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Abstract

Euclidean spanners are important geometric objects that have been extensively studied since
the 1980s. The two most basic “compactness” measures of a Euclidean spanner E 1 are the
size (number of edges) |E| and the weight (sum of edge weights) ∥E∥. The state-of-the-art con-
structions of Euclidean (1+ ϵ)-spanners in Rd have Od

(︁
n · ϵ−d+1

)︁
edges (or sparsity Od(ϵ

−d+1))

and weight Od

(︁
ϵ−d log ϵ−1

)︁
· ∥Emst∥ (or lightness Od(ϵ

−d log ϵ−1)); here Od suppresses a factor

of dO(d) and ∥Emst∥ denotes the weight of a minimum spanning tree of the input point set.
Importantly, these two upper bounds are (near-)optimal (up to the dO(d) factor and dis-

regarding the factor of log(ϵ−1) in the lightness bound) for some extremal instances [Le and
Solomon, 2019], and therefore they are (near-)optimal in an existential sense. Moreover, both
these upper bounds are attained by the same construction—the classic greedy spanner, whose
sparsity and lightness are not only existentially optimal, but they also significantly outper-
form those of any other Euclidean spanner construction studied in an experimental study by
[Farshi-Gudmundsson, 2009] for various practical point sets in the plane. This raises the natural
question of whether the greedy spanner is (near-) optimal for any point set instance?

Motivated by this question, we initiate the study of instance optimal Euclidean spanners.
Our results are two-fold.

• Rather surprisingly (given the aforementioned experimental study), we demonstrate that the
greedy spanner is far from being instance optimal, even when allowing its stretch to grow.
More concretely, we design two hard instances of point sets in the plane, where the greedy
(1 + xϵ)-spanner (for basically any parameter x ≥ 1) has Ωx(ϵ

−1/2) · |Espa| edges and weight
Ωx(ϵ

−1) · ∥Elight∥, where Espa and Elight denote the per-instance sparsest and lightest (1+ ϵ)-
spanners, respectively, and the Ωx notation suppresses a polynomial dependence on 1/x.

• As our main contribution, we design a new construction of Euclidean spanners, which is
inherently different from known constructions, achieving the following bounds: a stretch of
1+ ϵ ·2O(log∗(d/ϵ)) with O(1) · |Espa| edges and weight O(1) · ∥Elight∥. In other words, we show
that a slight increase to the stretch suffices for obtaining instance optimality up to an absolute
constant for both sparsity and lightness. Remarkably, there is only a log-star dependence on
the dimension in the stretch, and there is no dependence on it whatsoever in the number of
edges and weight. In general, for any integer k ≥ 1, we can construct a Euclidean spanner

in Rd of stretch 1 + ϵ · 2O(k) with O
(︂
log(k)(ϵ−1) + log(k−1)(d)

)︂
· |Espa| edges and weight

O
(︂
log(k)(ϵ−1) + log(k−1)(d)

)︂
· ∥Elight∥, where log(k) denotes the k-iterated logarithm.
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1We shall identify a graph H = (X,E) with its edge set E. All edge weights are given by the Euclidean distances.
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1 Introduction

A Euclidean t-spanner of a set of point X ⊂ Rd is an edge-weighted graph H = (X,E,w) having
X as the vertex set, such that the weight w(x, y) of any edge xy ∈ E is given by the Euclidean
distance ∥xy∥ between the endpoints x and y, and for any x, y ∈ X, there is a path in H of weight
at most t · ∥xy∥; such a path is called a t-spanner path. The parameter t is called the stretch of the
spanner. The most important “compactness” measure of a Euclidean spanner is its number of edges
or its sparsity, which is the ratio of the number of edges of the spanner to the number of points.
Another basic compactness measure of a Euclidean spanner is its weight (i.e., total edge weight) or
its lightness, which is the ratio of its weight to the weight of a Euclidean minimum spanning tree
(MST).

The pioneering work by Chew [Che86] showed that one could construct a spanner with constant
stretch and constant sparsity for any point set in the plane. Since then, Euclidean spanners have
been extensively and intensively studied. Over more than three decades, Chew’s result has been
strengthened and generalized, culminating with the following result: For any parameter ϵ ∈ (0, 1)
and for any finite point set in Rd, one can construct a (1 + ϵ)-spanner with sparsity Od(ϵ

−d+1)
and/or lightness Od(ϵ

−d log(ϵ−1)); here Od suppresses a factor of d
O(d). The sparsity upper bound of

Od(ϵ
−d+1) is realized by various classic constructions, such as the Theta-graph [Cla87, Kei88, RS91],

Yao graph [Yao82], and the greedy spanner [ADD+93]; the upper bound arguments, which were
given already in the 90s, are short and simple. (We refer the readers to the book by Narasimhan
and Smid [NS07] for a comprehensive coverage of spanner constructions that achieve a similar
sparsity bound.) On the other hand, the lightness upper bound of Od(ϵ

−d log(ϵ−1)) is much more
complex, and it was proven rather recently by Le and Solomon [LS22]; in contrast to the sparsity
upper bound, the lightness upper bound was proved only for the greedy spanner. In the same
paper [LS22], it was shown that, for any d ≥ 1 and for any n = Ωd(ϵ

−d log(ϵ−1)), there is a set X
of n points in Rd such that any (1 + ϵ)-spanner for X must have sparsity Ωd(ϵ

−d+1) and lightness
Ωd(ϵ

−d). Their results imply that the greedy spanner is existentially optimal for both sparsity and
lightness and the Theta- and Yao-graphs are existentially optimal just for sparsity; by existentially
optimal we mean (near-)optimal in an existential sense to be formally defined below.

Existential optimality. Let A be a polynomial-time algorithm that takes a point set X ∈ Rd

and ϵ ∈ (0, 1) as input, and outputs a Euclidean (1 + ϵ)-spanner for X, denoted by A(X, ϵ). Let
C(G) be a cost function imposed on a graph G. For our purposes, function C either counts the
number of edges (corresponding to sparsity) or the total edge weight (corresponding to lightness).
We say that algorithm A is existentially optimal for C with optimality ratio κ (for the Euclidean
space Rd) if, for every positive integer n, there exists an n-point set Pn in Rd such that

for any n-point set Xn ∈ Rd, we have C(A(Xn, ϵ)) ≤ κ · optC(Pn, ϵ),

where optC(Pn, ϵ) is the cost of the optimal (1 + ϵ)-spanner for Pn under C. Here the point set
P = Pn serves as a “hard” or “extreme” instance; that is, for existential optimality of algorithm A,
it suffices to show the existence of a single hard instance (for any n), where the cost of A on any
n-point set is no worse (by more than a factor of κ) than the optimal cost on the hard instance P .
The notion of existential optimality in the context of graph spanners was explicitly formulated by
Filtser and Solomon [FS20], though the general idea of existential optimality was implicitly used
long before. Here, we tailor their definition to the Euclidean space Rd.

Ideally, we would like to design an existentially optimal algorithm A with κ = 1, but this is too
much to ask for: No known (polynomial time) algorithm in the spanner literature is existentially
optimal with κ = 1 (or even close to that). The known constructions are existentially optimal with
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optimality ratio κ = dO(d) or κ = 2O(d) · Oϵ(1), where Oϵ(1) is a constant that depends only on
ϵ; thus the optimality ratio of all known constructions is a constant (and typically a large one)
that depends at least exponentially on the dimension d. We shall henceforth say that algorithm
A is existentially optimal for C if the optimality ratio κ is a constant that depends only on the
dimension d; importantly, κ must not depend on ϵ and on the size n of the input point sets.

The hard instance used by Le and Solomon [LS23], denoted here by Sn, is basically a set of
n evenly spaced points on the boundary of a d-dimensional unit sphere.2 Let us start with the
sparsity (so that the function C counts the number of edges). Le and Solomon [LS23] showed that
optC(Sn, ϵ) ≥ αd · ϵ−d+1|Sn| for some αd = 2−O(d). For the Theta-graph construction, denoted here
by Θ, it is known [Cla87, Kei88, RS91] that for every n-point set X ∈ Rd, we have C(Θ(Xn, ϵ)) ≤
βd · ϵ−d+1|Xn| for some βd = 2O(d). Thus, for every n-point set X ∈ Rd:

C(Θ(Xn, ϵ)) ≤ βd · (1/αd) · optC(Pn, ϵ) = 2O(d)optC · (Pn, ϵ) ,

implying that Theta-graphs are existentially optimal for sparsity. By the same argument, both Yao-
graphs and greedy spanners are existentially optimal for sparsity [ADD+93]. Next, for lightness
(now the function C counts the weight), Le and Solomon [LS23] showed that optC(Sn, ϵ) ≥ αd ·
ϵ−d ∥MST(Sn)∥ for some αd = 2−O(d), where MST(Sn) is a Euclidean minimum spanning tree of
Sn. Combining this lower bound with the lightness upper bound of the greedy spanner by [LS23], it
follows that the greedy (1+ϵ)-spanner algorithm is existentially optimal for lightness with optimality
ratio 2O(d) log(ϵ−1). It is worth noting that removing the log(ϵ−1) factor in the lightness optimality
ratio of the greedy algorithm remains an open problem.

Thus, the hard instance by Le and Solomon [LS23] allows one to “declare” that their spanner
construction, if achieving Od(ϵ

−d+1) sparsity and/or Od(ϵ
−d) lightness, is (existentially) optimal

and hence they could redirect their effort on optimizing other properties. However, existential
optimality, while interesting in its own right, is a rather weak notion of optimality: it only requires
that the algorithm has to perform as well as the optimal spanners (up to a factor of κ) for the
hard(est) instance. The hard instance might be impractical; indeed, this is the case with the
aforementioned hard instance by Le and Solomon [LS23] (basically a set of evenly spaced points
on the boundary of a sphere), which is very unlikely to appear in practice. On the other hand, on
practical point sets, an existentially optimal algorithm A might perform poorly compared to the
optimal spanner. In fact, it is conceivable that for a wide range of point sets, including various
random distributions of points, the spanners produced by an existentially optimal algorithm A have
more edges than the instance optimal spanners by a factor of Ωd(ϵ

−d+1). In extreme cases where ϵ
is chosen so that ϵ−d+1 = Θd(n), A could end up having Θd(n

2) edges while an optimal spanner has
only Od(n) edges. Indeed, the experimental work by Farshi and Gudmundsson [FG09] showed that
several existentially optimal algorithms (with respect to sparsity), including the Theta- and Yao-
graphs, produce spanners with a much larger number of edges than the optimal spanners3. This
naturally calls for a focus on a stronger notion of optimality, namely instance optimal spanners.

Instance optimality. The notion of instance optimality was introduced by Fargin, Lotem, and
Naorc [FLN03] in the problem of choosing top k items in sorted lists. We adapt this notion in
our context as follows. We say that a polynomial-time algorithm A is instance optimal for C with
optimality ratio κ if for every finite point set X ∈ Rd, it holds that

2For sparsity, one has to use multiple vertex-disjoint copies of the sphere that are well-separated from each other.
3In [FG09], the optimal spanners (in terms of sparsity and other cost functions) were not computed explicitly;

however for every instance, one can take the best spanners over the collection of algorithms studied by Farshi and
Gudmundsson as an upper bound for the cost of the optimal spanners.
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C(A(X, ϵ)) ≤ κ · optC(X, ϵ),

where optC(X, ϵ) is the cost of the optimal (1 + ϵ)-spanner for X under C.
An instance optimal algorithm with ratio κ is, in fact, an approximation algorithm with an

approximation factor κ. The reason we chose to use the terminology of instance optimality rather
than that of approximation is that the existential bounds in low-dimensional Euclidean spaces are
already “good” in the sense that they are independent of the metric size, namely ϵ−O(d) for stretch
1 + ϵ and dimension d. This stands in contrast to the existential bounds in general graphs that
depend on the graph size, and for which there is a long line of influential work on approximation
algorithms from both the upper and lower bounds sides; see Section 1.2 for more detail. We stress
that improving bounds that are independent of the metric size is a completely different challenge,
requiring new tools and techniques. By using the “instance-optimality” terminology, we wish to
deviate from the line of work on approximation algorithms in general graphs and put the main focus
on (1) the side of the upper bound (i.e., the “optimality” aspect) and (2) how the instance-optimal
bounds compare to the existential-optimal bounds. Moreover, we hope that our work will initiate
a systematic study on instance-optimal spanners in other graph families for which the existential
bounds are independent of the graph size, such as unit-disk graphs, planar graphs, and bounded
treewidth graphs.

By definition, an instance optimal algorithm is also existentially optimal, but the converse is
of course not true; indeed, designing an instance optimal algorithm appears to be significantly
harder. First, designing an instance optimal algorithm with ratio κ = 1 is NP-hard for both
sparsity [KK06, GKK+10] and lightness [CCY13]. Thus, to get a polynomial time algorithm, we
shall allow the ratio κ to grow beyond 1, to any constant that depends only on the dimension d;
we refer to such an algorithm as instance optimal. Even under this relaxation, no such algorithm
is known to date, even in the plane! This leads naturally to a fundamental question in Euclidean
spanners, summarized below.

Question 1.1. Can one design a polynomial-time instance optimal (1+ϵ)-spanner algorithm
with a ratio κ = Od(1) for sparsity and/or lightness?

The greedy spanner. A natural candidate of an instance optimal algorithm is the (path) greedy
spanner [ADD+93]. As mentioned above, in the Euclidean space Rd, it was shown to be existentially
optimal for sparsity, and also for lightness up to a factor of log(ϵ−1) [LS22]. In addition, Filtser
and Solomon [FS20] showed that greedy spanners are existentially optimal for very broad classes
of graphs: those that are closed under edge deletions, which include general graphs and minor-
closed families. They also showed that greedy spanners (and also an approximate version of the
greedy spanner [DN97, GLN02]) are existentially (near-)optimal for both sparsity and lightness
in the family of doubling metrics, which is wider than that of Euclidean spaces. Experimental
results [SZ04, FG09, CS22] also showed that the greedy spanners achieve the best quality in multiple
aspects.

