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Abstract10

A (1+ ε)-stretch tree cover of a metric space is a collection of trees, where every11

pair of points has a (1 + ε)-stretch path in one of the trees. The celebrated12

Dumbbell Theorem [Arya et al. STOC’95] states that any set of n points in d-13

dimensional Euclidean space admits a (1 + ε)-stretch tree cover with Od(ε
−d ·14

log(1/ε)) trees, where the Od notation suppresses terms that depend solely on15

the dimension d. The running time of their construction isOd(n logn· log(1/ε)
εd

+16

n · ε−2d). Since the same point may occur in multiple levels of the tree, the17

maximum degree of a point in the tree cover may be as large as Ω(log Φ), where18

Φ is the aspect ratio of the input point set.19

In this work we present a (1+ ε)-stretch tree cover with Od(ε
−d+1 · log(1/ε))20

trees, which is optimal (up to the log(1/ε) factor). Moreover, the maximum21

degree of points in any tree is an absolute constant for any d. As a direct corollary,22

we obtain an optimal routing scheme in low-dimensional Euclidean spaces. We23

also present a (1 + ε)-stretch Steiner tree cover (that may use Steiner points)24

with Od(ε
(−d+1)/2 · log(1/ε)) trees, which too is optimal. The running time25

of our two constructions is linear in the number of edges in the respective tree26

covers, ignoring an additive Od(n logn) term; this improves over the running27

time underlying the Dumbbell Theorem. ∗
28

∗A preliminary version of this paper was published in the proceedings of SoCG 2024.
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1 Introduction29

Let M be a given metric space with distance function δ, and X be a finite set of points30

in M . A tree cover for (M,X) is a collection of trees F , each of which consists of31

(only) points in X as vertices and abstract edges between vertices, such that between32

every two points x and y in X, δM (x, y) ≤ δT (x, y) for every tree T in F . A tree cover33

F has stretch α if for every two points x and y in X, there is a tree T in F that34

preserves the distance between x and y up to α factor: δT (x, y) ≤ α · δM (x, y). We35

call such F an α-tree cover of X. In this paper, we will focus on the scenario where36

M is the d-dimensional Euclidean space for some constant d = O(1). It is not hard37

to see that, in this case, the edges can be drawn as line segments in Rd between the38

corresponding two endpoints, with weights equal to their Euclidean distances. If we39

relax the condition so that trees in F may have other points from M (called Steiner40

points) as vertices instead of just points from X, the resulting tree cover is called a41

Steiner tree cover.42

Constructions of tree covers, due to their algorithmic significance, are subject to43

growing research attention [1–10]; by now generalizations in various metric spaces44

and graphs are well-explored. The main measure of quality for tree cover is its size,45

that is, the number of trees in a tree cover F . The existence of a small tree cover46

provides a framework to solve distance-related problems by essentially reducing them47

to trees. Exemplified applications include distance oracles [9, 10], labeling and routing48

schemes [11, 12], spanners with small hop diameters [12], and bipartite matching [13].49

The celebrated Dumbbell Theorem by Arya, Das, Mount, Salowe, and Smid [3]50

from almost thirty years ago demonstrated that in d-dimensional Euclidean space, any51

point set X has a tree cover of stretch 1 + ε that uses only Od(ε
−d · log(1/ε)) trees.152

Moreover, the tree cover can be computed within timeOd

(︂
n log n · log(1/ε)

εd
+ n · ε−2d

)︂
,53

where n is the number of points in X. In the Euclidean plane (when d = 2), this gives54

us a tree cover of size O(ε−2 · log(1/ε)). The theorem has a long and complex proof,55

which spans a chapter in the book of Narasimhan and Smid [14]. A few years ago, this56

theorem was generalized for doubling metrics2 by Bartal, Fandina, and Neiman [8],57

who achieved the same bound as [3] via a much simpler construction; the running time58

of their construction was not analyzed.3 In the constructions by [3, 8], same point59

may have multiple copies in different levels of the tree, hence the maximum degree of60

points4 may be as large as Ω(log Φ), where Φ is the aspect ratio of the input point61

set; see Sections 1.3 and 4 for a more detailed discussion.62

Since the number of trees provided by the two known constructions [3, 8] matches63

the packing bound ε−d (up to a logarithmic factor), it is tempting to conjecture that64

this bound is tight. However, there is a gap between this upper bound and the best65

lower bound we have, which comes indirectly from (1 + ε)-stretch spanners. For any66

parameter α ≥ 1, a Euclidean α-spanner for any d-dimensional point set is a weighted67

1The Od notation suppresses terms that depend solely on the dimension d.
2The doubling dimension of a metric space (M, δ) is the smallest value ddim such that every ball in M

can be covered by 2ddim balls of half the radius; a metric δ is called doubling if its doubling dimension is
constant.

3In high-dimensional Euclidean spaces the upper bound in [8] improves over that of [3], since the Od

notation in [3] and [8] suppress multiplicative factors of dO(d) and 2O(d), respectively.
4The degree of a point is the number of edges incident to it.
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graph spanning the input point set, whose edge weights are given by the Euclidean68

distances between the points, that approximates all the original pairwise Euclidean69

distances within a factor of α. We note that an α-spanner can be obtained directly by70

taking the union of all trees in any α-tree cover for the input point set. The Ω(n·ε−d+1)71

size lower bound for (1+ε)-spanners [15, Theorem 1.1] directly implies that any (1+ε)-72

tree cover must contain Ω(ε−d+1) trees. This is an ε−1-factor away from the packing73

bound. In particular, in the Euclidean plane, there is a gap between the upper bound74

of O(ε−2) and the lower bound of Ω(ε−1). One can extend the notions of spanner by75

introducing Steiner points as well, which are additional points that are not part of the76

input. A weaker Ω(ε(−d+1)/2) lower bound can be obtained for Steiner tree cover, from77

the Ω(n/
√
ε) size lower bound for Steiner (1+ε)-spanner in R2 [15, Theorem 1.4], and78

in general the Ω(n/ε(d−1)/2) size lower bound in Rd [16].79

1.1 Short Survey on Tree Covers80

There are many papers published on tree covers in recent years, with subtle variations81

in their definitions due to differences in main objectives and applications. Here we82

attempt to summarize the best upper and lower bounds known to our knowledge,83

highlighting the tradeoff between tree cover size and stretch in the previous work.84

Some of the bounds are not explicitly stated in the cited reference but can be deduced85

from it. For additional relevant work, refer to [8] and the references therein.86

General metrics.87

The earliest literature on the notion of tree cover is probably Awerbuch and Peleg [1]88

and Awerbuch, Kutten, and Peleg [17], focusing on graph metrics. Their main objective89

is to minimize the number of trees each vertex belongs to (in the sparse cover sense)90

instead of minimize the total number of trees. Thorup and Zwick [11, Corollary 4.4]91

improved over Awerbuch and Peleg [1] by constructing a Steiner tree cover with stretch92

2k − 1 where every vertex belongs to O(n1/α · log1−1/k n) trees. Charikar et al. [18]93

studies a similar problem of probabilistically embedding finite metric space into a small94

number of trees. Many of the earlier work on tree covers are motivated by application95

in routing [19].96

Gupta, Kumar, and Rastogi [4, Theorem 4.3] observed that any tree cover must97

have size nΩ(1/α) if the stretch is α; the lower bound is based on the existence of98

girth-g graphs with nΩ(1/g) edges [20][21, Lemma 9]. It is important to emphasize99

that the tree covers considered in [4] are spanning — the trees must be subgraphs of100

the input graph. Bartal, Fandina, and Neiman established the same lower bound [8,101

Corollary 13] by reduction from spanners [21]. In a different direction, Dragan, Yan,102

and Lomonosov [6] studied spanner tree covers with additive stretch on special classes103

of graphs, such as chordal graphs and co-comparability graphs.104

One might relax the condition to allow vertices not presented in the graph (called105

Steiner vertices) to be part of the tree cover. By allowing Steiner vertices, Mendel and106

Naor [5] showed that any n-point metric space has a Steiner tree cover of sizeO(α·n1/α)107

and stretch O(α). Bartal, Fandina, and Neiman [8] obtained an inverse tradeoff: any n-108

point metric space has a Steiner tree cover of size k and stretch O(n1/k · (log n)1−1/k).109

In particular, this means we can get O(log n) trees with O(log n) stretch. While the110
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lower bound from [4] for spanning tree cover no longer holds when Steiner vertices are111

allowed, a similar lower bound of Ω(n4/(3α+2)/ log n) = nΩ(1/α) for the size of Steiner112

α-tree covers can be derived from Steiner spanners (also known as emulators) [21,113

Theorem 6], using the same argument in [8].114

Doubling metrics.115

Chan, Gupta, Maggs, and Zhou [7, Lemma 3.4] constructs Steiner tree covers for116

doubling metrics [7]. More precisely, if the doubling dimension of the metric space is117

d, their tree cover uses O(d log d) Steiner trees and has stretch O(d2). Bartal, Fandina,118

and Neiman [8] obtained two separated constructions: one may have tree cover of119

stretch O(α) and O(2d/α · d · α) Steiner trees for any α ≥ 2 [8, Theorem 7] using the120

O(1)-padded hierarchical partition family in [22, Lemma 8], or alternatively a tree121

cover with (1+ ε) stretch and (1/ε)O(d) · log(1/ε) trees [8, Theorem 3] using net trees.122

It is worth emphasizing that the second construction does not use Steiner points. They123

also established a lower bound on the size of non-Steiner tree cover [8, Corollary 13] by124

reduction from spanners [21]: there is an n-point metric space with doubling dimension125

d, such that any α-tree cover requires Ω(2d/α) trees.126

Planar and minor-free graphs.127

On planar graphs Gupta, Kumar, and Rastogi [4] constructed the first O(log n)-size128

(non-Steiner) tree cover with stretch 3. Again this is improved by Bartal, Fandina,129

and Neiman in two different directions: either one has stretch O(1) and O(1) trees [8,130

Corollary 9] using the O(1)-padded hierarchical partition family in [23]5, or alterna-131

tively a tree cover with (1 + ε) stretch and O(ε−1 log2 n) trees [8, Theorem 5], using132

path separators [24]. Their results naturally extend to minor-free graphs. Recently,133

the authors get the best of both worlds by constructing a Steiner tree cover with134

(1 + ε) stretch using Õ(ε−3) many trees [9] through the introduction of a new graph135

partitioning scheme called the shortcut partition; the result also extends to minor-free136

graphs [10].137

On planar graphs Ω(
√
n) trees are required if no stretch is allowed [4]. However in138

the (1+ε)-stretch regime, we are not aware of any existing lower bounds. The strongest139

lower bound for tree covers on planar graphs we managed to deduce comes from140

distance labeling : Suppose we have a Steiner (1+ε)-tree cover using O(ε−1/(3+δ)) many141

trees for some δ > 0. Then we can construct an approximate distance labeling scheme142

by concatenating the O(log n · log(1/ε))-length labeling schemes for all trees [25]. By143

setting ε = 1/n, we get an exact labeling scheme for unweighted planar graph of144

length Õ(n1/(3+δ)), contradicting to an information-theoretical lower bound [26]. This145

implies that any Steiner (1 + ε)-tree covers on planar graphs requires at least Ω̃(ε1/3)146

many trees.147

Euclidean metrics.148

We already discussed tree cover results on Euclidean metrics in the introduction above;149

here we mentioned a few additional facts.150

5The constants in [23] imply that the stretch is at least 34 = 81 and the number of trees is at least
33 = 27.

