~

Optimal Euclidean Tree Covers

Hsien-Chih Chang!, Jonathan Conroy!, Hung Le?,
Lazar Milenkovi¢3, Shay Solomon3, Cuong Than?

Department of Computer Science, Dartmouth College.
2CICS, UMass Ambherst.
3Tel Aviv University.

Contributing authors: hsien-chih.chang@dartmouth.edu;
jonathan.conroy.gr@dartmouth.edu; hungle@cs.umass.edu;

milenkovic.lazar@gmail.com; solo.shay@gmail.com; cthan@cs.umass.edu;

Abstract

A (14 €)-stretch tree cover of a metric space is a collection of trees, where every
pair of points has a (1 4 €)-stretch path in one of the trees. The celebrated
Dumbbell Theorem [Arya et al. STOC’95] states that any set of n points in d-
dimensional Euclidean space admits a (1 + €)-stretch tree cover with Oa(e™ -
log(1/€)) trees, where the Oq4 notation suppresses terms that depend solely on

the dimension d. The running time of their construction is Oq(n log n- logi# +

n - z—:_zd). Since the same point may occur in multiple levels of the tree, the
mazimum degree of a point in the tree cover may be as large as Q(log ®), where
P is the aspect ratio of the input point set.

In this work we present a (1 4 €)-stretch tree cover with Ogq(e ™%+ . log(1/¢))
trees, which is optimal (up to the log(1/e) factor). Moreover, the maximum
degree of points in any tree is an absolute constant for any d. As a direct corollary,
we obtain an optimal routing scheme in low-dimensional Euclidean spaces. We
also present a (1 + &)-stretch Steiner tree cover (that may use Steiner points)
with Og(e(~%t1/2 . log(1/¢)) trees, which too is optimal. The running time
of our two constructions is linear in the number of edges in the respective tree
covers, ignoring an additive Og(n logn) term; this improves over the running
time underlying the Dumbbell Theorem. *

*A preliminary version of this paper was published in the proceedings of SoCG 2024.

N

9

30

31

33

34

35

36

38

39

40

41

43

44

45

46

48

49

50

51

1 Introduction

Let M be a given metric space with distance function d, and X be a finite set of points
in M. A tree cover for (M, X) is a collection of trees F, each of which consists of
(only) points in X as vertices and abstract edges between vertices, such that between
every two points x and y in X, dps(z,y) < dr(z,y) for every tree T in F. A tree cover
F has stretch « if for every two points z and y in X, there is a tree T in F that
preserves the distance between x and y up to « factor: dp(z,y) < a - dp(z,y). We
call such F an a-tree cover of X. In this paper, we will focus on the scenario where
M is the d-dimensional Euclidean space for some constant d = O(1). It is not hard
to see that, in this case, the edges can be drawn as line segments in R? between the
corresponding two endpoints, with weights equal to their Euclidean distances. If we
relax the condition so that trees in F may have other points from M (called Steiner
points) as vertices instead of just points from X, the resulting tree cover is called a
Steiner tree cover.

Constructions of tree covers, due to their algorithmic significance, are subject to
growing research attention [I-10]; by now generalizations in various metric spaces
and graphs are well-explored. The main measure of quality for tree cover is its size,
that is, the number of trees in a tree cover F. The existence of a small tree cover
provides a framework to solve distance-related problems by essentially reducing them
to trees. Exemplified applications include distance oracles [9, 10], labeling and routing
schemes [11, 12], spanners with small hop diameters [12], and bipartite matching [13].

The celebrated Dumbbell Theorem by Arya, Das, Mount, Salowe, and Smid [3]
from almost thirty years ago demonstrated that in d-dimensional Euclidean space, any
point set X has a tree cover of stretch 1 + ¢ that uses only Og(s=% - log(1/¢)) trees.!
logg/s) 4.2

Moreover, the tree cover can be computed within time O4 (n logn - ,
where n is the number of points in X. In the Euclidean plane (when d = 2), this gives
us a tree cover of size O(s72 - log(1/¢)). The theorem has a long and complex proof,
which spans a chapter in the book of Narasimhan and Smid [14]. A few years ago, this
theorem was generalized for doubling metrics? by Bartal, Fandina, and Neiman [3],
who achieved the same bound as [3] via a much simpler construction; the running time
of their construction was not analyzed.® In the constructions by [3, %], same point
may have multiple copies in different levels of the tree, hence the maximum degree of
points* may be as large as Q(log ®), where ® is the aspect ratio of the input point
set; see Sections 1.3 and 4 for a more detailed discussion.

Since the number of trees provided by the two known constructions [3, 8] matches
the packing bound =% (up to a logarithmic factor), it is tempting to conjecture that
this bound is tight. However, there is a gap between this upper bound and the best
lower bound we have, which comes indirectly from (1 + €)-stretch spanners. For any
parameter a > 1, a Fuclidean a-spanner for any d-dimensional point set is a weighted

1The O4 notation suppresses terms that depend solely on the dimension d.

2The doubling dimension of a metric space (M,) is the smallest value ddim such that every ball in M
can be covered by 299™ balls of half the radius; a metric § is called doubling if its doubling dimension is
constant.

3In high-dimensional Euclidean spaces the upper bound in [8] improves over that of [3], since the Og4
notation in [3] and [8] suppress multiplicative factors of d°(4) and 2°(4) | respectively.

4The degree of a point is the number of edges incident to it.

2

68

69

70

71

73

74

75

76

7

79

80

81

83

84

85

86

87

88

90

91

93

04

95

96

97

98

99

100

101

102

103

104

graph spanning the input point set, whose edge weights are given by the Euclidean
distances between the points, that approximates all the original pairwise Euclidean
distances within a factor of &. We note that an a-spanner can be obtained directly by
taking the union of all trees in any a-tree cover for the input point set. The Q(n-e~%+1!)
size lower bound for (1+e¢)-spanners [15, Theorem 1.1] directly implies that any (1+¢)-
tree cover must contain Q(e~9t1) trees. This is an e~!-factor away from the packing
bound. In particular, in the Euclidean plane, there is a gap between the upper bound
of O(e72) and the lower bound of Q(¢71). One can extend the notions of spanner by
introducing Steiner points as well, which are additional points that are not part of the
input. A weaker Q(g(~%+1)/2) lower bound can be obtained for Steiner tree cover, from
the Q(n/\/z) size lower bound for Steiner (1+¢)-spanner in R? [15, Theorem 1.4], and
in general the Q(n/s(?=1)/2) size lower bound in R? [16].

1.1 Short Survey on Tree Covers

There are many papers published on tree covers in recent years, with subtle variations
in their definitions due to differences in main objectives and applications. Here we
attempt to summarize the best upper and lower bounds known to our knowledge,
highlighting the tradeoff between tree cover size and stretch in the previous work.
Some of the bounds are not explicitly stated in the cited reference but can be deduced
from it. For additional relevant work, refer to [8] and the references therein.

General metrics.

The earliest literature on the notion of tree cover is probably Awerbuch and Peleg [1]
and Awerbuch, Kutten, and Peleg [17], focusing on graph metrics. Their main objective
is to minimize the number of trees each vertex belongs to (in the sparse cover sense)
instead of minimize the total number of trees. Thorup and Zwick [11, Corollary 4.4]
improved over Awerbuch and Peleg [1] by constructing a Steiner tree cover with stretch
2k — 1 where every vertex belongs to O(n'/® - log'~'/*n) trees. Charikar et al. [15]
studies a similar problem of probabilistically embedding finite metric space into a small
number of trees. Many of the earlier work on tree covers are motivated by application
in routing [19].

Gupta, Kumar, and Rastogi [4, Theorem 4.3] observed that any tree cover must
have size n2(1/®) if the stretch is «; the lower bound is based on the existence of
girth-g graphs with n*(1/9) edges [20][21, Lemma 9]. Tt is important to emphasize
that the tree covers considered in [1] are spanning — the trees must be subgraphs of
the input graph. Bartal, Fandina, and Neiman established the same lower bound [3,
Corollary 13] by reduction from spanners [21]. In a different direction, Dragan, Yan,
and Lomonosov [6] studied spanner tree covers with additive stretch on special classes
of graphs, such as chordal graphs and co-comparability graphs.

One might relax the condition to allow vertices not presented in the graph (called
Steiner vertices) to be part of the tree cover. By allowing Steiner vertices, Mendel and
Naor [5] showed that any n-point metric space has a Steiner tree cover of size O(a-n!/®)
and stretch O(a). Bartal, Fandina, and Neiman [8] obtained an inverse tradeoff: any n-
point metric space has a Steiner tree cover of size k and stretch O(n!/* - (logn)'~1/%).
In particular, this means we can get O(logn) trees with O(logn) stretch. While the

129

130

131

132

133

139

140

148

149

150

lower bound from [4] for spanning tree cover no longer holds when Steiner vertices are
allowed, a similar lower bound of Q(n?/(3%+2) /1ogn) = n*(1/@) for the size of Steiner
a-tree covers can be derived from Steiner spanners (also known as emulators) [21,
Theorem 6], using the same argument in [3].

Doubling metrics.

Chan, Gupta, Maggs, and Zhou [7, Lemma 3.4] constructs Steiner tree covers for
doubling metrics [7]. More precisely, if the doubling dimension of the metric space is
d, their tree cover uses O(dlogd) Steiner trees and has stretch O(d?). Bartal, Fandina,
and Neiman [38] obtained two separated constructions: one may have tree cover of
stretch O(a) and O(2%% - d - o) Steiner trees for any a > 2 [3, Theorem 7] using the
O(1)-padded hierarchical partition family in [22, Lemma 8], or alternatively a tree
cover with (14 ¢) stretch and (1/£)°@ -log(1/e) trees [3, Theorem 3] using net trees.
It is worth emphasizing that the second construction does not use Steiner points. They
also established a lower bound on the size of non-Steiner tree cover [3, Corollary 13] by
reduction from spanners [21]: there is an n-point metric space with doubling dimension
d, such that any a-tree cover requires Q(2%%) trees.

Planar and minor-free graphs.

On planar graphs Gupta, Kumar, and Rastogi [1] constructed the first O(logn)-size
(non-Steiner) tree cover with stretch 3. Again this is improved by Bartal, Fandina,
and Neiman in two different directions: either one has stretch O(1) and O(1) trees [8,
Corollary 9] using the O(1)-padded hierarchical partition family in [23]°, or alterna-
tively a tree cover with (1 + ¢) stretch and O(s ! log? n) trees [, Theorem 5], using
path separators [24]. Their results naturally extend to minor-free graphs. Recently,
the authors get the best of both worlds by constructing a Steiner tree cover with
(1 + ¢) stretch using O(¢~?) many trees [0] through the introduction of a new graph
partitioning scheme called the shortcut partition; the result also extends to minor-free
graphs [10].

On planar graphs Q(y/n) trees are required if no stretch is allowed [41]. However in
the (14-¢)-stretch regime, we are not aware of any existing lower bounds. The strongest
lower bound for tree covers on planar graphs we managed to deduce comes from
distance labeling: Suppose we have a Steiner (14-¢)-tree cover using O(e~/(+%)) many
trees for some § > 0. Then we can construct an approximate distance labeling scheme
by concatenating the O(logn - log(1/¢))-length labeling schemes for all trees [25]. By
setting ¢ = 1/n, we get an exact labeling scheme for unweighted planar graph of
length O(n!/G+9) contradicting to an information-theoretical lower bound [26]. This
implies that any Steiner (14 ¢)-tree covers on planar graphs requires at least Q(e'/3)
many trees.

Fuclidean metrics.

We already discussed tree cover results on Euclidean metrics in the introduction above;
here we mentioned a few additional facts.

35The constants in [23] imply that the stretch is at least 3* = 81 and the number of trees is at least
3% = 27.

151

152

153

154

155

156

157

159

160

161

162

163

164

165

166

167

168

169

170

171

172

174

175

176

177

All upper bound constructions on metrics with bounded doubling dimensions
immediately apply to Euclidean metrics as well. Surprisingly, relatively few lower
bounds have been established in the literature for Euclidean spaces. Early in the
introduction we derived an (1/e%~1) lower bound for non-Steiner tree cover and an
Q(1/£4=1/2) lower bound for Steiner tree cover in R% by reduction from spanners.

