing the boot time, and records it in a shared memory page. The
described process has been repeated 100 times for ten different VM image sizes, specifically
from 1 to 90 megabytes. It is possible to observe in Fig. 4 in more detail the three phases
that comprise the boot times: create (blue line), load (orange line), and start (green line).

We first compare the boot times of a cell on APU and RPU. The results exhibit significant
similarity, indicating that starting a VM on a microcontroller-level CPU does not result in
performance losses. On the contrary, the RPU boot shows a slight speed advantage during

7:15

ECRTS 2024

7:16

The Omnivisor

=00 Boot Time APU (Hypervisor) Boot Time RPU (Omnivisor) Boot Time RISCV (Omnivisor)
— Max

400 Create + Load + Start
= Create + Load _ — =
£ 300 Create ——T, = e ==
@ - = L — ey
£ 200 = - st
= — T P

1 10 20 30 40 50 60 70 80 90 1 10 20 30 40 50 60 70 80 90 1 10 20 30 40 50 60 70 80 90
VM Image Size (MB)

Figure 4 Comparison of boot times across heterogeneous processors in the ZCU+ Platform.

the configuration phase. This difference arises because the APU needs to reorganize the page
tables for the new cell, while the RPU does not use page tables. However, the final boot
time is quite similar, partially due to the lower frequency of the RPU (600MHz) compared
to the APU (1.5GHz), leading to the longer RPU wake-up procedure that involves both the
PSCI and the PMU, as detailed in Sec. 4.1.2. The results for the RISC-V soft-core exhibit
similar creation and loading times as the RPU, as there is no necessity for configuring the
page tables in either case. Nonetheless, the boot time is notably faster. Despite the soft-core
lower frequency (100Mhz), the boot time disparity arises because the soft-core is always
powered on in the FPGA. Removing it from its reset mode via the FPGA’s configuration
port is a fast operation compared to the RPU boot procedure.

In the ITER project, a fusion experiment enforces multiple stages of the plasma: ramp-up,
flattop, and ramp-down [35]. Each stage requires different controllers to effectively manage
the plasma. Leveraging the Omnivisor ensures flexibility in dynamically reconfiguring these
controllers, deployed as VMs on the board, by rebooting them on main or remote cores.

6.2 Omnivisor’s Isolation Capability

To demonstrate the Omnivisor isolation capabilities we initially highlight the vulnerabilities
that arise when executing unprotected code across various cores within an MPSoC. Sub-
sequently, we activate the Omnivisor with solely spatial protection mechanisms. Finally, we
show the effectiveness of the full-fledged Omnivsior by enabling also temporal isolation.

Experiment Setup. Fig. 5a (left) depicts our experimental setup: we run a VM under test
both on RPU-0 and RISC-V soft-core, while other managers, such as the APUs, the other
RPU (RPU-1), and the FPGA, create interference by accessing the memory area owned by
the VMs under test. The deployed application is the same on both remote cores. It involves
a simple periodic task that reads an array from memory, calculates the sum of its values, and
then writes the result back into memory at a different location. The only difference is that,
due to the frequency difference between the soft-core (100Mhz) and the RPU (600Mhz), the
matrix used in the soft-core application is smaller than that used in the RPU application to
ensure comparable results in terms of execution time. The RPUs are configured with disabled
caches and operate in split mode, where RPU-0 operates independently from RPU-1. The
RISC-V soft-core is deployed on FPGA without any cache. Since the experiments are the
same for both VMs under test, we will generally refer to both cores as “rCPU” for simplicity.

To assess the isolation capability of the Omnivisor against the vanilla Jailhouse hypervisor,
we augment the Jailhouse hypervisor with minimal code necessary to execute applications
on remote cores, a functionality not available by default. This enables us to compare the
isolation achieved using Jailhouse alone with those obtained using an Omnivisor.

D. Ottaviano, F. Ciraolo, R. Mancuso, and M. Cinque

[: The symbol indicates the enforcement of Spatial Isolation]

Interference | Hypervisor Omnivisor

vMm VM Traffic Traffic
:I er:!bo'r_n D Under M: mb || ynder Generalo;llﬁeneralor
e Test PP- Test 1 3

|APU Quad-Core| |RPU O | [RPU 1] | RISC-V | FPGA

]] L] e) APUE)
o] o] o o]] o

[: The symbol indicates the enforcement of Temporal Isolation]

\ RPU-1(m0) Crash
CIlcIlcalicalicalica
E’ ¥ ¥ ‘ ¥ ‘ FPGA(D, \:D Crash
=]
(a) Architectural View of the experiments. (b) Fault behavior of a VM under test.

Figure 5 Experimental configuration (left) and expected fault outcomes (right) of VMs running
on rCPU subjected to interference from various sources (APU, RPU-1, FPGA): a comparative
analysis between traditional Hypervisor and Omnivisor.

Employing a traditional hypervisor, as illustrated in Table 5b, will cause applications
running on remote cores (RPU, RISCV) to experience failures when other managers access
their memory (e.g., RPU1 and FPGA). Conversely, when the Omnivisor extension is enabled,
we expect these applications to continue functioning without failures.

Spatial Isolation Evaluation. The results in Fig. 6 show that without explicitly programming
the isolation layer, a manager can break both spatial and temporal isolation of VMs. In
the test, the VM under test starts on one rCPU and, after two seconds of execution, an
interfering application starts on one of the other managers. We repeat the test using Jailhouse
vanilla (no protection mechanisms) and using the Omnivisor extension first with only spatial
isolation and then the full-fledged version with temporal isolation too.