4



All upper bound constructions on metrics with bounded doubling dimensions151

immediately apply to Euclidean metrics as well. Surprisingly, relatively few lower152

bounds have been established in the literature for Euclidean spaces. Early in the153

introduction we derived an Ω(1/εd−1) lower bound for non-Steiner tree cover and an154

Ω(1/ε(d−1)/2) lower bound for Steiner tree cover in Rd by reduction from spanners.155

One thing to notice is that in Euclidean spaces, the meaning of Steiner points differs156

slightly from its graph counterparts: after choosing a Steiner point (which lies in the157

ambient space Rd), the weight of an edge incident to a Steiner point is determined by158

its Euclidean distance, unlike in the graph setting one may choose the weight freely159

(as the Steiner points are artificially inserted and were not part of the graph a priori).160

One might think that such a distinction cannot possibly make any difference; however,161

recently Andoni and Zhang [27] proved that (1+ε)-spanner of subquadratic size exists162

for arbitrary dimensional Euclidean space by allowing out-of-nowhere Steiner points,163

while establishing lower bound simultaneously when the Steiner points are required to164

sit in the Euclidean space. They showed that there are n points in Rd (for some high165

dimension d depending on n) where any (
√
2 − ε)-spanner (with Euclidean Steiner166

points) requires Ω(ε4 · n2/ log2 n) edges; the lower bound follows from a randomized167

construction and volume argument. This translates to an almost linear lower bound of168

Ω(ε4 ·n/ log2 n) on the minimum number of trees required in any Euclidean Steiner tree169

cover with (
√
2− ε) stretch. All Steiner points used in our construction are Euclidean;170

at the moment, we are unaware of any tree cover construction that obtains a better171

bound by taking advantage of the non-Euclidean Steiner points.172

Ramsey trees.173

A stronger notion called the Ramsey tree cover has been studied, where every vertex x174

is associated with a tree Tx in F , such that the distance from x to every other vertex175

is approximated preserved by the same tree Tx. Both the constructions of Mendel and176

Naor [5] and Bartal, Fandina, and Neiman [8] for general metrics are indeed Ramsey177

trees. These bounds are essentially tight if the trees are required to be Ramsey; that is,178

any Ramsey tree cover of stretch α must contain n1/Ω(α) many tree [8, Corollary 13].179

Even when the input metric is planar and doubling, any Ramsey tree cover of stretch180

α must contain n1/Ω(α logα) many tree [8, Theorem 10], and any Ramsey tree cover of181

size k must has stretch n1/k [8, Theorem 9].182

1.2 Main Results183

We improve the longstanding bound on the number of trees for Euclidean tree cover184

by a factor of 1/ε, for any constant-dimensional Euclidean space.6 In view of the185

aforementioned lower bound [15, 16], this is optimal up to the log(1/ε) factor. Roughly186

speaking, we show that the packing bound barrier (incurred in both [3] and [8]) can187

be replaced by the number of ε-angled cones needed to partition Rd; for more details,188

refer to Section 1.3.189

6As with [3], the Od notation in our bound suppresses a multiplicative factor of dO(d), which should be

compared to the multiplicative factor of O(1)d suppressed in the bound of [8]. Thus, our results improve
over that of [8] only under the assumption that ε is sufficiently small with respect to the dimension d; this
assumption should be acceptable since the focus of this work, as with the great majority of the work on
Euclidean spanners, is low-dimensional Euclidean spaces.

5



Theorem 1.1. For every set of points in Rd and any 0 < ε < 1/20, there exists a190

tree cover with stretch 1 + ε and Od(ε
−d+1 · log(1/ε)) trees. The running time of the191

construction is Od(n log n+ n · ε−d+1 · log(1/ε)).192

We note our construction is faster than that of the Dumbbell Theorem of [3] by193

more than a multiplicative factor of ε−d.194

In addition, we demonstrate that the bound on the number of trees can be quadrat-195

ically improved using Steiner points; in R2 we can construct a Steiner tree cover with196

stretch 1+ ε using only O(1/
√
ε) many trees. The result generalizes for higher dimen-197

sions. In view of the aforementioned lower bound [15, 16], this result too is optimal198

up to the log(1/ε) factor.199

Theorem 1.2. For every set of points in Rd and any 0 < ε < 1/20, there exists a200

Steiner tree cover with stretch 1 + ε and Od(ε
(−d+1)/2 · log(1/ε)) trees. The running201

time of the construction is Od(n log n+ n · ε(−d+1)/2 · log(1/ε)).202

1.2.1 Bounded degree tree cover203

Although the number of trees in the tree cover is the most basic quality measure,204

together with the stretch, another important measure is the degree. One can optimize205

the maximum degree of a point in any of the trees, or to optimize the maximum206

degree of a point over all trees — both these measures are of theoretical and practical207

importance.208

Both the Dumbbell Theorem [3] and the BFN construction [8] use copies of the209

same point in multiple trees, and even in different levels of the same tree. Consequently,210

each point may have up to log Φ copies, which can be viewed as distinct nodes of211

the tree, where Φ is the aspect ratio of the input point set. The Dumbbell trees have212

bounded node-degree (which is improved to degree 3 in [28]), but the maximum point-213

degree in any tree could still be Θ(log Φ) after reidentifying all the copies of the points.214

The construction of [8] may also incur a point-degree of Ω(log Φ) in any of the trees.7215

We strengthen Theorem 1.1 by achieving a constant degree for each point in any216

of the trees; in fact, our bound is an absolute constant in any dimension. As a result,217

the maximum degree of a point over all trees is Od(ε
−d+1 · log(1/ε)); this is optimal up218

to the log(1/ε) factor, matching the average degree (or size) lower bound of spanners219

mentioned above [15].220

Routing.221

We highlight one application of our bounded degree tree cover to efficient routing.222

Theorem 1.3. For any set of points in Rd and any 0 < ε < 1/20, there is a223

compact routing scheme with stretch 1 + ε that uses routing tables and headers with224

Od(ε
−d+1 log2(1/ε) · log n) bits of space.225

Our routing scheme uses smaller routing tables compared to the routing scheme226

of Gottlieb and Roditty [29], which uses routing tables of O(ε−d log n) bits. At a high227

level, we provide an efficient reduction from the problem of routing in low-dimensional228

Euclidean spaces to that in trees; more specifically, we present a new labeling scheme229

for determining the right tree to route on in the tree cover of Theorem 1.1. Having230

7Even node-degrees may blow up in the construction of [8], but it appears that a simple tweak of their

construction can guarantee a node-degree of ε−O(d).
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determined the right tree to route on, our entire routing algorithm is carried out on231

that tree, while the routing algorithm of [29] is carried out on a spanner; routing in a232

tree is clearly advantageous over routing in a spanner, also from a practical perspective.233

Refer to [29] for the definition of the problem and relevant background.234

1.3 Technical Highlights235

1.3.1 Achieving an optimal bound on the number of trees236

The tree cover constructions of [3] and [8] achieve the same bound of O(ε−d · log(1/ε))237

on the number of trees, which is basically the packing bound O(ε−d). The Euclidean238

construction of [3] is significantly more complex than the construction of [8] that239

applies to the wider family of doubling metrics. Here we give a short overview of the240

simpler construction of [8]; then we describe our Euclidean construction, aiming to241

focus on the geometric insights that we employed to breach the packing bound barrier.242

The starting point of [8] is the standard hierarchy of 2w-nets {Nw} [30], which243

induces a hierarchical net-tree.8 Each net Nw is greedily partitioned into a collection244

of Θ( 2
w

ε )-sub-nets Nw,t, which too are hierarchical. For a fixed level w, the number of245

sub-nets {Nw,t} is bounded by the packing bound O(ε−d), and each of them is handled246

by a different tree via a straightforward clustering procedure. Näıvely this introduces247

a log Φ factor to the number of trees, each corresponding to a level (Φ is the aspect248

ratio of the point set). The key observation to remove the dependency on the aspect249

ratio is that two far apart levels are more or less independent, and one can pretty much250

use the same collection of trees for both. More precisely, the levels are partitioned into251

ℓ := log(1/ε) congruence classes I0, I1, . . . , Iℓ−1, where Ij := {w | w ≡ j (mod ℓ)}.252

Since distances across different levels of the same class Ij differ by at least a factor253

of 1/ε, it follows that all sub-nets {Nw,t}w∈Ij can be handled by a single tree via a254

greedy hierarchical clustering. Now the total number of trees is the number of sub-nets255

in one level, which is O(ε−d), times the number of congruence classes log(1/ε).256

Taking a bird’s eye view of the construction of [8], the following two-step strategy257

is used to handle pairwise distances within each congruence class Ij :258

1. Reduce the problem from the entire congruence class Ij to a single level w ∈ Ij.259

This is done by a simple greedy procedure.260

2. Handle each level w ∈ Ij separately. This is done by a simple greedy clustering261

to the sub-nets {Nw,t}.262

In Euclidean spaces, we shall use quadtree which is the natural analog of the263

hierarchical net-tree. We too employ the trick of partitioning all levels in the hierarchy264

to congruence classes [7, 8, 13, 15] and handle each one separately, and follow the265

above two-step strategy. However, the way we handle each of these two steps deviates266

significantly from [8].267

8The standard notation in the literature on doubling metrics, including [8], uses index i instead of w to
refer to levels or distance scales; however, this paper focuses on Euclidean constructions, and we view it
instructive to use a different notation.
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Step 1: Reduce the problem to a single level.268

At any level w, we handle every quadtree cell of width 2w separately. Every cell is269

partitioned into subcells from level w − ℓ of width ε · 2w, and each non-empty cell270

contains a single representative assigned by the construction at level w − ℓ. At level271

w, we construct a partial (1 + ε)-tree cover, which roughly speaking only preserves272

distances between pairs of representatives that are at distance roughly 2w from each273

other; this is made more precise in the description of Step 2 below. Let τ(ε) be the274

number of trees required for such a partial tree cover. To obtain a tree cover for all275

points in the current level-w cell, we simply merge the aforementioned partial tree276

cover constructed for the level-(w − ℓ) representatives with the tree cover obtained277

previously for the points in the subcells. Finally, we choose one of those level-(w − ℓ)278

representatives as the level-w representative of the current cell, and proceed to level279

w + ℓ of the construction.280

To achieve the required stretch bound, it is sufficient to guarantee that for every281

pair of points (p, q), some quadtree cell of side-length proportional to ∥pq∥ would282

contain both p and q. Alas, this is impossible to achieve with a single quadtree. To283

overcome this obstacle, we use a result by Chan [31]: there exists a collection of Θ(d)284

carefully chosen shifts of the input point set, such that in at least one shift there is a285

quadtree cell of side-length at most Θ(d)·∥pq∥ that contains both p and q. The number286

of trees in the cover grows by a factor of Od(1). Consequently, if each cell can be287

handled using τ(ε) trees, then ranging over all the log(1/ε) congruence classes and all288

the shifts, the resulting tree cover consists of τ(ε)·log(1/ε)·Od(1) trees; see Lemma 2.4289

for a more precise statement. The full details of the reduction are in Section 2.1.290

Step 2: Handling a single level.291

Handling a single level is arguably the more interesting step, since this is where we292

depart from the general packing bound argument that applies to doubling metrics,293

and instead employ a more fine-grained geometric argument. We next give a high-294

level description of the tree cover construction for a single level w. For brevity, in295

this discussion we focus on the 2-dimensional construction that does not use Steiner296

points. The full details, as well as generalization for higher dimension and the Steiner297

tree cover construction, are given in Sections 2.2 and 2.3.298

We consider a single 2-dimensional quadtree cell of side-length ∆ := 2w at level299

w, which is subdivided into subcells of side-length ε · 2w. Every level-(w − ℓ) cell300

has a representative and our goal is to construct a partial tree cover for any pair of301

representatives that are at a distance between ∆/10 and ∆. (The final constants are302

slightly different; here we choose 10 for simplicity.) To this end, we select a collection303

of Θ(1/ε) directions. For each direction ν, we partition the plane into strips of width304

ε∆, each strip parallel to ν. We then shift each such partition orthogonally by ε∆/2;305

we end up with a collection of 2 · Θ(1/ε) partitions, two for each direction. We call306

these partitions themajor strip partitions. Observe that for every pair of representative307

points p and q, there is at least one major strip partition in some direction, such that308

both p and q are contained in the same strip. Crucially, we show that for every strip309

S in a partition P , there is a collection of O(1) trees that preserves distances between310

all points p and q in strip S that are at distance between ∆/100 and ∆. The key311
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observation is that, since the strips in the same partition P are disjoint by design, the312

O(1)-many trees for each strip of P can be combined into O(1) forests. Thus the total313

number of forests is O(1/ε).314

To construct a collection of trees preserving distances within a single strip S,315

we first subdivide the strip S. If S is in direction ν, we partition S into sub-strips316

orthogonal to ν, each of width ∆/20. We call this a minor strip partition. Observe that317

if points p and q are at distance ≥ ∆/10, they are in different sub-strips of the minor318

strip partition. For every pair of sub-strips S1 and S2 in the minor strip partition, we319

construct a single tree that preserves distances between points in S1 and S2 to within320

a factor of 1+ε. There are O(1) sub-strips in the minor strip partition, so overall only321

O(1) trees are needed for any strip S.322

1.3.2 Bounding the degree323

The tree cover construction described above achieves the optimal bound on the number324

of trees, but the degree of points could be arbitrarily large. While the previous tree325

cover constructions [3, 8] incur unbounded degree, the Euclidean construction of [3],326

when restricted to a single level in the hierarchy, achieves an absolute constant degree.9327