One thing to notice is that in Euclidean spaces, the meaning of Steiner points differs
slightly from its graph counterparts: after choosing a Steiner point (which lies in the
ambient space R?), the weight of an edge incident to a Steiner point is determined by
its Euclidean distance, unlike in the graph setting one may choose the weight freely
(as the Steiner points are artificially inserted and were not part of the graph a priori).
One might think that such a distinction cannot possibly make any difference; however,
recently Andoni and Zhang [27] proved that (14 ¢)-spanner of subquadratic size exists
for arbitrary dimensional Euclidean space by allowing out-of-nowhere Steiner points,
while establishing lower bound simultaneously when the Steiner points are required to
sit in the Euclidean space. They showed that there are n points in R? (for some high
dimension d depending on n) where any (v/2 — ¢)-spanner (with Euclidean Steiner
points) requires Q(e* - n2/log? n) edges; the lower bound follows from a randomized
construction and volume argument. This translates to an almost linear lower bound of
Q(e*-n/log? n) on the minimum number of trees required in any Euclidean Steiner tree
cover with (v/2 —€) stretch. All Steiner points used in our construction are Euclidean;
at the moment, we are unaware of any tree cover construction that obtains a better
bound by taking advantage of the non-Euclidean Steiner points.

Ramsey trees.

A stronger notion called the Ramsey tree cover has been studied, where every vertex x
is associated with a tree T, in F, such that the distance from = to every other vertex
is approximated preserved by the same tree T,,. Both the constructions of Mendel and
Naor [5] and Bartal, Fandina, and Neiman [8] for general metrics are indeed Ramsey
trees. These bounds are essentially tight if the trees are required to be Ramsey; that is,
any Ramsey tree cover of stretch a must contain n'/*(®) many tree [8, Corollary 13].
Even when the input metric is planar and doubling, any Ramsey tree cover of stretch
o must contain n'/(*1°8®) many tree [38, Theorem 10], and any Ramsey tree cover of
size k must has stretch n'/* [3, Theorem 9.

1.2 Main Results

We improve the longstanding bound on the number of trees for Euclidean tree cover
by a factor of 1/e, for any constant-dimensional Euclidean space.® In view of the
aforementioned lower bound [15, 16], this is optimal up to the log(1/¢) factor. Roughly
speaking, we show that the packing bound barrier (incurred in both [3] and [8]) can
be replaced by the number of e-angled cones needed to partition R%; for more details,
refer to Section 1.3.

6 As with [3], the Oq4 notation in our bound suppresses a multiplicative factor of do(d>, which should be
compared to the multiplicative factor of O(l)d suppressed in the bound of [8]. Thus, our results improve
over that of [3] only under the assumption that e is sufficiently small with respect to the dimension d; this

assumption should be acceptable since the focus of this work, as with the great majority of the work on
Euclidean spanners, is low-dimensional Euclidean spaces.

190

191

193

194

195

196

197

203

204

205

206

207

208

209

210

212

213

215

216

218

219

220

221

222

224

225

227

228

229

230

Theorem 1.1. For every set of points in R? and any 0 < € < 1/20, there exists a
tree cover with stretch 1+ ¢ and Og(e~9F! -log(1/€)) trees. The running time of the
construction is Og(nlogn +n -~ . log(1/¢)).

We note our construction is faster than that of the Dumbbell Theorem of [3] by
more than a multiplicative factor of e~

In addition, we demonstrate that the bound on the number of trees can be quadrat-
ically improved using Steiner points; in R? we can construct a Steiner tree cover with
stretch 1+ ¢ using only O(1/4/¢) many trees. The result generalizes for higher dimen-
sions. In view of the aforementioned lower bound [15, 16], this result too is optimal
up to the log(1/e) factor.
Theorem 1.2. For every set of points in R? and any 0 < € < 1/20, there exists a
Steiner tree cover with stretch 1+ ¢ and Oq(e=%1/2 .log(1/¢)) trees. The running
time of the construction is Ogq(nlogn 4+ n - (=4+1/2 . log(1/¢)).

1.2.1 Bounded degree tree cover

Although the number of trees in the tree cover is the most basic quality measure,
together with the stretch, another important measure is the degree. One can optimize
the maximum degree of a point in any of the trees, or to optimize the maximum
degree of a point over all trees — both these measures are of theoretical and practical
importance.

Both the Dumbbell Theorem [3] and the BFN construction [8] use copies of the
same point in multiple trees, and even in different levels of the same tree. Consequently,
each point may have up to log ® copies, which can be viewed as distinct nodes of
the tree, where ® is the aspect ratio of the input point set. The Dumbbell trees have
bounded node-degree (which is improved to degree 3 in [28]), but the maximum point-
degree in any tree could still be ©(log @) after reidentifying all the copies of the points.
The construction of [3] may also incur a point-degree of Q(log ®) in any of the trees.”

We strengthen Theorem 1.1 by achieving a constant degree for each point in any
of the trees; in fact, our bound is an absolute constant in any dimension. As a result,
the maximum degree of a point over all trees is Og(e~%*1-log(1/¢)); this is optimal up
to the log(1/¢e) factor, matching the average degree (or size) lower bound of spanners
mentioned above [15].

Routing.

We highlight one application of our bounded degree tree cover to efficient routing.
Theorem 1.3. For any set of points in RY and any 0 < & < 1/20, there is a
compact routing scheme with stretch 1 + € that uses routing tables and headers with
Og4(e=% 1 log?(1/e) - logn) bits of space.

Our routing scheme uses smaller routing tables compared to the routing scheme
of Gottlieb and Roditty [29], which uses routing tables of O(¢~%logn) bits. At a high
level, we provide an efficient reduction from the problem of routing in low-dimensional
Fuclidean spaces to that in trees; more specifically, we present a new labeling scheme
for determining the right tree to route on in the tree cover of Theorem 1.1. Having

"Even node-degrees may blow up in the construction of [8], but it appears that a simple tweak of their

construction can guarantee a node-degree of g0,

236

determined the right tree to route on, our entire routing algorithm is carried out on
that tree, while the routing algorithm of [29] is carried out on a spanner; routing in a
tree is clearly advantageous over routing in a spanner, also from a practical perspective.
Refer to [29] for the definition of the problem and relevant background.

1.3 Technical Highlights
1.3.1 Achieving an optimal bound on the number of trees

The tree cover constructions of [3] and [%] achieve the same bound of O(e~¢-1log(1/¢))
on the number of trees, which is basically the packing bound O(¢~%). The Euclidean
construction of [3] is significantly more complex than the construction of [8] that
applies to the wider family of doubling metrics. Here we give a short overview of the
simpler construction of [8]; then we describe our Euclidean construction, aiming to
focus on the geometric insights that we employed to breach the packing bound barrier.

The starting point of [8] is the standard hierarchy of 2“-nets {N,} [30], which
induces a hierarchical net-tree.® Each net N, is greedily partitioned into a collection
of @(%)—sub-nets Ny .+, which too are hierarchical. For a fixed level w, the number of
sub-nets {N,,;} is bounded by the packing bound O(¢~%), and each of them is handled
by a different tree via a straightforward clustering procedure. Naively this introduces
a log @ factor to the number of trees, each corresponding to a level (® is the aspect
ratio of the point set). The key observation to remove the dependency on the aspect
ratio is that two far apart levels are more or less independent, and one can pretty much
use the same collection of trees for both. More precisely, the levels are partitioned into
¢ = log(1/e) congruence classes Iy, Iv,...,I;—1, where I; = {w|w =7 (mod ¢)}.
Since distances across different levels of the same class I; differ by at least a factor
of 1/, it follows that all sub-nets {Nuw,:}wer, can be handled by a single tree via a
greedy hierarchical clustering. Now the total number of trees is the number of sub-nets
in one level, which is O(¢~%), times the number of congruence classes log(1/¢).

Taking a bird’s eye view of the construction of [3], the following two-step strategy
is used to handle pairwise distances within each congruence class I;:

1. Reduce the problem from the entire congruence class I; to a single level w € I;.
This is done by a simple greedy procedure.

2. Handle each level w € I; separately. This is done by a simple greedy clustering
to the sub-nets {Ny . }.

In Euclidean spaces, we shall use quadtree which is the natural analog of the
hierarchical net-tree. We too employ the trick of partitioning all levels in the hierarchy
to congruence classes [7, 8, 13, 15] and handle each one separately, and follow the
above two-step strategy. However, the way we handle each of these two steps deviates
significantly from [8].

8The standard notation in the literature on doubling metrics, including [8], uses index i instead of w to
refer to levels or distance scales; however, this paper focuses on Euclidean constructions, and we view it
instructive to use a different notation.

293

294

295

296

298

299

300

301

303

304

306

307

309

310

311

Step 1: Reduce the problem to a single level.

At any level w, we handle every quadtree cell of width 2% separately. Every cell is
partitioned into subcells from level w — ¢ of width € - 2%, and each non-empty cell
contains a single representative assigned by the construction at level w — £. At level
w, we construct a partial (1 + €)-tree cover, which roughly speaking only preserves
distances between pairs of representatives that are at distance roughly 2% from each
other; this is made more precise in the description of Step 2 below. Let 7(¢) be the
number of trees required for such a partial tree cover. To obtain a tree cover for all
points in the current level-w cell, we simply merge the aforementioned partial tree
cover constructed for the level-(w — ¢) representatives with the tree cover obtained
previously for the points in the subcells. Finally, we choose one of those level-(w — £)
representatives as the level-w representative of the current cell, and proceed to level
w + ¢ of the construction.

To achieve the required stretch bound, it is sufficient to guarantee that for every
pair of points (p,q), some quadtree cell of side-length proportional to ||pg| would
contain both p and ¢. Alas, this is impossible to achieve with a single quadtree. To
overcome this obstacle, we use a result by Chan [31]: there exists a collection of ©(d)
carefully chosen shifts of the input point set, such that in at least one shift there is a
quadtree cell of side-length at most ©(d)- ||pg|| that contains both p and ¢. The number
of trees in the cover grows by a factor of O4(1). Consequently, if each cell can be
handled using 7(¢) trees, then ranging over all the log(1/¢) congruence classes and all
the shifts, the resulting tree cover consists of 7(¢)-log(1/e)-O4(1) trees; see Lemma, 2.4
for a more precise statement. The full details of the reduction are in Section 2.1.

Step 2: Handling a single level.

Handling a single level is arguably the more interesting step, since this is where we
depart from the general packing bound argument that applies to doubling metrics,
and instead employ a more fine-grained geometric argument. We next give a high-
level description of the tree cover construction for a single level w. For brevity, in
this discussion we focus on the 2-dimensional construction that does not use Steiner
points. The full details, as well as generalization for higher dimension and the Steiner
tree cover construction, are given in Sections 2.2 and 2.3.

We consider a single 2-dimensional quadtree cell of side-length A = 2% at level
w, which is subdivided into subcells of side-length € - 2. Every level-(w — £) cell
has a representative and our goal is to construct a partial tree cover for any pair of
representatives that are at a distance between A/10 and A. (The final constants are
slightly different; here we choose 10 for simplicity.) To this end, we select a collection
of ©(1/¢) directions. For each direction v, we partition the plane into strips of width
e/, each strip parallel to v. We then shift each such partition orthogonally by eA/2;
we end up with a collection of 2 - ©(1/¢) partitions, two for each direction. We call
these partitions the major strip partitions. Observe that for every pair of representative
points p and ¢, there is at least one major strip partition in some direction, such that
both p and ¢ are contained in the same strip. Crucially, we show that for every strip
S in a partition P, there is a collection of O(1) trees that preserves distances between
all points p and ¢ in strip S that are at distance between A/100 and A. The key

312

313

314

315

316

317

319

320

321

322

observation is that, since the strips in the same partition P are disjoint by design, the
O(1)-many trees for each strip of P can be combined into O(1) forests. Thus the total
number of forests is O(1/¢).

To construct a collection of trees preserving distances within a single strip S,
we first subdivide the strip S. If S is in direction v, we partition S into sub-strips
orthogonal to v, each of width A/20. We call this a minor strip partition. Observe that
if points p and ¢ are at distance > A/10, they are in different sub-strips of the minor
strip partition. For every pair of sub-strips S; and S5 in the minor strip partition, we
construct a single tree that preserves distances between points in S; and S to within
a factor of 14 €. There are O(1) sub-strips in the minor strip partition, so overall only
O(1) trees are needed for any strip S.

1.3.2 Bounding the degree

The tree cover construction described above achieves the optimal bound on the number
of trees, but the degree of points could be arbitrarily large. While the previous tree
cover constructions [3, 8] incur unbounded degree, the Euclidean construction of [3],
when restricted to a single level in the hierarchy, achieves an absolute constant degree.”

In our construction, when restricted to a single level, the degree of points can be
easily bounded by O(1/&?). However, in contrast to [3], our goal is to achieve this bound
for the entire tree, across all levels of the hierarchy. In particular, if we achieve this goal,
the total degree of each point over all trees will be O(s~1-log(1/¢)) (O(e =4+ 1og(1/e))
in general), which is optimal (up to logarithmic factor) due to the aforementioned
lower bound [16]. To achieve this goal, we strengthen the aforementioned two-step
strategy as follows.