The interference application deployed on the APU is the well-known IsolBench bandwidth
benchmark [71] from the RT-Bench framework [55]. The test is launched on three APU cores
out of four and it reaches a utilization factor close to 1 on each processor. The free core is
used to launch the scripts, start the tests, and save the results. On RPU-1, we deploy a
synthetic bare-metal application mirroring the bandwidth benchmark behavior. Finally, in
the FPGA, we deploy two instances of the AXT traffic generator IP from Xilinx [76].

We can observe the results when the RPU-1, FPGA, and APU managers are the source
of interference in Figs. 6a, 6b, and 6¢ respectively. The lower bars represent the execution
state of the VM, where green indicates that the application is running, while red denotes
that the application has failed. We can observe that, without the Omnivisor, all managers
can break the spatial containment of the cell, causing the virtual machine to fail except when
the APU is the source of interference (5b). This is because the Jailhouse hypervisor already
uses the MMU to protect the memory areas of the VMs. Since the APU is the only manager
that accesses memory using the MMU, it is also the only one for which spatial permissions
are enforced with traditional hypervisors. Notably, the access of the cell running on the APU
to the memory belonging to a different cell causes the APU-bound VM to be shut down by
the hypervisor while the latter continues undisturbed. That is the reason why, in Fig. 6c¢, the

execution time of the VM under test is not impacted when the vanilla hypervisor is deployed.

To run this evaluation, we have integrated the code to run VMs on remote cores in
Jailhouse. Without this upgrade, launching an application on remote cores at run-time is

7:17

ECRTS 2024

7:18

The Omnivisor

2.0 2.0 |
1.03 ‘ 107
1.8 1.8 | /
= |
% 1.6 1.00 = 1.6 | /100 ‘
16 18 20 22 24 ‘ 16 18 20 22 24
Z14 ; 14 i
D12 / 12 {‘
1.0 Ceppens 10 i
0 2 4 6 8 10 0 2 4 6 8 10
Test time(s) ; Jest time(s)
I 0 0
(a) Slowdown with RPU-1 memory interference. (b) Slowdown with FPGA memory interference.
2.0 { 220
1.8 Lol 200
[n 180
Y00
216 E 160 f
g T x 1.6 __18__20__22 .24 g 140
o B 5 =1 a—
o = 120
1.2 < 100
2
1.0 e : S 80
0 2 4 6 8 10 g 60
Test time(s) S 40 - .
RPU Full isolation RISCV Full isolation
20 RPU Spatial isolation RISCV Spatial isolation
0
0O 2 4 6 8 10 12 14 16 18 20
Test time(s)
(c) Slowdown with APU memory interference. (d) Execution time with multiple interference.

Figure 6 Execution time slowdown of simple periodic task running in a VM over both RPU-0
and RISC-V soft-core. The behavior of the applications under different sources of interference is
shown first when using a plain jailhouse, then a partial Omnivisor implementation only with spatial
isolation mechanisms enabled, and finally the full Omnivisor implementation.

possible with the remoteproc driver [44]. In that case, since the hypervisor has no vision of
the memory used by the RPU, it would not offer any form of isolation, leading to a fallback
in the same failing scenario, even when the APU is the source of traffic.

In real-world scenarios, like the ITER project, diverse applications, often developed by
separate groups, introduce the potential for bugs that can adversely affect other components.
For instance, a control application running on the RPUs might inadvertently overwrite
memory used by APUs for critical log information, resulting in the loss of invaluable insights
during expensive experiments. Thus, the containment level provided by the Omnivisor
emerges as a crucial feature, mitigating the risk of system failures caused by the malfunction
of individual applications and facilitating seamless integration.

Temporal Isolation Evaluation. Fig. 6d illustrates the temporal behavior of the periodic
task running on the rCPU when all other managers access the memory. Every four seconds,
a new manager is activated and starts creating contention over the memory communication
channels. From the result, it is clear that hardware mechanisms such as MMU, SMMU, and
XMPUs/XPPUs can provide spatial isolation between VMs but cannot guarantee temporal
isolation and, therefore, cannot ensure real-time performance. This is intuitively due to
the resources that are still shared on board, such as the bus and the memory controller.
Therefore, temporal isolation can be enforced using mechanisms for bandwidth regulation.

D. Ottaviano, F. Ciraolo, R. Mancuso, and M. Cinque

As discussed in Sec. 4.1.2, the Omnivisor provides the knobs to regulate the memory
bandwidth of different managers in the system by leveraging a QoS and MemGuard imple-
mentation. Since there are already papers exploring these mechanisms in detail [67, 32, 69],
in this experiment, we are interested in demonstrating that the Omnivisor can use these
mechanisms to reduce the temporal interference caused on a VM running on remote cores.

To isolate the VM running on rCPU from the other managers, the Omnivisor first
configures the QoS for the FPGA and RPUs channels. In this experiment, each channel has
a request rate bounded to 11, which, using the formula from [69], translates to a memory
bandwidth of 4.7 MB/s. Regarding the APU, on the other hand, we enabled a MemGuard
regulation of 78 cache refills each millisecond for all the cores, which corresponds to having
4.997 MB/s of available bandwidth. Combining the two approaches strongly reduces the
performance impact on the rCPUs, as shown in Fig. 6d. Specifically, the maximum slowdown
drops from 142% to 7% on RPU and from 85% to 6% on RISCV.