In our construction, when restricted to a single level, the degree of points can be328

easily bounded byO(1/ε2). However, in contrast to [3], our goal is to achieve this bound329

for the entire tree, across all levels of the hierarchy. In particular, if we achieve this goal,330

the total degree of each point over all trees will be O(ε−1 ·log(1/ε)) (O(ε−d+1 ·log(1/ε))331

in general), which is optimal (up to logarithmic factor) due to the aforementioned332

lower bound [16]. To achieve this goal, we strengthen the aforementioned two-step333

strategy as follows.334

Step 1.335

In the reduction from the entire congruence class Ij to a single level w ∈ Ij , the336

challenge is not to overload the same representative point over and over again across337

different levels of Ij . To this end, we refine a degree reduction technique, originally338

introduced by Chan et al. [7] to achieve a bounded degree for (1 + ε)-stretch net-tree339

spanners in arbitrary doubling metrics. The technique of [7] is applied on a bounded-340

arboricity net-tree spanner, first by orienting its edges to achieve bounded out-degree341

for all points. Then, apply a greedy edge-replacement process, where the edges are342

scanned in nondecreasing order of their level (or weight), and any incoming edge (u, v)343

leading to a high-in-degree point v is replaced by an edge leading to an incoming344

neighbor w of v in a sufficiently lower level, with ∥wv∥ ≤ ε∥uv∥. It is shown that345

this process terminates with a bounded-degree spanner, where the degree bound is346

quadratic in the out-degree bound (arboricity) of the original spanner, and the stretch347

bound increases only by an additive factor of O(ε).348

We would like to apply this technique on every tree in the tree cover separately ; if349

instead we were to apply it on the union of the trees, we would create cycles; resolving350

them blows up the number of trees in the cover. We demonstrate that by working on351

9Although in the original paper of [3] (as well as in [14]) the bound is not an absolute constant, it was
shown in [28] that an absolute constant bound can be obtained. Nonetheless, overlaying all levels of the
hierarchy leads to a final degree bound of Θ(log Φ).
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each tree separately, not only does the greedy edge-replacement process reduce the352

degree in each tree to an absolute constant, but it also keeps the tree cycle-free as353

well as provides the required stretch bound; see Section 4.1 for the details. In fact, it354

turns out to be advantageous to operate on each tree separately rather than on their355

union, since this way the out-degree bound in a single tree reduces to 1, which directly356

improves the total degree bound over all trees to be linearly depending on 1/ε rather357

than quadratically. This is the key to achieving an optimal degree bound both within358

each tree as well as over all trees.359

Step 2.360

When handling a single level individually, the degree of points can be easily bounded361

by O(1/ε2) as mentioned. However, we would like to achieve an absolute constant362

bound at each level, independent of ε. Recall that, for every pair of sub-strips S1363

and S2 in the minor strip partition of some strip S, we construct a single tree that364

preserves distances between points in S1 and S2 to within a factor of 1+ ε; this tree is365

in fact a star. Perhaps surprisingly, every such star can be transformed into a binary366

tree via a simple greedy procedure, with the stretch bound increased by just a factor367

of 1 +O(ε log(1/ε)); see Section 4.2 for the details.368

1.4 Organization369

In Section 2, we present the construction of tree covers in R2 with an optimal number of370

trees in both non-Steiner and Steiner settings, proving Theorem 1.1 and Theorem 1.2371

for the plane. In Section 3, we generalize these constructions to Rd for arbitrary372

constant d. In Section 4, we reduce the degree of every tree in the (non-Steiner) tree373

cover an absolute constant. In Section 5, we show some applications of our tree cover374

to routing, proving Theorem 1.3.375

2 Optimal Tree Covers for Euclidean Spaces376

2.1 Reduction to Partial Tree Cover377

Let X be a set of points in Rd. For any two points p and q in X, we use ∥pq∥ to denote378

their Euclidean distance. Without loss of generality we assume the minimum distance379

between any two points in X is 1.380

Lemma 2.1 (Cf. [31, 32]). Let L > 0 be an arbitrary real parameter. Consider any381

two points p, q ∈ [0, L)d, and let T be the infinite quadtree of [0, 2L)d. For D := 2⌈d/2⌉382

and i = 0, . . . , D, let νi := (iL/(D + 1), . . . , iL/(D + 1)). Then there exists an index383

i ∈ {0, . . . , D}, such that p+νi and q+νi are contained in a cell of T with side-length384

at most (4⌈d/2⌉+ 2) · ∥pq∥.385

Definition 2.2. We call two points (µ,∆)-far if their distance is in [∆/µ,∆].386

Definition 2.3. A (µ,∆)-partial tree cover for X ⊂ Rd with stretch (1 + ε) is a tree387

cover with the following property: for every two (µ,∆)-far points p and q, there is a388

tree T in the cover such that δT (p, q) ≤ (1 + ε) · ∥pq∥.389

Lemma 2.4 (Reduction to partial tree cover). Let X be a set of points in Rd, and390

let ε be a number in (0, 1/20). Suppose that for every µ > 1, every set of points in391
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Rd with diameter ∆ admits a (µ,∆)-partial tree cover with stretch (1+ ε), size τ(ε, µ)392

and diameter of each tree at most γ∆ for some γ ≥ 1. Then X admits a tree cover393

with stretch (1 + ε) and size O(d · log γ·d
√
d

ε · τ(ε, µ)) with µ := 10d
√
d.394

Proof. Assume without loss of generality that the smallest coordinate of a point in395

X is 0 and let L be the largest coordinate in X. Let D := 2⌈d/2⌉ and let Q be396

the quadtree as in Lemma 2.1. For i ∈ {0, . . . , D}, let Qi be Q shifted by −νi =397

(−iL/(D + 1)), . . . ,−iL/(D + 1)).398

Constructing the tree cover. Let ℓ := log γd
√
d

ε and let µ := 10d
√
d. (Assume for399

simplicity that ℓ is an integer.) Fix some i ∈ {0, . . . , D}, j ∈ {0, . . . , ℓ − 1}, and400

k ∈ {1, . . . , τ(ε, µ)}. We proceed to construct tree Ti,j,k. Consider the congruence class401

Ij := {z ≥ 0 | z ≡ j (mod ℓ))}. The following construction is done for every z ∈ Ij in402

increasing order. Consider the level-w quadtree Qi, with cells of width 2w. If w < ℓ,403

for each level-w cell C, construct the kth among τ(ε, µ) trees from the (µ, 2w)-partial404

tree cover on the points in C, and root it at an arbitrary point in C. For w ≥ ℓ,405

consider the subdivision of level-w cell into subcells of level w− ℓ. Let X ′ be a subset406

of X consisting of all the roots of the previously built subtrees in subcells of levels407

w − ℓ. Let ∆w := 2w
√
d, and observe that ∆w is an upper-bound on the diameter of408

X ′. Construct a (µ,∆w)-partial tree cover for X ′ with τ(ε, µ) trees, and let T be the409

kth tree of the τ(ε, µ) trees constructed. Take the previously built subtrees rooted at410

X ′, and construct a new tree by identifying their roots with the vertices of T . Root411

this new tree arbitrarily. The tree Ti,j,k is the final tree obtained after iterating over412

every z ∈ Ij .413

We prove the following two claims inductively.414

Claim 2.5. Let Tw
i,j,k be a tree constructed at level w for i ∈ {0, . . . , D}, j ∈ {0, . . . , ℓ−415

1}, k ∈ {1, . . . , τ(ε, µ)} and w ∈ Ij.416

1. Tw
i,j,k is a tree.417

2. Tw
i,j,k has diameter ϕw at most 2γ∆w.418

Proof. We prove the claim by induction over the level w ∈ Ij .419

1. The base case holds because the graph Ti,j,k is initialized as a tree. For the induc-420

tion step, consider some level w ∈ Ij that is at least ℓ. At this stage we construct421

a tree T with vertex set consisting of representatives of the level w−ℓ, and attach422

the trees rooted at each of the representatives we constructed previously to T .423

This is clearly a tree and the induction step holds.424

2. The base case holds because the diameter of each tree is at most γ∆w, as425

guaranteed in the statement of Lemma 2.4. For the induction step, we have426

γ∆w + 2γ∆w−ℓ = γ∆w + 2γ ∆wε

γd
√
d
≤ 2γ∆w.427

428

Claim 2.6. The number of trees in the cover is O(d log γd
√
d

ε · τ(ε, µ)).429

Proof. The trees Ti,j,k are ranging over430

(D + 1) · ℓ · τ(ε, µ) = (2⌈d/2⌉+ 1) · log γd
√
d

ε
· τ(ε, µ)431
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indices.432

Claim 2.7. For every two points p, q ∈ X, there is a tree T in the cover such that433

δT (p, q) ≤ (1 + ε) · ∥pq∥, where δT (p, q) is the distance between p and q in T .434

Proof. By Lemma 2.1, there exists a cell C in one of theD+1 quadtrees which contains435

both p and q and has side-length 2w ≤ (4⌈d/2⌉+2) · ∥pq∥ ≤ 5d · ∥pq∥. Let Qi be such a436

quadtree, where 0 ≤ i ≤ D, and let 0 ≤ j ≤ ℓ−1 be such that j ≡ w (mod ℓ). Observe437

that p and q are (µ,∆w)-far. If w < ℓ, we constructed a (µ,∆w)-partial tree cover of438

C, so the claim holds. Otherwise suppose w ≥ ℓ. Recall that in the construction of the439

tree cover, we considered a subdivision of a level-w cell (of side-length 2w) into smaller440

subcells of level w − ℓ. For each subcell we choose a representative and constructed a441

tree cover on top of them. Let p′ (resp. q′) denote the representative of p (resp. q) in442

the subcell at level w− ℓ. We claim that p′ and q′ are (µ,∆w)-far, where ∆w = 2w
√
d443

denotes the diameter of the cell at level w. The bound ∥p′q′∥ ≤ ∆w follows from the444

fact that p′ and q′ are both in cell C. The distance can be lower-bounded as follows.445

∥p′q′∥ ≥ ∥pq∥ − 2∆w−ℓ ≥
2w

5d
− 2 · ε · 2

w

γd
√
d

√
d446

= 2w
(︃

1

5d
− 2ε

γd

)︃
≥ 2w

10d
=

∆w

µ
as ε <

1

20
, γ ≥ 1, and µ = 10d

√
d447

In other words, the representatives p′ and q′ are (µ,∆w)-far, meaning that one of the448

τ(ε, µ) trees T in the partial tree cover for cell C will preserve the stretch between449

p′ and q′ up to a factor of (1 + ε). The distance between p and q in this tree can be450

upper bounded as follows.451

δT (p, q) ≤ δT (p, p
′) + δT (p

′, q′) + δT (q, q
′)452

≤ (1 + ε) · ∥p′q′∥+ δT (p, p
′) + δT (q, q

′)453

≤ (1 + ε) · (∥p′p∥+ ∥pq∥+ ∥qq′∥) + δT (p, p
′) + δT (q, q

′)454

≤ (1 + ε) · (∥pq∥+ 2∆w−ℓ) + 2ϕw−ℓ455

≤ (1 + ε) · (∥pq∥+ 2∆w−ℓ) + 4γ∆w−ℓ by Claim 2.5456

≤ (1 + ε) ·
(︃
∥pq∥+ 6∆w · ε

d
√
d

)︃
457

= (1 +O(ε)) · ∥pq∥458

Stretch 1 + ε can be obtained by appropriate scaling.459

Claims 2.5 to 2.7 imply that the resulting construction is a tree cover with stretch460

(1 + ε) and O(d log γd
√
d

ε · τ(ε, µ)) trees, as required. This concludes the proof of461

Lemma 2.4.462

Running Time.463

Let Timeµ,∆(n) be the time needed to construct a (µ,∆)-partial tree cover for a given464

set of points of size n. In this paper, we assume that all algorithms are analyzed using465
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the real RAM model [33–36]. Constructing a (compressed) quadtree and computing466

the shifts require Od(n log n) time [31]. For each non-trivial node in the quadtree (a467

trivial node is a node that have only one child), we select a representative point, and468

then compute a (µ,∆)-partial tree cover of the representative points corresponding to469

descendants of the node at ℓ = O(log(1/ε)) levels lower. Computing this (µ,∆)-partial470

tree cover on k representatives takes Timeµ,∆(k) time. We can charge each of the k471

representatives by Timeµ,∆(k)/k. Each of the n points in our point set is charged472

ℓ = Od(log(1/ε)) times. In the subsequent sections, we show that function Timeµ,∆(n)473

satisfies Timeµ,∆(n) = Od(npoly(1/ε)), which in particular implies that for any two474

positive a and b, we have Timeµ,∆(a) +Timeµ,∆(b) = Od(Timeµ,∆(a+ b)). Using this475

inequality, we can bound the total charge across all points byOd(Timeµ,∆(n)·log(1/ε)).476