For general graphs, it was known that the approximation factor of the greedy spanners is Θ(n)
for stretch t < 3 [FS20, ABS+20] while an algorithm with a better approximation was known [KP94].
However, for higher stretch (t ≥ 5), the greedy algorithm achieves the best-known approximation
ratio. Furthermore, there are works showing that the greedy spanner provides rather good bicriteria
approximation algorithms in general graphs [GW22, Won23, BBGW24] for a related problem, called
minimum dilation graph augmentation: augmenting a graph as few edges as possible to reduce the
dilation (a.k.a. stretch).
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Consequently, it appears that a preponderance of work on the greedy spanners all point in the
same direction, i.e., to a conjecture that the greedy algorithm gives a good bicriteria instance optimal
spanner. In this work, we demonstrate that the greedy spanner is far from being bicriteria instance
optimal for points in Rd. More concretely, we design two hard instances of point sets in the plane,
where the greedy (1 + xϵ)-spanner (for basically any parameter x ≥ 1) has Ωx(ϵ

−1/2) · |Espa| edges
and weight Ωx(ϵ

−1) · ∥Elight∥, where Espa and Elight denote the per-instance sparsest and lightest
(1 + ϵ)-spanners, respectively, and the Ωx notation suppresses a polynomial dependence on 1/x.

Bicriteria instance optimality. Given that the greedy spanner is far from being instance
optimal, even in the plane, and even when allowing its stretch to grow from 1+ϵ to 1+xϵ for x ≥ 1,
and given that the greedy spanner appears to outperform any other known spanner construction
in terms of both sparsity and lightness, the natural conclusion is that a new spanner construction
is in order. In light of our hardness result for the greedy spanner, it seems acceptable to allow the
stretch to increase from 1 + ϵ to 1 + xϵ, for some reasonably small x. This leads to the following
question: Could standard techniques in geometric optimization, such as Arora’s technique [Aro98],
be applied to construct instance optimal spanners? Arora’s technique has been instrumental in
solving problems such as the Euclidean TSP and Steiner tree. In our problem, however, the major
difficulty is that we aim at optimizing the cost of the spanner while guaranteeing a stretch bound
of 1 + ϵ. Alas, Arora’s technique, as well as other known techniques, are not suitable for achieving
both criteria. Thus, it appears that a new technique for achieving both criteria is in order.

The above discussion motivates us to consider bicriteria instance optimal spanners: We say that
an algorithm A is (c, κ)-instance optimal if for every point set X ∈ Rd, A(X, ϵ) is a (1+c ·ϵ)-spanner
for X, and C(A(X, ϵ)) ≤ κ · optC(X, ϵ).

Question 1.2. Can one design a polynomial-time (c, κ)-instance optimal spanner algorithm
with c and κ both bounded by Od(1) (independent of ϵ) for sparsity and/or lightness?

While Question 1.2 asks for constants c and κ (depending only on the dimension d), what was
previously known is embarrassingly little. Even in the basic setting of the Euclidean plane, the
only positive result is a direct corollary of existentially optimal spanners, which gives a bicriteria
(c, κ)-instance optimal spanner algorithm with c = O(1) and κ = O(ϵ−1) for sparsity and κ =
O(ϵ−2) for lightness4. To the best of our knowledge, no prior result achieves sublinear (respectively,
subquadratic) dependence of κ on ϵ−1 for sparsity (resp., lightness) in the Euclidean plane. On
the other hand, there is a lot of work on approximating spanners in general graphs, which we will
review in more detail in Section 1.2. A short takeaway is that the approximation factors in this
setting depend on n (the number of vertices), while in our setting, the approximation factor is
independent of n (the number of points). Therefore, the techniques for general graphs do not seem
applicable to Rd.

1.1 Our Contribution

Hard instances. We first construct point sets in R2 for which the greedy (1 + ϵ)-spanner is far
from being instance optimal in terms of sparsity or lightness, even if we relax the stretch from 1+ ϵ

4Note that in the regime of parameters derived from existentially optimal spanners, having c = 1 is the same as
having c = O(1) since one can apply the standard scaling trick: ϵ← ϵ/c. Scaling reduces the stretch from 1+cϵ to 1+ϵ
while adding a factor of c for sparsity and c2 for lightness to κ. The same trick, however, does not work for instance
optimal spanners: if one scales ϵ to ϵ/c, then one now essentially compares against the optimal (1 + ϵ/c)-spanner
instead of the optimal (1 + ϵ)-spanner.
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to a larger value 1 + xϵ.

Theorem 1.1 (Sparsity lower bound for greedy). For every sufficiently small ϵ > 0 and 1 ≤ x ≤
o(ϵ−1/3), there exists a finite set S ⊂ R2 such that

|Egr(x)| ≥ Ω

(︄
ϵ−1/2

x3/2

)︄
· |Espa|,

where Egr(x) is the edge set of the greedy (1 + xϵ)-spanner, and Espa is the edge set of a sparsest
(1 + ϵ)-spanner for S.

Theorem 1.2 (Lightness lower bound for greedy). For every sufficiently small ϵ > 0 and x ∈
[2, ϵ−1/2/48], there exists a finite set S ⊂ R2 such that

∥Egr(x)∥ ≥ Ω

(︃
ϵ−1

x2 · log x

)︃
· ∥Elight∥,

where Egr(x) is the edge set of the greedy (1+xϵ)-spanner, and Elight is the edge set of a minimum-
weight (1 + ϵ)-spanner for S.

Main results. Our main contribution is on the algorithmic front: we design a bicriteria (c, κ)-
instance optimal spanner algorithm with c = 2O(log∗(d/ϵ)) and κ = O(1), thus resolving Question 1.2
up to the exponential log-star term 2O(log∗(d/ϵ)), which is bounded by O(log(k))(d/ϵ) for any constant
k; here and throughout log(k) denotes the k-iterated logarithm function (i.e., log(1)(x) = log(x) and
log(k)(x) = log(log(k−1)(x)) for any integer k ≥ 2). This result is obtained as a direct corollary of
the following general theorem.

Theorem 1.3 (General tradeoff upper bound). Let X ⊂ Rd be any set of n points, and k ≥ 1 an
integer. For any ϵ ∈ (0, 1), there is an algorithm that returns an Euclidean (1 + 2O(k)ϵ)-spanner
H = (X,E) for X, such that

|E| = O
(︂
log(k)(ϵ−1) + log(k−1)(d)

)︂
|Espa| and

∥E∥ = O
(︂
log(k)(ϵ−1) + log(k−1)(d)

)︂
∥Elight∥,

where Espa, Elight ∈
(︁
X
2

)︁
are the edge sets of the optimal (1 + ϵ)-spanners of X for sparsity and

lightness, respectively. In other words, our algorithm is bicriteria (2O(k), log(k)(ϵ−1) + log(k−1)(d))-
instance optimal for both sparsity and lightness.
Furthermore, our algorithm can be implemented in ϵ−O(d)n log2(n) time.

We now highlight the two extreme points on the tradeoff curve. First, by setting k = O(1)
(for any constant) in Theorem 1.3, we obtain an (O(1), log(k)(ϵ−1) + log(k−1)(d))-instance optimal
spanner algorithm. This result is also interesting from the perspective of existential optimality. By
scaling ϵ← ϵ/c, we get an existentially optimal algorithm for both sparsity and lightness with ratio
κ = O(log(k)(ϵ−1) + log(k−1)(d)) for any constant k. Recall that all known existentially optimal
spanner algorithms have an exponential dependence on d in the optimality ratio or the stretch
blow-up, while we achieve a sublogarithmic dependence on d. In particular, recall that the state-
of-the-art existential optimality ratio for lightness is Od(log(ϵ

−1)) = dO(d) · log(ϵ−1); our result
improves exponentially both the dependence on ϵ−1 and the dependence on d.

By setting k = log∗(d/ϵ) in Theorem 1.3, we obtain the following main corollary of the general
tradeoff. Remarkably, our optimality ratio κ in Corollary 1.1 does not depend on the dimension d,
while our stretch blow-up c only depends sublogarithmically on d.
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Corollary 1.1 (Almost instance optimality). There is an algorithm for constructing spanners that
are (c, κ)-instance optimal for both sparsity and lightness, where c = 2O(log∗(d/ϵ)) and κ = O(1).
Furthermore, our algorithm can be implemented in ϵ−O(d)n log2(n) time.

Remark. An important feature of the classic greedy spanner algorithm is that it is existentially
optimal with respect to both sparsity and lightness. Our spanner algorithms (provided by Theo-
rem 1.3 and Corollary 1.1) also have this feature, but in the stronger sense of instance optimality:
it simultaneously approximates both the sparsest spanner and the lightest spanner. We note that for
the same point set X and stretch factor, the sparsest spanner for X and the lightest spanner could
be completely different. In fact, the sparsest spanner could have a huge lightness while the lightest
spanner could have a huge sparsity. Thus, a priori, it is unclear whether there exists an algorithm
that is instance optimal with respect to both sparsity and lightness.

1.2 Related Work on Approximate Spanners in General Graphs

There is a long line of work on approximating minimum t-spanners of both undirected and directed
graphs. We briefly review the current best results in these regimes. For undirected graphs, the
greedy algorithm [ADD+93] provides a t-spanner with approximation ratio n2/(t+1) for odd t and
n2/t for even t. Dinitz, Kortsarz, and Raz [DKR15] showed that for any t ≥ 3 and for any
constant ϵ > 0, there is no polynomial-time algorithm approximating a t-spanner with ratio better
than 2logn

1−ϵ/t assuming NP ̸⊆ BPTIME(2polylog(n)). For t = 2, Kortsarz and Peleg [KP94]
(see also [EP01], [DK11]) designed an algorithm with approximation ratio O(log n), matching the
lower bound given by Kortsarz [Kor01] (assuming P ̸= NP ). For t = 3, Berman, Bhattacharyya,
Makarychev, Raskhodnikova and Yaroslavtsev [BBM+11] achieved approximation ratio Õ(n1/3).
Dinitz and Zhang [DZ16] obtained the same approximation ratio for stretch t = 4. For t ≥ 5, the
approximation ratio achieved by the greedy algorithm remains the state-of-the-art.

For directed graphs, Dinitz and Krauthgamer [DK11] gave an Õ(
√
n)-approximation algorithm

when t = 3. The approximation ratio for t = 3 was later improved to O(n1/3 log n) for the
unit-weight case [BBM+11]. For general t, there have been significant efforts to improve the ap-
proximation ratio. Bhattacharyya, Grigorescu, Jung, Raskhodnikova, and Woodruff [BGJ+12]
provided a Õ(n1−1/t)-approximation algorithm for directed graphs for t > 2. Berman, Raskhod-

nikova, and Ruan [BRR10] improved the approximation ratio to Õ(t · n1− 1
⌈t/2⌉ ). For t > 3, Dinitz

and Krauthgamer [DK11] achieved the approximation ratio of Õ(n2/3). Berman, Bhattacharyya,
Makarychev, Raskhodnikova and Yaroslavtsev [BBM+11] later improved the approximation ratio
to O(

√
n log n).

2 Technical Overview

Our construction and sparsity analysis. Let us begin with analyzing the sparsity of an
arbitrary (1 + δ)-spanner (X,E) against a sparsest (1 + ϵ)-spanner (X,Espa); one can think of the
parameter δ as O(ϵ), though in practice it is a parameter used by our algorithm that starts at
around ϵ and ultimately grows to O(ϵ) and even beyond O(ϵ). A basic approach is to charge the
edges in E to edges in Espa. Our first idea is to design a fractional charging scheme, rather than an
integral one. Taking any edge (s, t) ∈ E, since (X,Espa) is a (1 + ϵ)-spanner, there exists a path π
in (X,Espa) between s and t such that ∥π∥ ≤ (1 + ϵ)∥st∥. Thus, we can charge the edge (s, t) ∈ E
to each edge e ∈ Espa along the path π with a fractional cost of ∥e∥/∥st∥, meaning that the sum
of fractional costs of these edges amounts to at least 1 (and also at most 1 + ϵ), thus the total
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Figure 1: In this example, a spanner might include the orange edges, while the optimal spanner
takes the blue edges. Then the middle blue edge would receive a large amount of charges from the
orange edges.

fractional costs of all edges in Espa is at least |E|. Therefore, if we could argue that the fractional
costs received by any edge e ∈ Espa is at most λ, that would directly imply that |E| ≤ λ · |Espa|.

However, such a charging scheme by itself is insufficient, unless it is accompanied with a “good”
spanner. Alas, there are hard instances for which the known spanner constructions fail. As a (sim-
plistic) example, consider a point setX ∈ R2 that contains two point sets {xi}0≤i≤1/

√
ϵ, {yi}0≤i≤1/

√
ϵ,

where xi = (0, i · ϵ), yi = (10, i · ϵ), as well as a pair of middle points z = (3,
√
ϵ
2 ), w = (3,

√
ϵ
2 ). See

Figure 1 for an illustration. Our spanner could wastefully include edges xiyj for all i, j, creating
a bi-clique between {xi}0≤i≤1/

√
ϵ and {yi}0≤i≤1/

√
ϵ; we will show later on that the greedy spanner

exhibits this kind of wasteful behavior (on more subtle instances). On the other hand, the instance
optimal (1 + ϵ)-spanner for this point set will only include edges xiz, zw,wyi, ∀i. Getting back
to the aforementioned charging scheme, we see that all bi-clique edges would charge to the same
middle edge zw, and so this charging scheme would inevitably fail. The main problem here is not
the charging scheme, but rather the wasteful behavior of known spanner constructions.

To outperform the known spanner constructions on hard instances, we design a new spanner
algorithm, which deviates significantly from the known constructions. Our construction is guided
by a novel charging scheme; we build on the basic idea of fractional charging as explained before,
but in a much more nuanced way, which takes into account the angles formed by the edges, the
locations of the endpoints, and other geometric parameters. To keep this technical overview simple,
we will not go into most details of the charging scheme; refer to Section 4.3 for the full details.

Start with an arbitrary (1+ δ)-spanner. To improve sparsity (and lightness), our basic strategy
is to look for helper edges, such as edges zw in the example above, add them to our spanner, and
then prune unnecessary edges whose distances are already well-preserved by zw together with other
existing shorter edges in the spanner. More specifically, we will go over all edges st ∈ E of the
original spanner in a non-decreasing order of their lengths (i.e., weights), and look for helper edges
zw in the (1 + ϵ)∥st∥-ellipsoid around edge st that satisfy the following two properties:

1. ∥zw∥ ≥ Ω(∥st∥); and

2. both z and w are bounded away from the endpoints s and t; that is, ∥sz∥, ∥wt∥ ≥ Ω(∥st∥).