Integrating state-of-the-art monitoring and profiling applications into real safety-critical
systems is often sidestepped in favor of legacy methods. This hesitation primarily stems from
the difficulty in demonstrating that these applications don’t disrupt the temporal behavior
of the critical application under observation. However, with the Omnivisor, integrating
such mechanisms becomes significantly easier, thanks to the utilization of a fully temporally
isolated VM running on remote cores.

6.3 Parameter Tuning for Controlled Degradation

To comprehensively evaluate and demonstrate the usability of the Omnivisor beyond synthetic
benchmarks, we execute a realistic benchmark suite on the remote cores. Specifically, our
choice has gone towards using the benchmark set called TACLeBench provided in [31]. Tt
is a collection of 56 benchmark programs from several research groups and tool vendors
worldwide. However, while we were able to execute all the benchmarks on the RPU, due to
the limitations related to the absence of a floating-point extension of the RISC-V processor
(Pico32) deployed on FPGA, we used a subset of them for our RISC-V experiments.

The objective of this evaluation is twofold: first, to demonstrate how the Omnivisor
can induce controlled degradation in the execution time of a VM running on remote cores,
and second, to elucidate how the Omnivisor streamlines the parameter tuning process for
achieving an acceptable performance degradation level. Therefore, we first determine the
bandwidth allocation required to ensure unrestricted memory transactions on every manager.
Specifically, leveraging findings from [69] and experimental evaluations, we established that
a bandwidth limit of 950 MB/s for each manager is sufficient to maintain a comparable rate
of memory transfers to what was observed without regulation. Then, using these values as a
starting point, we developed a script iterating the execution of the benchmarks employing a
binary search algorithm to calculate the bandwidth allocation parameters. Specifically, we
search for those parameters that ensure a maximum slowdown of 20% for each benchmark.

Still, the script is generic and can be used to find the parameters for any value of degradation.

The slowdown is calculated in comparison with the observed maximum execution time over
thirty repetitions of the benchmarks without any interference. Furthermore, in between each
change of parameters, we execute thirty repetitions and consider the worst result as the target
value for the slowdown; when the target value is below the decided threshold, we consider
the bandwidth allocation quota used in that iteration as a possible candidate. However, we
stop the binary search after 15 iterations or when the slowdown is strictly between 19% and
20%. Fig. 7 presents the slowdown over thirty repetitions for each benchmark under two
scenarios. First, the slowdown without any bandwidth regulation is depicted. Next, the

7:19

ECRTS 2024

7:20 The Omnivisor
4.0x- - -11.5 MB/s
m== Unconstrained slowdown (x) - Target max slowdown (x)
Constrained slowdown (x) Regulated bandwidth level (MB/s)
3.5% 7 -10.0 MB/s
w
= 3.0x - . I I R i -8.5 MB/s g
a
3 nI“|!“!||III|| £
L L =
g ik 7.om8/s 35
K=l 3
[©
2.0x - -5.5MB/s C
©
T LLLLLLLLLLLLL [+
o TNENEEREEER I ELE i, s e
1.3 L O QL SO R &L 0D @ o DL QR &G oL & ol QAL ool P QS Lk RS
A A S R RIS U
P2 RREE & ST B ‘&%b A d"?’@\éo\‘(\\‘)% & QL S R
& RSN ¢ & CoRP IS S & 9o ORI R IR
S & O N A & o X > v
(.{\Q © Q &
(a) Benchmarks on VMs running on RPU.
2.4 - -350 MB/s 2.4x - - -18.5 MB,
/e == Unconstrained slowdown (x) = Target max slowdown (x) e
22%1 Laoomas 2.2x4 Constrained slowdown (x) Regulated bandwidth level (MB/s) L17.0MB/s
2.0x - -250 MB/s 2.0~ “15.5 MB/s O
' foa)
c =
2 18x- 200 MB/s 1.8x- A T PR I I I | = -14.0 MBjs =
E SERLLRRRLLRLERRRLRRRRRANRIANI Y §
gl.ﬁx~ b isomsis 1.6x- ~12.5MB/s '3
5 ©
o L L PEELL L L L
i I I L osomss 120 ”“il | hi”ili” Ihli” “I Ihl -
1.0x - I -0 MB/s 1.0x - & -8.0 MB/s
QLD L QL (% 2 R Y C L oL 0 DR I S I IO R
DS & Sl & o"{\b"’d“qoqq@&é‘ e°6o°\&°é\+ S SN 6&7}(’ A NP G
Rar < CECRE Lo Lo o M O Y AN A A DRI RN WA
& COSIELNTFLTL 0 20 S F O VN L
& VL o0 LS & Fd ¥ AEL & Qe
< & A &9 IROESIRANRS S '
& L & PR S k4
Q N &

(b) Benchmarks on VMs running on RISC-V.

Figure 7 Comparative evaluation of TACLeBench: The bar plots depict the execution time
slowdown with and without temporal constraints. Each benchmark showcases the bandwidth
limitation imposed on other managers to achieve the desired 20% maximum degradation on the VM.

case where the bandwidth is configured to incur at most a 20% degradation is shown. In
the same figure, we can also observe the level of bandwidth regulation in MB/s applied to
obtain the controlled degradation for each benchmark. The results demonstrate that it is
possible to achieve the desired slowdown even when the unconstrained slowdown exceeds
350%, provided you are willing to significantly constrain the rest of the system (e.g., max
bandwidth limit of 4MB/s).

Naturally, given specific application constraints, an ad-hoc policy that chooses the
parameters based on the importance of the VMs can be implemented to further improve the
utilization of the cores while maintaining the real-time guarantees of critical applications [32].