Hence, the total time complexity is Od(n log n+Timeµ,∆(n) · log(1/ε)).477

2.2 Partial Tree Cover Without Steiner Points478

This part is devoted to the proof of Theorem 1.1. We present the argument in R2, and479

defer the proof for Rd with d ≥ 3 to Section 3.1.480

Lemma 2.8. Let X be a set of points in R2 with diameter ∆. For every constant481

µ > 0 there is a (µ,∆)-partial tree cover for X with stretch (1 + ε) and size O(1/ε),482

where each tree has diameter at most 2∆ log(4µε).483

The construction relies on partitioning the plane into strips. Let θ be a unit vector.484

We define a strip in direction θ to be a region of the plane bounded by two lines, each485

parallel to θ. The width of the strip is the distance between its two bounding lines.486

We define the strip partition with direction θ and width w (shorthanded as (θ, w)-487

strip partition) to be the unique partition of R2 into strips of direction θ and width488

w, where there is one strip that has a bounding line intersecting the point (0, 0). Let489

θ⊥:= (−θy, θx) be a unit vector perpendicular to θ. A (θ, w)-strip partition with shift490

s is obtained by shifting the boundary lines of the (θ, w) strip partition by s · θ⊥.491

Consider the following family of strip partitions: Let θi := (cos(i · ε
4µ ), sin(i ·

ε
4µ ))492

be the unit vector with angle i · ε
4µ , for i ∈ {0, . . . , 8πµ

ε − 1}. Let set ξi contains (1)493

the (θi, ε
∆
2µ )-strip partition with shift 0, and (2) the (θi, ε

∆
2µ )-strip partition with shift494

ε ∆
4µ . Let ξ :=

⋃︁
i ξi. We call the strip partitions of ξ the major strip partitions. Clearly,495

ξ contains 16πµ/ε = O(1/ε) major strip partitions. We define θ⊥i to be a vector496

orthogonal to θi; and we define ξ⊥ to be the set of all (θ⊥i ,
∆
2µ )-strip partitions with497

shift 0, for every i ∈ {0, . . . , 8πµ
ε − 1}. We call the shift partitions of ξ⊥ the minor498

strip partitions. Every set ξi of major strip partitions is associated with a minor strip499

partition; notice that every major strip partition has an ε-factor smaller width to its500

orthogonal minor strip partition. See Figure 1.501

Claim 2.9. For any two points x, y ∈ X such that x and y are (µ,∆)-far, there exists502

some major strip partition P ∈ ξ such that (1) the points x and y are in the same503

strip of P ; and (2) in the associated minor strip partition P⊥ ∈ ξ⊥, the points x and504

y are in different strips.505

Proof. Let v denote the vector y − x. There exists some i ∈ {0, . . . , 8πµ/ε − 1} such506

that the angle between the vector θi and v is at most ε/8µ. We write v as a linear507
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x

y

α

β

θ

θ⊥

ε
4µ

ε∆2µ

∆
2µ

||v||

Fig. 1. A major strip partition (in blue) in direction θ, and a minor strip partition (in purple) in direction θ⊥. Points x
and y, and the vector v broken into components parallel to and orthogonal to θ.

combination of θi and a vector θ⊥i orthogonal to θ: v = α · θi + β · θ⊥i . As the angle508

between v and θi is at most ε/8µ (and ∆/µ ≤ ∥xy∥ ≤ ∆), we have509

|α| ≥ ∥v∥ cos
(︃

ε

8µ

)︃
>

∥v∥
2

≥ ∆

2µ
, and510

511

|β| ≤ ∥v∥ sin
(︃

ε

8µ

)︃
≤ ε

8µ
∥v∥ ≤ ε∆

8µ
.512

Let ξi be the set of major strip partitions in direction θi. As |β| ≤ ε∆
8µ , and ξi consists513

of shifted strip partitions of width ε∆
2µ , there is some major strip partition P ∈ ξi in514

which x and y are in the same strip. Further, every strip in the associated minor strip515

partition P⊥ has width ∆
2µ , so the fact that |α| > ∆

2µ implies that x and y are in516

different strips of P⊥. This proves the claim.517

For every major strip partition in ξ, we now construct a tree which preserves518

approximately distances between points that lie in the same major strip but different519

minor strips. The following is the key claim.520

Claim 2.10. Let S be a strip from a major strip partition in ξ, with direction θ. Let521

S1 and S2 be two strips from a minor strip partition in ξ, both with direction θ⊥. Then522

there is a tree T on X ∩ S such that for every a ∈ X ∩ S1 ∩ S and b ∈ X ∩ S2 ∩ S,523

∥ab∥ ≤ δT (a, b) ≤ ∥ab∥ + ε∆
µ . In particular, if x and y are (µ,∆)-far, then ∥ab∥ ≤524

δT (a, b) ≤ (1 + ε) · ∥ab∥.525

Proof. For any point x ∈ R2, we define scoreθ(x) to be the inner product ⟨x, θ⟩. Let526

A := X ∩ S1 ∩ S and B := X ∩ S2 ∩ S. As A and B belong to different minor strips527
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in direction θ⊥, without loss of generality scoreθ(a) < scoreθ(b) for every a ∈ A and528

b ∈ B. Let a∗ := argmaxa∈A scoreθ(a). We claim that for any a ∈ A and b ∈ B,529

∥aa∗∥+ ∥a∗b∥ ≤ ∥ab∥+ ε∆

µ
. (1)530

To show this, consider the line segment ℓ between a and b. Let L be the line in direction531

θ⊥ that passes through a∗. Because scoreθ(a) ≤ scoreθ(a
∗) ≤ scoreθ(b), line L and532

segment ℓ intersect at some point a′ in the slab S; see Figure 2. (Note that a′ is not533

the projection of a∗ onto ℓ.) The distance ∥a∗a′∥ can be no greater than the width of534

the slab, so ∥a∗a′∥ ≤ ε ∆
2µ . By triangle inequality, we have535

∥aa∗∥+ ∥a∗b∥ ≤ (∥aa′∥+ ∥a′a∗∥) + (∥a∗a′∥+ ∥a′b∥)536

≤ ∥aa′∥+ ∥a′b∥+ ε
∆

µ
537

≤ ∥ab∥+ ε∆

µ
.538

Let T be the star centered at a∗, with an edge to every other point x ∈ A ∪ B; the539

weight of the edge between a∗ and x is ∥a∗x∥. For any a ∈ A and b ∈ B, we clearly540

have ∥ab∥ ≤ δT (a, b), and Equation (1) guarantees that δT (a, b) ≤ ∥ab∥+ ε∆
µ .541

a

ba∗

a′

L

A

B

θ

Fig. 2. Point sets A and B, both in the same major strip (blue) but in different minor strips (purple). The points a, a∗,
and b, with scoreθ(a) ≤ scoreθ(a

∗) ≤ scoreθ(b), and the line L passing through a∗.

We can now prove Lemma 2.8.542

Proof of Lemma 2.8. Let ξ be the set of major strip partitions defined above. Let P543

be an arbitrary major strip partition in ξ, and let P⊥ be the associated minor strip544

partition in ξ⊥. For each pair of strips S1 and S2 in P⊥, we define tree TP,S1,S2
as545

follows: For every strip S in P , apply Claim 2.10 to construct a tree TS on (a subset546
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of) X ∩S that preserves distances between X ∩S1 and X ∩S2; and let TP,S1,S2 be the547

tree obtained by joining together the trees TS from all strips S in P . To join the trees,548

we build a balanced binary tree10 from the roots of TS for all strips S in P . The tree549

cover T consists of the set of all trees TP,S1,S2 , for every major strip partition P ∈ ξ550

and every pair of strips S1, S2 in the associated minor strip partition P⊥.551

To bound the size of T , observe that (1) there are at most 8πµ
ε · 2 = O(1/ε)552

major strip partitions containing points in X, and (2) for every strip S in a major553

strip partition, at most 2µ + 1 = O(1) strips in the associated minor strip partition554

contain points in X ∩ S (recall that point set X has diameter ∆). Thus T contains555

16πµ
ε ·

(︁
2µ+1

2

)︁
= O(1/ε) trees.556

To bound the stretch, let a and b be arbitrary points inX. By Claim 2.9, there exists557

some major strip partition P ∈ ξ such that (1) a and b are in the same strip in P ; and558

(2) a and b are in different strips S1 and S2 of the associated minor strip partition P⊥.559

Thus Claim 2.10 implies that tree T = TP,S1,S2 satisfies ∥ab∥ ≤ δT (a, b) ≤ (1+ε)·∥ab∥.560

To bound the diameter, let P be a major strip partition and let S be a major strip561

in P . Observe that TS is a star and the distance from the root of TS to any other point562

in TS is at most ∆. The roots of trees corresponding to strips in P are connected by a563

binary tree by construction. Each edge of this binary tree is of length at most ∆. The564

number of strips in P is upper bounded by 2µ/ε. Hence, the height of the binary tree565

is at most log(2µ/ε). This means that the diameter of the resulting tree is at most566

2 · (∆ + log(2µ/ε) ·∆) = 2∆ log(4µ/ε).567

We can plug this partial tree cover into the reduction of Lemma 2.4 (with τ(ε, µ) =568

Oµ(
1
ε ) and γ = O(log 1

ε )) to prove Theorem 1.1 in the plane, obtaining a non-Steiner569

tree cover of stretch (1 + ε) and size O(ε−1 log 1
ε )) for points in the plane.570

Running Time.571

The inner product between each point with each vector θi can be precomputed using572

O(|X|· 4µε ) operations. For a major strip S, finding the maximum point in the intersec-573

tion between S and each of its minor strip only need time proportional to the number574

of points in S ∩X. Those points are chosen as roots of the stars corresponding to S.575

For each root, constructing the corresponding star requires O(|S ∩ X|) time. There576

are
(︁
2µ+1

2

)︁
roots for each major strip. Hence, the total time complexity of constructing577

the (µ,∆)-partial tree cover is:578

Timeµ,∆(|X|) = |X| · 4µ
ε

+

(︃
2µ+ 1

2

)︃ ∑︂
major strip S

|S ∩X| = O(|X| · ε−1)579

Therefore, the time complexity of constructing the tree cover is O(n log n +580

nε−1 log(1/ε)).581

2.3 Partial tree cover with Steiner points582

This part is devoted to the proof of Theorem 1.2 for R2; the argument for dimension583

d ≥ 3 is deferred to Section 3.2.584

10we use a balanced binary tree instead of a star to help guarantee bounded degree; see Section 4
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Lemma 2.11. Let X be a set of points in R2 with diameter ∆. For every constant µ585

and every ε ≤ 1/72, there is a Steiner (µ,∆)-partial tree cover with stretch (1+ ε) for586

X with O(1/
√
ε) trees, where each tree has diameter at most 3∆.587

Consider a square of side-length ∆ containing X, and let µ be an arbitrary constant.588

Divide the square into vertical slabs of width ∆
3
√
2µ

and height ∆, and into horizontal589

slabs of width ∆ and height ∆
3
√
2µ

.590

Observation 2.12. For any two points p, q ∈ X such that p and q are (µ,∆)-far,591

there exists either a horizontal or a vertical slab such that p and q are from different592

sides of the slab.593

Proof. Suppose towards contradiction there are two adjacent horizontal slabs contain-594

ing both p and q and also two adjacent vertical slabs containing both p and q. The595

distance between p and q is at most ∥pq∥ ≤ 2 · ∆
3
√
2µ

·
√
2 < ∆

µ , contradicting the596

assumption that p and q are (µ,∆)-far.597

For each horizontal (resp. vertical) slab S, we consider the horizontal (resp. vertical)598

line segment ℓ that cuts the slab into two equal-area parts. The length of ℓ is ∆. Let k :=599

⌊2µ/
√
ε⌋ be an integer. We partition ℓ into k intervals, [a0, a1], [a2, a3], . . . [ak−1, ak],600

each of length
√
ε∆/2µ. For each point ai, we construct tree T i

S by adding edges601

between ai and every point in X. Finally, connect the points ai using a straight line602

and let T be the resulting tree. This ensures that the diameter of T is at most 3∆.603

Claim 2.13. For any two points p, q ∈ X such that p and q are (µ,∆)-far, there exists604

a slab S and an integer i ∈ {0, . . . , k} such that δT i
S
(p, q) ≤ (1 + ε) · ∥pq∥.605