If such a helper edge zw exists, then we add it to E. The key observation is that any other edge
s′t′ ∈ E with roughly the same length as st and charging to common edges as st can now be pruned
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Figure 2: The blue path between s and t is a (1 + ϵ)-spanner path π in (X,Espa). The solid blue
edge e is an edge of π, so it receives a fractional charge of ∥e∥/∥st∥ from st. When processing edge
st, we find a helper edge zw in the (1 + ϵ)∥st∥-ellipsoid around st. After adding the helper edge
zw to E, we are able to prune other spanner edges s′t′ which are charging to e, as well, because we
can now connect s′ and t′ using the red path in (X,E).

from E. Indeed, due to our charging scheme, if s′t′ and st charge to the same edge, it means that
these two edges should be similar in a strong geometric sense, which allows us to reason that edge
zw could serve as a helper edge for s′t′, as well. Consequently, by adding a single helper edge zw
while processing edge st, we are able to prune away from our spanner all edges that are “similar”
to edge st, which leads to a significant saving. See Figure 2 for an illustration. So far, we have only
discussed the pruning of edges s′t′ that are of roughly the same length as st. We then generalize
the above insight to show that for every length scale and for every edge e charged by st, at most
one edge from that length scale may charge to edge e. Since the fractional charge of edge s′t′ to
edge e, namely ∥e∥/∥s′t′∥, decays with the length of s′t′, we can bound the total contribution of all
such edges s′t′ to the fractional cost of edge e, over all length scales, by a geometric sum.

This strategy of using helper edges zw as described above is effective when helper edges exist;
alas, they do not always exist. When helper edges do not exist, we will show that there must exist
an edge e along the (1 + ϵ)-spanner path π in Espa such that ∥e∥ ≥ Ω(∥st∥); that is, π is making
at least one long stride at some point when connecting s and t. In this case, we will charge the
edge st only to this single long edge e. However, since this long edge e does not qualify as a helper
edge (property 2 of a helper edge does not hold), we cannot apply the aforementioned argument,
and it is now possible that many different edges s′t′ ∈ E of length Θ(∥e∥) will charge to the same
edge e. In this case, we will apply a more aggressive pruning, which greedily finds all edges e whose
addition to E could prune sufficiently many edges st with length Θ(∥e∥). Roughly speaking, this
greedy pruning procedure works as follows: for any index j ≥ 0, let Lj ⊆ E be the set of edges
whose lengths are in the range [1.01j , 1.01j+1). We start with an upper bound on the sparsity
α ≥ |E|/|Espa|, and for each length scale [1.01j , 1.01j+1), we will greedily add substitute edges
e = zw ∈ Lj to the spanner, whose inclusion in E could help in removing at least α/100 existing
edges from Lj without increasing the stretch by too much. After such a pruning procedure, we
are able to decrease our upper bound α on the ratio |E|/|Espa| by a constant factor, ignoring the
new substitute edges, whose sparsity is constant. By working carefully, we demonstrate that this
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pruning procedure can be iterated until the sparsity upper bound has reduces from α to O(logα),
while the stretch increases only slightly.

Thus far we have presented the informal descriptions of two different pruning phases. Our
spanner construction employs these two pruning phases on top of the original (1+δ)-spanner (X,E)
that we start from, one after another, to reduce the sparsity upper bound from α to O(logα) while
increasing the stretch from 1+ δ to 1+O(δ). We remark that there is a delicate interplay between
the two pruning phases, which requires our algorithm to pay special care to additional subtleties,
and in particular to explicitly distinguish between two types of edges; aiming for brevity, we will
not discuss such subtleties in this high-level overview, but the details appear in Section 4.1 (refer
to Definition 4.1 in particular for the definition of the two types of edges). Finally, to achieve the
stretch and sparsity bounds claimed in Corollary 1.1, we apply the two pruning phases iteratively
until the sparsity upper bound reduces to a constant. The full details of the construction, the
stretch analyais and the sparsity analysis appear in Sections 4.1, 4.2 and 4.3, respectively.

Our spanner algorithm and the underlying charging scheme heavily rely on Euclidean geometry.
However, surprisingly perhaps, both of them are completely unaffected by the dimension of the
input point set. (Our algorithm runs in low polynomial time in any dimension; however, the fast
implementation of our algorithm described below does depend on the dimension.) The dependencies
on the dimension in Corollary 1.1 (ignoring the fast implementation running time) stem only from
the sparsity and lightness dependencies on the dimension in the original spanner (X,E).

Lightness analysis. It turns out that the same spanner construction algorithm described above
also approximates the instance-optimal lightness. More specifically, relying on the fact that the
sparsity and lightness bounds of the initial (e.g., greedy) spanner (X,E) are both ϵ−Θ(d), we can
prove that the instance-optimal lightness bound in the resulting spanner is (basically) the same as
the sparsity bound. While our lightness analysis builds on the sparsity analysis, it has to drill quite
a bit deeper in order to overcome another significant technical challenge, which we highlight next.
The full details are in Section 4.4. When comparing our (1+ δ)-spanner (X,E) against the optimal
(now in terms of weight) spanner (X,Elight), for any edge st ∈ E, let π denote a (1 + ϵ)-spanner
path in (X,Elight) between s and t. While in the sparsity analysis we charged the edge st ∈ E to

each edge e along π with a fractional cost of ∥e∥
∥st∥ , so that the total fractional costs of these edges is

at least 1, such a charging is not suitable for the lightness analysis. Instead, we shall charge edge
st to each edge e along π with a cost of ∥e∥, so that the total costs of these edges is at least ∥st∥,
thus the total costs of the edges in Elight is at least ∥E∥. Therefore, if we could argue that the total
costs received by any edge e ∈ Elight is at most λ, that would directly imply that ∥E∥ ≤ λ · ∥Elight∥.

By adapting our techniques from the sparsity analysis, we can bound by O(1) the number of
times any edge e ∈ Elight gets charged from the same edge set Lj (i.e., the edges whose lengths
are in the range [1.01j , 1.01j+1)). However, the total amount of charges over all length scales (or
indices j) increases by a factor of O(log Φ), where Φ is the spread of the point set. Using a standard
trick, this blowup can be reduced to O(log n), but this is still insufficient for achieving instance-
optimality. This is how lightness is different from sparsity, as charges of sparsity are decreasing
geometrically as j increases, while charges of lightness remain the same for all scales j.

To bypass the logarithmic blowup, let us go over all edges in E in a non-decreasing order of
lengths and allocate their charges to edges in Elight in an “adaptive” manner. Consider any edge
st ∈ E as well as a (1 + ϵ)-spanner path π between s and t in (X,Elight). If most edges of π have
only been charged a small number of times by edges in E shorter than st, then we can safely charge
st proportionally only to those edges (we charge any such edge e a cost of say 10∥e∥). Otherwise,
there exists a set of edges z1w1, z2w2, . . . , zlwl on π such that:
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Figure 3: The blue path represents a (1+ ϵ)-spanner path π between s and t in (X,Elight), and the
blue solid edges are the ones already receiving heavy charges from shorter edges in E. Then, for
each blue solid edge ziwi, we can find a longer red solid edge aibi ∈ E that charged to ziwi. Thus,
we can stitch together all these red solid edges with existing edges in E to create a good spanner
path between s and t, and so edge st does not need to stay in E anymore.

•
∑︁l

i=1 ∥ziwi∥ ≥ Ω(∥st∥); and

• each edge ziwi has been charged multiple times already.

In this case, we can prove that for each such edge ziwi of π, there exists an edge aibi ∈ E,
which charges to ziwi and is much longer than ∥ziwi∥ yet much shorter than ∥st∥. Using this key
insight carefully, we prove that existing edges in E can be used to “stitch together” all the edges
a1b1, a2b2, . . . , albl into a good spanner path (of small stretch) between s and t in (X,E), making
the direct edge st unnecessary in E, and so we can show that st could not have been added to E.
See Figure 3 for an illustration.

Fast implementation. Next, we highlight three main technical difficulties behind achieving a
near-linear time implementation of our spanner construction (in low-dimensional spaces). Recall
that our implementation takes ϵ−O(d)n log2(n) time; see Section 5 for the full details.

The first difficulty is to efficiently locate all the substitute edges. (Recall that the substitute
edges are needed if helper edges do not exist, and they are used for a more aggressive pruning
of edges.) A straightforward implementation would enumerate all possible choices of a substitute
edge xy, and count how many edges any such edge xy can prune from the current spanner if it is
added to the spanner. Such an implementation would require quadratic time to find a substitute
edge each time. Instead, we will build a hierarchy of nets (as in [CGMZ16]), and for each edge
st ∈ E, its substitute edge will be restricted to ϵ∥st∥-net points nearby. Using the standard packing
bound in Rd, the total number of possible substitute edges for st is bounded by ϵ−O(d). Then, we
can initialize and maintain an efficient data structure in ϵ−O(d)n log(n) total time, which counts
the number of edges assigned to each possible substitute edge; using this data structure, we can
repeatedly select the best substitute edges in ϵ−O(d)n log(n) total time.

The second difficulty stems from the need to find a helper edge zw for any existing edge st ∈ E.
A straightforward implementation of this task takes quadratic time by checking all possible helper
edges zw. To narrow down our search space, we will again build an ϵ∥st∥-net and only look for
net points around the segment st in search of a helper edge zw. Using the packing bound, we can
show that the total number of candidate edges is at most ϵ−O(d).
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Figure 4: The red edges are in both the optimal and the greedy spanner; the blue edges are only
in the optimal spanner, and the orange edges are only in the greedy spanner. This point set fools
the greedy algorithm not to add the blue edges, so that it later has to add all orange edges, which
form two bi-cliques, incurring quadratic sparsity.

As the third difficulty, we need to go over all edges in st ∈ E in a non-decreasing order of
lengths and, for each one, decide if we should keep it in the new spanner. Here, we need to
quickly determine if the distance between the two endpoints s and t in the new spanner is already
well-preserved, which entails an (approximate) shortest path computation. If we directly apply
Dijkstra’s algorithm to compute shortest paths, then the total time for such computations over all
edges st ∈ E would be quadratic. To reduce the runtime, we will adopt the approach from [DN97]
used for constructing an approximate version of the greedy spanner. Roughly speaking, to compute
an (approximate) shortest path between s and t, we build a cluster graph that contracts clusters of
radius ϵ∥st∥, and then look at the cluster centers near s and t; importantly, we only apply Dijkstra’s
algorithm locally on these cluster centers. Relying again on the standard packing bound in Rd, we
can prove that the number of cluster centers around s and t is also at most ϵ−O(d), which allows us
to reduce the running time of an (approximate) shortest path computation to ϵ−O(d).

Lower bounds for greedy spanners. Our hard instances for the poor performance of the
greedy algorithm build on the dramatic difference between the sparsity of Euclidean spanners with
or without Steiner points [BT22, LS22]: O(ϵ(−d+1)/2) versus O(ϵ−d+1). We modify the previously
known worst-case instances for Euclidean Steiner spanners: Two large sets uniformly distributed
along two parallel lines, and a small set of middle points between the two lines (a schematic example
is in Figure 4; see Figures 9 and 10 for more accurate illustrations). In previous work [BT22, LS22],
the middle points played the role of “Steiner points” (recall that a Steiner spanner does not have
to maintain the stretch factor for paths to and from Steiner points). We include the middle points
in the input. Importantly, the optimal (i.e., sparsest) spanner can take advantage of the middle
points as convenient “via” points between the two large point sets (similarly to Steiner spanners),
but the greedy algorithm misses their potential and is forced to add the complete bipartite graph
between the two large point sets on the two lines; see Theorems 1.1 and 6.1 for details. The main
challenge is the analysis of the greedy spanner. We heavily use geometry in the design and analysis
of the lower bound instances to maintain a tight approximation of the stretch between point pairs
during the greedy process.

Our lower bounds for sparsity use edges of comparable weight, and immediately give the same
lower bounds for lightness. However, we can obtain stronger lower bounds for lightness with a
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surprisingly simple point set: Uniformly distributed points along a circular arc (not the entire
circle!). Due to the uniform distribution, we can easily analyze the greedy algorithm with stretch
(1 + xϵ) for any x, 1 ≤ x ≤ O(ϵ1/2): The greedy algorithm includes a path along the circular
arc; and then at a certain threshold, it adds a large number of heavy edges of equal weight.
However, an optimum (i.e., lightest) spanner can use a much smaller number of “shortcut” edges
instead (similarly to the helper edges in our upper bound construction). In our basic example
(Theorem 6.2), a single shortcut edge of Glight trades off against O(ϵ−1) almost diametric edges of
Ggr. For a lower bound for (1+xϵ)-spanners (Theorem 1.2), we use a hierarchy of shortcut edges.

3 Preliminaries

Let κ = 104 be a large but fixed constant independent of n, d, and ϵ; and assume that ϵ > 0 is
relatively small compared to κ−1 and d−1. More specifically, we assume the following relation:

ϵ · 2O(log∗(d/ϵ)) < κ−5. (1)

For any vector e ∈ Rd, let ∥e∥ denote the the Euclidean length (i.e., ℓ2-norm) of e. For a graph
H, let V (H) and E(H), resp., denote the vertex set and the edge set of H. For any set of edges
E ⊆

(︁
X
2

)︁
, let ∥E∥ be the total length of the edges in E; and the weight of a graph H = (X,E) is

defined as ∥H∥ = ∥E∥.
For any pair of points s, t ∈ Rd, let st denote the segment that connects s and t, and let

−→
st or

t− s be the vector directed from s to t. We will sometimes use the notation s⇝ t for the shortest
(spanner) path between s and t in a graph H when H is clear from context.

For any pair of vectors e1, e2 ∈ Rd, their angle ∠(e1, e2) is defined as:

∠(e1, e2)
def
= arccos

(︃
|e1 · e2|
∥e1∥ · ∥e2∥

)︃
For a polygonal path π and two vertices p, q of π, let π[p, q] be the sub-path of π between p and

q. For an edge e and a line st, let projst(e) be the orthogonal projection of e onto the line st. We
generalize [BT22, Lemma 4], originally stated for a polygonal path π, to the setting where π is a
sequence of edges; we include the proof for completeness.

Lemma 3.1 (Lemma 4 in [BT22]). Consider a sequence of edges π (not necessarily a polygonal
path) whose projection on a line is segment ab. Let E(π, ab, θ) be the set of edges e ∈ π such that
∠(e, ab) ≤ θ. If ∥π∥ ≤ (1 + ϵ)∥ab∥, then ∥E(π, ab, 2

√
ϵ)∥ ≥ 0.5∥ab∥.