7 Related

Partitioning Systems. Numerous real-time hypervisors and microkernels proposed in the
literature are engineered with partitioning techniques aiming to explicitly meet certifications
such as ARINC-653 and AUTOSAR [72, 15]. Instead, the Omnivisor distinguishes itself
by offering partitioning with spatio-temporal isolation for a diverse range of processor
categories. Unlike works such as [83], which propose a partitioning microkernel-based design
targeting microcontrollers-level cores, and [72], which propose an ARINC-653 scheduling

D. Ottaviano, F. Ciraolo, R. Mancuso, and M. Cinque

on Xen focusing microprocessor-level cores, Omnivisor addresses the challenge of applying
partitioning to asymmetric core platforms by leveraging different isolation mechanisms for
each category in a coordinated manner. Although this work’s focal point is not about
certification, the Omnivisor aims at establishing the blueprint of a partitioning hypervisor
for heterogeneous systems which is the first step for future certification endeavors.

Asymmetric Multi-Core Architectures. The management of asymmetric multi-core archi-
tectures is a well-explored field within the systems software community, which has proposed
OS designs [9, 10, 43, 13] and hypervisors [37, 59] capable of fully leveraging heterogeneous
platforms. However, these existing works are not directly comparable to the Omnivisor, since
they often overlook the isolation challenges that heterogeneous cores can introduce, making
them unsuitable for mixed-criticality scenarios. In [12] the authors discuss the challenges and
opportunities of asymmetric architectures, proposing the OpenAMP framework as a solution
for remote core communication and power management. Despite the framework is not meant
for mixed-criticality, the works in [26, 60] and [4] explore the possibility of using such a
framework in critical scenarios. Both approaches focus on real-time communication with
remote cores, overlooking the interference between cores. In contrast, the Omnivisor aims
to provide spatio-temporal isolation between asymmetric cores, offering a complementary
solution that will incorporate real-time communication in the future.

MPSoCs Hypervisors. Some recent works have been proposing techniques to virtualize
heterogeneous platforms featuring programmable logic (FPGA) as well as heterogeneous
processors, to realize reliable mixed-criticality systems. Moratelli et al. propose a real-
time full-virtualization technique for MPSoCS [52]. While this work provides a solution
to run unmodified software on a traditional hypervisor with real-time requirements, the
Omnivisor is an extension for partitioning systems where the resources are statically allocated
to virtual machines and there is no need for schedulers. Gracioli et al. [34] explore the
capability to run mixed-criticality systems in MPSoCs where an SPH is deployed on APUs
to isolate resources. The paper outlines how the rich hardware features provided by modern
heterogeneous SoCs can reduce the contentions between partitioned applications. However,
while this work analyzes the optimal utilization of heterogeneous resources such as diverse
scratchpad memories, aspects not considered in our work, it overlooks the threat posed
by unrestrained microcontroller-level CPUs. In contrast, Omnivisor focuses specifically on
addressing temporal and spatial isolation issues between asymmetric cores and it also offers
flexible and seamless control over remote cores through the hypervisor. CHIPS-AHOy is
a predictable holistic hypervisor [53] that aims to satisfy temporal predictability and high-
performance requirements of software running over MPSoCs while simultaneously handling
energy efficiency, thermal bound, and system lifetime. The authors’ goal is to address the
most relevant source of unpredictability in MPSoCs, such as the memory hierarchy, the I/O
subsystem, and the hardware variability, by using techniques such as cache coloring and 1/0
throttling. However, the authors do not provide a common interface to manage heterogeneous
VMs and neither consider using bandwidth regulation mechanisms to improve temporal
isolation. Biondi et al. present the SPHERE project [14], an integrated framework to abstract
the hardware complexity of MPSoCs and simplify the management of heterogeneous hardware.
The work explores the interesting possibility of using the dynamic partial reconfiguration
of the FPGA to provide efficient implementations for cryptography modules, as well as
hardware acceleration for deep neural networks in a hypervisor-based system. However, the
authors do not explore asymmetric ISA cores as the Omnivisor, and instead focus solely
on accelerators. While there is a strong effort in the literature to develop virtualization

7:21

ECRTS 2024

7:22

The Omnivisor

systems that utilize FPGA, existing works primarily focus on sharing the FPGA among
Virtual Machines running on the main cores [75, 46]. In contrast, Omnivisor acknowledges
the presence of cores in FPGA, which run entire and isolated VMs.

Although the Omnivisor model has similar objectives to those described in related work,
that is, to realize a mixed-criticality system with strong real-time guarantees for critical
VMs and to streamline the use of heterogeneous systems, it may be distinguished primarily
by three points. First, it is the first hypervisor model that considers running isolated
VMs on cores with heterogeneous ISAs as equal from the point of view of the hypervisor
interface. This simplifies the adoption of such complex platforms and improves the overall
system reliability. Secondly, unlike other solutions, it dynamically coordinates a combination
of modern heterogeneous hardware protection mechanisms at runtime (including MMU,
SMMU, SMPU/SPPU, and QoS) to provide spatial-temporal isolation to heterogeneous
cores, transparently to the user. Finally, it is the first approach that considers using the
soft-cores deployed on FPGA as isolated domains where to run VMs.