Proof. By Observation 2.12, there exists a slab S such that p and q are in different606

sides of it. Without loss of generality assume that S is horizontal. By construction,607

we partition the line segment ℓ of S into k intervals [a0, a1], [a2, a3], . . . [ak−1, ak] each608

of length
√
ε∆/(2µ). Let r be the intersection between pq and ℓ, and let ai be the609

closest point to r. Let r′ be the projection of ai to pq. Hence, ∥air′∥ ≤ ∥air∥ ≤
√
ε∆
2µ610

and similarly ∥r′r∥ ≤
√
ε∆
2µ . By construction, we have:611

δT i
S
(p, q) = ∥pai∥+ ∥aiq∥ =

√︁
∥pr′∥2 + ∥r′ai∥2 +

√︁
∥r′q∥2 + ∥r′ai∥2. (2)612

Observe that ∥pr′∥ ≥ ∥pr∥ − ∥r′r∥ ≥ 1
2 · ∆

3
√
2µ

−
√
ε∆
2µ ≥ ∆

12
√
2µ

, for ε ≤ 1/72. Thus,613

||r′ai|| ≤
√
ε∆
2µ ≤ 6

√
2 ·

√
ε · ∥pr′∥. Similarly, ∥r′ai∥ ≤ 6

√
2 ·

√
ε · ∥r′q∥. Combining with614

Equation 2, we get:615

δT i
S
(p, q) ≤

√︁
∥pr′∥2 + 72ε∥pr′∥2 +

√︁
∥r′q∥2 + 72ε∥r′q∥2

≤ ∥pr′∥
√
1 + 72ε+ ∥r′q∥

√
1 + 72ε

≤
√
1 + 72ε∥pq∥

≤ (1 + 72ε)∥pq∥

616

Stretch 1 + ε can be achieved by appropriate scaling.617
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We now prove Lemma 2.11. Let T be the set containing trees T i
s for every horizontal618

or vertical slabs s and every index i ∈ [0, k]. There are O(µ) = O(1) horizontal619

and vertical slabs, so T contains O(k) = O(1/
√
ε) trees. It follows immediately from620

Claim 2.13 that T is a Steiner (µ,∆)-partial tree cover for X with stretch (1 + ε).621

Plugging this partial tree cover into the reduction of Lemma 2.4 (with τ(ε, µ) =622

Oµ(
1√
ε
) and γ = 3) proves Theorem 1.2 for points in the plane.623

Running Time.624

For a set X, creating the set of slabs can be done in O(1) time. For each slab, finding625

a net of the middle line takes O(1/
√
ε) time. For each Steiner point, it requires O(|X|)626

time to create a tree connecting that point to everyone in X. Totally, the time com-627

plexity is Timeµ,∆(|X|) = O(|X|/
√
ε). Therefore, the time complexity of constructing628

the tree cover is O(n log n+ nε−1/2 log(1/ε)).629

3 Tree Cover in Higher Dimensions630

3.1 Non-Steiner tree covers631

We now prove an analog of Lemma 2.8 in Rd, for any constant d = O(1).632

Lemma 3.1. Let X be a set of points in Rd with diameter ∆. For every constant633

µ > 0 there is a (µ,∆)-partial tree cover for X with stretch (1+ ε) and size Od(ε
1−d),634

where each tree has diameter at most Od(∆ log(4µε)).635

The definition of strip partition and the sets ξ and ξ⊥, are different in Rd than in636

R2. Let θ be a vector. An Rd-strip with direction θ and width w is a convex region637

S ⊂ Rd such that there is a line ℓ in S such that every point in the strip is within638

distance at most w/2 of ℓ. The line ℓ is called the spine of the strip. An Rd-strip639

partition is a partition of Rd into Rd-strips. For the construction of the major strip640

partitions ξ, we use the following well-known lemma, slightly adapted from a version641

in the textbook by Narasimhan and Smid [14].642

Lemma 3.2 (Cf. Lemma 5.2.3 of [14]). Let ε be a number in (0, 1). There is a set V643

of vectors in Rd such that (1) V contains Od(ε
1−d) vectors, and (2) for any vector v644

in Rd, there is some vector v′ ∈ V such that the angle between v and v′ is at most ε.645

We also use a variant of the shifted quadtree construction of Chan [31] (which646

follows immediately from our Lemma 2.1).647

Lemma 3.3 (Cf. [31]). For any constant ∆ > 0, there is a set P of partitions of Rd
648

into hypercubes of side length (4⌈d/2⌉+2)∆ such that (1) there are O(d) partitions in649

P, and (2) for every pair of points x, y ∈ Rd with ∥xy∥ ≤ ∆, there is some partition650

P ∈ P where x and y are in the same hypercube in P .651

Let θ be a vector in Rd. We define Xθ to be the hyperplane orthogonal to θ. We can652

viewXθ as a copy of Rd−1. Let Pθ be an arbitrary partition ofXθ into Rd−1-hypercubes653

with side length ε ∆
2µd . This partition induces an Rd-strip partition with direction θ654

and width ε ∆
2µ : for every hypercube R in the partition Pθ, the corresponding strip is655

defined by {r+α · θ : r ∈ R,α ∈ R}. We denote this strip partition as S(Pθ). The fact656

that S(Pθ) has width ε ∆
2µ follows from the fact that every point in a Rd−1-hypercube657

of side length ε ∆
2µd is within distance ε ∆

4µ of the center point of the hypercube.658
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We now define the set ξ of major strip partitions. Let V be the set of vectors659

provided by Lemma 3.2, setting the parameter ε′ = ε
10µd2 . For every θ ∈ V, let Pθ660

denote the set of partitions of Xθ into Rd−1-hypercubes of side length ε ∆
2µd , as guaran-661

teed by Lemma 3.3. The set ξθ contains the (θ, ε ∆
2µ )-strip partitions S(Pθ) associated662

with every Pθ ∈ Pθ. Define ξ =
⋃︁

ξθ. The following observation is immediate from663

Lemma 3.3:664

Observation 3.4. Let θ be a vector in Rd. If x and y are two points whose projections665

onto Xθ are within distance ε ∆
10µd2 , then there is some strip partition in ξθ with a666

strip containing both x and y.667

We now define ξ⊥, the set of minor strip partitions. For every θ ∈ V, let θ⊥ be668

some arbitrary vector that is orthogonal to θ. Let Pθ⊥ be an arbitrary partition of669

Xθ⊥ into Rd−1-hypercubes with side length ∆
2µd . Define ξ⊥ to be the set containing670

the (θ⊥, ∆
2µ )-strip partition S(Pθ⊥) for every θ ∈ V. With these modified definition of671

ξ and ξ⊥, the claims from the R2 case generalize naturally. We restate the necesssary672

claims below.673

Claim 2.9. For any two points x, y ∈ X such that x and y are (µ,∆)-far, there exists674

some major strip partition P ∈ ξ such that (1) the points x and y are in the same675

strip of P ; and (2) in the associated minor strip partition P⊥ ∈ ξ⊥, the points x and676

y are in different strips.677

Proof. The proof of Claim 2.9 is similar to the R2 case. We break v = y − x into a678

component parallel to θ and a component that lies in the hyperplane orthogonal to θ;679

the former has length α > ∆
2µ and the latter has length β ≤ ε ∆

10µd2 . Observation 3.4680

(together with the upper-bound on β) guarantees that there is some major strip par-681

tition in direction θ in which x and y are in the same strip. The lower bound on α682

implies that x and y are in different strips of the associated minor strip partition in683

direction θ⊥.684

Claim 2.10. Let S be a strip from a major strip partition in ξ, with direction θ. Let685

S1 and S2 be two strips from a minor strip partition in ξ, both with direction θ⊥. Then686

there is a tree T on X ∩ S such that for every a ∈ X ∩ S1 ∩ S and b ∈ X ∩ S2 ∩ S,687

∥ab∥ ≤ δT (a, b) ≤ ∥ab∥ + ε∆
µ . In particular, if x and y are (µ,∆)-far, then ∥ab∥ ≤688

δT (a, b) ≤ (1 + ε) · ∥ab∥.689

Proof. In the proof of Claim 2.10, the only difference is that the line L in the 2D case690

is replaced by a hyperplane L orthogonal to θ. To show that ∥a∗a∥ ≤ ε ∆
2µ , we argue691

as follows. Hyperplane L intersects the spine of the strip at some point s; as the width692

of the strip is ε ∆
2µ , every point in L that is in the strip (which includes a∗ and a)693

is within distance ε ∆
4µ of s. Triangle inequality proves the claim, and the rest of the694

proof carries over.695

Proof of Lemma 3.1. The proof of Lemma 3.1 carries over almost exactly from696

Lemma 2.8. The size of ξ is Od(ε
1−d). For every major strip partition P ∈ ξ, there697

are
(︁
(2µd+1)d−1

2

)︁
= Od(1) pairs of strips in the corresponding minor strip partition of698

ξ⊥, and thus the tree cover T contains Od(ε
1−d) trees. The stretch bound carries over699

without modification.700
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The diameter of each of the trees is Od(∆ · log 1/ε), following a similar argument701

as in the 2-dimensional case.Every major strip partition is induced by a set of Rd−1-702

hypercubes with side length ε ∆
2µd . Since the diameter of the point set is ∆, the number703

of hypercubes required is at most
(︂

2µd
ε

)︂d−1

.704

The height of the binary tree is at most (d− 1) log 2µd
ε and each edge is of length705

at most ∆. The diameter is at most 2(∆ +∆(d− 1) log 2µd
ε ) = Od(∆ · log 1/ε).706

Together with the reduction to a fixed scale (Lemma 2.4, with τ(ε, µ) = Oµ,d(ε
1−d)707

and γ = Od(log 1/ε)), we obtain Theorem 1.1.708

Running Time: The running time analysis is similar to the 2D case. The inner prod-709

uct between each point to each direction vector can be precomputed in Od(ε
1−d)|X|710

time. For each major strip S, there are at most
(︁
(2µd+1)d−1

2

)︁
pair of minor strips that711

intersect S ∩X. Hence, the total running time to construct a (µ,∆)-partial tree cover712

is:713

Timeµ,∆(|X|) = ε1−d|X|+
(︃
(2µd+ 1)d−1

2

)︃
·

∑︂
S is a major strip

|S ∩X| = Od(ε
1−d|X|)714

Then, the time complexity of constructing the tree cover is Od(n log n+nε1−d log 1/ε).715

3.2 Tree covers with Steiner points716

The construction for d-dimensional Euclidean space is a direct generalization of two-717

dimensional case. Consider a hypercube of side length ∆. We divide the hypercube718

by each coordinate into slabs of height ∆
3
√
dµ

; all other sides have length ∆. One can719

think of each slab as a d-dimensional rectangle, joined by two (d− 1)-hypercubes that720

are at a distance ∆
3
√
dµ

away from each other. Analog of Obs. 2.12 follows.721

Observation 3.5. For any two points p, q ∈ X such that p and q are (µ,∆)-far, there722

exists a slab such that p and q are from different sides of it.723

Each tree is constructed similarly to the two-dimensional case. For each slab, we724

find a
√
ε∆
2µ -net for the (d−1)-hypercube at the middle of each slab. For each net point725

u, we create a tree connecting u to every vertex in X. The proof follows similarly. The726

total number of trees is727

O

(︄
d · 3

√
dµ ·

(︃
2µ√
ε

)︃d−1
)︄

= O
(︂
d3/22dµdε(1−d)/2

)︂
.728

The diameter can be bounded by Od(∆), as in the 2-dimensional argument. Together729

with the reduction to a fixed scale (Lemma 2.4, with τ(ε, µ) = Oµ,d(ε
(1−d)/2) and730

γ = 3), this proves Theorem 1.2.731

Running Time: Creating the set of slabs requires time equal to the number of slabs,732

which is d · 3
√
dµ = O(d3/2). For each slab, we find a

√
ε∆
2µ -net of a (d− 1)-hypecube,733
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which has (2µ/
√
ε)d−1 points. For each Steiner point, we connect it to every point in734

X in O(|X|) time. Hence, the total time complexity is:735

Timeµ,∆(|X|) = O(d3/2 · (2µ/
√
ε)d−1 · |X|) = Od(ε

(1−d)/2|X|).736

Then, the time complexity of constructing the tree cover is Od(n log n +737

nε(1−d)/2 log 1/ε).738

4 Constant degree constructions739

In this section, we prove the following theorem.740

Theorem 4.1. For every set of points in Rd and any 0 < ε < 1/16, there exists a741

tree cover with stretch 1+ε and Od(ε
−(d−1) log 1/ε) trees such that every metric point742

has degree at most 11 in each of the trees.743

Our tree cover construction is a collection of trees, each of which possibly uses a744

copy of the same point many times. Each tree is constructed iteratively, going from745

smaller scales to the larger ones. In Section 4.1 we use the degree reduction technique746

due to [7] for each tree in the cover. This allows us to bound the degree in terms of747

the number of trees in the cover and the degree at a single scale in the construction.748

In Section 4.2, we show that the degree at a single scale is constant.749

4.1 Bounding the degree of metric points750

Consider a single tree in the cover. Our tree cover construction from Section 2.2 does751

not use Steiner points, but it still might consider the same point from the metric X752

across multiple levels of construction. Even if at each level of the construction every753

node has a bounded degree (which we show how to achieve in Section 4.2) the degree754

of each metric point might still be unbounded. To remedy this, we apply the degree755

reduction technique of [7].756

Start from the tree cover construction from Section 2 and fix a tree T = (V,E) from757

the cover. Let ℓ = log(d
√
d/ε) be the same as in Section 2.1. Without loss of generality,758

assume the tree was constructed in the congruence class Ij :=
{︁
z | z ≡ j (mod ℓ)