Step 1.

In the reduction from the entire congruence class I; to a single level w € I;, the
challenge is not to overload the same representative point over and over again across
different levels of I;. To this end, we refine a degree reduction technique, originally
introduced by Chan et al. [7] to achieve a bounded degree for (1 4 ¢)-stretch net-tree
spanners in arbitrary doubling metrics. The technique of [7] is applied on a bounded-
arboricity net-tree spanner, first by orienting its edges to achieve bounded out-degree
for all points. Then, apply a greedy edge-replacement process, where the edges are
scanned in nondecreasing order of their level (or weight), and any incoming edge (u, v)
leading to a high-in-degree point v is replaced by an edge leading to an incoming
neighbor w of v in a sufficiently lower level, with ||wv] < el|luv|. It is shown that
this process terminates with a bounded-degree spanner, where the degree bound is
quadratic in the out-degree bound (arboricity) of the original spanner, and the stretch
bound increases only by an additive factor of O(g).

We would like to apply this technique on every tree in the tree cover separately; if
instead we were to apply it on the union of the trees, we would create cycles; resolving
them blows up the number of trees in the cover. We demonstrate that by working on

9 Although in the original paper of [3] (as well as in [14]) the bound is not an absolute constant, it was
shown in [28] that an absolute constant bound can be obtained. Nonetheless, overlaying all levels of the
hierarchy leads to a final degree bound of ©(log ®).

354

355

356

357

359

each tree separately, not only does the greedy edge-replacement process reduce the
degree in each tree to an absolute constant, but it also keeps the tree cycle-free as
well as provides the required stretch bound; see Section 4.1 for the details. In fact, it
turns out to be advantageous to operate on each tree separately rather than on their
union, since this way the out-degree bound in a single tree reduces to 1, which directly
improves the total degree bound over all trees to be linearly depending on 1/e rather
than quadratically. This is the key to achieving an optimal degree bound both within
each tree as well as over all trees.

Step 2.

When handling a single level individually, the degree of points can be easily bounded
by O(1/€?) as mentioned. However, we would like to achieve an absolute constant
bound at each level, independent of . Recall that, for every pair of sub-strips Sy
and S in the minor strip partition of some strip .S, we construct a single tree that
preserves distances between points in S; and Ss to within a factor of 1+ ¢; this tree is
in fact a star. Perhaps surprisingly, every such star can be transformed into a binary
tree via a simple greedy procedure, with the stretch bound increased by just a factor
of 14+ O(elog(1/¢)); see Section 4.2 for the details.

1.4 Organization

In Section 2, we present the construction of tree covers in R? with an optimal number of
trees in both non-Steiner and Steiner settings, proving Theorem 1.1 and Theorem 1.2
for the plane. In Section 3, we generalize these constructions to R? for arbitrary
constant d. In Section 4, we reduce the degree of every tree in the (non-Steiner) tree
cover an absolute constant. In Section 5, we show some applications of our tree cover
to routing, proving Theorem 1.3.

2 Optimal Tree Covers for Euclidean Spaces

2.1 Reduction to Partial Tree Cover

Let X be a set of points in R%. For any two points p and ¢ in X, we use ||pq|| to denote
their Euclidean distance. Without loss of generality we assume the minimum distance
between any two points in X is 1.

Lemma 2.1 (Cf. [31, 32]). Let L > 0 be an arbitrary real parameter. Consider any
two points p,q € [0, L)%, and let T be the infinite quadtree of [0,2L)¢. For D = 2[d/2]
and i =0,...,D, let v; = (iL/(D+1),...,iL/(D + 1)). Then there exists an index
1 €{0,...,D}, such that p+v; and q+v; are contained in a cell of T with side-length
at most (4[d/2] +2) - ||pq]|.

Definition 2.2. We call two points (u, A)-far if their distance is in [A/p, A).
Definition 2.3. A (y, A)-partial tree cover for X C RY with stretch (1 +¢) is a tree
cover with the following property: for every two (u, A)-far points p and q, there is a
tree T in the cover such that ér(p,q) < (1 +¢€) - ||pq]|-

Lemma 2.4 (Reduction to partial tree cover). Let X be a set of points in RY, and
let € be a number in (0,1/20). Suppose that for every pu > 1, every set of points in

10

392

393

394

395

396

397

426

427

428

429

430

RY with diameter A admits a (11, A)-partial tree cover with stretch (1+¢), size 7(e,)
and diameter of each tree at most YA for some v > 1. Then X admits a tree cover

with stretch (1 +¢) and size O(d - log 4= df (e, 1)) with p == 10dv/d.

Proof. Assume without loss of generality that the smallest coordinate of a point in
X is 0 and let L be the largest coordinate in X. Let D := 2[d/2] and let Q be
the quadtree as in Lemma 2.1. For ¢ € {0,...,D}, let Q; be Q shifted by —v; =
(—=iL/(D+1)),...,—iL/(D+1)).

Constructing the tree cover. Let ¢ = 10g%ﬁ and let p == 10dv/d. (Assume for
simplicity that ¢ is an integer.) Fix some ¢ € {0,...,D}, j € {0,...,¢ — 1}, and
ke{l,...,7(e, 1) }. We proceed to construct tree T; ; .. Consider the congruence class
Ij; ={2z>0|2z=j (mod ¢))}. The following construction is done for every z € I; in
increasing order. Consider the level-w quadtree Q;, with cells of width 2%. If w < ¢,
for each level-w cell C, construct the kth among 7(e, 1) trees from the (u, 2*)-partial
tree cover on the points in C, and root it at an arbitrary point in C. For w > /,
consider the subdivision of level-w cell into subcells of level w — £. Let X’ be a subset
of X consisting of all the roots of the previously built subtrees in subcells of levels
w— L. Let A, := 2¥\/d, and observe that A,, is an upper-bound on the diameter of
X'. Construct a (u, Ay)-partial tree cover for X’ with 7(e, u) trees, and let T be the
kth tree of the 7(g,) trees constructed. Take the previously built subtrees rooted at
X', and construct a new tree by identifying their roots with the vertices of T. Root
this new tree arbitrarily. The tree T; ; 1 is the final tree obtained after iterating over
every z € I;.
We prove the following two claims inductively.

Claim 2.5. Let T}"; ;. be a tree constructed at levelw fori € {0,..., D}, j € {0,..., 0~
1}, ke {l,...,7(e, 1)} and w € I;.

1. T“”k 5 a tree

2. T), has diameter ¢, at most 27A .

Proof. We prove the claim by induction over the level w € I;.

1. The base case holds because the graph T; ; ;. is initialized as a tree. For the induc-
tion step, consider some level w € I; that is at least £. At this stage we construct
a tree T with vertex set consisting of representatives of the level w— ¢, and attach
the trees rooted at each of the representatives we constructed previously to 7.

This is clearly a tree and the induction step holds.
2. The base case holds because the diameter of each tree is at most vA,, as
guaranteed in the statement of Lemma 2.4. For the induction step, we have
YA + 27D = YA, + 27 df<27A O
O

Claim 2.6. The number of trees in the cover is O(dlog Vdf T(e, 1b))-

Proof. The trees Tj j ;, are ranging over
dvd
(D+ 1) o) = 2172 +1)-1og 2200 e)

11

446

447

458

460

461

462

463

464

465

indices. O

Claim 2.7. For every two points p,q € X, there is a tree T in the cover such that
dr(p,q) < (1+¢) - |pqll, where d1(p,q) is the distance between p and q in T.

Proof. By Lemma 2.1, there exists a cell C'in one of the D+1 quadtrees which contains
both p and ¢ and has side-length 2 < (4[d/2]+2) - |lpq|| < 5d-||pq||- Let Q; be such a
quadtree, where 0 <4 < D, and let 0 < j < £—1 be such that j = w (mod ¢). Observe
that p and ¢ are (u, Ay)-far. If w < £, we constructed a (u, A,)-partial tree cover of
C, so the claim holds. Otherwise suppose w > £. Recall that in the construction of the
tree cover, we considered a subdivision of a level-w cell (of side-length 2*) into smaller
subcells of level w — £. For each subcell we choose a representative and constructed a
tree cover on top of them. Let p’ (resp. ¢') denote the representative of p (resp. ¢) in
the subcell at level w — £. We claim that p’ and ¢’ are (i, A,)-far, where A, = 2%/d
denotes the diameter of the cell at level w. The bound ||p'¢’|| < A,, follows from the
fact that p’ and ¢’ are both in cell C. The distance can be lower-bounded as follows.

2w €. oW
1Pd = pgll = 28— > == —2- = 2_V4d

= 5d ydvd
1 2e 2 Ay 1
—ow | —_ _)2 _ v < —,v>1,and p = 10dvd
<5d 7d>10d " e < gy 72 Land p =100V

In other words, the representatives p’ and ¢’ are (u, A,)-far, meaning that one of the
7(g,) trees T in the partial tree cover for cell C' will preserve the stretch between
p’ and ¢’ up to a factor of (1 + ¢). The distance between p and ¢ in this tree can be
upper bounded as follows.

or(p,q) < or(p,p’) +0r(p',¢') + 0r(q, q")
<A +e)-p'dll +or(pp') + or(q:q")
< (L+e) - (Ip'pll + llpgll + llag') + oz (p,p") + d7(q,¢)
< (X +¢) - (lpgll + 2Aw—r) + 2¢u—s
<(I+e) (lpgll + 2Aw—r) + 4yAp—¢ by Claim 2.5

<(1te)- (||pq| 60 - m)
— (14 0()) -]

Stretch 1 + € can be obtained by appropriate scaling. O

Claims 2.5 to 2.7 imply that the resulting construction is a tree cover with stretch

(1 +¢) and O(dlog%\/& - 7(e, 1)) trees, as required. This concludes the proof of
Lemma 2.4. O

Running Time.

Let Time, a(n) be the time needed to construct a (u, A)-partial tree cover for a given
set of points of size n. In this paper, we assume that all algorithms are analyzed using

12

466

467

468

469

470

493

494

495

496

498

499

500

501

502

503

504

505

the real RAM model [33-36]. Constructing a (compressed) quadtree and computing
the shifts require Og4(nlogn) time [31]. For each non-trivial node in the quadtree (a
trivial node is a node that have only one child), we select a representative point, and
then compute a (i, A)-partial tree cover of the representative points corresponding to
descendants of the node at ¢ = O(log(1/¢)) levels lower. Computing this (u, A)-partial
tree cover on k representatives takes Time, A (k) time. We can charge each of the k
representatives by Time, A (k)/k. Each of the n points in our point set is charged
¢ = Oq4(log(1/e)) times. In the subsequent sections, we show that function Time, A (n)
satisfies Time, a(n) = Og4(npoly(1/¢)), which in particular implies that for any two
positive a and b, we have Time, A (a) 4+ Time, A (b) = Oq(Time, A (a+b)). Using this
inequality, we can bound the total charge across all points by O4(Time, A (n)-log(1/¢)).
Hence, the total time complexity is Oq4(n logn + Time, a(n) - log(1/¢)).

2.2 Partial Tree Cover Without Steiner Points

This part is devoted to the proof of Theorem 1.1. We present the argument in R?, and
defer the proof for R4 with d > 3 to Section 3.1.

Lemma 2.8. Let X be a set of points in R? with diameter A. For every constant
w > 0 there is a (u, A)-partial tree cover for X with stretch (1 + €) and size O(1/¢),
where each tree has diameter at most 2A log(4ue).

The construction relies on partitioning the plane into strips. Let 6 be a unit vector.
We define a strip in direction 6 to be a region of the plane bounded by two lines, each
parallel to 6. The width of the strip is the distance between its two bounding lines.
We define the strip partition with direction 0 and width w (shorthanded as (6,w)-
strip partition) to be the unique partition of R? into strips of direction 6 and width
w, where there is one strip that has a bounding line intersecting the point (0,0). Let
0+:= (—0,,0,) be a unit vector perpendicular to f. A (6, w)-strip partition with shift
s is obtained by shifting the boundary lines of the (6,w) strip partition by s - 6+.