8 Conclusions

The increasing complexity of next-generation industrial applications has led to the widespread
adoption of feature-rich heterogeneous MPSoCs. However, as the number of features within a
single hardware platform increases, so does the complexity of deployment and the challenges
of maintaining temporal guarantees for software. In this paper, we have introduced the
Omnivisor, a novel model that extends static partitioning hypervisors to manage heterogen-
eous processing elements within asymmetric architectures. Our experimental results have
demonstrated that deploying this model on a real system enables the seamless deployment
of virtual machines on cores with heterogeneous ISAs (ARM and RISC-V) within a single
platform, even if some or all are implemented as soft-cores in FPGA. Furthermore, the solu-
tion ensures robust spatial and temporal isolation of VMs, achieved through a combination
of software/hardware mechanisms. Additionally, we have showcased how the Omnivisor
enhances the user’s control over MPSoCs. Specifically, we utilized Omnivisor features to
precisely regulate the degradation of a real-time virtual machine executing on a remote core.

For future research directions we intend to (1) integrate a library of remote core utilities
sourced from open-source scientific works in order to enhance the monitoring and management
capabilities of MPSoCs. Following this (2), we aim to elevate the flexibility of these platforms
to the next level by introducing dynamic FPGA hardware reconfiguration at the hypervisor
level. Our objective is to integrate the capability to reconfigure portions (tiles) of the
programmable logic as an additional Omnivisor feature, enabling the instantiation of soft-
cores ad-hoc and on the fly to launch a VM with specific requirements.

Overall, our work showcases the potential of the Omnivisor in addressing the challenges
posed by modern industrial applications, offering a promising solution for the efficient
utilization of heterogeneous MPSoCs.

—— References

1 Fardin Abdi Taghi Abad, Renato Mancuso, Stanley Bak, Or Dantsker, and Marco Caccamo.
Reset-based recovery for real-time cyber-physical systems with temporal safety constraints. In

2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation
(ETFA), pages 1-8. IEEE, 2016.

2 Luca Abeni and Dario Faggioli. Using xen and kvm as real-time hypervisors. Journal of
Systems Architecture, 106:101709, 2020.

D. Ottaviano, F. Ciraolo, R. Mancuso, and M. Cinque

10

11

12

13

14

15

16

17

18

19

Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert I Davis. A
comprehensive survey of industry practice in real-time systems. Real-Time Systems, 58(3):358—
398, 2022.

Sara Alonso, Jesus Lazaro, Jaime Jimenez, Leire Muguira, and Unai Bidarte. Evaluating the
OpenAMP framework in real-time embedded SoC platforms. In 2021 XXX VI Conference on
Design of Circuits and Integrated Systems (DCIS), pages 1-6. IEEE, 2021.

AMD. Microblaze reference guide. https://www.amd.com/content/dam/xilinx/support/
documents/sw_manuals/xilinx2021_2/ug984-vivado-microblaze-ref.pdf. [Accessed 21-
02-2024].

ARM. PSCI specification — developer.arm.com. https://developer.arm.com/
Architectures/Power%20State%20Coordination)20Interface. [Accessed 20-02-2024].
Giuseppe Avon, Arturo Buscarino, André C Neto, and Filippo Sartori. MARTe2 embedded
signal processing unit for the ITER magnetics diagnostics. In IECON 2021-47th Annual
Conference of the IEEE Industrial Electronics Society, pages 1-6. IEEE, 2021.

Victor Bandur, Gehan Selim, Vera Pantelic, and Mark Lawford. Making the case for centralized
automotive e/e architectures. IEEE Transactions on Vehicular Technology, 70(2):1230-1245,
2021.

Antonio Barbalace, Robert Lyerly, Christopher Jelesnianski, Anthony Carno, Ho-Ren Chuang,
Vincent Legout, and Binoy Ravindran. Breaking the boundaries in heterogeneous-ISA data-
centers. ACM SIGARCH Computer Architecture News, 45(1):645—659, 2017.

Antonio Barbalace, Marina Sadini, Saif Ansary, Christopher Jelesnianski, Akshay
Ravichandran, Cagil Kendir, Alastair Murray, and Binoy Ravindran. Popcorn: Bridging the
programmability gap in heterogeneous-ISA platforms. In Proceedings of the Tenth European
Conference on Computer Systems, pages 1-16, 2015.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer,
Tan Pratt, and Andrew Warfield. Xen and the art of virtualization. ACM SIGOPS operating
systems review, 37(5):164-177, 2003.

Felix Baum and Arvind Raghuraman. Making full use of emerging ARM-based heterogeneous
multicore SoCs. In 8th European Congress on Embedded Real Time Software and Systems
(ERTS 2016), 2016.

Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca Isaacs, Simon
Peter, Timothy Roscoe, Adrian Schiipbach, and Akhilesh Singhania. The multikernel: a new
os architecture for scalable multicore systems. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pages 29-44, 2009.

Alessandro Biondi, Daniel Casini, Giorgiomaria Cicero, Niccold Borgioli, Giorgio Buttazzo,
Gaetano Patti, Luca Leonardi, Lucia Lo Bello, Marco Solieri, Paolo Burgio, et al. SPHERE:
A Multi-SoC architecture for next-generation cyber-physical systems based on heterogeneous
platforms. IEEE Access, 9:75446-75459, 2021.

Gedare Bloom and Joel Sherrill. Harmonizing arinc 653 and realtime posix for conformance
to the face technical standard. In 2020 IEEE 23rd international symposium on real-time
distributed computing (ISORC), pages 98-105. IEEE, 2020.

Paolo Burgio, Marko Bertogna, Nicola Capodieci, Roberto Cavicchioli, Michal Sojka, Premysl
Houdek, Andrea Marongiu, Paolo Gai, Claudio Scordino, and Bruno Morelli. A software stack
for next-generation automotive systems on many-core heterogeneous platforms. Microprocessors
and Microsystems, 52:299-311, 2017.