Proof. Assume otherwise that ∥E(π, ab, 2
√
ϵ)∥ < 0.5∥ab∥. Then, since the projection of π on line

ab is equal to the segment ab, we have:∑︂
e∈π
∥projab(e)∥ ≥ ∥ab∥

which implies ∑︂
e∈π\E(π,ab,2

√
ϵ)

∥projab(e)∥ ≥ ∥ab∥ −
∑︂

e∈E(π,ab,2
√
ϵ)

∥projab(e)∥

≥ ∥ab∥ −
∑︂

e∈E(π,ab,2
√
ϵ)

∥e∥

= ∥ab∥ − ∥E(π, ab, 2
√
ϵ)∥.
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Recall that for every edge e ∈ π \ E(π, ab, 2
√
ϵ), we have ∠(e, ab) ≥ 2

√
ϵ. Using Taylor estimate

1/ cos(x) ≥ 1 + x2/2, and thus for any edge e ∈ π \ E(π, ab, 2
√
ϵ), we have

∥e∥ ≥ ∥projab(e)∥
cos(2

√
ϵ)
≥ ∥projab(e)∥ · (1 + 2ϵ).

Combined with the previous inequality, we obtain

∥π∥ =
∑︂

e∈E(π,ab,2
√
ϵ)

∥e∥+
∑︂

e∈π\E(π,ab,2
√
ϵ)

∥e∥

≥ ∥E(π, ab, 2
√
ϵ)∥+ (1 + 2ϵ) ·

(︁
∥ab∥ − ∥E(π, ab, 2

√
ϵ)∥
)︁

≥ (1 + 2ϵ)∥ab∥ − 2ϵ∥E(π, ab, 2
√
ϵ)∥

> (1 + ϵ)∥ab∥,

which is a contradiction.

Given a finite point set X ⊂ Rd, let Gspa = (X,Espa) and Glight = (X,Elight) be the (1 + ϵ)-
stretch Euclidean spanners of X with the minimum number of edges and the minimum weight,
respectively. We will use the following statement, which bounds the sparsity and lightness of the
greedy spanner; although more precise bounds are known (which explicate the constants in the
O-notation), as mentioned, the bounds in the following statement will suffice for our purposes.

Lemma 3.2 ([CDNS95, RS98, NS07]). If H = (X,E) is the greedy (1 + ϵ)-spanner for X ⊂ Rd,
then |E| ≤ n · ϵ−O(d), and ∥E∥ ≤ ∥MST(X)∥ · ϵ−O(d), where MST(X) is a Euclidean minimum
spanning tree of X.

4 Instance-Optimal Euclidean Spanners

4.1 A Greedy-Pruning Algorithm

We are given a setX ⊂ Rd of n points and a sufficiently small ϵ > 0 satisfying Equation (1). Initially,
let H = (X,E) be an arbitrary (1+ ϵ)-spanner on X (for example, the greedy spanner). According
to Lemma 3.2, we may assume that H has n · ϵ−O(d) edges and weight at most ∥MST(X)∥ · ϵ−O(d).
Next, we will successively modify H to improve its sparsity and lightness while keeping the stretch
under control. In each iteration, we will prune some of the edges in H and add new edges. In each
iteration, we maintain an upper bound on the current stretch of H and its approximation ratio
compared to optimal (1 + ϵ)-spanners w.r.t. sparsity and lightness. Specifically, we assume that H
is a (1+δ)-spanner for some δ ≥ ϵ; the assumption δ ≥ ϵ (or δ = Ω(ϵ)) will be crucial in the analysis
of stretch and lightness later on. Furthermore, we assume that α ≥ max {|E|/|Espa|, ∥E∥/∥Elight∥};
initially when E is a greedy spanner, we have δ = ϵ and α = ϵ−O(d). The total number of iterations
will be log∗(d/ϵ) +O(1).

One iteration consists of two phases which construct two spanners: First H1 = (X,E1) and
then H2 = (X,E2). At the end of an iteration, we will reassign E ← E2. During the process, edges
in E1 and E2 that come from E will be called old edges, and all other edges in E1 and E2 will be
called new edges.

Classification of edges in E. As a preliminary step, the algorithm will distinguish between
two types of edges in E. For an edge st ∈ E and a point x ∈ X, let proj(x) denote the orthogonal
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Figure 5: The two sets As,t and Bs,t are drawn as two orange regions in the ellipsoid around st.
For simplicity, in this figure we assume that s and t lie on the x-axis with coordinate 0 and 1,
respectively (and all the numbers shown designate x-coordinates).

projection of x on the straight line passing through s and t. Let Γs,t be the ellipsoid defined by

Γs,t =
{︂
x ∈ Rd : ∥sx∥+ ∥xt∥ ≤ (1 + ϵ)∥st∥

}︂
with foci s and t. We define the following two regions (see Figure 5 for an illustration):

As,t
def
= Γs,t∩

{︃
x ∈ Rd :

∥s− projst(x)∥
∥st∥

∈
[︃
3

8
− 1

50
,
3

8
+

1

50

]︃
,
∥t− projst(x)∥

∥st∥
∈
[︃
5

8
− 1

50
,
5

8
+

1

50

]︃}︃
,

Bs,t
def
= Γs,t∩

{︃
x ∈ Rd :

∥s− projst(x)∥
∥st∥

∈
[︃
5

8
− 1

50
,
5

8
+

1

50

]︃
,
∥t− projst(x)∥

∥st∥
∈
[︃
3

8
− 1

50
,
3

8
+

1

50

]︃}︃
.

Definition 4.1. If As,t ∩X or Bs,t ∩X is empty for an edge st ∈ E, then st is called a type-(i)
edge; otherwise, it is called a type-(ii) edge. Let E(i) and E(ii), resp., denote the set of type-(i) and
type-(ii) edges in E.

First pruning phase. Initially, we set E1 ← E and β
def
= 1.01. Without loss of generality, assume

that all pairwise distances in X are at least 1. Next, we perform O(logα) sub-iterations of pruning.
In the i-th sub-iteration, go over all indices j = 0, 1, 2, . . .. For each index j, let Lj ⊆ E be the set
of old edges whose lengths are in the range [βj , βj+1). In the j-th iteration, enumerate all pairs of
vertices {x, y} ∈

(︁
X
2

)︁
such that ∥xy∥ ≥ βj/25, and define a set of type-(i) edges

Px,y =
{︂
st ∈ Lj ∩ E1 ∩ E(i) : ∥sx∥+ ∥xy∥+ ∥yt∥ ≤ (1 + ϵ) · ∥st∥

}︂
.

If |Px,y| ≥ α
2iκ

, then add xy to E1 as a new edge, and remove all type-(i) edges in Px,y from E1.
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Second pruning phase. To construct E2, initially set E2 ← E1 \ E(ii). Then, enumerate all
type-(ii) edges of E1 in an increasing order of edge weights. For each such edge st ∈ E1 ∩ E(ii),
first check whether the stretch between s and t is approximately preserved in the graph (X,E2);
that is, whether

distH2(s, t) ≤ (1 + κ2δ) · ∥st∥.

If so, move on to the next old edge in E1. Otherwise, since st is type-(ii), there exists a pair of
vertices a ∈ As,t, b ∈ Bs,t. Then add one such edge ab to E2 as a new edge, and st to E2 as an old
edge; we call ab the helper edge associated with st. After these procedures, move on to the next
type-(ii) edge in E1.

Updating the parameters. After the two pruning phases, reassign E ← E2. Before moving on
to the next iteration, we need to update the upper bound on the stretch δ and approximation ratio

α. Specifically, update δ ← ∆(κ, δ)
def
= (1 + δ) · (1 + κδ) · (1 + κ2δ) − 1, and α ← O(logα). The

whole algorithm is summarized in Algorithm 1.

Algorithm 1: GreedyPrune(X, ϵ)

1 κ← 5000, β ← 1.01, α← (1/ϵ)O(d), δ ← ϵ;

2 let H = (X,E) be a greedy (1 + ϵ)-spanner on the point set X ⊆ Rd;
3 for k = 1, 2, . . . , O(log∗(d/ϵ)) do

/* the first pruning phase */

4 E1 ← E;
5 for i = 1, 2, . . . , O(logα) do
6 for j = 0, 1, 2, . . . do
7 define Lj = {e ∈ E : ∥e∥ ∈ [βj , βj+1)};
8 while there exists xy ∈

(︁
X
2

)︁
such that ∥xy∥ ≥ βj/25, and |Px,y| ≥ α

2iκ
, where

Px,y =
{︁
st ∈ Lj ∩ E1 ∩ E(i) : ∥sx∥+ ∥xy∥+ ∥yt∥ ≤ (1 + ϵ) · ∥st∥

}︁
(see

Definition 4.1);
9 add xy to E1 as a new edge, and remove Px,y from E1;

/* the second pruning phase */

10 E2 ← E1 \ E(ii);

11 for edge st ∈ E1 ∩ E(ii) in non-decreasing order in terms of of norm do
12 if distH2(s, t) > (1 + κ2δ)∥st∥ then
13 E2 ← E2 ∪ {st};
14 find a ∈ As,t, b ∈ Bs,t and add ab to E2 as a new helper edge;

15 E ← E2, δ ← ∆(κ, δ), α← O(logα);

16 return E;

4.2 Stretch Analysis

Before analyzing the stretch of our spanner, we first need to bound the value of δ throughout all
O(log∗(d/ϵ)) iterations of pruning.

Claim 4.1. Throughout all O(log∗(d/ϵ)) iterations of pruning, we have δ < κ−5 and ∆(κ, δ) <
(κ+ 1)2δ.
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Proof. We show by induction on i that right before the i-th iteration of pruning, we have δ ≤
(κ + 1)2(i−1)ϵ. For the basis step, recall that at the beginning when E was initialized as a greedy
(1 + ϵ)-spanner, we have δ = ϵ. For the induction step, suppose that δ ≤ (κ+ 1)2(i−2)ϵ < κ−5 (by
Equation (1)) right before the (i − 1)-st iteration. Then, at the end of the (i − 1)-st iteration, we
have updated δ as:

∆(κ, δ) = (1 + δ) · (1 + κδ) · (1 + κ2δ)− 1

=
(︁
1 + (κ+ 1)δ + κδ2

)︁
· (1 + κ2δ)− 1

< (1 + (κ+ 2)δ) · (1 + κ2δ)− 1

= (κ2 + κ+ 2)δ + κ2(κ+ 2)δ2

< (κ+ 1)2δ

≤ (κ+ 1)2 · (κ+ 1)2(i−2)ϵ

= (κ+ 1)2(i−1)ϵ.

Therefore, at the end of the (i − 1)-st iteration, and so also at the beginning of the ith iteration,
we have δ < (κ + 1)2(i−1)ϵ, which completes the induction step. It follows that throughout all
O(log∗(d/ϵ)) iterations we have ∆(κ, δ) ≤ (κ + 1)O(log∗(d/ϵ))ϵ < κ−5, where the last inequality
follows by employing Equation (1) again.

Next, let us show an upper bound on the stretch during the execution of the first pruning phase.

Claim 4.2. At the end of the first pruning phase, for any edge st ∈ E, we are guaranteed that
distH1(s, t) ≤ (1 + κδ) · ∥st∥. Also, at the end of the second phase, for any edge st ∈ E1 ∩ E, we
have that distH2(s, t) ≤ (1 + κ2δ) · ∥st∥.

Proof. The first assertion holds trivially for all edges that remain in E1 until the end of the first
phase; this includes all type-(ii) edges and possibly some type-(i) edges. We henceforth restrict the
attention only to edges that get pruned from E1 during the first phase, and for each such edge e we
consider the index j such that e ∈ Lj ∩E1∪E(i). We will prove that the stretch of each edge e = st
that is pruned from E1 is in check (i.e., distH1(s, t) ≤ (1 + κδ) · ∥st∥) by induction on j, j ≥ 0. We
stress that the induction is applied on the final edge set E1 at the end of the first pruning phase
(when the last sub-iteration ends).

As the basis when j = 0, all edges in E(i)∩L0 would be added to E1 and never pruned (otherwise
their stretch would be at least 2), so the stretch between the endpoints of any type-(i) edge in L0 is
1. Now, for j ≥ 1, let us assume distH1(s, t) ≤ (1+κδ) · ∥st∥ for every edge st ∈ Lk for every k < j.
Consider any type-(i) edge st ∈ Lj which was removed from E1 during the first phase. Then, by
the algorithm, there must exist an edge xy ∈ E1 such that ∥xy∥ ≥ βj/25 and

∥sx∥+ ∥xy∥+ ∥yt∥ ≤ (1 + ϵ)∥st∥.

Note that this edge will not be removed later on during the first phase since we only prune old
edges. As ∥xy∥ ≥ βj/25 and ∥st∥ < βj+1, we have

max{∥sx∥, ∥yt∥} ≤ (1 + ϵ)∥st∥ − ∥xt∥ ≤
(︃
1 + ϵ− 1

25β

)︃
∥st∥ < ∥st∥

β2
.

Since we assumed (X,E) is a (1+δ)-spanner for X, there exist two paths γ1 and γ2 in E connecting
s, x and y, t such that

∥γ1∥ ≤ (1 + δ)∥sx∥,
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∥γ2∥ ≤ (1 + δ)∥yt∥.

Therefore, every edge e = s′t′ on the paths γ1 or γ2 has length at most

∥e∥ ≤ (1 + δ)max{∥sx∥, ∥yt∥} ≤ 1 + δ

β2
∥st∥ < ∥st∥

β
.

In other words, e belongs to some set Lk for k < j. Using the inductive hypothesis, distH1(s
′, t′) ≤

(1 + κδ)∥s′t′∥, and consequently we have the following inequalities which conclude the induction

distH1(s, t) ≤ distH1(s, x) + ∥xy∥+ distH1(y, t)

≤ (1 + κδ) ((1 + ϵ)∥st∥ − ∥xy∥) + ∥xy∥
= (1 + ϵ)(1 + κδ)∥st∥ − κδ∥xy∥

≤
(︃
(1 + ϵ)(1 + κδ)− κδ

25β

)︃
∥st∥ < (1 + κδ)∥st∥,

where the penultimate inequality holds as ∥xy∥ ≥ 1
25β∥st∥ and the last inequality follows from

Equation (1) and Claim 4.1, which yield ϵ(1 + κδ) < κδ
25β .

During the second pruning phase, if an old edge st ∈ E1 was not added to E2, there must exist
a path π between s and t consisting of edges in E2 such that ∥π∥ ≤ (1 + κ2δ) · ∥st∥. Since the set
E2 grows monotonically, the path π is preserved for the remainder of the phase.

Corollary 4.1. For every st ∈
(︁
X
2

)︁
, we have:

distH2(s, t) ≤ (1 + ∆(κ, δ)) · ∥st∥ <
(︁
1 + (κ+ 1)2δ

)︁
· ∥st∥.

Note that he second inequality in the corollary above holds as δ < κ−5 by Claim 4.1.