Consider the following family of strip partitions: Let 0; := (cos(i - 5),sin(i - 1))
be the unit vector with angle 7 - ﬁ, for i € {0,..., 8”7” — 1}. Let set & contains (1)
the (6;, 5%)—strip partition with shift 0, and (2) the (6;, 5%)—strip partition with shift
Eﬁ. Let & ==, &. We call the strip partitions of £ the major strip partitions. Clearly,

¢ contains 16mu/e = O(1/e) major strip partitions. We define 6;- to be a vector
orthogonal to 6;; and we define £+ to be the set of all (67, QAH)—strip partitions with
shift 0, for every i € {0,..., 8”?“ —1}. We call the shift partitions of &+ the minor
strip partitions. Every set & of major strip partitions is associated with a minor strip
partition; notice that every major strip partition has an e-factor smaller width to its
orthogonal minor strip partition. See Figure 1.

Claim 2.9. For any two points x,y € X such that x andy are (u, A)-far, there exists
some magjor strip partition P € & such that (1) the points x and y are in the same
strip of P; and (2) in the associated minor strip partition P+ € £+, the points x and
y are in different strips.

Proof. Let v denote the vector y — x. There exists some i € {0,...,87u/e — 1} such
that the angle between the vector 6; and v is at most £/8u. We write v as a linear

13

508

509

510

516

}\A{
20

/

Fig. 1. A major strip partition (in blue) in direction €, and a minor strip partition (in purple) in direction 0+, Points z
and y, and the vector v broken into components parallel to and orthogonal to 6.

combination of #; and a vector ;- orthogonal to 6: v = « - §; + 3 - 6;-. As the angle
between v and 6; is at most €/8u (and A/u < |lzy|| < A), we have

A
laf = [|v] cos (;) 5 el > —, and
m

€ € eA
ﬁ<vsin<)<v < —.
81 < Iollsin () < ool < 5

Let &; be the set of major strip partitions in direction ;. As |3] < £2, and &; consists

A
8
of shifted strip partitions of width Z—A, there is some major strip partition P € &; in
which x and y are in the same strip. Further, every strip in the associated minor strip

partition P+ has width %, so the fact that |a| > % implies that 2 and y are in

different strips of P*. This proves the claim. O

For every major strip partition in £, we now construct a tree which preserves
approximately distances between points that lie in the same major strip but different
minor strips. The following is the key claim.

Claim 2.10. Let S be a strip from a major strip partition in £, with direction 6. Let
S1 and Sy be two strips from a minor strip partition in &, both with direction 6+. Then
there is a tree T on X NS such that for everya € X NSNS andbe XNSyNS,
llad]| < or(a,b) < |labll + %. In particular, if © and y are (p, A)-far, then ||ab|| <
or(a,b) < (1+¢) - ||labl|.

Proof. For any point x € R?, we define scoreg(x) to be the inner product (z,6). Let
A=XNS NSand B:=XNS3NS. As A and B belong to different minor strips

14

529

530

531

532

534

535

536

in direction 6+, without loss of generality scores(a) < scoreq(b) for every a € A and
b € B. Let a* := argmax,e 4 scoreg(a). We claim that for any « € A and b € B,

N " eA
|aa™|[+ [la”d]| < ||abl| + e (1)

To show this, consider the line segment ¢ between a and b. Let L be the line in direction
6+ that passes through a*. Because scoreg(a) < scoreg(a*) < scoreg(b), line L and
segment £ intersect at some point a’ in the slab S; see Figure 2. (Note that a’ is not
the projection of a* onto £.) The distance ||a*a’|| can be no greater than the width of
the slab, so ||a*d/|| < 5%. By triangle inequality, we have

laa” || + [la*d]| < (laa’|l + lla’a™[l) + ([a”a’|| + [|a"b]])
A
< llaa’|l + [la’d] +el

eA
< flabll + —-.
1

Let T be the star centered at a*, with an edge to every other point x € A U B; the
weight of the edge between a* and z is ||a*z||. For any a € A and b € B, we clearly
have ||ab|| < 0r(a,b), and Equation (1) guarantees that o7 (a,b) < ||abl| + %. O

Fig. 2. Point sets A and B, both in the same major strip (blue) but in different minor strips (purple). The points a, a™,
and b, with scoreg(a) < scoreg(a™) < scoreg(b), and the line L passing through a™.

We can now prove Lemma 2.8.

Proof of Lemma 2.8. Let & be the set of major strip partitions defined above. Let P
be an arbitrary major strip partition in &, and let P+ be the associated minor strip
partition in &1. For each pair of strips S; and S in P+, we define tree Tps, s, as
follows: For every strip .S in P, apply Claim 2.10 to construct a tree T's on (a subset

15

547

549

550

551

553

554

555

556

557

559

560

561

562

563

564

565

566

567

568

569

579

of) X NS that preserves distances between X NSy and X NSs; and let Tp g, s, be the
tree obtained by joining together the trees Tl from all strips S in P. To join the trees,
we build a balanced binary tree!? from the roots of T for all strips S in P. The tree
cover T consists of the set of all trees Tp g, s,, for every major strip partition P € ¢
and every pair of strips S;, S5 in the associated minor strip partition P+.

To bound the size of T, observe that (1) there are at most 8”?“ -2 = 0(1/e)
major strip partitions containing points in X, and (2) for every strip S in a major
strip partition, at most 2u 4+ 1 = O(1) strips in the associated minor strip partition
contain points in X NS (recall that point set X has diameter A). Thus 7 contains
o1 (2 = O(1/e) trees.

To bound the stretch, let a and b be arbitrary points in X. By Claim 2.9, there exists
some major strip partition P € £ such that (1) a and b are in the same strip in P; and
(2) a and b are in different strips S; and Sy of the associated minor strip partition P+.
Thus Claim 2.10 implies that tree T' = Tp g, s, satisfies ||ab|| < dr(a,b) < (1+¢)-|ab]|.

To bound the diameter, let P be a major strip partition and let S be a major strip
in P. Observe that T is a star and the distance from the root of T to any other point
in Ts is at most A. The roots of trees corresponding to strips in P are connected by a
binary tree by construction. Each edge of this binary tree is of length at most A. The
number of strips in P is upper bounded by 2u/e. Hence, the height of the binary tree
is at most log(2/€). This means that the diameter of the resulting tree is at most
2. (A +1log(2u/e) - A) = 2Alog(4u/e). O

We can plug this partial tree cover into the reduction of Lemma 2.4 (with 7(e,) =
O,(%) and v = O(log 1)) to prove Theorem 1.1 in the plane, obtaining a non-Steiner
tree cover of stretch (1 + ¢) and size O(¢~'log 1)) for points in the plane.

Running Time.

The inner product between each point with each vector #; can be precomputed using
o(X|- 4?") operations. For a major strip .S, finding the maximum point in the intersec-
tion between S and each of its minor strip only need time proportional to the number
of points in S N X. Those points are chosen as roots of the stars corresponding to S.
For each root, constructing the corresponding star requires O(]S N X|) time. There
are (2”;' 1) roots for each major strip. Hence, the total time complexity of constructing
the (u, A)-partial tree cover is:

. 4p 2 +1 3
Tlmeu,A(|X|):|X|'€+(2) > ISnX[=0(X|-e

major strip S

Therefore, the time complexity of constructing the tree cover is O(nlogn +
ne~tlog(1/¢)).
2.3 Partial tree cover with Steiner points

This part is devoted to the proof of Theorem 1.2 for R?; the argument for dimension
d > 3 is deferred to Section 3.2.

Owe use a balanced binary tree instead of a star to help guarantee bounded degree; see Section 4

16

590

591

592

593

594

595

596

597

599

600

601

602

604

605

607

608

609

610

611

612

613

614

615

616

Lemma 2.11. Let X be a set of points in R? with diameter A. For every constant u

and every e < 1/72, there is a Steiner (u, A)-partial tree cover with stretch (1+¢) for

X with O(1/+/e) trees, where each tree has diameter at most 3A.

Consider a square of side-length A containing X and let p be an arbitrary constant.

Divide the square into vertical slabs of width and height A, and into horizontal
3f

slabs of width A and height m

Observation 2.12. For any two points p,q € X such that p and q are (u, A)-far,

there exists either a horizontal or a vertical slab such that p and q are from different

sides of the slab.

Proof. Suppose towards contradiction there are two adjacent horizontal slabs contain-
ing both p and ¢ and also two adjacent vertical slabs containing both p and q. The
distance between p and ¢ is at most ||pg| < 2 - V2 < %, contradicting the

assumption that p and g are (u, A)-far. O

For each horizontal (resp. vertical) slab S, we consider the horizontal (resp. vertical)
line segment ¢ that cuts the slab into two equal-area parts. The length of £ is A. Let k :=
|21/+/2| be an integer. We partition ¢ into k intervals, [ag, a1], [az2,as], ... [ak—1, ag],
each of length /eA/2u. For each point a;, we construct tree Tg by adding edges
between a; and every point in X. Finally, connect the points a; using a straight line
and let T be the resulting tree. This ensures that the diameter of T" is at most 3A.
Claim 2.13. For any two points p,q € X such that p and q are (i, A)-far, there exists
a slab S and an integer i € {0, ..., k} such that o1 (p,q) < (1+¢) - [|pg]|-

Proof. By Observation 2.12, there exists a slab S such that p and ¢ are in different
sides of it. Without loss of generality assume that S is horizontal. By construction,

we partition the line segment £ of S into k intervals [ag, a1], [az, as), . . . [ax—1, ax] each
of length \/eA/(2u). Let r be the intersection between pg and ¢, and let a; be the
closest point to r. Let 7/ be the projection of a; to pg. Hence, ||a;7'|| < |la;r| < ‘/ff
and similarly ||r'r|] < ‘[A . By construction, we have:

07y (pa) = llpaill + llasgll = Vllpr' |2 + [lr'ail® + /[lr"qll* + [[as][2. (2)
Observe that ||pr'| > |lpr|| — ||r'r|] > % - =5 — VEA for ¢ < 1/72. Thus,

2 3v2u 2p = 12\/5)
| as|| < % < 6v/2- /e ||pr'||. Similarly, ||7'a;]| < 6v/2-+/z - ||7q|. Combining with
Equation 2, we get:

S7:(p) < Vllpr'|I2 + 72elpr' |12 + V| ql? + T2 r'q|?
< |lpr'||[V1 + 72 + ||r'q||[v/1 + 7T2¢

< V14 72¢||pq||
< (1+72¢)|pqll

Stretch 1+ € can be achieved by appropriate scaling. O

17

618

619

620

625

626

627

628

629

630

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

We now prove Lemma 2.11. Let 7 be the set containing trees T for every horizontal
or vertical slabs s and every index ¢ € [0,k]. There are O(u) = O(1) horizontal
and vertical slabs, so T contains O(k) = O(1/+/¢) trees. It follows immediately from
Claim 2.13 that 7 is a Steiner (u, A)-partial tree cover for X with stretch (1 4 ¢).

Plugging this partial tree cover into the reduction of Lemma 2.4 (with 7(e,pu) =
Ou(%) and v = 3) proves Theorem 1.2 for points in the plane.

Running Time.

For a set X, creating the set of slabs can be done in O(1) time. For each slab, finding
a net of the middle line takes O(1/4/¢) time. For each Steiner point, it requires O(|X]|)
time to create a tree connecting that point to everyone in X. Totally, the time com-
plexity is Time, A (|X|) = O(|X|//€). Therefore, the time complexity of constructing
the tree cover is O(nlogn 4+ ne=/?1og(1/¢)).

3 Tree Cover in Higher Dimensions

3.1 Non-Steiner tree covers

We now prove an analog of Lemma 2.8 in R?, for any constant d = O(1).

Lemma 3.1. Let X be a set of points in R with diameter A. For every constant
w > 0 there is a (u, A)-partial tree cover for X with stretch (1+¢) and size Og(e'~9),
where each tree has diameter at most Og(Alog(4pe)).

The definition of strip partition and the sets ¢ and &+, are different in R? than in
R2. Let 6 be a vector. An R%-strip with direction § and width w is a convex region
S C R such that there is a line £ in S such that every point in the strip is within
distance at most w/2 of £. The line ¢ is called the spine of the strip. An R%strip
partition is a partition of R? into R%strips. For the construction of the major strip
partitions &, we use the following well-known lemma, slightly adapted from a version
in the textbook by Narasimhan and Smid [14].

Lemma 3.2 (Cf. Lemma 5.2.3 of [14]). Let e be a number in (0,1). There is a set V
of vectors in R? such that (1) V contains O4(e'~%) vectors, and (2) for any vector v
in R?, there is some vector v' € V such that the angle between v and v' is at most €.

We also use a variant of the shifted quadtree construction of Chan [31] (which

follows immediately from our Lemma 2.1).
Lemma 3.3 (Cf. [31]). For any constant A > 0, there is a set P of partitions of R?
into hypercubes of side length (4[d/2] 4+ 2)A such that (1) there are O(d) partitions in
P, and (2) for every pair of points x,y € R? with ||zy| < A, there is some partition
P € P where x and y are in the same hypercube in P.