Alan Burns and Robert I Davis. A survey of research into mixed criticality systems. ACM
Computing Surveys (CSUR), 50(6):1-37, 2017.

Alan Burns and Robert Ian Davis. Mixed criticality systems-a review:(february 2022). York,
2022.

Jon Perez Cerrolaza, Roman Obermaisser, Jaume Abella, Francisco J Cazorla, Kim Griittner,
Irune Agirre, Hamidreza Ahmadian, and Imanol Allende. Multi-core devices for safety-critical
systems: A survey. ACM Computing Surveys (CSUR), 53(4):1-38, 2020.

7:23

ECRTS 2024

7:24

The Omnivisor

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Ravikumar V Chakaravarthy, Hyun Kwon, and Hua Jiang. Vision control unit in fully self
driving vehicles using Xilinx MPSoC and opensource stack. In Proceedings of the 26th Asia
and South Pacific Design Automation Conference, pages 311-317, 2021.

Weifan Chen, Ivan Izhibirdeev, Denis Hoornaert, Shahin Roozkhosh, Patrick Carpanedo,
Sanskriti Sharma, and Renato Mancuso. Low-overhead online assessment of timely progress
as a system commodity. In 35th Euromicro Conference on Real-Time Systems (ECRTS 2023).
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2023.

Alessandro Cilardo, Marcello Cinque, Luigi De Simone, and Nicola Mazzocca. Virtualization
over multiprocessor system-on-chip: an enabling paradigm for industrial iot. arXiv preprint,
2021. arXiv:2112.15404.

Marcello Cinque, Domenico Cotroneo, Luigi De Simone, and Stefano Rosiello. Virtualizing
mixed-criticality systems: A survey on industrial trends and issues. Future Generation
Computer Systems, 2021.

Marcello Cinque, Luigi De Simone, Nicola Mazzocca, Daniele Ottaviano, and Francesco Vitale.
Evaluating virtualization for fog monitoring of real-time applications in mixed-criticality
systems. Real-Time Systems, 59(4):534-567, 2023.

Marcello Cinque, Gianmaria De Tommasi, Sara Dubbioso, and Daniele Ottaviano. Virtualizing
real-time processing units in multi-processor systems-on-chip. In 2021 IEEE 6th International
Forum on Research and Technology for Society and Industry (RTSI), pages 329-333. IEEE,
2021.

Marcello Cinque, Gianmaria De Tommasi, Sara Dubbioso, and Daniele Ottaviano. RPUGuard:
Real-time processing unit virtualization for mixed-criticality applications. In 2022 18th
European Dependable Computing Conference (EDCC), pages 97-104. IEEE, 2022.

Edoardo Cittadini, Mauro Marinoni, Alessandro Biondi, Giorgiomaria Cicero, and Giorgio
Buttazzo. Supporting ai-powered real-time cyber-physical systems on heterogeneous platforms
via hypervisor technology. Real-Time Systems, pages 1-27, 2023.

David J Coe, Jeffrey H Kulick, Aleksandar Milenkovic, and Letha Etzkorn. Virtualized in situ
software update verification: verification of over-the-air automotive software updates. IFEE
Vehicular Technology Magazine, 15(1):84-90, 2019.

Diogo Costa, Luca Cuomo, Daniel Oliveira, Ida Maria Savino, Bruno Morelli, Jose Martins,
Fabrizio Tronci, Alessandro Biasci, and Sandro Pinto. IRQ coloring: Mitigating interrupt-
generated interference on ARM multicore platforms. In Fourth Workshop on Next Generation
Real-Time Embedded Systems (NG-RES 2023). Schloss Dagstuhl — Leibniz-Zentrum fiir In-
formatik, 2023.

Domenico Cotroneo, Luigi De Simone, and Roberto Natella. On temporal isolation assessment
in virtualized railway signaling as a service systems. In 2022 IEEFE Intl Conf on Dependable,
Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl
Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), pages 1-5. IEEE, 2022.

Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Bjorn Lisper, Wolfgang Puffitsch, Christine
Rochange, Martin Schoeberl, Rasmus Bo Sgrensen, Peter Wagemann, and Simon Wegener.
Taclebench: A benchmark collection to support worst-case execution time research. In 16th
International Workshop on Worst-Case Ezxecution Time Analysis, 2016.

Sergio Garcia-Esteban, Alejandro Serrano-Cases, Jaume Abella, Enrico Mezzetti, and Fran-
cisco J Cazorla. Quasi isolation QoS setups to control MPSoC contention in integrated software
architectures. In 35th Euromicro Conference on Real-Time Systems (ECRTS 2023). Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2023.

Google. Dev-Board Coral datasheet. https://coral.ai/docs/dev-board/datasheet. [Ac-
cessed 21-02-2024].

Giovani Gracioli, Rohan Tabish, Renato Mancuso, Reza Mirosanlou, Rodolfo Pellizzoni, and
Marco Caccamo. Designing mixed criticality applications on modern heterogeneous MPSoC
platforms. In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019). Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2019.

D. Ottaviano, F. Ciraolo, R. Mancuso, and M. Cinque

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Yuri Gribov, Andrey Kavin, Victor Lukash, Rustam Khayrutdinov, Guido Huijsmans, Alberto
Loarte, Joseph A. Snipes, and Luca Zabeo. Plasma vertical stabilisation in ITER. Nuclear
Fusion, 55(7):073021, 2015.