}︁
.759

Assume that at the every level of the construction, the edges of the tree are oriented760

from the parents to the children so that the outdegree of each node is α and indegree761

is 1. We show how to bound the degree of every point of the metric with respect to T .762

Let i∗(v) be the highest quadtree level at which point v is considered as a rep-763

resentative. For every edge (u, v) in T , we orient it from u to v if i∗(u) < i∗(v). If764

i∗(u) = i∗(v), break the ties according to the tree structure, from children towards765

parent. We use Ê to denote the set of arcs obtained in this way. Note that |Ê| = |E|,766

since we do not change any edges. Next, we describe the modification of Ê, where we767

replace some edges of Ê and obtain the set of Ẽ. Let u be a vertex at level i and let768

Êi be the set of edges used in the tree constructed at level i. Let Mi(u) be the set of769

endpoints of edges in Êi oriented into u. Let Iu := {i | Mi(u) ̸= ∅}. Suppose that the770

indices in Iu are ordered increasingly. Next we modify arcs going into u as follows.771

Keep Mi1(u) directed into u. For j > 1 we pick an arbitrary vertex w ∈ Mij−ℓ(u) and772

for each point v ∈ Mij (u) replace arc (v, u) by an arc (v, w).773
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Claim 4.2. If at every level T has an outdegree α, then every metric point has outde-774

gree α. Moreover, every node with an outgoing edge at level i ceases to be considered775

at levels higher than i.776

Proof. Consider an arc (u, v), i.e., an edge (u, v) directed from u towards v. This777

means that i∗(u) ≤ i∗(v). Let i be the level at which (u, v) was added to T . Recall778

that the edges are added while handling a single quadtree cell at level i and only779

one point from the cell is chosen a representative for the subsequent handling of level780

i + ℓ. If i∗(u) < i∗(v), this means that v is a representative and u does not exist on781

any subsequent level starting from i + ℓ. If i∗(u) = i∗(v), then neither u nor v are782

representatives, since the representative exists at a level higher than i∗(u). Hence, u783

does not exist on any subsequent level starting from i + ℓ. In conclusion, u can have784

outgoing edges only at a single level of construction.785

Claim 4.3. If at every level T has an outdegree α and indegree β, then every metric786

point has degree with respect to T at most α+ β + αβ.787

Proof. Consider a metric point w. There are at most α edges directed out of w by788

Claim 4.2. Out of the edges that were directed into w in Ê, there are only edges from789

Mi1(w) that remained directed into w. There are at most β such edges. Finally, some790

new edges might have been attached to w due to the modification into Ẽ. Consider791

an arc (w, u) directed out of w; there is a unique level ij where w is in Mij−ℓ(u). Only792

edges of the form (v, u) at level ij can be redirected to (v, w) by the modification793

process; each such v must be an in-neighbor of u at level ij . A counting argument794

shows that for each arc (w, u) going out of w, there are at most β new arcs attached795

to w, each attribute to an in-neighbor of u in Ê before the modification; and there are796

α possible choices of u, all being the out-neighbors of w. Putting everything together,797

the bound on the degree is α+ β + αβ.798

We next show that the modification of the edges of T does not create cycles.799

Claim 4.4. The modified tree does not contain cycles.800

Proof. Suppose towards contradiction that the modified T contains a cycle and let801

(v, w) be the first edge in the modification process whose insertion caused a cycle.802

Recall that the arc (v, w) gets inserted in place of arc (w, u), where v ∈ Mij (u) and803

w ∈ Mij−ℓ(u), for some levels ij and ij−ℓ. Since (v, w) introduces a cycle, this means804

that T contains an alternative path between v and w. By Claim 4.2, node w does805

not exist at level higher than ij−ℓ. Hence, the path appears at some level lower than806

ij−ℓ. In the original tree T , there were edges (v, u) and (w, u). Together with the path807

between w and v, this creates a cycle in the original T , a contradiction.808

Next, we show that the stretch does not increase by more than a (1+O(ε)) factor.809

Claim 4.5. Let d̃T be the metric induced by T̃ . Then, for every u, v ∈ V (T ), it holds810

∥uv∥ ≤ (1 +O(ε))dT (u, v).811

Proof. It suffices to show that for an arc (v, u) that is removed from Ê it holds812

d̃T (u, v) ≤ (1+O(ε))dT (u, v). Let s = ⌊j/ℓ⌋. By construction, since (v, u) is removed,813

there exists points v0, v1, . . . , vs, such that v = v0, (vs, u) ∈ Ẽ and for 0 ≤ k < s:814
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(vk, vk+1) ∈ Ẽ, and vk ∈ Mj−kℓ(u). Recall that we use ∆w = 2w
√
d to denote the815

diameter of a quadtree at level w.816

Observation 4.6. For every 0 ≤ k < s, ∥uvk+1∥ ≤ εℓ∥uvk∥.817

Applying Observation 4.6 inductively, we can prove that ∥uvk∥ ≤ εℓk∥uv0∥ for818

every 0 ≤ k ≤ s. We can also bound ∥vkvk+1∥ ≤ ∥vku∥ + ∥uvk+1∥ ≤ (1 + ε)∥vku∥ ≤819

(1 + ε)εℓk∥uv0∥. By triangle inequality ∥uv∥ can be upper bounded by the length of820

the path ⟨v0, v1, . . . , vs, u⟩.821

d̃T (u, v) ≤ ∥vsu∥+
∑︂

0≤k<s

∥vkvk+1∥822

≤ ε−ℓs∥uv0∥+
∑︂

0≤k<s

(1 + ε)εℓk∥uv0∥823

≤ (1 +O(ε))∥uv0∥824825

In the next subsection, we show that α = 1 and β = 5. Plugging in Claim 4.3, we826

obtain the bound of α+ β + αβ = 11 on the degree of every node in the metric.827

4.2 Bounding the degree of tree nodes828

Recall our construction from Section 2.2. Consider a single strip S and the sets A and829

B as in the proof of Claim 2.10. Let θ be the direction of strip S. The tree handling830

the distances between A and B is a star rooted at a point a∗ := argmaxa∈A scoreθ(a).831

We describe three different constructions. The first construction achieves a constant832

degree but it requires scaling after which the number of trees grow by a factor of833

roughly log(1/ε)d. The second construction achieves degree of roughly 2d and does834

not require any scaling. The third construction achieves degree 5 and requires scaling835

so that the number of trees grows by a factor of roughly dd−1 = Od(1).836

Constant degree, simple attempt.837

Let A′ := ⟨a∗, a1, a2, . . .⟩ be the set of points in A, sorted in decreasing order with838

respect to scoreθ. We make a balanced binary tree TA rooted at a1 such that for every839

node ai and its parent aj , scoreθ(ai) ≤ scoreθ(aj). To do so, we mark a1 as visited840

and make it the root of TA. Next, we scan the points a2, a3, . . . in order, make ai child841

of the node in TA that was visited earliest and still has 0 or 1 children, then mark ai842

visited. We similarly construct TB satisfying that for every node bi and its parent bj ,843

scoreθ(bi) ≥ scoreθ(bj). Finally, let T be the tree rooted at a∗ having subtrees TA and844

TB as its children.845

Recall that, during the reduction to a single scale (Lemma 2.4), we only construct846

the partial tree covers of Section 2.2 on 1/εOd(1) representative points contained in a847

quadtree cell. Since TA is balanced, it has height O(log |A|) = O(log(1/ε)). Similarly,848

the height of TB is O(log(1/ε)). In other words, between any node in A and any node849

in B there exists a path in T consisting of at most O(log(1/ε)) edges.850

We next prove the bound on the stretch between two points a ∈ A and b ∈ B851

that are (µ,∆)-far. The proof follows the lines of Claim 2.10. Consider line ab and let852
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a∗

A

B

θ

a1
b1

Fig. 3. The binary trees TA and TB , constructed greedily from point sets A and B

a = c1, c2, . . . ck = b be the points on the path from a to b in T . For 1 ≤ i ≤ k, let c′i be853

the intersection of ab with a line11 orthogonal to θ that passes through ci; as the width854

of the strip is no more than ε∆/µ ≤ ε∥ab∥, we have ∥c′ici∥ ≤ ε∥ab∥. By construction,855

every path in T between a point in A and a point in B goes up the subtree TA, passes856

through the root a∗ and goes down the tree TB . In other words, we have that for857

every i ∈ {1, 2, . . . , k − 1} it holds that scoreθ(ci) ≤ scoreθ(ci+1) and scoreθ(c
′
i) ≤858

scoreθ(c
′
i+1). In addition, k = O(log 1/ε). We have ∥ab∥ =

∑︁
1≤i≤k−1∥c′ic′i+1∥. Thus,859

the length of the path in T is860

dT (a, b) =
∑︂

1≤i≤k−1

∥cici+1∥861

≤
∑︂

1≤i≤k−1

(∥c′ic′i+1∥+ 2∥c′i+1ci+1∥) + ∥c′1c1∥ by triangle inequality862

≤
∑︂

1≤i≤k−1

(∥c′ic′i+1∥+ 2ε∥ab∥) + ε∥ab∥863

= ∥ab∥+O(ε log(1/ε))∥ab∥.864

The above stretch argument guarantees that T preserves path between any point865

in X and any point in Y up to a factor of 1+O(ε log(1/ε)). Applying the same degree866

reduction step for every strip in the strip partition and for every strip partition in the867

family ζ, we obtain a tree cover with O(1/ε) trees and stretch O(1 + ε log(1/ε)). To868

complete the argument, we need to scale the parameters. Let ε′ := O(ε log(1/ε)), so869

that the tree cover has stretch 1 + ε′. The number of trees expressed in terms of ε′ is870

O( log
d(1/ε′)
ε′ ), for ε < 1/16.871

11In higher dimensions, we consider the hyperplane orthogonal to θ.
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Degree Od(1).872

Let A′ = ⟨a∗, a1, a2, . . .⟩ be the set of points in A, sorted in decreasing order with873

respect to scoreθ. Recall that the direction of the major strip is θ and the direction874

of the minor strip is θ⊥. We build a binary tree TA rooted at a1 as follows. Let the875

interval corresponding to a1 be [0, ε ∆
2µ ). Recall that the width of the strip is ε ∆

2µ . Let I876

be the set of active intervals, consisting of two elements: [0, ε ∆
4µ ), corresponding to the877

future left child of a1 (if any) and [ε ∆
4µ , ε

∆
2µ ) corresponding to the future right child of878

a1 (if any). The elements of I form a partition of [0, ε ∆
2µ ) at all times. Scan the points879

a2, a3, . . . in order and perform the following. Let ai be the currently scanned point880

and let di be its distance from the left border of the strip. Go over all the intervals in881

I and see which one contains di. (Such an interval exists because I forms a partition882

of [0, ε ∆
2µ ).) Let [li, ri) be such an interval. Add ai at the corresponding place in the883

tree. Let mi := (li + ri)/2. Create two new intervals: [li,mi) corresponding to the left884

child of di and [mi, ri), corresponding to the right child of di. Note that after this, I885

still forms a partition of [0, ε ∆
2µ ). This concludes the description of TA. The tree TB is886

constructed analogously. Finally, the tree T is obtained by attaching the roots of TA887

and TB as the left and right child of a∗.888

We next analyze the stretch. Consider two points a ∈ A and b ∈ B that are889

(µ,∆)-far. Let c1 = a∗, c2 = a1, c3, . . . , cp be the path from a∗ (which is the root890

of T ) to a in T and let d1 = a∗, d2 = b1, d3, . . . , dq = b be the path from a∗ to b891

in T . For two points x and y, let x = xθ · θ + x⊥ · θ⊥ and similarly y = yθ · θ +892

y⊥ · θ⊥. Let ∥xy∥θ = |xθ − yθ| and ∥xy∥⊥ = |x⊥ − y⊥|. Using this notation, we893

observe that ∥ab∥θ =
∑︁p−1

i=1 ∥cici+1∥θ+
∑︁q−1

i=1 ∥didi+1∥θ. The second observation is that894 ∑︁p−1
i=1 ∥cici+1∥⊥ = O(ε∆/µ). This is because ∥cici+1∥⊥ form a geometrically decreasing895

sequence. Similarly,
∑︁q−1

i=1 ∥didi+1∥⊥ = O(ε∆/µ). Using these two observations, we896

can upper bound the distance between a and b in T as follows.897

dT (a, b) =

p−1∑︂
i=1

∥cici+1∥+
q−1∑︂
i=1

∥didi+1∥898

≤
p−1∑︂
i=1

∥cici+1∥θ +
p−1∑︂
i=1

∥cici+1∥⊥ +

q−1∑︂
i=1

∥didi+1∥θ +
q−1∑︂
i=1

∥didi+1∥⊥899

≤ ∥ab∥θ +
p−1∑︂
i=1

∥cici+1∥⊥ +

q−1∑︂
i=1

∥didi+1∥⊥900

≤ ∥ab∥+O(ε∆/µ)901

≤ (1 + ε)∥ab∥902

The argument for higher dimensions carries over almost exactly. The intervals used903

in the argument become Rd−1-hypercubes. Consider a tree node a and an interval904