Let 0 be a vector in R?. We define Xy to be the hyperplane orthogonal to §. We can
view Xy as a copy of R¢~1. Let Py be an arbitrary partition of Xy into R~ !-hypercubes
with side length 52%1. This partition induces an R%-strip partition with direction

and width 52%: for every hypercube R in the partition P, the corresponding strip is
defined by {r+a -0 :r € R,a € R}. We denote this strip partition as S(Py). The fact
that S(Py) has width s% follows from the fact that every point in a R4~ !-hypercube

of side length Eﬁ‘d is within distance Eﬁ of the center point of the hypercube.

18

659

660

661

662

663

664

665

666

667

668

669

670

671

689

690

691

692

693

694

695

696

697

698

699

700

We now define the set £ of major strip partitions. Let V be the set of vectors
provided by Lemma 3.2, setting the parameter ¢’ = ﬁ. For every 6 € V, let Py
denote the set of partitions of Xy into R4~ !-hypercubes of side length 52;AW’ as guaran-
teed by Lemma 3.3. The set £ contains the (6, 5%)-strip partitions S(Pp) associated
with every Py € Py. Define & = [J&y. The following observation is immediate from
Lemma 3.3:

Observation 3.4. Let 6 be a vector in R%. If x and y are two points whose projections
onto Xg are within distance sﬁ, then there is some strip partition in & with a
strip containing both x and y.

We now define ¢4, the set of minor strip partitions. For every § € V, let §+ be
some arbitrary vector that is orthogonal to 6. Let Py. be an arbitrary partition of
Xy into R*-hypercubes with side length ﬁ‘d. Define &+ to be the set containing

the (0, %)—strip partition S(Py.) for every 6 € V. With these modified definition of
¢ and &+, the claims from the R? case generalize naturally. We restate the necesssary
claims below.

Claim 2.9. For any two points x,y € X such that x and y are (i, A)-far, there exists
some magor strip partition P € & such that (1) the points x and y are in the same
strip of P; and (2) in the associated minor strip partition P+ € &+, the points x and

y are in different strips.

Proof. The proof of Claim 2.9 is similar to the R? case. We break v = y — x into a
component parallel to # and a component that lies in the hyperplane orthogonal to 6;
the former has length a > % and the latter has length 5 < 5@#. Observation 3.4
(together with the upper-bound on) guarantees that there is some major strip par-
tition in direction € in which x and y are in the same strip. The lower bound on «
implies that and y are in different strips of the associated minor strip partition in
direction 6+. O

Claim 2.10. Let S be a strip from a major strip partition in &, with direction 0. Let
S1 and Sy be two strips from a minor strip partition in €, both with direction 6. Then
there is a tree T on X NS such that for everya € XNS1NS andb e XNSyNS,
lab|| < ér(a,b) < |labl| + %. In particular, if and y are (p, A)-far, then ||lab|| <
or(a,b) < (1+¢)-|adl.

Proof. In the proof of Claim 2.10, the only difference is that the line L in the 2D case
is replaced by a hyperplane L orthogonal to §. To show that ||a*a| < 5%, we argue
as follows. Hyperplane L intersects the spine of the strip at some point s; as the width
of the strip is 5%, every point in L that is in the strip (which includes a* and a)

is within distance 5% of s. Triangle inequality proves the claim, and the rest of the
proof carries over. O

Proof of Lemma 3.1. The proof of Lemma 3.1 carries over almost exactly from

Lemma 2.8. The size of ¢ is Og(s'~%). For every major strip partition P € ¢, there
d—1

are ((2“d+21)) = Oq4(1) pairs of strips in the corresponding minor strip partition of

¢4, and thus the tree cover 7 contains O4(e'~9) trees. The stretch bound carries over

without modification.

19

715

The diameter of each of the trees is Og(A - log1/¢), following a similar argument
as in the 2-dimensional case. Every major strip partition is induced by a set of R?~1-
hypercubes with side length 52 . Since the diameter of the point set is A, the number

d—
of hypercubes required is at most (2“d)

The height of the binary tree is at most (d — 1) log =2 28d and each edge is of length
at most A. The diameter is at most 2(A + A(d — 1) log 2“d) = Oq(A -log1/e). O

Together with the reduction to a fixed scale (Lemma 2.4, with 7(g, u) = O, 4('~%)
and v = Og4(log1/¢)), we obtain Theorem 1.1.

Running Time: The running time analysis is similar to the 2D case. The inner prod-
uct between each point to each direction vector can be precomputed in Og4(e!~%)|X|

d—1
time. For each major strip S, there are at most ((2‘“”21)) pair of minor strips that
intersect SN X. Hence, the total running time to construct a (u, A)-partial tree cover
is:

d—1
Time“,A(|X\) _ 617d|X| + <(2Md';]-) > . Z ISNX|= Od(€17d|X|)

S is a major strip
Then, the time complexity of constructing the tree cover is Ogq(nlogn+ne'~?log1/e).

3.2 Tree covers with Steiner points

The construction for d-dimensional Euclidean space is a direct generalization of two-
dimensional case. Consider a hypercube of side length A. We divide the hypercube
by each coordinate into slabs of height \/E ; all other sides have length A. One can
think of each slab as a d-dimensional rectangle joined by two (d — 1)-hypercubes that
are at a distance 3 \/E# away from each other. Analog of Obs. 2.12 follows.

Observation 3.5. For any two points p,q € X such that p and q are (p, A)-far, there
exists a slab such that p and q are from different sides of it.

Each tree is constructed similarly to the two-dimensional case. For each slab, we
\/;HA -net for the (d—1)-hypercube at the middle of each slab. For each net point
u, we create a tree connecting u to every vertex in X. The proof follows similarly. The

total number of trees is

d—1
19) (d 23Vdp - <\2/ME>) -0 <d3/22d’ud€(l—d)/2) .

The diameter can be bounded by O4(A), as in the 2-dimensional argument. Together
with the reduction to a fixed scale (Lemma 2.4, with 7(g,u) = Oﬂyd(e(lfd)m) and
~ = 3), this proves Theorem 1.2.

Running Time: Creating the set of slabs requires time equal to the number of slabs,
which is d - 3v/du = O(d?/?). For each slab, we find a f -net of a (d — 1)-hypecube,

20

734

736

which has (2u/+/€)?~! points. For each Steiner point, we connect it to every point in
X in O(|X]) time. Hence, the total time complexity is:

Time,,a(|1X]) = 02 - 21/ V&)™~ - |X[) = 0a(e1=D/2|X]).

Then, the time complexity of constructing the tree cover is Og4(nlogn +
nel=9/21og 1/e).

4 Constant degree constructions

In this section, we prove the following theorem.

Theorem 4.1. For every set of points in R? and any 0 < ¢ < 1/16, there exists a
tree cover with stretch 14¢ and Oq(e~ 4=V log 1/¢) trees such that every metric point
has degree at most 11 in each of the trees.

Our tree cover construction is a collection of trees, each of which possibly uses a
copy of the same point many times. Each tree is constructed iteratively, going from
smaller scales to the larger ones. In Section 4.1 we use the degree reduction technique
due to [7] for each tree in the cover. This allows us to bound the degree in terms of
the number of trees in the cover and the degree at a single scale in the construction.
In Section 4.2, we show that the degree at a single scale is constant.

4.1 Bounding the degree of metric points

Consider a single tree in the cover. Our tree cover construction from Section 2.2 does
not use Steiner points, but it still might consider the same point from the metric X
across multiple levels of construction. Even if at each level of the construction every
node has a bounded degree (which we show how to achieve in Section 4.2) the degree
of each metric point might still be unbounded. To remedy this, we apply the degree
reduction technique of [7].

Start from the tree cover construction from Section 2 and fix a tree T' = (V, E) from
the cover. Let £ = log(dv/d/<) be the same as in Section 2.1. Without loss of generality,
assume the tree was constructed in the congruence class I; == {z |z =j (mod ¢)}.
Assume that at the every level of the construction, the edges of the tree are oriented
from the parents to the children so that the outdegree of each node is o and indegree
is 1. We show how to bound the degree of every point of the metric with respect to 7.

Let i*(v) be the highest quadtree level at which point v is considered as a rep-
resentative. For every edge (u,v) in T, we orient it from u to v if i*(u) < ¢*(v). If
i*(u) = i*(v), break the ties according to the tree structure, from children towards
parent. We use E to denote the set of arcs obtained in this way. Note that |E| = |E|,
since we do not change any edges. Next, we describe the modification of E, where we
replace some edges of E and obtain the set of E. Let u be a vertex at level i and let
E; be the set of edges used in the tree constructed at level i. Let M;(u) be the set of
endpoints of edges in E; oriented into u. Let Z,, := {i | M;(u) # @}. Suppose that the
indices in Z,, are ordered increasingly. Next we modify arcs going into u as follows.
Keep M;, (u) directed into u. For j > 1 we pick an arbitrary vertex w € M;, ,(u) and
for each point v € M;, (u) replace arc (v,u) by an arc (v, w).

21

Claim 4.2. If at every level T has an outdegree c, then every metric point has outde-
gree o. Moreover, every node with an outgoing edge at level i ceases to be considered
at levels higher than .

Proof. Consider an arc (u,v), i.e., an edge (u,v) directed from u towards v. This
means that i*(u) < i*(v). Let ¢ be the level at which (u,v) was added to T'. Recall
that the edges are added while handling a single quadtree cell at level ¢ and only
one point from the cell is chosen a representative for the subsequent handling of level
i+ £ If i*(u) < i*(v), this means that v is a representative and u does not exist on
any subsequent level starting from ¢ + ¢. If ¢*(u) = ¢*(v), then neither u nor v are
representatives, since the representative exists at a level higher than i*(u). Hence, u
does not exist on any subsequent level starting from ¢ + ¢. In conclusion, u can have
outgoing edges only at a single level of construction. O

Claim 4.3. If at every level T has an outdegree ov and indegree 3, then every metric
point has degree with respect to T at most o + 8+ af.

Proof. Consider a metric point w. There are at most « edges directed out of w by
Claim 4.2. Out of the edges that were directed into w in E, there are only edges from
M;, (w) that remained directed into w. There are at most 8 such edges. Finally, some
new edges might have been attached to w due to the modification into E. Consider
an arc (w,u) directed out of w; there is a unique level i; where w is in My, _¢(u). Only
edges of the form (v,u) at level 4; can be redirected to (v,w) by the modification
process; each such v must be an in-neighbor of u at level ;. A counting argument
shows that for each arc (w,u) going out of w, there are at most 5 new arcs attached
to w, each attribute to an in-neighbor of u in E before the modification; and there are
« possible choices of u, all being the out-neighbors of w. Putting everything together,
the bound on the degree is a4+ 8 + af. O

We next show that the modification of the edges of T' does not create cycles.
Claim 4.4. The modified tree does not contain cycles.

Proof. Suppose towards contradiction that the modified T' contains a cycle and let
(v,w) be the first edge in the modification process whose insertion caused a cycle.
Recall that the arc (v, w) gets inserted in place of arc (w,u), where v € M;, (u) and
w € M;, _¢(u), for some levels i; and i;_. Since (v, w) introduces a cycle, this means
that T contains an alternative path between v and w. By Claim 4.2, node w does
not exist at level higher than i,;_,. Hence, the path appears at some level lower than
ij—¢. In the original tree T, there were edges (v, u) and (w, u). Together with the path
between w and v, this creates a cycle in the original T, a contradiction. O

Next, we show that the stretch does not increase by more than a (14O(e)) factor.
Claim 4.5. Let dr be the metric induced by T. Then, for every u,v € V(T), it holds
luv]] < (1 4 O(e))dr (u, v).-

Proof. Tt suffices to show that for an arc (v,u) that is removed from E it holds
dr(u,v) < (1+0(¢e))dr(u,v). Let s = [j/¢]. By construction, since (v, u) is removed,

there exists points vg, vy, ..., vs, such that v = vy, (vs,u) € E and for 0 < k < s:

22

815

816

817

819

820

821

822

828

(v, V1) € E, and vy € M;_ge(u). Recall that we use A, = 2v+/d to denote the
diameter of a quadtree at level w.

Observation 4.6. For every 0 < k < s, ||uviy1| < &°|luvy]|.

Applying Observation 4.6 inductively, we can prove that ||uv| < %|juvg|| for
every 0 < k < s. We can also bound ||vgvgs1|| < |loku| + luvksa| < (1 + &) |lvru| <
(1 + €)e’*|luvg||. By triangle inequality |[uv|| can be upper bounded by the length of
the path (vg, v1,...,vs, u).

dr(u,v) < llosull + 3 Joveal
0<k<s

<e vl + Y (14 e)e™uvo
0<k<s

< (1+0(e))[uvo 0

In the next subsection, we show that =1 and g = 5. Plugging in Claim 4.3, we
obtain the bound of a + 8 4+ a8 = 11 on the degree of every node in the metric.