Domenik Helms, Patrick Uven, and Kim Grittner. Modular over-the-air software updates for
safety-critical real-time systems. INSIGHT, 25(4):85-88, 2022.

Yu-Ju Huang, Hsuan-Heng Wu, Yeh-Ching Chung, and Wei-Chung Hsu. Building a kvm-based
hypervisor for a heterogeneous system architecture compliant system. In Proceedings of thel2th
ACM SIGPLAN/SIGOPS International Conference on Virtual Ezecution Environments, pages
3-15, 2016.

Intel. ACPI specification — intel.com. URL: https://www.intel.com/content/dam/www/
public/us/en/documents/product-specifications/processor-vendor-specific-acpi-
specification.pdf. [Accessed 20-02-2024].

Shravan Karthik, Karthik Ramanan, Nikhil Devshatwar, Subhajit Paul, Vishal Mahaveer,
Sheng Zhao, Manoj Vishwanathan, and Chetan Matad. Hypervisor based approach for
integrated cockpit solutions. In 2018 IEEE 8th International Conference on Consumer
Electronics-Berlin (ICCE-Berlin), pages 1-6. IEEE, 2018.

Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. kvm: the linux virtual
machine monitor. In Proceedings of the Linux symposium, volume 1, pages 225-230. Dttawa,
Dntorio, Canada, 2007.

Heiko Koziolek, Andreas Burger, and Abdulla Puthan Peedikayil. Fast state transfer for
updates and live migration of industrial controller runtimes in container orchestration systems.
Journal of Systems and Software, page 112004, 2024.

Yoojin Lim and Hyoseung Kim. Cache-aware real-time virtualization for clustered multi-core
platforms. IEEE Access, 7:128628-128640, 2019.

Felix Xiaozhu Lin, Zhen Wang, and Lin Zhong. K2: A mobile operating system for heterogen-
eous coherence domains. ACM SIGPLAN Notices, 49(4):285-300, 2014.

Remote Processor Framework; The Linux Kernel documentation — docs.kernel.org. https:
//docs.kernel.org/staging/remoteproc.html. [Accessed 07-02-2024].

Tamara Lugo, Santiago Lozano, Javier Ferndndez, and Jesus Carretero. A survey of techniques
for reducing interference in real-time applications on multicore platforms. IEEFE Access,
10:21853-21882, 2022.

Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Xiaohe Cheng, Yanqiang Liu, Abel Mulugeta
Eneyew, Zhengwei Qi, and Baris Kasikci. A hypervisor for shared-memory fpga platforms.
In Proceedings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 827-844, 2020.

José Martins and Sandro Pinto. Shedding light on static partitioning hypervisors for ARM-
based mixed-criticality systems. In 2023 IEEE 29th Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 40-53. IEEE, 2023.

José Martins, Adriano Tavares, Marco Solieri, Marko Bertogna, and Sandro Pinto. Bao:
A lightweight static partitioning hypervisor for modern multi-core embedded systems. In
Workshop on next generation real-time embedded systems (NG-RES 2020). Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, 2020.

Miguel Masmano, Ismael Ripoll, Alfons Crespo, and J Metge. Xtratum: a hypervisor for
safety critical embedded systems. In 11th Real-Time Linuz Workshop, volume 9. Citeseer,
2009.

Minerva. Jailhouse-RT GitLab repository. https://gitlab.com/minervasys/public/
jailhouse/-/tree/minerva/public?ref_type=heads. [Accessed 08-02-2024].

Eric Missimer, Richard West, and Ye Li. Distributed real-time fault tolerance on a virtualized
multi-core system. OSPERT 2014, page 17, 2014.

Carlos Moratelli, Samir Zampiva, and Fabiano Hessel. Full-virtualization on mips-based
mpsocs embedded platforms with real-time support. In Proceedings of the 27th Symposium on
Integrated Circuits and Systems Design, pages 1-7, 2014.

7:25

ECRTS 2024

7:26

The Omnivisor

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

Tiago Miick, Antonio A Frohlich, Giovani Gracioli, Amir M Rahmani, Jodo Gabriel Reis, and
Nikil Dutt. CHIPS-AHOy: A predictable holistic cyber-physical hypervisor for MPSoCs. In
Proceedings of the 18th International Conference on Embedded Computer Systems: Architec-
tures, Modeling, and Simulation, pages 73-80, 2018.

Djob Mvondo, Boris Teabe, Alain Tchana, Daniel Hagimont, and Noel De Palma. Closer: A
new design principle for the privileged virtual machine os. In 2019 IEEE 27th International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), pages 49-60. IEEE, 2019.

Mattia Nicolella, Shahin Roozkhosh, Denis Hoornaert, Andrea Bastoni, and Renato Mancuso.
Rt-bench: An extensible benchmark framework for the analysis and management of real-time
applications. In Proceedings of the 30th International Conference on Real-Time Networks and
Systems, pages 184-195, 2022.

NVIDIA. Jetson AGX Orin technical brief. https://www.nvidia.com/content/dam/en-zz/
Solutions/gtcf21/jetson-orin/nvidia-jetson-agx-orin-technical-brief.pdf. [Ac-
cessed 21-02-2024].

NVIDIA. Jetson Xavier Series. https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/jetson-xavier-series/. [Accessed 21-02-2024].

NXP. i.MX8-series processors. https://www.nxp.com/products/processors—-and-
microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-
applications-processors:IMX8-SERIES. [Accessed 07-02-2024].