4.3 Sparsity Analysis

We first analyze how the number of edges in E changes in one iteration, and then consider k
consecutive iterations at the end of this subsection. To analyze sparsity, we devise a charging
scheme Ψ0 that maps (fractionally) edges in E to edges in Espa. In fact, the charging scheme charges
(possibly fractionally) edges from E to edges in a subdivision of Espa. We also stress that the total
number of edges in the subdivision of Espa to which we charge is at most κ · |Espa| = O(|Espa|).

Charging scheme from E to Espa. For each edge st ∈ E, find a path πs,t in Espa between s
and t such that ∥πs,t∥ ≤ (1 + ϵ) · ∥st∥. If st ∈ E(i), then by definition As,t or Bs,t is empty. Since
πs,t is a path connecting s, t with total weight at most (1 + ϵ)∥st∥, the entire path πs,t should lie
within the ellipsoid Γs,t and thus there must be a single edge e on πs,t that crosses the region As,t

or Bs,t. In this case, Ψ0 charges the edge st to edge e ∈ Espa.
Next, assume st ∈ E(ii). To charge type-(ii) edges to Espa, we subdivide each edge e ∈ Espa

evenly into κ sub-segments with at most κ − 1 Steiner points. Let Y ⊇ X be the point set
containing all original points and Steiner points, and let EY

spa ⊆
(︁
Y
2

)︁
denote the set of subdivided

edges (clearly, |Espa| = O(|EY
spa|)). Our charging scheme will be from type-(ii) edges to edges in

EY
spa. We distinguish between two cases, depending on the path πs,t.
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(a) Suppose πs,t ∩ As,t or πs,t ∩ Bs,t is empty; that is, the polygonal path πs,t does not contain
vertices in As,t or Bs,t. Then, since πs,t lies in Γs,t entirely, there must be an edge e = s′t′ in
πs,t that crosses As,t or Bs,t. If e only crosses one of the two regions (say As,t), then we have

∥s− projst(s
′)∥ <

(︃
3

8
− 1

50

)︃
· ∥st∥,

(︃
3

8
− 1

50

)︃
· ∥st∥ < ∥projst(t′)− t∥ <

(︃
5

8
− 1

50

)︃
· ∥st∥.

Let z ∈ Y ∩ e be the Steiner point in As,t on the segment e that is closest to s′; such a point

z must exist since each sub-segment of e has length at most ∥e∥
κ < ∥st∥

25 . Then, Ψ0 charges st

to segment zt′ which has length at least
(︁

1
25 −

1
κ

)︁
∥st∥ > ∥st∥

26 .

If e crosses both regions As,t and Bs,t, then let z1 ∈ Y ∩ e be the Steiner point in As,t that
is closest to s′, and let z2 ∈ Y ∩ e be the Steiner point in Bs,t that is closest to t′. Then, Ψ0

charges st to segment z1z2 which has length at least
(︁
1
4 + 1

25 −
2
κ

)︁
∥st∥ > ∥st∥

4 .

(b) Otherwise, we will charge st fractionally to a set of edges in EY
spa. Move along πs,t from s to t

and let p be the last vertex in As,t and let q be the first vertex in Bs,t. As ∥πs,t∥ ≤ (1+ ϵ) · ∥st∥
and ∥projst(p)− projst(q)∥ ≥ (1/4− 1/25)∥st∥, we know that:

∥πs,t[p, q]∥ ≤ ∥projst(p)− projst(q)∥+ ϵ · ∥st∥ ≤ (1 + 10ϵ) · ∥projst(p)− projst(q)∥.

Therefore, applying Lemma 3.1, we know that

∥E(πs,t[p, q], st, 2
√
10ϵ)∥ > 0.5 · ∥projst(p)− projst(q)∥.

Then, for each edge e ∈ E(πs,t[p, q], st, 2
√
10ϵ), Ψ0 charges a fraction of 2·∥e∥

∥projst(p)−projst(q)∥
of

edge st to edge e.

By design of our charging scheme Ψ0, we can upper bound the angle between any type-(ii) edge
st and the edge e it charges to.

Claim 4.3. If a type-(ii) edge st charges to an edge xy ∈ EY
spa, then angle ∠(st, xy) is at most

15
√
ϵ. Furthermore, for all z ∈ {x, y}, the projection projst(z) of z onto line st lies on the segment

st and satisfies ∥s−projst(z)∥
∥st∥ ∈

[︁
3
8 −

1
50 ,

5
8 + 1

50

]︁
.

Proof. The second assertion of the statement holds by the design of our charging scheme, so let us
focus on the first assertion. If st charges to xy as in case-(b), then the assertion holds by design.
Otherwise, assume st charges to xy as in case-(a). Define θ = ∠(st, xy). Since both x and y are on
the path πs,t, let us assume w.l.o.g. that x lies between s and y on πs,t, and then we have

ϵ∥st∥ ≥ ∥πs,t∥ − ∥st∥ ≥ ∥sx∥+ ∥xy∥+ ∥yt∥ − ∥st∥
≥ ∥xy∥ − ∥projst(xy)∥ = (1− cos θ)∥xy∥

≥ θ2

8
· ∥xy∥ > θ2

208
· ∥st∥.

Here we have used the fact that 1 − cos θ = 2 sin2(θ/2) > θ2/8 and ∥xy∥ > ∥st∥
26 . Therefore,

θ ≤ 15
√
ϵ.

We need to argue that Ψ0 is a valid charging scheme from E to Espa ∪ EY
spa.
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Claim 4.4. Every edge in E is fully charged to edges in a subdivision of Espa; that is, the total
charges produced by any edge in E is at least 1.

Proof. According to the charging scheme, every type-(i) edge is fully charged to an edge in Espa. As
for type-(ii) edges, in case (a), we are also using an integral charging (i.e., charging to a single edge)
to edges in EY

spa. In case (b), the fractions of st charged to various edges in E(πs,t[p, q], 2
√
10ϵ) sum

to at least 2 · 12 ∥pq∥/∥pq∥ = 1 by Lemma 3.1, and so st is also fully charged fractionally to some
Steiner edges in Espa.

Next, let us analyze the sparsity of the first pruning phase.

Claim 4.5. During the first pruning phase, the number of new edges added to E1 is at most
O(|Espa| logα). After the first pruning phase, the number of type-(i) edges in E1 is at most
O(|Espa|).

Proof. During the first pruning phase, we show by induction on i that at the beginning of the i-th
sub-iteration, |E1 ∩ E(i)| is at most |Espa|α/2i−1. For the basis when i = 1, this bound holds as
α ≥ |E|/|Espa|.

For the inductive step, to bound
⃓⃓
E1 ∩ E(i)

⃓⃓
after the i-th sub-iteration, we need to utilize our

charging scheme for type-(i) edges. Suppose, for the sake of contradiction, that there are more than
|Espa|α/2i−1 type-(i) edges remaining in E1∩E(i) after the i-th sub-iteration. Then, by the pigeon-
hole principle, there exists a set F of more than α/2i−1 type-(i) edges currently in E1 charging to
the same edge xy ∈ Espa. By our charging scheme, for each such edge e ∈ F , we have

∥xy∥ ≤ (1 + ϵ)∥e∥ ≤ (1 + ϵ)25 · ∥xy∥ ≤ 25β · ∥xy∥.

Therefore, by the pigeonhole principle there exists an index j ≥ 0 such that

|F ∩ Lj | ≥
α

2i−1 · logβ 25β
>

α

2iκ
.

The last inequality holds since κ = 104 > logβ(25β). Now, consider the sub-iteration during the
first pruning phase when we were processing edges in Lj .

To reach a contradiction, it suffices to show that at that time, it must be that Px,y ⊇ F ∩ Lj .
In fact, for any edge st ∈ F ∩Lj , by the charging scheme, we know that xy is on a (1+ ϵ)-spanning
path of Espa between s and t, hence the triangle inequality yields

∥sx∥+ ∥xy∥+ ∥yt∥ ≤ (1 + ϵ)∥st∥.

Note that for each edge e = st ∈ F ∩ Lj , we have ∥xy∥ ≥ βj/25. Therefore, the algorithm could
have added xy to E1 as a new edge and remove the entire set Px,y, leading to a contradiction. This
completes the proof of the induction step.

It remains to bound the number of new edges added to E1. In the i-th sub-iteration, each time
we add a new edge to E1, we decrease

⃓⃓
E1 ∩ E(i)

⃓⃓
by at least α

2iκ
. Since

⃓⃓
E1 ∩ E(i)

⃓⃓
was at most

|Espa|α/2i−1 at the beginning of the i-th sub-iteration, we could add at most O(|Espa|) edges to E1

in this sub-iteration. It follows that at most O(|Espa| logα) new edges are added to E1 in total.

Next, let us analyze the sparsity of the second pruning phase. Let us begin with a basic
observation which follows directly from the algorithm description.

Observation 4.1. Every type-(ii) edge st ∈ E2 ∩ E(ii) must have a helper edge ab when it was
processed and added to E2 during the second pruning phase.
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Figure 6: Both s1t1 and s2t2 are charging to e which is drawn as the cyan edge. If s1t1 was
added to E2 together with a helper edge ab, then s2t2 could not be added to E2 later on since
(s2 ⇝ a) ◦ ab ◦ (b⇝ t2) will be a good path in H2.

The following lemma is the key behind the charging argument.

Lemma 4.1. Fix any edge e ∈ EY
spa and level index j ≥ 0. Then, after the second pruning phase,

there is at most one type-(ii) edge in E2 ∩ Lj that is charged to e.

Proof. Assume for contradiction that there are two distinct type-(ii) edges s1t1, s2t2 ∈ E2 ∩ Lj

charging to the same edge e ∈ EY
spa. Let r be an arbitrary endpoint of e. Without loss of generality,

assume ∥s1t1∥ ≤ ∥s2t2∥, and so edge s1t1 was processed before edge s2t2. By Observation 4.1, a
helper edge of s1t1, say edge ab, was added to E2.

Write D = ∥s1t1∥. Let c and w be the orthogonal projections of a and r on the line s1t1; let
f , g, and h be the projections of a, r, and b on line s2t2; and let p and q be the projections of c
and w on line s2t2; see Figure 6 for an illustration in the 2-dimensional case. By the design of our
charging scheme and Claim 4.3, we know that g should land on segment s2t2 and ∥cw∥ ≤ 0.29 ·D,
and ∠(s1t1, s2t2) ≤ ∠(s1t1, e) + ∠(e, s2t2) ≤ 30

√
ϵ. As s2t2 is also charged to e, we know that

∥s2g∥/∥s2t2∥ ∈
[︁
3
8 −

1
50 ,

5
8 + 1

50

]︁
. Thus, by the triangle inequality, we obtain

∥s2p∥ ≥ ∥s2g∥ − ∥gq∥ − ∥pq∥
≥ 0.355D − sin (∠(s1t1, s2t2)) · ∥rw∥ − ∥cw∥
≥
(︁
0.355− 2

√
ϵ · sin(30

√
ϵ)− 0.29

)︁
D

> 0.06D.

Note that the last inequality holds for sufficiently small ϵ. Thus, ∥s2f∥ ≥ ∥s2p∥ − ∥pf∥ > 0.06D−
sin(∠(s1t1, s2t2)) · 2

√
ϵD > 0.06D− 60ϵD > 0.05D. This also shows that both f and p should land

on the segment s2t2.
On the other hand, using the triangle inequality for the projections of segments cp, cw,wq on
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the hyperplane orthogonal to line s2t2, we have:

∥cp∥ ≤ ∥wq∥+ ∥cw∥ · sin(30
√
ϵ)

< ∥wq∥+ 30
√
ϵ∥cw∥

< ∥wq∥+ 8.7
√
ϵD

≤ ∥rg∥+ ∥rw∥+ 8.7
√
ϵD

≤ 12.7
√
ϵD.

Here, we have used the fact that ∥cw∥ ≤ 0.29D and ∥rg∥, ∥rw∥ ≤ 2
√
ϵD. Therefore, ∥af∥ ≤

∥ac∥+ ∥cp∥ ≤ 14.7
√
ϵD. Symmetrically, we can show that ∥bh∥ ≤ 14.7

√
ϵD and ∥t2h∥ > 0.05D.

Finally, let us show that (s2 ⇝ a) ◦ ab ◦ (b⇝ t2) can make a good path from s2 to t2 in H2. By
the above calculations, as ∥s2f∥ > 0.05D and ∥af∥ ≤ 14.7

√
ϵD, we have

∥s2a∥ − ∥s2f∥ =
√︁
∥s2f∥2 + ∥af∥2 − ∥s2f∥ =

∥af∥2√︁
∥s2f∥2 + ∥af∥2 + ∥s2f∥

< 217ϵD2/0.1D = 2170ϵD.

(2)

Symmetrically, we can show that h also lands on the segment s2t2 and

∥bt2∥ − ∥ht2∥ ≤ 2170ϵD. (3)

Also, since ∠(ab, fh) ≤ 15
√
ϵ by Claim 4.3, we have

∥ab∥ ≤ ∥fh∥
cos(15

√
ϵ)
≤
(︁
1 + 112.5ϵ+O(ϵ2)

)︁
· ∥fh∥

< (1 + 115ϵ)∥fh∥ < ∥fh∥+ 120ϵD.

The last inequality is because ∥fh∥ ≤ ∥s2t2∥ < βD.
By Corollary 4.1, we have

distH2(s2, a) ≤
(︁
1 + (κ+ 1)2δ

)︁
· ∥s2a∥,

distH2(b, t2) ≤
(︁
1 + (κ+ 1)2δ

)︁
· ∥bt2∥.

Therefore, using Equations (2) and (3) combined with Claim 4.1 (i.e., δ < k−5), at the time when
edge s2t2 was being processed by the second pruning phase, we have

distH2(s2, t2) ≤ distH2(s2, a) + ∥ab∥+ distH2(b, t2)

≤
(︁
1 + (κ+ 1)2δ

)︁
· ∥s2a∥+

(︁
1 + (κ+ 1)2δ

)︁
· ∥bt2∥+ ∥ab∥

≤
(︁
1 + (κ+ 1)2δ

)︁
· (∥s2t2∥+ 2860ϵD − ∥ab∥) + ∥ab∥

< (1 + κ2δ)∥s2t2∥+
(︁
(2κ+ 1)δ∥s2t2∥+

(︁
1 + (κ+ 1)2δ

)︁
· 2860ϵD − (κ+ 1)2δ∥ab∥

)︁
< (1 + κ2δ)∥s2t2∥+

(︁
2κ+ 3000− 0.2(κ+ 1)2

)︁
δ∥s2t2∥

< (1 + κ2δ)∥s2t2∥.