4.2 Bounding the degree of tree nodes

Recall our construction from Section 2.2. Consider a single strip S and the sets A and
B as in the proof of Claim 2.10. Let 8 be the direction of strip S. The tree handling
the distances between A and B is a star rooted at a point a* = arg max, ¢ 4 scoreg(a).
We describe three different constructions. The first construction achieves a constant
degree but it requires scaling after which the number of trees grow by a factor of
roughly log(1/¢)¢. The second construction achieves degree of roughly 2¢ and does
not require any scaling. The third construction achieves degree 5 and requires scaling
so that the number of trees grows by a factor of roughly d?~—! = Oy4(1).

Constant degree, simple attempt.

Let A" := {(a*,a1,as2,...) be the set of points in A, sorted in decreasing order with
respect to scorey. We make a balanced binary tree T4 rooted at a; such that for every
node a; and its parent a;, scoreg(a;) < scoreg(a;). To do so, we mark a; as wvisited
and make it the root of T)4. Next, we scan the points as, as, ... in order, make a; child
of the node in T4 that was visited earliest and still has 0 or 1 children, then mark a;
visited. We similarly construct Tg satisfying that for every node b; and its parent b;,
scoreg(b;) > scoreg(b;). Finally, let T be the tree rooted at a* having subtrees T4 and
Tg as its children.

Recall that, during the reduction to a single scale (Lemma 2.4), we only construct
the partial tree covers of Section 2.2 on 1 /5Od(1) representative points contained in a
quadtree cell. Since Ty is balanced, it has height O(log |A|) = O(log(1/€)). Similarly,
the height of T is O(log(1/¢)). In other words, between any node in A and any node
in B there exists a path in T' consisting of at most O(log(1/e)) edges.

We next prove the bound on the stretch between two points ¢ € A and b € B
that are (i, A)-far. The proof follows the lines of Claim 2.10. Consider line ab and let

23

861

862

863

864

865

866

867

868

869

870

Fig. 3. The binary trees T'4 and T, constructed greedily from point sets A and B

a = cy,C,...c, = b be the points on the path from a to bin T. For 1 < i <k, let ¢ be
the intersection of ab with a line'! orthogonal to @ that passes through ¢;; as the width
of the strip is no more than eA/p < el|lab||, we have ||cic;|| < ¢]|ab||. By construction,
every path in T between a point in A and a point in B goes up the subtree T'4, passes
through the root a* and goes down the tree Tg. In other words, we have that for
every i € {1,2,...,k — 1} it holds that scoreg(c;) < scoreg(c;+1) and scoreg(c;) <
scoreg(ci, ;). In addition, k = O(log1/¢). We have [jab|| = >, ;< _1llcici1]l. Thus,
the length of the path in T is

dr(a,b) = > Jeicipl
1<i<k—1
< Y (leienll +2ll¢ e ll) + licher]l by triangle inequality
1<i<k—1
< Z (leiciq Il + 2e|abll) + €llab]|
1<i<k—1

= llab]| + O(e log(1/¢))]|abl.

The above stretch argument guarantees that T preserves path between any point
in X and any point in Y up to a factor of 1+ O(elog(1/¢)). Applying the same degree
reduction step for every strip in the strip partition and for every strip partition in the
family ¢, we obtain a tree cover with O(1/e) trees and stretch O(1 + elog(1/¢)). To
complete the argument, we need to scale the parameters. Let £ := O(elog(1/¢)), so
that the tree cover has stretch 1 + &’. The number of trees expressed in terms of €’ is

O WDy o ¢ < 1/16.

€

11In higher dimensions, we consider the hyperplane orthogonal to 6.

24

888

889

890

891

892

896

897

898

899

900

901

902

903

904

905

906

907

Degree Oq4(1).

Let A" = {(a*,a1,as,...) be the set of points in A, sorted in decreasing order with
respect to scorey. Recall that the direction of the major strip is # and the direction
of the minor strip is 8. We build a binary tree T4 rooted at a; as follows. Let the
interval corresponding to a; be [0, s%). Recall that the width of the strip is 5%. Let T
be the set of active intervals, consisting of two elements: [0, Eﬁ), corresponding to the

future left child of ay (if any) and [sﬁ, 5%) corresponding to the future right child of

ay (if any). The elements of Z form a partition of [0, 5%) at all times. Scan the points
as,as, ... in order and perform the following. Let a; be the currently scanned point
and let d; be its distance from the left border of the strip. Go over all the intervals in
7 and see which one contains d;. (Such an interval exists because Z forms a partition
of [0,52%).) Let [I;,7;) be such an interval. Add a; at the corresponding place in the
tree. Let m; := (I; +r;)/2. Create two new intervals: [I;, m;) corresponding to the left
child of d; and [my,r;), corresponding to the right child of d;. Note that after this, Z
still forms a partition of [0, 5%). This concludes the description of T4. The tree Tz is
constructed analogously. Finally, the tree T is obtained by attaching the roots of T4
and Tp as the left and right child of a*.

We next analyze the stretch. Consider two points a € A and b € B that are
(u, A)-far. Let ¢4 = a*,co = a1,¢3,...,¢p be the path from a* (which is the root
of T) to a in T and let d; = a*,dy = b1,ds,...,d, = b be the path from a* to b
in T. For two points = and y, let = xg -0 + 2, - 6+ and similarly y = yp - 0 +
y1 - 0+ Let ||zylle = |vo — yo| and ||zy||L = |r1 — y1|. Using this notation, we
observe that [labllg = 3277 cicivallo+ 39—] |didit1]lo. The second observation is that
Zf;ll llcicit1]lL = O(eA/u). This is because ||¢;ci41]| L form a geometrically decreasing
sequence. Similarly, > 7| ||did;+1]|. = O(¢A/u). Using these two observations, we
can upper bound the distance between a and b in T as follows.

p—1 qg—1
dr(a,b) = |lcicipall + Y _lldidisa]|
=1 =1

p—1 p—1 q—1 q—1
<Y lleicillo + Y _llescivall + Y Ididivallo + > lldidisall
i=1 i=1 i=1 i=1

p—1 q—1

< llabllo + > lleicivall + > _ldidigall o
i=1 i=1

< |labll + O(eA/p)

< (L+¢)|abll

The argument for higher dimensions carries over almost exactly. The intervals used
in the argument become R?~!-hypercubes. Consider a tree node a and an interval
I, C R corresponding to it. We partition the interval I, into 297! subintervals
of twice the smaller side length. Those subintervals correspond to the children of a.
To argue the stretch, we split the distance between points ¢ and b in T into two

25

908

909

910

911

912

914

915

916

917

936

937

938

939

940

941

942

943

944

945

946

947

948

949

components: one along the vector # and the remaining orthogonal part that lies in
R~ The component along 6 is at most ||ab|| and the component in R? is at most
O(e)]|ab||, due to the geometrically decreasing interval sizes.

Finally, we bound the diameter of each of the trees. Using analysis similar to the
one used for the stretch, we conclude that the diameter of a tree corresponding to a
single strip is at most ||ab||(1 4+ O(e)) < 2||ab||. The trees of different major strips in a
major strip partition are connected via a binary tree. As in Section 3.1, the height of
the binary tree is at most log %d. Hence, the overall degree is 24~ + 2. The diameter

of the tree is at most 2(2A + Alog 2£%) < 2Alog 1844,

Constant degree.

We next explain a tweak which leads to degree 5. Instead of constructing a 29~ !-ary
tree for each strip we can work with a binary tree. Tree T4 is built as follows. Let
[0@%)‘1_1 be the interval corresponding to a;. We assign level to each node in the
tree, ranging from 1 to d — 1. The level of a; is 1. The future children of a; are at
level 2. In general, the children of a node at level i < d — 1 are at level ¢ + 1 and the
children of a node at level d — 1 are at level 1. The set of active intervals Z consists of

[0, 62%1) x 10, eﬁ)d_Q, corresponding to the left child of a; and [Eﬁ—d, Eﬁ) x 10, Sﬁ)d_Q.
Once again, we maintain the property that Z is a partition of [0,5%)‘1’1. Scan the
m

points as, as, ... in that order and le t a; be the currently scanned point and d; the
(d — 1)-dimensional vector of distances from each of the sides of the strip. Find the
interval I = [l1,71) X [l2,72) X -+ X [lg—1,74—1) in Z where d; belongs to and place
a; at the corresponding place in the tree. Let j € {1,2,...,d} be the level of a;. Let
m; = (lj +7'J)/2 Spht I into Il = [1171"1) X [ZQ,’I‘Q) X X [lj,mj) X X [ld—lyrd—l)
corresponding to the left child of a; and I, = [l1,71) X [l2,72) X -+ X [my,7;) X -+ X
[la—1,74—1) corresponding to the right child of a;. Replace I with I; and I, in Z. This
concludes the description of the binary tree.

The stretch argument remains almost the same, except that Z?;lucicz‘ﬂ” L=
O(deA/p), which is d times larger than before. The reason is that every d hops down
the tree, we incur an additive stretch of O(eA/u) after which the additive stretch
reduces by a factor of two. Using the same argument as before, we conclude that
dr(a,b) < (1 + O(ed))|lab||. By scaling the stretch, we get that the number of trees
increases by a factor of d?1.

5 Application to Routing

In this section, we show an application of our tree cover to compact routing scheme;
in particular, we prove Theorem 1.3.

We start by giving some background on the problem. A compact routing scheme is
a distributed algorithm for sending messages or packets of information between points
in the network. Specifically, a packet has an origin and it is required to arrive at a
destination. Every node in the network contains a routing table, which stores local
routing-related information, and a unique label, sometimes also called address. In the
beginning, the network is preprocessed and every node is assigned a routing table and
a label. Given a destination node v, routing algorithm is initiated at source u and is

26

950

951

953

954

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

974

979

980

981

982

983

984

985

986

987

988

989

given the label of v. Based on the local routing table of u and the label of v, it has to
decide on the next node w to which the packet should be transmitted. More formally,
the algorithm outputs the port number leading to its neighbor w. Each packet has a
message header attached to it, which contains the label of the destination node v, but
may also contain other helpful information. Upon receiving the packet the algorithm
at node w has at its disposal the local routing table of w and the information stored
in the header. This process continues until the packet arrives at its destination, which
is node v. The stretch of the routing scheme is the ratio between the distance packet
traveled in the network and the distance in the original metric space.

We consider routing in metric spaces, where each among n points in the metric
corresponds to a network node. In the preprocessing stage, we choose a set of links
that induces an overlay network over which the routing must be performed. The goal
is to have an overlay network of small size, whilst also optimizing the tradeoff between
the maximum storage per node (that is, the size of routing tables, labels, and headers)
and the stretch. In addition, one may try to further optimize the time it takes for
every node to determine (or output) the next port number along the path, henceforth
decision time, and other quality measures, such as the maximum degree in the overlay
network.

There are two different models, based on the way labels are chosen: labeled, where
the designer is allowed to choose (typically polylog(n)) labels, and name-independent,
where an adversary chooses labels. Similarly, depending on who is choosing the port
numbers, there is a designer-port model, where the designer can choose the port num-
ber, and the fized-port model, where the port numbers are chosen by an adversary. Our
routing scheme works in the labeled, fixed-port model. For an additional background
on compact routing schemes, we refer the reader to [37—40].

5.1 Routing in trees

We first explain the interval routing scheme due to [11]. Let T be a given routed tree.
We first preprocess the tree by performing a DFS on it and marking for every node
the timestamp at which it got visited, [,,. For every node u, let h, be the maximum [,,
among the children w of u. The label of node u consists of I,, and requires [log n] bits of
storage. The routing table of node u consists of the port number leading to its parent
in T (unless u is a root), and for each child w; of u, the port number leading to W;
together with (l,,,, hy,). This requires deg (V') - O(logn) bits. Specifically, it requires
O(logn) bits for trees of constant degree, which is the case for our construction. To
route from some node u to a destination v, the routing algorithm has routing table of
u and the label of v at its disposal. For every child w; of u, if [, falls in the interval (L, ,
ha,), the algorithm outputs the corresponding port to w; and otherwise the algorithm
outputs port to the parent of u. Note that in bounded degree trees the aforementioned
routing algorithm needs to inspect only a constant number of entries in order to decide
on the next port.