Pierre Olivier, Binoy Ravindran, and Antonio Barbalace. The multihype: Virtualizing
heterogeneous-ISA architectures. In 9th Workshop on Systems for Multi-core and Heterogeneous
Architectures (SFMA), 2019.

D Ottaviano, M Cinque, G Manduchi, and S Dubbioso. Virtualization of accelerators in
embedded systems for mixed-criticality: RPU exploitation for fusion diagnostics and control.
Elsevier Fusion Engineering and Design, 2023.

Daniele Ottaviano. The Omnivisor Source Code. https://github.com/DanieleOttaviano/
Omnivisor, 2024. Accessed: May 7, 2024.

Shrinivas Anand Panchamukhi and Frank Mueller. Providing task isolation via tlb coloring.
In 21st IEEFE Real-Time and Embedded Technology and Applications Symposium, pages 3—13.
IEEE, 2015.

Ralf Ramsauer, Jan Kiszka, Daniel Lohmann, and Wolfgang Mauerer. Look mum, no vm
exits!(almost). arXiv preprint, 2017. arXiv:1705.06932.

Ralf Ramsauer, Jan Kiszka, and Wolfgang Mauerer. A novel software architecture for mixed
criticality systems. In Digital Transformation in Semiconductor Manufacturing: Proceedings
of the 1st and 2nd European Advances in Digital Transformation Conference, EADTC 2018,
Zittau, Germany and EADTC 2019, Milan, Italy, pages 121-128. Springer International
Publishing, 2020.

Falk Rehm, Jorg Seitter, Jan-Peter Larsson, Selma Saidi, Giovanni Stea, Raffaele Zippo, Dirk
Ziegenbein, Matteo Andreozzi, and Arne Hamann. The road towards predictable automotive
high-performance platforms. In 2021 Design, Automation € Test in Europe Conference &
Exhibition (DATE), pages 1915-1924. IEEE, 2021.

Gero Schwiricke, Rohan Tabish, Rodolfo Pellizzoni, Renato Mancuso, Andrea Bastoni, Al-
exander Zuepke, and Marco Caccamo. A real-time VirtlO-based framework for predictable
inter-VM communication. In 2021 IEEE Real-Time Systems Symposium (RTSS), pages 27—40.
TIEEE, 2021.

Alejandro Serrano-Cases, Juan M Reina, Jaume Abella, Enrico Mezzetti, and Francisco J
Cazorla. Leveraging hardware QoS to control contention in the Xilinx Zynq UltraScale+
MPSoC. In 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021). Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2021.

J. A. Snipes et al. ITER plasma control system final design and preparation for first plasma.
Nuclear Fusion, 2021.

D. Ottaviano, F. Ciraolo, R. Mancuso, and M. Cinque

69

70

71

72

73

74

75

76

77

78

79
80

81

82

83

Parul Sohal, Rohan Tabish, Ulrich Drepper, and Renato Mancuso. Profile-driven memory
bandwidth management for accelerators and CPUs in QoS-enabled platforms. Real-Time
Systems, 58(3):235-274, 2022.

Stefano Stabellini. Xen project blog. https://xenproject.org/2019/12/16/
true-static-partitioning-with-xen-domO-1less/, 2019. [Accessed 27-02-2024].

Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. Taming non-blocking caches to
improve isolation in multicore real-time systems. In 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 1-12. IEEE, 2016.

Steven H VanderLeest. Designing a future airborne capability environment (face) hypervisor for
safety and security. In 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC),
pages 1-9. IEEE, 2017.

Steven H VanderLeest and Dagan White. Mpsoc hypervisor: The safe & secure future of
avionics. In 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC), pages
6B5-1. IEEE, 2015.

Richard West, Ye Li, Eric Missimer, and Matthew Danish. A virtualized separation kernel
for mixed-criticality systems. ACM Transactions on Computer Systems (TOCS), 34(3):1-41,
2016.

Tian Xia, Ye Tian, Jean-Christophe Prévotet, and Fabienne Nouvel. Ker-one: A new hypervisor
managing fpga reconfigurable accelerators. Journal of Systems Architecture, 98:453-467, 2019.

Xilinx. AXI Traffic Generator LogiCORE IP Product Guide (PG125). https://docs.xilinx.

com/r/en-US/pgl25-axi-traffic-gen/Introduction. [Accessed 12-02-2024].

Xilinx. Versal Device Technical Reference Manual. https://docs.xilinx.com/r/en-US/
am011-versal-acap-trm. [Accessed 07-02-2024].

Xilinx. Zynq Ultrascale4+ Device Technical Reference Manual. https://docs.xilinx.com/r/
en-US/ugl085-zyng-ultrascale-trm. [Accessed 07-02-2024].

YosysHQ. picorv32. https://github.com/YosysHQ/picorv32. [Accessed 27-02-2024].
Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore platforms. In 2014 IEEFE

19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 155-166.

IEEE, 2014.

Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Memguard: Memory
bandwidth reservation system for efficient performance isolation in multi-core platforms. In
2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 55-64. IEEE, 2013.

Alexander Zuepke, Andrea Bastoni, Weifan Chen, Marco Caccamo, and Renato Mancuso.

MemPol: Policing core memory bandwidth from outside of the cores. In 2023 IEEE 29th

Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 235-248.

IEEE, 2023.

Alexander Zuepke, Marc Bommert, and Daniel Lohmann. Autobest: a united autosar-os and
arinc 653 kernel. In 21st IEEE real-time and embedded technology and applications symposium,
pages 133-144. IEEE, 2015.

7:27

ECRTS 2024