The penultimate inequality holds as ∥ab∥ ≥ 0.21∥s1t1∥ > 0.21β−1∥s2t2∥ > 0.2∥s2t2∥, δ ≥ ϵ and
κ = 104. Therefore, s2t2 could not have been added to E2, leading to a contradiction.

Corollary 4.2. The total number of type-(ii) edges added to E2 is at most O(|Espa|).
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Proof. Consider any subdivided edge e ∈ EY
spa within an edge in Espa. By Lemma 4.1, for each

j ≥ 0, at most one type-(ii) edge in Lj ∩ E2 charged to e. By the fractional charging scheme, the
total amount of charges that e receives across all j ≥ 0 is a geometric sum which is bounded by
a constant. Note that we analyze integral (case (a)) and fractional (case (b)) charges separately:
Integral charges are incurred by edges on a constant number of levels, since by the charging scheme
every edge charged to e must have weight Θ(∥e∥); the fractional charges to e could be incurred by
edges on possibly many levels, but our charging scheme guarantees that the fractional charge to e
decays geometrically with the level, hence the sum of fractional charges is bounded by a geometric
sum.

Putting it all together. Corollary 4.2, together with Claim 4.5, yields |E2| = O(|Espa| logα).
Also, by Corollary 4.1, the stretch of H2 is at most 1 + (κ+ 1)2δ. Therefore, starting with (X,E)
being a (1 + ϵ)-spanner with δ = ϵ and α = ϵ−O(d), if we iterate these two pruning phases k times,

we end up with a spanner with
(︁
1 + ϵ · 2O(k)

)︁
-stretch and O

(︂
log(k)(1/ϵ) + log(k−1)(d)

)︂
· |Espa|

edges, which concludes the sparsity bound of Theorem 1.3. Note that Algorithm 1 (Algorithm
GreedyPrune) repeats the two pruning phases for k = O(log∗(d/ϵ)) iterations, the result of which
provides a spanner with the stretch and sparsity bounds of Corollary 1.1.

4.4 Lightness Analysis

Similarly to the analysis of sparsity, we devise a charging scheme from edges in E to edges in Elight.

Preparation. Since we deal with edge lengths, we use more refined geometric properties. For
each edge st ∈ E, let πs,t be a path in Elight between s and t such that ∥πs,t∥ ≤ (1 + ϵ) · ∥st∥. For
technical reasons, we wish that all points on the path πs,t are monotonically increasing in terms of

their projections on the directed line
−→
st , which is not necessarily the case in general. Therefore, as

a preliminary step, we construct a sub-sequence of edges ρs,t ⊆ πs,t from s to t in Rd such that

(1) the projection of ρs,t on the line st is a segment that covers the entire segment st;

(2) every point on segment st is covered at most twice by the projection of ρs,t on line st.

To define this sub-sequence ρs,t, consider the following iterative procedure which uses a curser
variable z starting at z ← s, as well as a partially constructed sub-sequence ρ ⊆ πs,t from s to z.
In each iteration, let xy be the last edge on πs,t whose projection on st contains the projection of
z on st; namely projst(z) ∈ projst(xy). Then, extend ρs,t by ρs,t ← ρs,t ∪ {xy} and reassign z ← y.
By the construction, it is easy to see that both requirements (1)–(2) on ρs,t are met. Using ρs,t, we
describe a charging scheme Ψ1 that discharges the weight of the edges of E to edges in Elight.

Charging scheme from E to Elight. The charging scheme Ψ1 is almost the same as Ψ0, except
that we are using ρs,t in lieu of πs,t for type-(ii) edges.

If st ∈ E(i), then by definition As,t or Bs,t is empty. Since πs,t is a path connecting s, t with
total weight at most (1 + ϵ)∥st∥, the entire path πs,t should lie within the ellipsoid and thus there
must be a single edge e on πs,t that crosses the region As,t or Bs,t. In this case, Ψ1 charges weight
∥st∥ to such an edge e ∈ Elight.

Next, assume that st ∈ E(ii). To charge type-(ii) edges to Elight, we subdivide each edge
e ∈ Elight evenly into κ sub-segments by adding at most κ− 1 Steiner points on e. Let Y ⊇ X be

the point set containing all original points and Steiner points, and let EY
light ⊆

(︁
Y
2

)︁
denote the set
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of subdivided edges (clearly, ∥Elight∥ = ∥EY
light∥). Our charging scheme will be from type-(ii) edges

to edges in EY
light. We distinguish between two cases, depending on the path ρs,t.

(a) Suppose that ρs,t ∩ As,t or ρs,t ∩ Bs,t is empty; that is, the edges in ρs,t do not have any
endpoints in As,t or Bs,t. Then, since ρs,t lies in Γs,t entirely and st ⊆ projst(ρs,t), there must
be an edge e = s′t′ in ρs,t ⊆ πs,t that crosses As,t or Bs,t. If e only crosses one of the two
regions (say As,t), then we have:

∥s− projst(s
′)∥ <

(︃
3

8
− 1

50

)︃
· ∥st∥,

(︃
3

8
− 1

50

)︃
· ∥st∥ < ∥projst(t′)− t∥ <

(︃
5

8
− 1

50

)︃
· ∥st∥.

Let z ∈ Y ∩ e be the Steiner points on segment e which is in As,t but the closest one from s′;

such a point z must exist since each sub-segment of e has length at most ∥e∥
κ < ∥st∥

25 . Then,

Ψ1 charges the weight ∥st∥ to segment zt′ which has length at least
(︁

1
25 −

1
κ

)︁
∥st∥ > ∥st∥

26 .

If e crosses both regions As,t and Bs,t, then let z1 ∈ Y ∩ e be the Steiner point in As,t which
is the closest one from s′, and let z2 ∈ Y ∩ e be the Steiner point in Bs,t which is the closest
one from t′. Then, Ψ1 charges weight ∥st∥ of st to segment z1z2 which has length at least(︁
1
4 + 1

25 −
2
κ

)︁
∥st∥ > ∥st∥

4 .

(b) Otherwise, we will distribute the weight ∥st∥ among multiple edges in Elight. Move along
ρs,t from s to t and let p be the last vertex in As,t and let q be the first vertex in Bs,t. As
∥πs,t∥ ≤ (1 + ϵ) · ∥st∥, we know that

∥ρs,t[p, q]∥ ≤ ∥projst(p)− projst(q)∥+ ϵ · ∥st∥ ≤ (1 + 10ϵ) · ∥projst(p)− projst(q)∥,

where ρs,t[p, q]
def
= ρs,t ∩ πs,t[p, q] refers to the sub-sequence of ρs,t between p and q. Therefore,

Lemma 3.1 yields

∥E(ρs,t[p, q], st, 2
√
10ϵ)∥ > 0.5 · ∥projst(p)− projst(q)∥.

Then, for each edge e ∈ E(ρs,t[p, q], st, 2
√
10ϵ), let Ψ1 charge an amount of ∥e∥

∥ρs,t[p,q]∥ · ∥st∥ from
st to edge e.

For some technical reason, we need to be more formal about the properties of charging schemes.

Definition 4.2 (weight charging). A replete weight charging scheme Ψ from an edge set A to edge
set B is a mapping Ψ : A×B → R+ ∪ {0} such that:

• for any f ∈ B, if Ψ(e, f) > 0, then Ψ(e, f) ≥ min{∥f∥, ∥e∥};

•
∑︁

f∈B Ψ(e, f) = ∥e∥ for any e ∈ A.

We say that e charges to f under Ψ if Ψ(e, f) > 0.

We can show that Ψ1 : E ×
(︂
Elight ∪ EY

light

)︂
→ R+ ∪ {0} is replete under Definition 4.2 for

A = E and B = Elight ∪ EY
light.
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Claim 4.6. The charging scheme Ψ1 is replete, and every edge e receives O(∥e∥) amount of charges
from any edge st ∈ E; furthermore, both endpoints of e are in X if st is type-(ii) and case-(b).

Proof. If st is a type-(i) edge, then by the design of Ψ1 we know that ∥st∥ > ∥e∥ ≥ ∥st∥
25β . So the

amount of charges e receives from st is between ∥e∥ and 25β ·∥e∥. If st is a type-(ii) edge in case-(a),

then we have ∥st∥ > ∥e∥ ≥ ∥st∥
30 . Finally, if st is a type-(ii) edge in case-(b), the on one hand notice

that ∥ρs,t[p, q]∥ ≤ ∥πs,t∥ − ∥sp∥ ≤
(︁
1 + ϵ−

(︁
3
8 −

1
50

)︁)︁
∥st∥ < ∥st∥. Consequently, e is receives at

least ∥e∥ charges from st under Ψ1. On the other hand, by the design of Ψ1, the amount of charges
e has receives from st is at most

∥e∥
∥ρs,t[p, q]∥

· ∥st∥ ≤ 2∥e∥
1
4 −

1
25

< 10∥e∥.

The second half of the statement holds since the charging scheme in case-(b) does not involve
any Steiner points in the super-set Y .

Similar to the sparsity analysis, we show that each edge e in Elight receives O (∥e∥) amount of
charges from type-(i) edges after the first pruning phase, and so this phase increases the weight by
O(∥Elight∥ logα).

Claim 4.7. After the first pruning phase, the total weight of new edges added to E1 is O (∥Elight∥ logα).
Furthermore, the total weight of type-(i) edges in E1 is O (∥Elight∥ logα).

Proof. During the first pruning phase, we show by induction on i that at the beginning of the i-th
sub-iteration,

⃦⃦
E1 ∩ E(i)

⃦⃦
is at most ∥Elight∥α/2i−1. For the basis when i = 1, this bound holds

as α ≥ ∥E∥/∥Elight∥.
For the inductive step, to bound

⃦⃦
E1 ∩ E(i)

⃦⃦
after the i-th sub-iteration, we need to utilize

our charging scheme Ψ1 of type-(i) edges. Suppose otherwise that the total weight of all type-(i)
edges remaining in E1 ∩ E(i) is at least ∥Elight∥α/2i−1 after the i-th sub-iteration. Then, by the
pigeon-hole principle, there exists a set F of more than 25β · α/2i−1 type-(i) edges currently in E1

charging to the same edge xy ∈ Elight. By our charging scheme, for each such edge e ∈ F , we have

∥xy∥ ≤ ∥e∥ ≤ 25β · ∥xy∥.

Therefore, there exists an index j ≥ 0 such that

|F ∩ Lj | ≥
α

2i−1 · logβ 25β
>

α

2iκ
.

Now, consider the time during the first pruning phase when we were processing all edges in Lj .
To reach a contradiction, it suffices to claim that at the moment, it must be that Px,y ⊇ F ∩Lj .

In fact, for any edge st ∈ F ∩ Lj , by the charging scheme, we know that

∥sx∥+ ∥xy∥+ ∥yt∥ ≤ (1 + ϵ)∥st∥.

Therefore, the algorithm could have added xy to E1 as a new edge and remove the entire set Px,y

leading to a contradiction. This completes the proof of the induction step.
It remains to bound the total weight of new edges added to E1. In the i-th sub-iteration, each

time we add a new edge e to E1, we have decreased the weight
⃦⃦
E1 ∩ E(i)

⃦⃦
by at least α

2iκ
· ∥e∥.

Since
⃦⃦
E1 ∩ E(i)

⃦⃦
was at most ∥Elight∥α/2i−1 at the beginning, we could increase the weight of E

by at most O(∥Elight∥) in this sub-iteration, and thus by at most O(∥Elight∥ logα) overall.
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Now, let us analyze the second pruning phase. Using the same calculation as in Lemma 4.1, we
can prove the following claim for type-(b) edges.

Claim 4.8. Fix an edge e ∈ EY
light and a level j ≥ 0. After the second pruning phase, Ψ1 charged

the weight of at most one type-(ii) edge in E2 ∩ Lj to e.

Charging scheme from E2 ∩ E to EY
light. However, Claim 4.8 is not enough to establish a

lightness bound because an edge in EY
light could be charged multiple times across all different levels

j ≥ 0, and the charges need not form a geometric sum as in the case of sparsity. To bound the
lightness of E2, we describe another charging scheme Ψ2, from E2 ∩ E(ii) to EY

light, that works
simultaneously with the second pruning phase. During the construction of the charging scheme Ψ2,
we will maintain the following invariant.

Invariant 4.1. The charging scheme Ψ2 is replete, and it charges every edge e ∈ EY
light at most κ

times, and each time e receives at most 20 ∥e∥ amount of charges.

At the beginning when E2 ∩ E(ii) = ∅, no edges have been charged to Elight under the new
charging scheme. The algorithm goes over all edges st ∈ E1∩E and decides whether st should stay
in E2 or not. For an edge st of type-(b), let F ⊆ EY

light be the set of edges to which the charging

scheme Ψ1 distributed a positive portion of the weight ∥st∥, that is, F = {e ∈ EY
light : Ψ1(st, e) > 0}.

Claim 4.9. ∥F∥ > 1
10∥st∥.

Proof. Since st is type-(b), by definition, F contains all edges in the sub-sequence ρs,t from the last
vertex p ∈ As,t to the first vertex q ∈ Bs,t. Therefore, the orthogonal projection of F on st has
length

∥projst(F )∥ = 1

2
∥projst(p)− projst(q)∥ ≥

1

2
·
(︃
1

4
− 1

25

)︃
· ∥st∥ > 1

10
· ∥st∥.

Therefore, ∥F∥ ≥ ∥projst(F )∥ > 1
10∥st∥.

Let S ⊆ F be the subset of edges that Ψ2 has already charged κ times by edges prior to
processing edge st. If ∥S∥ ≤ 1

2 ∥F∥, then the charging scheme Ψ2 distributes the weight ∥st∥
among F \ S proportionally to their weight. Formally, for each edge e ∈ F \ S, if Ψ1 charged λ of
the weight ∥st∥ to e, then let Ψ2 charge an amount of ∥F∥/∥F \ S∥ · λ ≤ 2λ to e; that is,

Ψ2(st, e)←

{︄ |F∥
∥F\S∥ ·Ψ1(st, e) e ∈ F \ S
0 e /∈ F \ S.

Note that |F∥
∥F\S∥ ·Ψ1(st, e) ≤ 2Ψ1(st, e)). By Claim 4.6, this maintains Invariant 4.1.

Next, let us consider the harder case where ∥S∥ > 1
2 ∥F∥. In fact, we will show that st could

not have been added to E1; that is, this case never occurs.