27

990

991

992

994

995

996

997

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

5.2 Routing in Euclidean spaces

To route in a Euclidean space, first construct a non-Steiner tree cover 7 with bounded
degree, using Theorem 4.1. The routing table of each point consists of its routing
table in each of the trees in the cover, which takes O4(e~(¢~Ylog®1/e - logn) bits,
since each tree is of a constant degree. The label for each point consists of its label
in each of the trees in 7, which overall takes O4(¢~(*~1 log 1/¢ - logn) bits, together
with an additional label of O4(e~ (4= log? 1 /e logn) bits described in the next section
(“identifying a distance-preserving tree”). Overall this label takes Og(e~ (4= log® 1 /e-
log n) bits. To route from a point to some other point y, the algorithm first identifies
a tree in T that preserves the zy distance up to a (1 + ¢) factor: this step is described
in the next section. After that, the routing algorithm proceeds on the single tree as
described before.

5.3 Identifying a distance-preserving tree

Given two points z and y in R%, we now describe how to identify a tree in 7 that
preserves the distance between x and y up to 1+ ¢ stretch. The total size of this label
will be Og(e~"log® 1/¢ - logn).

Review of tree cover construction.

We first recall the construction of Theorem 1.1. We have a collection of com-
pressed quadtrees @; (for every i € [O4(1)] and congruence classes j € [¢] (where
¢ = Oq4(log1/e)). For ease of notation, let @; ; denote the tree obtained by starting
with @; and then contracting away all nodes except those at level w for w = j (mod £).
We refer to Q; ; as a contracted quadtree. Notice that if C' is a cell in the contracted
quadtree Q; ; with diameter A, then the children of C in @, ; have diameter O4(eA).
For every shift ¢+ and congruence class j, we construct a set of trees as follows: for
every cell C in @; ;, we arbitrarily choose a set of 1 /5Od(1) representative points, one
from each child cell of C' in @Q; ;; we construct a partial tree cover on the representa-
tive points; and we merge these partial tree covers together into a final set of trees.
Our proof of correctness guarantees that, for any pair of points x and y, there is some
contracted quadtree @; ; and some cell C in Q); ; with diameter A, such that the two
representative points ' and y’ are (u, A)-far. There is some tree in the partial tree
cover of C' that preserves ||2’y’|| up to a factor 1+ ¢, and this tree corresponds to the
tree in the final tree cover of Theorem 1.1 that preserves ||zy|| up to a factor 1+ O(e).

In Section 4.2, we constructed a tree cover in which each partial tree cover had
bounded-degree. The construction is identical to that of Theorem 1.1, except that we
use a slightly modified construction for the partial tree cover on the representative
points (modified from Section 2.2).

In Section 4.1, we used the result of Section 4.2 to get a bounded-degree tree
cover (proving Theorem 4.1). The trees constructed in this section are in one-to-one
correspondence with the trees constructed in Section 4.2: if a tree T in the cover of
Section 4.2 preserves the distance between two points and y up to a factor 1 + ¢,
the corresponding transformed tree T” from Section 4.2 will preserve the distance up
to a factor 14 O(g).

28

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

For simplicity, we describe how to identify a distance-preserving tree in the tree
cover of Section 4.2: for any x and y, we will find a tree 7" such that dp(z,y) <
(1 + ¢)|lzy||. As described above, these trees are in one-to-one correspondence with
the bounded-degree trees of Theorem 4.1 (which is the tree cover we actually use for
routing).

Our labeling scheme will consist of a short label for each tree @; ;. For each Q; ;,
this label will let us identify a cell whose partial tree cover preserves the ||xy|| distance
(if such a cell exists), as well as the index of the corresponding distance-preserving
tree. To construct this label for @; ;, we will need the following simple observation:
Observation 5.1. Let x and y be points in X, and let QQ; ; be a contracted quadtree.
Suppose there is a cell C of Q;,; such that C contains both z and y, and the repre-

sentatives & and i are (u, diam(C))-far. Then, in the smallest-diameter cell C that
contains both x and y, the representatives ' and y' are (u,diam(C))-far. In other
words, if we view x and y as leaves of Q; ;, the lowest common ancestor of x and y
guarantees that the representatives are (u, diam(C))-far.

5.3.1 Identifying a valid partial tree cover

In this subsection, we describe a labeling scheme that lets us identify a distance-
preserving tree in a partial tree cover.

Lemma 5.2. Let X C R? be a point set with diameter A. For any constant u = Oq(1),
there is a labeling scheme with Og(1)-bit labels, such that given the labels of any two
points x,y € X, we can either certify that x and y are (u/4, A)-far or that they are
not (u, A)-far.

Proof. Let z € R be a point with coordinates z[1], ..., z[d]. The label of = consists of
d parts: for each coordinate i € {1,...,d}, the label stores difference between z[i] and
min, ¢ x 2'[i] rounded to a multiple of A/(8ud); that is, we store L%Wj
Because the maximum such difference is A (because the diameter of X is A), the label
takes O4(1) bits in total.

Given the labels of any two points z and y, we can compute, for each coordinate,
an estimate of their difference within accuracy +A/(4ud). Thus, we can estimate f5
distance between z and y within an accuracy of +A/(4u). If this estimated distance
is at least A/2u, the ||zy|| > A/(4p), and so x and y are (p/4, A)-far. Otherwise, if
the estimated distance is smaller than A/(2u), we have ||zy|| < A/u, and so x and y
are not (u, A)-far. O

Notice that if a partial tree cover consists of O(1/e?~1) trees, one tree in the cover

can be identified with O4(log1/e) bits. We will allow these “IDs” of the trees to be
fixed in advance.
Lemma 5.3. Let T’ be a (u, A)-partial tree cover for a point set X C R?, constructed
as in Section 4.2, with p = O4(1). Let ID : T' — {0,1}* be a function that maps trees
to unique identifiers. There is a labeling scheme for X with O4(1/e?~(log1/e + k))-
bit labels, such that given the labels of any two points x,y € X, we can either return
ID(T) for some tree T € T' that preserves the distance ||zy|| up to a 1+ O(e) factor,
or we can certify that x and y are not (u, A)-far.

29

1074

1075

1076

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

Proof. Recall from Sections 2.2 and 4.2 that the construction of the partial tree cover
T proceeds by constructing Og4(1/%~1) magjor strip partitions and O4(1) minor strip
partitions. The major strip partitions have width 5% = O4(eA); thus, in each major

strip partition, there are 1 /Eo(d) strips that contain points in X. The minor strip
partitions have width % = 04(A); thus, in each minor strip partition, there are O4(1)
strips that contain points in X. Every triple consisting of a major strip partition P
and two minor strips in the associated minor strip partition P+ corresponds to some
tree in the partial tree cover.

Label. For every point = € X, the label consists of four parts:

e For each of the O4(1/e?!) major strip partitions, store a O4(log1/¢)-bit label
identifying which strip in the major strip partition contains x.

e Similarly, for each of the O4(1) minor strip partitions, store a O4(1)-bit label
identifying which strip in the minor strip partition contains x.

e Store the O4(1)-bit label of Lemma 5.2.

® For each of the Oy4(1/%1) triples consisting of a major strip partition P and
two minor strips in the associated partition PL, store the k-bit identifier (given
by ID(-)) of the corresponding tree.

Size. The total size of all four parts is Oq(1/e4 1 (log1/e + k)).

Label correctness. Suppose we have the labels of two points x,y € X. First, we use
the label of Lemma 5.2 to determine either (1) z and y are (u/4, A)-far, or (2) z and
y are not (p, A)-far. In the latter case, we are done; we have a certificate that = and
y are not (u, A)-far.

In the former case, we use the labels to check if there is some major strip partition
P such that the points z and y are in the same strip of P, and x and y are in
different strips of the associated minor strip partition PL. If there is no such strip,
then Claim 2.9 implies that = and y are not (u, A)-far, and we are done. Suppose there
is such a strip. By the construction in Section 4.2, this triple of major strip and minor
strips corresponds to a tree T in the partial tree cover 7'. Claim 2.10 implies that
o7 (a,b) < ||lad]| + %. As a and b are (u/4, A)-far, we have ér(a,b) < (1+4-¢)|ab|.
Thus, we have identified a tree in 7’ that preserves the distance between a and b up
to a 1+ O(e) factor. O

5.3.2 LCA Labeling Tools

Before constructing our distance label, we need a preliminary result on LCA labeling.
For any two vertices x and y in a tree T, let lca(z,y) denote the lowest common
ancestor of x and y. For any vertex in the tree, we say its weight is the number of
descendants. We say a vertex is heavy if its weight is greater than half the weight of
its parent, otherwise it is light. For any vertex x, let Apices[T, z]= {a1,...,a0(10gn)}
denote the parents of light ancestors of x. We remark on two important facts: (1)
there are O(logn) vertices cells in Apices[T,z], and (2) the LCA of z and y is in
Apices[T,] U Apices|[T, y]. These facts are used in existing LCA labeling schemes. We
will modify the labeling scheme of Alstrup, Halvorsen, and Larsen:

Lemma 5.4 (Corollary 4.17 of [12]). Let T be a tree, and let L : V(T) — {0,1}* be
a function that indicates some predefined k-bit names for the vertices of T. There is

30

1117

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

a labeling scheme on the vertices of T' that uses O(klogn) bits, such that given labels
of any two vertices x and y, we can compute L(lca(z,y)).

We will use a variant of their labeling scheme.
Lemma 5.5. Let T be a tree. For every vertex x, let L, : V(T) — {0,1}* be a
function that indicates some predefined k-bit names for the vertices of T. There is a
labeling scheme on the vertices of T' that uses O(klogn) bits, such that given labels of
two leaves x and y, we can compute:

e L,(lca(x,y)), if lca(z,y) € Apices[T, z]

e L,(Ica(z,y)), if lca(x,y) € Apices[T, y|
If leca(z,y) € Apices[T,xz] N Apices[T,y], then we can compute both labels
(Lo (ea(, y)), L, (lca(z, y))-

Sketch. We first review the labeling scheme of [42]. For every vertex z, the label of x
consists of two parts. The first part (cf. [42, Corollary 4.17]) is just a lookup table: for
every vertex a € Apices[T, x], we record the k-bit name L(a). The second part encodes
information about the root-to-x path in the tree: in particular (cf. [42, Lemma 4.13]),
given labels for x and y, we can use the second part of the label to detect whether
lca(z,y) is in Apices[T, 2] — and to look up L(lca(x, y) in the lookup table, if lca(z, y)
is in fact in Apices[T, z].

To obtain Lemma 5.5, we simply change the lookup table in the label of =z

to store L,(-) instead of L(-). The proof of [42] guarantees that we can return
L,(lca(x,y)) whenever lca(z,y) € Apices[T,z], and symmetrically L, (lca(z,y))
whenever lca(x,y) € Apices[T,y]. O

We are now ready to describe the label to identify a distance-preserving tree.

5.3.3 Labeling scheme
Let T be the tree cover of Theorem 4.1, of size O4(c~ (4~ log(1/¢)).

Label.

Let Q;,; be a contracted quadtree used in the construction of 7. For each cell C'in @); ;,
assign an arbitrary ordering to its 1/e94(1) children (so that we can specify a child of
C with Og4(log1/e) bits.) Let x be a vertex in X, and treat x as a leaf of Q; ;. For
every cell C' € Apices(Q;,j,x), we define L,(C') to be a label consisting of three parts:

e (L1) Store Og4(log1/¢) bits to identify which child of C' is an ancestor of z.

e (L2) Store O4(log1/e) bits to identify which child of C' is heavy (if there is a
heavy child).

e (L3) Let 2’ be the representative point for x. Let 7’ denote the partial tree
cover at cell C, and for each tree T' € T, define ID(T”) to be the O4(log 1/¢)-bit
identifier of the tree T' € T of the final tree cover that contains T”. Store the label
of ’ from Lemma 5.3 (using ID): with this label, for any two points we can either
find a tree in 7 that preserves the distances of the representative points up to a
factor 1+ O(e), or we certify that the representative points are not (u, A)-far.

Lemma 5.5 gives us an LCA label for z. For each contracted quadtree @); ;, store this
label.

31

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

Size.

The label L, (C) consists of O(¢~ (=1 log(1/¢)) bits. Thus, Lemma 5.5 gives us labels
of size O(e~(¥"Vlog(1/e) - logn). There are O,(log1/¢) quadtrees Q; j, so the label
size is Og(e = log?(1/¢) - logn) in total.

Decoding.