Ia ⊂ Rd−1 corresponding to it. We partition the interval Ia into 2d−1 subintervals905

of twice the smaller side length. Those subintervals correspond to the children of a.906

To argue the stretch, we split the distance between points a and b in T into two907
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components: one along the vector θ and the remaining orthogonal part that lies in908

Rd−1. The component along θ is at most ∥ab∥ and the component in Rd is at most909

O(ε)∥ab∥, due to the geometrically decreasing interval sizes.910

Finally, we bound the diameter of each of the trees. Using analysis similar to the911

one used for the stretch, we conclude that the diameter of a tree corresponding to a912

single strip is at most ∥ab∥(1+O(ε)) ≤ 2∥ab∥. The trees of different major strips in a913

major strip partition are connected via a binary tree. As in Section 3.1, the height of914

the binary tree is at most log 4µd
ε . Hence, the overall degree is 2d−1 +2. The diameter915

of the tree is at most 2(2∆ +∆ log 4µd
ε ) ≤ 2∆ log 16µd

ε .916

Constant degree.917

We next explain a tweak which leads to degree 5. Instead of constructing a 2d−1-ary918

tree for each strip we can work with a binary tree. Tree TA is built as follows. Let919

[0, ε ∆
µd )

d−1 be the interval corresponding to a1. We assign level to each node in the920

tree, ranging from 1 to d − 1. The level of a1 is 1. The future children of a1 are at921

level 2. In general, the children of a node at level i < d− 1 are at level i+ 1 and the922

children of a node at level d− 1 are at level 1. The set of active intervals I consists of923

[0, ε ∆
2µd )×[0, ε ∆

µd )
d−2, corresponding to the left child of a1 and [ε ∆

2µd , ε
∆
µd )×[0, ε ∆

µd )
d−2.924

Once again, we maintain the property that I is a partition of [0, ε ∆
µd )

d−1. Scan the925

points a2, a3, ... in that order and le t ai be the currently scanned point and di the926

(d − 1)-dimensional vector of distances from each of the sides of the strip. Find the927

interval I = [l1, r1) × [l2, r2) × · · · × [ld−1, rd−1) in I where di belongs to and place928

ai at the corresponding place in the tree. Let j ∈ {1, 2, . . . , d} be the level of ai. Let929

mj := (lj + rj)/2. Split I into Il = [l1, r1)× [l2, r2)× · · · × [lj ,mj)× · · · × [ld−1, rd−1)930

corresponding to the left child of ai and Ir = [l1, r1)× [l2, r2)× · · · × [mj , rj)× · · · ×931

[ld−1, rd−1) corresponding to the right child of ai. Replace I with Il and Ir in I. This932

concludes the description of the binary tree.933

The stretch argument remains almost the same, except that
∑︁p−1

i=1 ∥cici+1∥⊥ =934

O(dε∆/µ), which is d times larger than before. The reason is that every d hops down935

the tree, we incur an additive stretch of O(ε∆/µ) after which the additive stretch936

reduces by a factor of two. Using the same argument as before, we conclude that937

dT (a, b) ≤ (1 + O(εd))∥ab∥. By scaling the stretch, we get that the number of trees938

increases by a factor of dd−1.939

5 Application to Routing940

In this section, we show an application of our tree cover to compact routing scheme;941

in particular, we prove Theorem 1.3.942

We start by giving some background on the problem. A compact routing scheme is943

a distributed algorithm for sending messages or packets of information between points944

in the network. Specifically, a packet has an origin and it is required to arrive at a945

destination. Every node in the network contains a routing table, which stores local946

routing-related information, and a unique label, sometimes also called address. In the947

beginning, the network is preprocessed and every node is assigned a routing table and948

a label. Given a destination node v, routing algorithm is initiated at source u and is949

26



given the label of v. Based on the local routing table of u and the label of v, it has to950

decide on the next node w to which the packet should be transmitted. More formally,951

the algorithm outputs the port number leading to its neighbor w. Each packet has a952

message header attached to it, which contains the label of the destination node v, but953

may also contain other helpful information. Upon receiving the packet the algorithm954

at node w has at its disposal the local routing table of w and the information stored955

in the header. This process continues until the packet arrives at its destination, which956

is node v. The stretch of the routing scheme is the ratio between the distance packet957

traveled in the network and the distance in the original metric space.958

We consider routing in metric spaces, where each among n points in the metric959

corresponds to a network node. In the preprocessing stage, we choose a set of links960

that induces an overlay network over which the routing must be performed. The goal961

is to have an overlay network of small size, whilst also optimizing the tradeoff between962

the maximum storage per node (that is, the size of routing tables, labels, and headers)963

and the stretch. In addition, one may try to further optimize the time it takes for964

every node to determine (or output) the next port number along the path, henceforth965

decision time, and other quality measures, such as the maximum degree in the overlay966

network.967

There are two different models, based on the way labels are chosen: labeled, where968

the designer is allowed to choose (typically polylog(n)) labels, and name-independent,969

where an adversary chooses labels. Similarly, depending on who is choosing the port970

numbers, there is a designer-port model, where the designer can choose the port num-971

ber, and the fixed-port model, where the port numbers are chosen by an adversary. Our972

routing scheme works in the labeled, fixed-port model. For an additional background973

on compact routing schemes, we refer the reader to [37–40].974

5.1 Routing in trees975

We first explain the interval routing scheme due to [41]. Let T be a given routed tree.976

We first preprocess the tree by performing a DFS on it and marking for every node u977

the timestamp at which it got visited, lu. For every node u, let hu be the maximum lw978

among the children w of u. The label of node u consists of lu and requires ⌈log n⌉ bits of979

storage. The routing table of node u consists of the port number leading to its parent980

in T (unless u is a root), and for each child wi of u, the port number leading to Wi981

together with ⟨lwi , hwi⟩. This requires degT (V ) ·O(log n) bits. Specifically, it requires982

O(log n) bits for trees of constant degree, which is the case for our construction. To983

route from some node u to a destination v, the routing algorithm has routing table of984

u and the label of v at its disposal. For every child wi of u, if lv falls in the interval ⟨lwi ,985

hwi⟩, the algorithm outputs the corresponding port to wi and otherwise the algorithm986

outputs port to the parent of u. Note that in bounded degree trees the aforementioned987

routing algorithm needs to inspect only a constant number of entries in order to decide988

on the next port.989
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5.2 Routing in Euclidean spaces990

To route in a Euclidean space, first construct a non-Steiner tree cover T with bounded991

degree, using Theorem 4.1. The routing table of each point consists of its routing992

table in each of the trees in the cover, which takes Od(ε
−(d−1) log2 1/ε · log n) bits,993

since each tree is of a constant degree. The label for each point consists of its label994

in each of the trees in T , which overall takes Od(ε
−(d−1) log 1/ε · log n) bits, together995

with an additional label of Od(ε
−(d−1) log2 1/ε log n) bits described in the next section996

(“identifying a distance-preserving tree”). Overall this label takes Od(ε
−(d−1) log2 1/ε ·997

log n) bits. To route from a point x to some other point y, the algorithm first identifies998

a tree in T that preserves the xy distance up to a (1+ ε) factor: this step is described999

in the next section. After that, the routing algorithm proceeds on the single tree as1000

described before.1001

5.3 Identifying a distance-preserving tree1002

Given two points x and y in Rd, we now describe how to identify a tree in T that1003

preserves the distance between x and y up to 1+ ε stretch. The total size of this label1004

will be Od(ε
−1 log2 1/ε · log n).1005

Review of tree cover construction.1006

We first recall the construction of Theorem 1.1. We have a collection of com-1007

pressed quadtrees Qi (for every i ∈ [Od(1)] and congruence classes j ∈ [ℓ] (where1008

ℓ = Od(log 1/ε)). For ease of notation, let Qi,j denote the tree obtained by starting1009

with Qi and then contracting away all nodes except those at level w for w ≡ j (mod ℓ).1010

We refer to Qi,j as a contracted quadtree. Notice that if C is a cell in the contracted1011

quadtree Qi,j with diameter ∆, then the children of C in Qi,j have diameter Od(ε∆).1012

For every shift i and congruence class j, we construct a set of trees as follows: for1013

every cell C in Qi,j , we arbitrarily choose a set of 1/εOd(1) representative points, one1014

from each child cell of C in Qi,j ; we construct a partial tree cover on the representa-1015

tive points; and we merge these partial tree covers together into a final set of trees.1016

Our proof of correctness guarantees that, for any pair of points x and y, there is some1017

contracted quadtree Qi,j and some cell C in Qi,j with diameter ∆, such that the two1018

representative points x′ and y′ are (µ,∆)-far. There is some tree in the partial tree1019

cover of C that preserves ||x′y′|| up to a factor 1+ ε, and this tree corresponds to the1020

tree in the final tree cover of Theorem 1.1 that preserves ||xy|| up to a factor 1+O(ε).1021

In Section 4.2, we constructed a tree cover in which each partial tree cover had1022

bounded-degree. The construction is identical to that of Theorem 1.1, except that we1023

use a slightly modified construction for the partial tree cover on the representative1024

points (modified from Section 2.2).1025

In Section 4.1, we used the result of Section 4.2 to get a bounded-degree tree1026

cover (proving Theorem 4.1). The trees constructed in this section are in one-to-one1027

correspondence with the trees constructed in Section 4.2: if a tree T in the cover of1028

Section 4.2 preserves the distance between two points x and y up to a factor 1 + ε,1029

the corresponding transformed tree T ′ from Section 4.2 will preserve the distance up1030

to a factor 1 +O(ε).1031
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For simplicity, we describe how to identify a distance-preserving tree in the tree1032

cover of Section 4.2: for any x and y, we will find a tree T such that δT (x, y) ≤1033

(1 + ε)∥xy∥. As described above, these trees are in one-to-one correspondence with1034

the bounded-degree trees of Theorem 4.1 (which is the tree cover we actually use for1035

routing).1036

Our labeling scheme will consist of a short label for each tree Qi,j . For each Qi,j ,1037

this label will let us identify a cell whose partial tree cover preserves the ||xy|| distance1038

(if such a cell exists), as well as the index of the corresponding distance-preserving1039

tree. To construct this label for Qi,j , we will need the following simple observation:1040

Observation 5.1. Let x and y be points in X, and let Qi,j be a contracted quadtree.1041

Suppose there is a cell Ĉ of Qi,j such that Ĉ contains both x and y, and the repre-1042

sentatives x̂ and ŷ are (µ,diam(Ĉ))-far. Then, in the smallest-diameter cell C that1043

contains both x and y, the representatives x′ and y′ are (µ,diam(C))-far. In other1044

words, if we view x and y as leaves of Qi,j, the lowest common ancestor of x and y1045

guarantees that the representatives are (µ,diam(C))-far.1046

5.3.1 Identifying a valid partial tree cover1047

In this subsection, we describe a labeling scheme that lets us identify a distance-1048

preserving tree in a partial tree cover.1049

Lemma 5.2. Let X ⊂ Rd be a point set with diameter ∆. For any constant µ = Od(1),1050

there is a labeling scheme with Od(1)-bit labels, such that given the labels of any two1051

points x, y ∈ X, we can either certify that x and y are (µ/4,∆)-far or that they are1052

not (µ,∆)-far.1053

Proof. Let x ∈ Rd be a point with coordinates x[1], . . . , x[d]. The label of x consists of1054

d parts: for each coordinate i ∈ {1, . . . , d}, the label stores difference between x[i] and1055

minx′∈X x′[i] rounded to a multiple of ∆/(8µd); that is, we store ⌊x[i]−minx′∈X x′[i]