Lemma 4.2. If ∥S∥ > 1
2 ∥F∥, then edge st would not be added to E2; that is, we already have

distH2(s, t) ≤ (1 + κ2δ) · ∥st∥.
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Putting it all together. Assuming Lemma 4.2, we can show that every edge e ∈ EY
light receives

at most 20κ∥e∥ charges under Ψ2 (cf. Invariant 4.1). Together with Claim 4.7, we can show
that ∥E2∥ = O(∥Elight∥ logα). Also, by Corollary 4.1, the stretch of H2 is at most 1 + (κ +
1)2δ. Therefore, starting with (X,E) being a (1 + ϵ)-spanner with δ = ϵ and α = ϵ−O(d), if we
iterate these two pruning phases k times, we end up with a spanner with

(︁
1 + ϵ · 2O(k)

)︁
-stretch

and O
(︂
log(k)(1/ϵ) + log(k−1)(d)

)︂
· ∥Elight∥ total weight, which concludes the lightness bound of

Theorem 1.3. Note that Algorithm 1 (Algorithm GreedyPrune) repeats the two pruning phases for
k = O(log∗(d/ϵ)) iterations, the result of which provides a spanner with the stretch and sparsity
bounds of Corollary 1.1.

Proof of Lemma 4.2. We break down the proof of Lemma 4.2 into a sequence of claims.

Claim 4.10. For each e ∈ EY
light that Ψ2 has charged exactly κ times, there exists an edge χ(e) ∈ E2

that Ψ1 has already charged to e such that κ∥e∥ ≤ ∥χ(e)∥ ≤ 1
κ∥st∥; furthermore, the angle between

χ(e) and e is bounded by ∠ (χ(e), e) ≤ 2
√
10ϵ.

Proof. According to Claim 4.8, all edges in E2 that charge to e under Ψ1 are on different lev-
els Li. Therefore, by our construction of Ψ2, the total number of levels that conver the range[︁
1
κ∥st∥, κ∥e∥

]︁
⊆
[︁
1
κ∥st∥, ∥st∥

]︁
∪
[︁
∥e∥, κ∥e∥

]︁
is at most 2⌈logβ κ⌉ < κ. By the pigeonhole principle,

there exists an edge χ(e), as claimed.
For the second half of the statement, since χ(e) charges to e under Ψ1 and ∥χ(e)∥ ≥ κ∥e∥, it

must be of type-(ii) in case-(b). Hence, we have ∠ (χ(e), e) ≤ 2
√
10ϵ by design of Ψ1.

Let P = {χ(e) : e ∈ S}. By Definition 4.2 and Invariant 4.1, we know that ∥P∥ ≥ ∥S∥.
Next, we will prove that st is not added to E2 in the second pruning phase. The proof consists
of two steps. At a high level, in the first step, we will select a subset of edges Q ⊆ P such that
∥Q∥ ≥ Ω(∥st∥); in the second step, we will stitch these edges into an st-path in E2 of total length
at most (1 + κ2δ) · ∥st∥, thus implying that st would be excluded from E2.

To construct Q starting with Q = ∅, iterate overall all indices i = O(logα), . . . , 0 decrementally
while adding edges to Q. In the i-th iteration, scan the segment st from s to t. Whenever we hit
the projection projst(χ(e)) of some edge χ(e) ∈ P ∩ Li, add χ(e) to Q, and remove all edges from
P that lie in the buffer region of χ(e); that is, all edges χ(f) ∈ P whose projections projst(χ(f)) on
st are at distance at most 2βi+1 from projst (χ(e)).

From the construction process of Q, we see that the edges in Q have pairwise disjoint projections
on the line st. After we have constructed the edge set Q, we can order the edges in Q according to
their projections from s to t as Q = {a1b1, a2b2, . . . , aℓbℓ}. Next, let us define a candidate path γ
between s and t in the current H2 (that does not yet include st).

Definition 4.3 (path stitching). We define the st-path

γ = (s⇝ a1) ◦ a1b1 ◦ (b1 ⇝ a2) ◦ a2b2 ◦ . . . ◦ (bℓ−1 ⇝ aℓ) ◦ aℓbℓ ◦ (bℓ ⇝ t),

which contains the edges aibi for all 1 ≤ i ≤ ℓ − 1, and where (x ⇝ y) denotes the shortest path
from x to y in the current graph H2.

To reach a contradiction, our goal is to show that ∥γ∥ ≤ (1 + κ2δ) · ∥st∥. First, we show that
the total length of the edges in Q is Ω(∥st∥).

Claim 4.11. ∥Q∥ ≥ 1
320∥st∥.
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Figure 7: Auxiliary lines and points ci, di, pi, qi, ui, and vi to assist our analysis.

Proof. By Claim 4.9 and our assumption in Lemma 4.2, we have ∥S∥ ≥ 1
2 ∥F∥ ≥

1
20∥st∥. So it

suffices to show that ∥Q∥ ≥ 1
16∥S∥. According to the construction of Q, for every edge e ∈ S, either

χ(e) ∈ P was added toQ, or χ(e) was removed from P because its projection projst(χ(e)) on line st is
at most 2βi+1 far away from the projection projst(χ(f)) of another edge χ(f) ∈ Q∩(Li ∪ Li+1 ∪ · · · )
for some level i ∈ {0, . . . , O(logα)}. In the latter case, let us associate this edge χ(e) with χ(f),
and let Pf be the set of all edges associated with χ(f) under this definition. Since the construction
procedure of Q enumerates all indices i from large to small, then ∥χ(e)∥ < β · ∥χ(f)∥ for all
χ(e) ∈ Pf . Since each point on segment st is covered by projections of at most two edges in F , the
total length

∑︁
χ(e)∈Pf

∥projst(χ(e))∥ is bounded by 14βi+1.

Noticing that ∠ (e, χ(e)) ,∠ (e, st) ≤ 2
√
10ϵ, we have ∠(χ(e), st) ≤ 4

√
10ϵ. Therefore, we have

∥projst(χ(e))∥ ≥ cos(4
√
10ϵ) · ∥χ(e)∥ =

(︁
1− 80ϵ+O(ϵ2)

)︁
· ∥χ(e)∥ ≥ β−1∥χ(e)∥.

The last inequality holds when ϵ is below a certain constant threshold. Therefore, we have 14βi+1 ≥∑︁
χ(e)∈Pf

∥projst(χ(e))∥ ≥ β−1
∑︁

χ(e)∈Pf
∥χ(e)∥, or

∑︁
χ(e)∈Pf

∥χ(e)∥ ≤ 14βi+2 < 15∥χ(f)∥. In other

words, each edge χ(f) added to Q precludes a set of edges in P from joining Q which have total
weight at most 15∥χ(f)∥, that is,

P = Q ∪
⋃︂

χ(e)∈Q

Pχ(e) =
⋃︂

χ(e)∈Q

(︁
{χ(e)} ∪ Pχ(e)

)︁
,

∥P∥ =
∑︂

χ(e)∈Q

(︁
∥χ(e)∥+ ∥Pχ(e)∥

)︁
≤

∑︂
χ(e)∈Q

16 ∥χ(e)∥ = 16 ∥Q∥.

We can conclude that

∥Q∥ ≥ 1

16
∥P∥ ≥ 1

16
∥S∥ ≥ 1

320
∥st∥.

To analyze the total length of γ, let us subdivide the path into multiple parts and analyze
each part separately. For each edge aibi ∈ Q, assume that ei = ziwi is the edge in S such that
χ(ei) = aibi. Draw two (d−1)-dimensional hyper-planes perpendicular to line st through zi and wi

which intersects lines st and aibi at ci, di and pi, qi, respectively. See Figure 7 for an illustration.

Claim 4.12. Both ci and di lie on the segment aibi; furthermore, min{∥aici∥, ∥dibi∥} ≥ 0.25 ∥aibi∥.
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Proof. It suffices to focus only on the inequality ∥aici∥ ≥ 0.25 ∥aibi∥. Let c′i = projaibi(zi) be the
projection of zi on line aibi. As aibi is charging to ziwi, point c

′
i should land on the segment aibi.

Since ∠(aibi, st) ≤ 4
√
10ϵ and zici lies in the hyperplane perpendicular to st, we have

∥cic′i∥ =

⃓⃓⃓⃓
⃓−→cizi ·

−−→
aibi
∥aibi∥

⃓⃓⃓⃓
⃓ ≤ sin(4

√
10ϵ) · ∥cizi∥ < 4

√
10ϵ · ∥cizi∥,

which yields

∥cic′i∥ ≤
4
√
10ϵ√

1− 160ϵ
· ∥aibi∥.

As zi lies in the ellipsoid
{︁
z ∈ Rd : ∥aiz∥+ ∥biz∥ ≤ (1 + ϵ)∥aibi∥

}︁
, we have ∥zic′i∥ < 2

√
ϵ · ∥aibi∥.

Therefore, ∥cic′i∥ < 4
√
10ϵ√

1−160ϵ
∥aibi∥ < 20ϵ∥aibi∥. As ∥aic′i∥/∥aibi∥ ∈ [0.355, 0.665], we have

∥aici∥ ≥ ∥aic′i∥ − ∥cic′i∥ > 0.355∥aibi∥ − 20ϵ∥aibi∥ > 0.25∥aibi∥.

Claim 4.13. Let ui = projst(ai) and vi = projst(bi); see Figure 7. Then, both ui and vi lie on
segment st. Furthermore, we have ∥sui∥, ∥vit∥ > 1

3∥st∥ and ∥aiui∥, ∥bivi∥ ≤ 5
√
ϵ · ∥st∥.

Proof. By the charging scheme Ψ1, we know that pi lies on st and ∥spi∥ ≥
(︁
3
8 −

1
50

)︁
∥st∥. Therefore,

we have

∥sui∥ ≥ ∥spi∥ − ∥aici∥ >
(︃
3

8
− 1

50

)︃
∥st∥ − 1

κ
∥st∥ > 1

3
∥st∥.

Similarly we can prove that ∥vib∥ > 1
3 ∥st∥, and so both ui and vi lie on segment st.

As for the length of aiui, let M be the projection matrix onto the hyperplane perpendicular to
st, then the triangle inequality combined with ∥aibi∥ ≤ 1

κ∥st∥ yields

∥aiui∥ = ∥M(−−→aici +−→cizi +−−→zipi +−−→piui)∥ ≤ ∥M · −−→aici∥+ ∥cizi∥+ ∥zipi∥
≤ 4
√
10ϵ · ∥aibi∥+

√
ϵ · ∥aibi∥+

√
ϵ · ∥st∥ < 5

√
ϵ · ∥st∥.

Next, we are going to show that stitching edges aibi and ai+1bi+1 via a shortest path bi ⇝ ai+1

in H2 does not incur too much error compared to πs,t[bi, ai+1] in Elight. Refer to Figure 8.

Claim 4.14. For any index i, we have

∥cidi∥ − ∥piqi∥ ≤ 100ϵ∥piqi∥ ≤ (∥ziwi∥ − ∥piqi∥) + 100ϵ∥piqi∥.

Proof. As ∠(cidi, piqi) ≤ 4
√
10ϵ, we have

∥cidi∥ ≤
∥piqi∥

cos(4
√
10ϵ)

≤
(︁
1 + 80ϵ+O(ϵ2)

)︁
∥piqi∥ < (1 + 100ϵ)∥piqi∥.

Hence, we have

∥cidi∥ − ∥piqi∥ ≤ 100ϵ∥piqi∥ ≤ (∥ziwi∥ − ∥piqi∥) + 100ϵ∥piqi∥.

Claim 4.15. For any index i, we have

∥dibi ◦ biai+1 ◦ ai+1ci+1∥ − ∥qipi+1∥ ≤ 4 · (∥wizi+1∥ − ∥qipi+1∥) + 195ϵ · ∥qipi+1∥.
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Figure 8: Comparing the error of the stitched path with the error of ρs,t.

Proof. Without loss of generality, assume that ∥aibi∥ ≥ ∥ai+1bi+1∥. Then, by the design of buffer
regions, we know that ∥viui+1∥ ≥ 2∥aibi∥, and ∥viui+1∥ ≤ ∥qipi+1∥ < 2∥viui+1∥.

Since ∠(aibi, st) and ∠(ai+1bi+1, st) are bounded by 4
√
10ϵ, it follows that

∥dibi∥ − ∥qivi∥ ≤
(︃

1

cos(4
√
10ϵ)

− 1

)︃
· ∥qivi∥ ≤

(︁
80ϵ+O(ϵ2)

)︁
· ∥qivi∥ ≤ 41ϵ∥qipi+1∥, (4)

∥ai+1ci+1∥ − ∥ui+1pi+1∥ ≤
(︃

1

cos(4
√
10ϵ)

− 1

)︃
· ∥ui+1pi+1∥

≤
(︁
80ϵ+O(ϵ2)

)︁
· ∥ui+1pi+1∥ < 41ϵ∥qipi+1∥. (5)

It remains to compare ∥biai+1∥−∥viui+1∥ against ∥wizi+1∥−∥qipi+1∥. Let M be the matrix of the

orthogonal projection onto the hyperplane perpendicular to line st. Define h1 = ∥M ·
−−−→
biai+1∥ and

h2 = ∥M · −−−−→wizi+1∥. First, we bound the difference between h1 and h2 using the triangle inequality

|h1 − h2| ≤
⃓⃓⃓
M · (

−−−→
biai+1 −−−−−→wizi+1)

⃓⃓⃓
=
⃓⃓⃓
M · (

−−→
widi +

−−→
dibi +

−−−−−→ai+1ci+1 +
−−−−−→ci+1zi+1)

⃓⃓⃓
≤
√
ϵ · ∥aibi∥+ 4

√
10ϵ · ∥aibi∥+ 4

√
10ϵ · ∥ai+1bi+1∥+

√
ϵ · ∥ai+1bi+1∥

< 15
√
ϵ∥viui+1∥.

Next, to compare ∥biai+1∥−∥viui+1∥ against ∥wizi+1∥−∥qipi+1∥, we use the Pythagorean theorem
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combined with the identity
√
x−√y = x−y√

x+
√
y
and the definition of h1 and h2:

∥biai+1∥ − ∥viui+1∥ =
√︂
∥viui+1∥2 + h21 − ∥viui+1∥

≤
√︂
∥viui+1∥2 + 2h22 + 2(h1 − h2)2 − ∥viui+1∥

=
2h22 + 2(h1 − h2)

2√︁
∥viui+1∥2 + 2h22 + 2(h1 − h2)2 + ∥viui+1∥

≤ 2h22 + 225ϵ · ∥viui+1∥2√︁
∥viui+1∥2 + 2h22 + 225ϵ · ∥viui+1∥2 + ∥viui+1∥

<
2h22√︂

1
4∥qipi+1∥2 + h22 +

1
2∥qipi+1∥

+ 112.5ϵ · ∥viui+1∥

<
4h22√︁

∥qipi+1∥2 + h22 + ∥qipi+1∥
+ 112.5ϵ · ∥viui+1∥

< 4 · (∥wizi+1∥ − ∥qipi+1∥) + 113 · ϵ∥viui+1∥. (6)

Taking a summation of Equations (4) to (6), we can conclude the proof; see Figure 8 for an
illustration.