Suppose we have labels for z and y. For each Q;;, we use Lemma 5.5 to find
information about C := lca(x,y). There are two cases:

e Case 1: C is in Apices[Q; ;j,] N Apices[Q; ;, y]. In this case, we have access
to both L, (C) and L,(C). We use the (L1) parts of labels L,(C) and L,(C) to
identify the two children C, and C, of C that contain = and y, respectively.

e Case 2: (Without loss of generality) C is only in Apices[Q;. ;,z]. Let C,,
denote the child of C' that is an ancestor of y. Because C' is not the parent of
a light ancestor of y, we know that the child Cy, is heavy. Use the (L2) part of
L,(C) to identify the child C,. As before, use the (L1) part of label L,(C) to
identify the child C, that is an ancestor of x.

Having identified C, and Cy, we can now use the (L3) part of label L, (C') to determine
whether there is a tree that preserves the distance between the representatives of C,,
and Cy, up to a 1+ O(e) factor. If there is such a tree, return it; otherwise, check the
next Qi,j-

By the proof of correctness of Theorem 1.1, there is some contracted quadtree Q; ;
with a cell in which the representatives of and y are (u, A)-far; further, our Observa-
tion 5.1 guarantees that it suffices to check only the LCA of x and y in each contracted
quadtree. Thus, this process (iterating over all contracted quadtrees, and checking
the LCA of each) will eventually find a quadtree cell in which the representatives are
(i, A)-far, and thus (by Lemma 5.3), the (L3) part of the label will return a tree that
preserves the distance of the representative points. By the proof of Claim 2.7, this tree
preserves the distance between z and y up to a 1 + O(g) factor.

Acknowledgement.

Hung Le and Cuong Than are supported by the NSF CAREER Award No. CCF-
2237288 and an NSF Grant No. CCF-2121952. Shay Solomon is funded by the
European Union (ERC, DynOpt, 101043159). Views and opinions expressed are how-
ever those of the author(s) only and do not necessarily reflect those of the European
Union or the European Research Council. Neither the European Union nor the grant-
ing authority can be held responsible for them. Shay Solomon is also supported by the
Israel Science Foundation(ISF) grant No.1991/1. Shay Solomon and Lazar Milenkovié
are supported by a grant from the United States-Israel Binational Science Foundation
(BSF), Jerusalem, Israel, and the United States National Science Foundation(NSF).

References

[1] Awerbuch, B., Peleg, D.: Routing with polynomial communication-space trade-
off. STAM J. Discret. Math. 5(2), 151-162 (1992) https://doi.org/10.1137/
0405013

32

https://doi.org/10.1137/0405013
https://doi.org/10.1137/0405013
https://doi.org/10.1137/0405013

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1218

1219

1220

1230

1231

1232

1233

2]

[13]

Alon, N., Karp, R.M., Peleg, D., West, D.: A graph-theoretic game and its appli-
cation to the k-server problem. SIAM Journal on Computing 24(1), 78-100 (1995)
https://doi.org/10.1137/s0097539792224474

Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.: Euclidean spanners: short,
thin, and lanky. In: Proceedings of the Twenty-seventh Annual ACM Symposium
on Theory of Computing, pp. 489-498 (1995)

Gupta, A., Kumar, A., Rastogi, R.: Traveling with a Pez dispenser (or, rout-
ing issues in MPLS). In: Proceedings 42nd IEEE Symposium on Foundations of
Computer Science,FOCS’ 01 (2001). https://doi.org/10.1109/sfcs.2001.959889 .
https://doi.org/10.1109/sfcs.2001.959889

Mendel, M., Naor, A.: Ramsey partitions and proximity data structures. In: 2006
47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’ 06)
(2006). https://doi.org/10.1109/focs.2006.65

Dragan, F.F., Yan, C., Lomonosov, I.: Collective tree spanners of graphs. SIAM
Journal on Discrete Mathematics 20(1), 240-260 (2006)

Chan, T.-H.H., Gupta, A., Maggs, B.M., Zhou, S.: On hierarchical routing in
doubling metrics. ACM Transactions on Algorithms (TALG) 12(4), 1-22 (2016)

Bartal, Y., Fandina, O.N., Neiman, O.: Covering metric spaces by few trees.
Journal of Computer and System Sciences 130, 26—42 (2022)

Chang, H., Conroy, J., Le, H., Milenkovic, L., Solomon, S., Than, C.: Covering
planar metrics (and beyond): O(1) trees suffice. In: FOCS, pp. 2231-2261. IEEE,
USA (2023)

Chang, H., Conroy, J., Le, H., Milenkovic, L., Solomon, S., Than, C.: Short-
cut partitions in minor-free graphs: Steiner point removal, distance oracles, tree
covers, and more. In: SODA, pp. 5300-5331. STAM, USA (2024)

Thorup, M., Zwick, U.: Approximate distance oracles. Journal of the ACM
(JACM) 52(1), 1-24 (2005)

Kahalon, O., Le, H., Milenkovié¢, L., Solomon, S.: Can’t see the forest for the trees:
navigating metric spaces by bounded hop-diameter spanners. In: Proceedings of
the 2022 ACM Symposium on Principles of Distributed Computing, pp. 151-162
(2022)

Agarwal, P.K., Chang, H.-C., Raghvendra, S., Xiao, A.: Deterministic, near-linear
e-approximation algorithm for geometric bipartite matching. In: Proceedings of
the 54th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1052—
1065 (2022)

33

https://doi.org/10.1137/s0097539792224474
https://doi.org/10.1109/sfcs.2001.959889
https://doi.org/10.1109/focs.2006.65

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1264

1265

1266

1267

1268

[14]

[15]

[16]

[17]

[18]

[26]

Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, USA (2007)

Le, H., Solomon, S.: Truly optimal Euclidean spanners. SIAM Journal on
Computing (0), 19-135 (2022)

Bhore, S., Téth, C.D.: Euclidean steiner spanners: Light and sparse. SIAM
Journal on Discrete Mathematics 36(3), 2411-2444 (2022)

Awerbuch, B., Kutten, S., Peleg, D.: On buffer-economical store-and-forward
deadlock prevention. IEEE transactions on communications 42(11), 2934-2937
(1994)

Charikar, M., Chekuri, C., Goel, A., Guha, S., Plotkin, S.: Approximating a finite
metric by a small number of tree metrics. In: Proceedings 39th Annual Symposium
on Foundations of Computer Science (Cat. No. 98CB36280), pp. 379-388 (1998).
IEEE

Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of the Thir-
teenth Annual ACM Symposium on Parallel Algorithms and Architectures, pp.
1-10 (2001)

Margulis, G.A.: Explicit group-theoretical constructions of combinatorial schemes
and their application to the design of expanders and concentrators. Problemy
Peredachi informatsii 24(1), 51-60 (1988)

Althofer, 1., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete & Computational Geometry 9(1), 81-100 (1993)

Abraham, I., Bartal, Y., Neiman, O.: Advances in metric embedding theory.
Advances in Mathematics 228(6), 3026-3126 (2011)

Krauthgamer, R., Lee, J.R., Mendel, M., Naor, A.: Measured descent: a new
embedding method for finite metrics. Geometric and Functional Analysis 15(4),
839-858 (2005) https://doi.org/10.1007/s00039-005-0527-6

Abraham, I., Gavoille, C.: Object location using path separators. In: Proceedings
of the Twenty-fifth Annual ACM Symposium on Principles of Distributed Com-
puting. PODC "06, pp. 188-197 (2006). https://doi.org/10.1145/1146381.1146411
. Full version: https://www.cse.huji.ac.il/~ittaia/papers/AG-TR.pdf

Freedman, O., Gawrychowski, P., Nicholson, P.K., Weimann, O.: Optimal dis-
tance labeling schemes for trees. In: Proceedings of the ACM Symposium on
Principles of Distributed Computing (2017). https://doi.org/10.1145/3087801.
3087804 . https://doi.org/10.1145/3087801.3087804

Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. Journal

34

https://doi.org/10.1007/s00039-005-0527-6
https://doi.org/10.1145/1146381.1146411
https://www.cse.huji.ac.il/~ittaia/papers/AG-TR.pdf
https://doi.org/10.1145/3087801.3087804
https://doi.org/10.1145/3087801.3087804
https://doi.org/10.1145/3087801.3087804

1269

1272

1277

1278

1279

1280

1281

1291

1292

1293

1296

1297

1300

1301

1302

[27]

[28]

[29]

[36]

[37]

[38]

[39]

[40]

of Algorithms 53(1), 85-112 (2004) https://doi.org/10.1016/j.jalgor.2004.05.002

Andoni, A., Zhang, H.: Sub-quadratic (1+\eps)-approximate Euclidean Spanners,
with Applications (2023)

Smid, M.: Notes on Binary Dumbbell Trees. Unpublished notes (2012)

Gottlieb, L., Roditty, L.: Improved algorithms for fully dynamic geometric span-
ners and geometric routing. In: Proceedings of the 19th Annual ACM-SIAM
Symposium on Discrete Algorithms. SODA’08, pp. 591-600 (2008). https://doi.
org/10.5555/1347082.1347148

Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-
distortion embeddings. In: FOCS, pp. 534-543. IEEE Computer Society, USA
(2003)

Chan, T.M.: Approximate nearest neighbor queries revisited. Discret. Comput.
Geom. 20(3), 359-373 (1998)

Gao, Z., Har-Peled, S.: Almost optimal locality sensitive orderings in Euclidean
space. CoRR abs/2310.12792 (2023)

Fortune, S., Van Wyk, C.J.: Efficient exact arithmetic for computational
geometry. In: Proceedings of the Ninth Annual Symposium on Computa-
tional Geometry. SCG 93, pp. 163-172. Association for Computing Machin-
ery, New York, NY, USA (1993). https://doi.org/10.1145/160985.161015 .
https://doi.org/10.1145/160985.161015

Li, C., Pion, S., Yap, C.-K.: Recent progress in exact geometric computation. The
Journal of Logic and Algebraic Programming 64(1), 85-111 (2005)

Salesin, D., Stolfi, J., Guibas, L.: Epsilon geometry: building robust algorithms
from imprecise computations. In: Proceedings of the Fifth Annual Symposium on

Computational Geometry, pp. 208-217 (1989)

Erickson, J., Van Der Hoog, 1., Miltzow, T.: Smoothing the gap between np and
er. SIAM Journal on Computing (0), 20-102 (2022)

Peleg, D.: Proximity-preserving labeling schemes. J. Graph Theory 33(3), 167
176 (2000) https://doi.org/10.5555/1379811.1379818

Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA, pp. 1-10. ACM,
USA (2001)

Fraigniaud, P., Gavoille, C.: Routing in trees. In: ICALP. Lecture Notes in
Computer Science, vol. 2076, pp. 757-772. Springer, USA (2001)

Abraham, I., Gavoille, C., Goldberg, A.V., Malkhi, D.: Routing in networks with

35

https://doi.org/10.1016/j.jalgor.2004.05.002
https://doi.org/10.5555/1347082.1347148
https://doi.org/10.5555/1347082.1347148
https://doi.org/10.5555/1347082.1347148
https://doi.org/10.1145/160985.161015
https://doi.org/10.5555/1379811.1379818

1303

1304

1305

1306

1307

1308

low doubling dimension. In: Proc. of 26th ICDCS, p. 75 (2006)

[41] Santoro, N., Khatib, R.: Labelling and implicit routing in networks. Comput. J.
28(1), 5-8 (1985)

[42] Alstrup, S., Halvorsen, E.B., Larsen, K.G.: Near-optimal labeling schemes for

nearest common ancestors. In: Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 972-982 (2014). SIAM

36

	Introduction
	Short Survey on Tree Covers
	General metrics.
	Doubling metrics.
	Planar and minor-free graphs.
	Euclidean metrics.
	Ramsey trees.

	Main Results
	Bounded degree tree cover
	Routing.

	Technical Highlights
	Achieving an optimal bound on the number of trees
	Step 1: Reduce the problem to a single level.
	Step 2: Handling a single level.

	Bounding the degree
	Step 1.
	Step 2.

	Organization

	Optimal Tree Covers for Euclidean Spaces
	Reduction to Partial Tree Cover
	Running Time.

	Partial Tree Cover Without Steiner Points
	Running Time.

	Partial tree cover with Steiner points
	Running Time.

	Tree Cover in Higher Dimensions
	Non-Steiner tree covers
	Tree covers with Steiner points

	Constant degree constructions
	Bounding the degree of metric points
	Bounding the degree of tree nodes
	Constant degree, simple attempt.
	Degree Od(1).
	Constant degree.

	Application to Routing
	Routing in trees
	Routing in Euclidean spaces
	Identifying a distance-preserving tree
	Review of tree cover construction.
	Identifying a valid partial tree cover
	LCA Labeling Tools
	Labeling scheme
	Label.
	Size.
	Decoding.
	Acknowledgement.