∆/(8µd) ⌋.1056

Because the maximum such difference is ∆ (because the diameter of X is ∆), the label1057

takes Od(1) bits in total.1058

Given the labels of any two points x and y, we can compute, for each coordinate,1059

an estimate of their difference within accuracy ±∆/(4µd). Thus, we can estimate ℓ21060

distance between x and y within an accuracy of ±∆/(4µ). If this estimated distance1061

is at least ∆/2µ, the ∥xy∥ ≥ ∆/(4µ), and so x and y are (µ/4,∆)-far. Otherwise, if1062

the estimated distance is smaller than ∆/(2µ), we have ∥xy∥ < ∆/µ, and so x and y1063

are not (µ,∆)-far.1064

Notice that if a partial tree cover consists of O(1/εd−1) trees, one tree in the cover1065

can be identified with Od(log 1/ε) bits. We will allow these “IDs” of the trees to be1066

fixed in advance.1067

Lemma 5.3. Let T ′ be a (µ,∆)-partial tree cover for a point set X ⊂ Rd, constructed1068

as in Section 4.2, with µ = Od(1). Let ID : T ′ → {0, 1}k be a function that maps trees1069

to unique identifiers. There is a labeling scheme for X with Od(1/ε
d−1(log 1/ε+ k))-1070

bit labels, such that given the labels of any two points x, y ∈ X, we can either return1071

ID(T ) for some tree T ∈ T ′ that preserves the distance ∥xy∥ up to a 1 +O(ε) factor,1072

or we can certify that x and y are not (µ,∆)-far.1073
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Proof. Recall from Sections 2.2 and 4.2 that the construction of the partial tree cover1074

T ′ proceeds by constructing Od(1/ε
d−1) major strip partitions and Od(1) minor strip1075

partitions. The major strip partitions have width ε ∆
2µ = Θd(ε∆); thus, in each major1076

strip partition, there are 1/εO(d) strips that contain points in X. The minor strip1077

partitions have width ∆
2µ = Od(∆); thus, in each minor strip partition, there are Od(1)1078

strips that contain points in X. Every triple consisting of a major strip partition P1079

and two minor strips in the associated minor strip partition P⊥ corresponds to some1080

tree in the partial tree cover.1081

Label. For every point x ∈ X, the label consists of four parts:1082

• For each of the Od(1/ε
d−1) major strip partitions, store a Od(log 1/ε)-bit label1083

identifying which strip in the major strip partition contains x.1084

• Similarly, for each of the Od(1) minor strip partitions, store a Od(1)-bit label1085

identifying which strip in the minor strip partition contains x.1086

• Store the Od(1)-bit label of Lemma 5.2.1087

• For each of the Od(1/ε
d−1) triples consisting of a major strip partition P and1088

two minor strips in the associated partition P⊥, store the k-bit identifier (given1089

by ID(·)) of the corresponding tree.1090

Size. The total size of all four parts is Od(1/ε
d−1(log 1/ε+ k)).1091

Label correctness. Suppose we have the labels of two points x, y ∈ X. First, we use1092

the label of Lemma 5.2 to determine either (1) x and y are (µ/4,∆)-far, or (2) x and1093

y are not (µ,∆)-far. In the latter case, we are done; we have a certificate that x and1094

y are not (µ,∆)-far.1095

In the former case, we use the labels to check if there is some major strip partition1096

P such that the points x and y are in the same strip of P , and x and y are in1097

different strips of the associated minor strip partition P⊥. If there is no such strip,1098

then Claim 2.9 implies that x and y are not (µ,∆)-far, and we are done. Suppose there1099

is such a strip. By the construction in Section 4.2, this triple of major strip and minor1100

strips corresponds to a tree T in the partial tree cover T ′. Claim 2.10 implies that1101

δT (a, b) ≤ ∥ab∥+ ε∆
µ . As a and b are (µ/4,∆)-far, we have δT (a, b) ≤ (1 + 4 · ε)∥ab∥.1102

Thus, we have identified a tree in T ′ that preserves the distance between a and b up1103

to a 1 +O(ε) factor.1104

5.3.2 LCA Labeling Tools1105

Before constructing our distance label, we need a preliminary result on LCA labeling.1106

For any two vertices x and y in a tree T , let lca(x, y) denote the lowest common1107

ancestor of x and y. For any vertex in the tree, we say its weight is the number of1108

descendants. We say a vertex is heavy if its weight is greater than half the weight of1109

its parent, otherwise it is light. For any vertex x, let Apices[T, x]= {a1, . . . , aO(logn)}1110

denote the parents of light ancestors of x. We remark on two important facts: (1)1111

there are O(log n) vertices cells in Apices[T, x], and (2) the LCA of x and y is in1112

Apices[T, x]∪Apices[T, y]. These facts are used in existing LCA labeling schemes. We1113

will modify the labeling scheme of Alstrup, Halvorsen, and Larsen:1114

Lemma 5.4 (Corollary 4.17 of [42]). Let T be a tree, and let L : V (T ) → {0, 1}k be1115

a function that indicates some predefined k-bit names for the vertices of T . There is1116
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a labeling scheme on the vertices of T that uses O(k log n) bits, such that given labels1117

of any two vertices x and y, we can compute L(lca(x, y)).1118

We will use a variant of their labeling scheme.1119

Lemma 5.5. Let T be a tree. For every vertex x, let Lx : V (T ) → {0, 1}k be a1120

function that indicates some predefined k-bit names for the vertices of T . There is a1121

labeling scheme on the vertices of T that uses O(k log n) bits, such that given labels of1122

two leaves x and y, we can compute:1123

• Lx(lca(x, y)), if lca(x, y) ∈ Apices[T, x]1124

• Ly(lca(x, y)), if lca(x, y) ∈ Apices[T, y]1125

If lca(x, y) ∈ Apices[T, x] ∩ Apices[T, y], then we can compute both labels1126

(Lx(lca(x, y)), Ly(lca(x, y))).1127

Sketch. We first review the labeling scheme of [42]. For every vertex x, the label of x1128

consists of two parts. The first part (cf. [42, Corollary 4.17]) is just a lookup table: for1129

every vertex a ∈ Apices[T, x], we record the k-bit name L(a). The second part encodes1130

information about the root-to-x path in the tree: in particular (cf. [42, Lemma 4.13]),1131

given labels for x and y, we can use the second part of the label to detect whether1132

lca(x, y) is in Apices[T, x] — and to look up L(lca(x, y) in the lookup table, if lca(x, y)1133

is in fact in Apices[T, x].1134

To obtain Lemma 5.5, we simply change the lookup table in the label of x1135

to store Lx(·) instead of L(·). The proof of [42] guarantees that we can return1136

Lx(lca(x, y)) whenever lca(x, y) ∈ Apices[T, x], and symmetrically Ly(lca(x, y))1137

whenever lca(x, y) ∈ Apices[T, y].1138

We are now ready to describe the label to identify a distance-preserving tree.1139

5.3.3 Labeling scheme1140

Let T be the tree cover of Theorem 4.1, of size Od(ε
−(d−1) log(1/ε)).1141

Label.1142

Let Qi,j be a contracted quadtree used in the construction of T . For each cell C in Qi,j ,1143

assign an arbitrary ordering to its 1/εOd(1) children (so that we can specify a child of1144

C with Od(log 1/ε) bits.) Let x be a vertex in X, and treat x as a leaf of Qi,j . For1145

every cell C ∈ Apices(Qi,j , x), we define Lx(C) to be a label consisting of three parts:1146

• (L1) Store Od(log 1/ε) bits to identify which child of C is an ancestor of x.1147

• (L2) Store Od(log 1/ε) bits to identify which child of C is heavy (if there is a1148

heavy child).1149

• (L3) Let x′ be the representative point for x. Let T ′ denote the partial tree1150

cover at cell C, and for each tree T ′ ∈ T , define ID(T ′) to be the Od(log 1/ε)-bit1151

identifier of the tree T ∈ T of the final tree cover that contains T ′. Store the label1152

of x′ from Lemma 5.3 (using ID): with this label, for any two points we can either1153

find a tree in T that preserves the distances of the representative points up to a1154

factor 1 +O(ε), or we certify that the representative points are not (µ,∆)-far.1155

Lemma 5.5 gives us an LCA label for x. For each contracted quadtree Qi,j , store this1156

label.1157
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Size.1158

The label Lx(C) consists of O(ε−(d−1) log(1/ε)) bits. Thus, Lemma 5.5 gives us labels1159

of size O(ε−(d−1) log(1/ε) · log n). There are Od(log 1/ε) quadtrees Qi,j , so the label1160

size is Od(ε
−1 log2(1/ε) · log n) in total.1161

Decoding.1162

Suppose we have labels for x and y. For each Qi,j , we use Lemma 5.5 to find1163

information about C := lca(x, y). There are two cases:1164

• Case 1: C is in Apices[Qi,j, x]∩Apices[Qi,j, y]. In this case, we have access1165

to both Lx(C) and Ly(C). We use the (L1) parts of labels Lx(C) and Ly(C) to1166

identify the two children Cx and Cy of C that contain x and y, respectively.1167

• Case 2: (Without loss of generality) C is only in Apices[Qi,j, x]. Let Cy1168

denote the child of C that is an ancestor of y. Because C is not the parent of1169

a light ancestor of y, we know that the child Cy is heavy. Use the (L2) part of1170

Lx(C) to identify the child Cy. As before, use the (L1) part of label Lx(C) to1171

identify the child Cx that is an ancestor of x.1172

Having identified Cx and Cy, we can now use the (L3) part of label Lx(C) to determine1173

whether there is a tree that preserves the distance between the representatives of Cx1174

and Cy up to a 1 +O(ε) factor. If there is such a tree, return it; otherwise, check the1175

next Qi,j .1176

By the proof of correctness of Theorem 1.1, there is some contracted quadtree Qi,j1177

with a cell in which the representatives of x and y are (µ,∆)-far; further, our Observa-1178

tion 5.1 guarantees that it suffices to check only the LCA of x and y in each contracted1179

quadtree. Thus, this process (iterating over all contracted quadtrees, and checking1180

the LCA of each) will eventually find a quadtree cell in which the representatives are1181

(µ,∆)-far, and thus (by Lemma 5.3), the (L3) part of the label will return a tree that1182

preserves the distance of the representative points. By the proof of Claim 2.7, this tree1183

preserves the distance between x and y up to a 1 +O(ε) factor.1184
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are supported by a grant from the United States-Israel Binational Science Foundation1193

(BSF), Jerusalem, Israel, and the United States National Science Foundation(NSF).1194

References1195

[1] Awerbuch, B., Peleg, D.: Routing with polynomial communication-space trade-1196

off. SIAM J. Discret. Math. 5(2), 151–162 (1992) https://doi.org/10.1137/1197

04050131198

32

https://doi.org/10.1137/0405013
https://doi.org/10.1137/0405013
https://doi.org/10.1137/0405013


[2] Alon, N., Karp, R.M., Peleg, D., West, D.: A graph-theoretic game and its appli-1199

cation to the k-server problem. SIAM Journal on Computing 24(1), 78–100 (1995)1200

https://doi.org/10.1137/s00975397922244741201

[3] Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.: Euclidean spanners: short,1202

thin, and lanky. In: Proceedings of the Twenty-seventh Annual ACM Symposium1203

on Theory of Computing, pp. 489–498 (1995)1204

[4] Gupta, A., Kumar, A., Rastogi, R.: Traveling with a Pez dispenser (or, rout-1205

ing issues in MPLS). In: Proceedings 42nd IEEE Symposium on Foundations of1206

Computer Science,FOCS’ 01 (2001). https://doi.org/10.1109/sfcs.2001.959889 .1207

https://doi.org/10.1109/sfcs.2001.9598891208

[5] Mendel, M., Naor, A.: Ramsey partitions and proximity data structures. In: 20061209

47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’ 06)1210

(2006). https://doi.org/10.1109/focs.2006.651211

[6] Dragan, F.F., Yan, C., Lomonosov, I.: Collective tree spanners of graphs. SIAM1212

Journal on Discrete Mathematics 20(1), 240–260 (2006)1213

[7] Chan, T.-H.H., Gupta, A., Maggs, B.M., Zhou, S.: On hierarchical routing in1214

doubling metrics. ACM Transactions on Algorithms (TALG) 12(4), 1–22 (2016)1215

[8] Bartal, Y., Fandina, O.N., Neiman, O.: Covering metric spaces by few trees.1216

Journal of Computer and System Sciences 130, 26–42 (2022)1217

[9] Chang, H., Conroy, J., Le, H., Milenkovic, L., Solomon, S., Than, C.: Covering1218

planar metrics (and beyond): O(1) trees suffice. In: FOCS, pp. 2231–2261. IEEE,1219

USA (2023)1220

[10] Chang, H., Conroy, J., Le, H., Milenkovic, L., Solomon, S., Than, C.: Short-1221

cut partitions in minor-free graphs: Steiner point removal, distance oracles, tree1222

covers, and more. In: SODA, pp. 5300–5331. SIAM, USA (2024)1223

[11] Thorup, M., Zwick, U.: Approximate distance oracles. Journal of the ACM1224

(JACM) 52(1), 1–24 (2005)1225
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