Similarly, we can prove an upper bound on the lengths of the prefix and suffix of the path γ.

Claim 4.16. The following inequalities hold:

∥sa1 ◦ a1c1∥ ≤ (1 + 113ϵ)∥sp1∥,

∥dℓbℓ ◦ bℓt∥ ≤ (1 + 113ϵ)∥qlt∥.

Proof. Let us focus on the first inequality; the second one can be proved in a symmetric manner.
Since ∠(a1b1, st) ≤ 4

√
10ϵ, then we can show that

∥a1c1∥ − ∥u1p1∥ ≤
(︃

1

cos(4
√
10ϵ)

− 1

)︃
· ∥u1p1∥ ≤

(︁
80ϵ+O(ϵ2)

)︁
∥u1p1∥ < 100ϵ · ∥u1p1∥. (7)

According to Claim 4.13, we have ∥a1u1∥ ≤ 5
√
ϵ · ∥st∥ ≤ 15

√
ϵ∥su1∥. Therefore, we obtain

∥sa1∥ − ∥su1∥ < 113ϵ · ∥su1∥. (8)

Adding Equations (7) and (8) finishes the proof.

Let θ be the polygonal path defined as:

θ = sa1 ◦ a1b1 ◦ b1a2 ◦ a2b2 ◦ · · · ◦ bℓ−1aℓ ◦ aℓbℓ ◦ bℓt

from s to t, passing through all edges in Q = {a1b1, . . . , aℓbℓ}. Taking a summation over all indices
i ∈ {1, . . . , ℓ} and using Claim 4.14, Claim 4.15 and Claim 4.16, we have

∥θ∥ − ∥st∥ ≤ 4(∥πs,t∥ − ∥st∥) + 195ϵ · ∥st∥ < 200ϵ · ∥st∥,

or equivalently,
∥θ∥ ≤ (1 + 200ϵ) · ∥st∥. (9)

To compare the weight of paths θ and γ, we need to argue that each edge of θ is closely approximated
by a shortest path in the current graph H2. (Note that we cannot directly apply Corollary 4.1 here,
because we are analyzing the state of H2 during the execution of the second pruning phase, not at
the end.)
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Claim 4.17. Any edge e of θ from {sa1, a1b1, · · · , aℓbℓ, bℓt} has length at most

∥e∥ ≤ 0.9 ∥st∥ < 1

1 + ∆(κ, δ)
· ∥st∥.

Proof. By the design of our charging schemes, Ψ1 and Ψ2, the projections of all pi and qi are on
the segment st; and more importantly

∥spi∥, ∥tqi∥ ≥
(︃
3

8
− 1

50

)︃
· ∥st∥ > 0.3 ∥st∥.

Therefore, we have

∥sa1∥ ≥ ∥sp1∥ − ∥u1pi∥ ≥ ∥sp1∥ − ∥a1b1∥ ≥ 0.3 ∥st∥ − 1

κ
∥st∥ > 0.2 ∥st∥.

Similarly, we also have ∥bℓt∥ > 0.2 ∥st∥. Since ∥θ∥ < (1 + 200ϵ)∥st∥ by Equation (9), the length of
any edge e ∈ {sa1, a1b1, . . . , aℓbℓ, bℓt} is bounded by

∥e∥ < (1 + 200ϵ− 0.2)∥st∥ < 0.9 ∥st∥ < 1

1 + ∆(κ, δ)
· ∥st∥ ,

as claimed.

According to Corollary 4.1, all edges in the path θ will be preserved up to a stretch factor of
(1 + δ)(1 + κδ)(1 + κ2δ) = 1 + ∆(κ, δ) in H2 when the second pruning phase finishes. Since the
second phase adds edges to E2 in non-decreasing order of length and by Claim 4.17, each edge in
θ is already preserved in H2 at the time when the algorithm examines edge st.

Therefore, using Claim 4.11 and recalling the definition of γ (cf. Definition 4.3), we have

∥γ∥ = ∥θ∥+
(︁
distH2(s, a1)− ∥sa1∥

)︁
+
(︁
distH2(t, bℓ)− ∥tbℓ∥

)︁
+

ℓ−1∑︂
i=1

(︁
distH2(bi, ai+1)− ∥biai+1∥

)︁
≤ ∥θ∥+∆(κ, δ) ·

(︄
∥sa1∥+ ∥tbℓ∥+

ℓ−1∑︂
i=1

∥biai+1∥

)︄

= ∥θ∥+∆(κ, δ) ·

(︄
∥θ∥ −

ℓ∑︂
i=1

∥aibi∥

)︄

≤ ∥θ∥+∆(κ, δ) ·
(︃
∥θ∥ − 1

320
∥st∥

)︃
≤
(︃
(1 + 200ϵ)(1 + ∆(κ, δ))− ∆(κ, δ)

320

)︃
∥st∥

=

(︃
1 + 200ϵ+

(︃
1 + 200ϵ− 1

320

)︃
·∆(κ, δ)

)︃
∥st∥

≤
(︃
1 +

(︃
1 + 200ϵ+

200

(κ+ 1)2
− 1

320

)︃
· (κ+ 1)2δ

)︃
∥st∥

< (1 + κ2δ)∥st∥.

Here we have used κ = 104, Claim 4.1, Equation (9), and the inequalities ϵ ≤ δ < κ−5 and
∆(κ, δ) < (κ+ 1)2δ. This concludes the proof of Lemma 4.2.
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5 Fast Implementation

In this section, we provide a fast implementation of our algorithm. For the input spanner, we use
the construction of Gudmundson et al. [GLN02]. We follow the original two pruning phases with
some modifications. In the first pruning phase, we only add edges in the net-tree spanner of Chan
et al. [CGMZ16]. In the second pruning phase, we modify the technique of Das and Narasimhan in
[DN97] when checking each type-(ii) edge in E1 and use the hierarchical net structure in [CGMZ16]
to find a helper edge.

5.1 Net-Tree Spanner

An r-net of a metric (X, δ) is a subset N of X such that the distance between any two points in
N is greater than r and for every point in X, its distance to the closest point in N is at most
r. Let Φ be the aspect ratio of X and ri = 2i with i being any positive integer. A hierarchy
X = N0 ⊇ N1 ⊇ N2 ⊇ · · · ⊇ Nlog Φ is a hierarchical net of X if Ni+1 is a ri+1-net of Ni.

Consider a hierarchical net X = N0 ⊇ N1 ⊇ N2 ⊇ · · · ⊇ Nlog Φ of X. A net tree T of X is a
tree that connects each point in Ni to its closest net point in Ni+1. If a point appears in multiple
nets, we treat each appearance as a copy. For each point u ∈ Ni, we use the notation (u, i) for the
node of the net tree corresponding to u at level i.

From the net-tree T of X, Chan et al. [CGMZ16] construct a (1+ϵ)-spanner for X by connecting
all pairs of net points in Ni at distance at most

(︁
4
ϵ + 32

)︁
ri. We call such pairs cross edges. We

refer to the spanner construction in [CGMZ16] as a (1 + ϵ) net-tree spanner G of X. We use edges
in G to guide our construction. The key to our construction is the approximate edge of each pair.

Definition 5.1. For each uv ∈
(︁
X
2

)︁
, let iuv be the lowest level such that there exists a cross edge

u′v′ such that (u′, iuv) and (v′, iuv) are the ancestors of (u, 0) and (v, 0), respectively. The edge u′v′

is called the approximate edge of uv and iuv is the approximate level of uv.

We show that the approximate edge of uv has both endpoints close to those of uv. For any
graph F , let V (F ) and E(F ) denote the vertex set and the edge set of F , respectively. For any
point x ∈ Rd and r > 0, let B(x, r) be the Euclidean ball centered at x with radius r.

Claim 5.1. For an edge uv of length r, let u′v′ ∈ E(G) be the approximate edge of uv. Then,
u′ ∈ B(u, ϵr) and v′ ∈ B(v, ϵr).

Proof. Let i be the approximate level of uv and let (u′′, i− 1), (v′′, i− 1) be the ancestors of (u, 0),
(v, 0) in the net-tree at level i − 1. The net-tree spanner construction yields u′v′ ∈ E(G). Using
the triangle inequality, we get

∥uv∥ ≥ ∥u′′v′′∥ − ∥uu′′∥ − ∥vv′′∥ ≥
(︃
4

ϵ
+ 32

)︃
ri−1 − 4 · ri−1 ≥

2

ϵ
· ri. (10)

Using geometric series, we obtain ∥uu′∥ ≤ 2 · ri ≤ ϵ∥uv∥, consequently u′ ∈ B(u, ϵr). Similarly, we
can show that v′ ∈ B(v, ϵr).

5.2 Fast Implementation

We are given a set X ⊂ Rd be a set of n points, and a sufficiently small ϵ > 0 satisfying Equa-
tion (1). We start with a spanner with sparsity ϵ−O(d) and lightness ϵ−O(d). Such a spanner can
be constructed in Oϵ,d(n log n) time [GLN02]. Our construction consists of k ≤ log∗ (d/ϵ) + O(1)
iterations of two pruning phases. Assume that at the beginning of the current iteration, we have a
(1 + δ)-spanner H = (X,E). We use the same notation for H1, H2, E1 and E2 as in the original
algorithm.
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Classification of edges in E. For each edge (s, t) in E, we define the approximate set A′
s,t

of As,t as follow: Let h be the approximate level of (s, t) and N(As,t) be the set containing all
net points w ∈ Nh at level h such that B(w, 2rh) ∩ As,t ̸= ∅. Let A′

s,t =
⋃︁

w∈N(As,t)
B(w, 2rh).

Since rh ≤ ϵ
2∥st∥, then for every x ∈ A′

s,t, we obtain ∥s−projst(x)∥
∥st∥ ∈

[︁
3
8 −

1
50 − ϵ, 38 + 1

50 + ϵ
]︁
and

∥t−projst(x)∥
∥st∥ ∈

[︁
5
8 −

1
50 − ϵ, 58 + 1

50 + ϵ
]︁
. Similarly, we define B′

s,t based on the region Bs,t. An edge

(s, t) is type-(i) if A′
s,t or B

′
s,t is empty. Otherwise, (s, t) is a type-(ii) edge. We also denote the set

of type-(i) and type-(ii) edges by E(i) and E(ii), respectively.

First pruning phase. Recall that for every pair {x, y} ⊂ X, if |Px,y| ≥ α
2iκ

(for each sub-
iteration i), we delete every edge in Px,y. However, since the total number of pairs we need to
check is Θ(n2), this step would lead to a quadratic running time for each iteration. Thus, instead
of considering all pairs of vertices {x, y} ⊂ X, we only consider the edges in the net-tree spanner
G. Assuming that ∥xy∥ ≥ βj/25, we define an approximate set

P ′
x,y =

{︂
st ∈ Lj ∩ E1 ∩ E(i) : ∥sx∥+ ∥xy∥+ ∥yt∥ ≤ (1 + 5ϵ)∥st∥

}︂
. (11)

The difference between Px,y and P ′
x,y is the distortion (1+ ϵ versus 1+5ϵ). If |P ′

x,y| ≥ α
2jκ

, then
add xy to E1 as a new edge, and remove all type-(i) edges in P ′

x,y from E1.

Second pruning phase. For each type-(ii) edge in E1, we check whether the distance between
two endpoints is already preserved by edges in E2. This can be done in nearly linear time using
the technique in [DN97]. Our method is similar to [DN97], except we only consider each edge for
Θ(log n) levels before contracting it.

Let E1,i = {st ∈ E1 : 2i ≤ ||st|| ≤ 2i+1} and E2,i = {st ∈ E2 : 2i ≤ ||st|| ≤ 2i+1} for
i ∈ [0, log Φ + 1], E2,<i be the union of E2,0, E2,1, . . . E2,i−1 and H2,<i = (X,E2,<i). For each i, we
build a cluster graph Fi with vertex set X. We greedily construct the set of balls with radius ϵ2i in
H2,<i (each ball is a cluster) such that the distance between any two centers in H2,<i is at least ϵ2

i

and the set of balls covers X. Let {C1, C2, . . .} be the set of clusters. Note that one point might
belong to multiple clusters. There are two types of edges in Fi: inter-cluster and intra-cluster.
Intra-cluster edges are edges between a point u and a center v of a cluster C such that u ∈ C. The
weight of uv is distH2(u, v). We add all intra-cluster edges to Fi. An inter-cluster edge is an edge
between two cluster centers. There is an edge between two cluster centers vj and vj′ if and only if
distH2(vj , vj′) ≤ 2i or there exists an edge in E2,<i from a point in Cj to a point in Cj′ , where Cj

and Cj′ are the clusters corresponding to the centers vj and vj′ . The inter-cluster edge vjvj′ has
weight distH2(vj , vj′) in the first case and minu∈Cj ,w∈Cj′ ,uw∈E2(distH2(u, vj)+distH2(w, vj′)+∥uw∥)
in the second case. We use Dijkstra’s algorithm to compute all the intra-cluster and inter-cluster
edges.

Our implementation of the second pruning phase runs in log Φ+1 iterations. At iteration i, we
first build the cluster graph Fi from H2,<i. We consider edges in E1,i in increasing order of length.
For each st ∈ E1,i, if st is not type-(ii), we simply add st to E2. Otherwise, we check all paths
from s to t within O(1) hops in Fi that contains at most 2 intra-cluster edges. If the length of the
shortest of those paths is less than or equal to (1 + κ2δ)(1 + ϵ)∥st∥, skip that edge. Otherwise,
we add st and its helper edge to E2. After an edge st is added to E2, we add inter-cluster edges
between the centers of all clusters containing u to the centers of all clusters containing v. For any
center cs of a cluster containing s and any center ct of a cluster containing t, we add an edge csct
of weight distFi(cs, s) + ∥st∥+ distFi(t, ct).
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However, computing all intra-cluster edges for all Fi is expensive since one will have to run a
single source shortest path (SSSP) algorithm for all cluster centers. Instead, we contract all edges

of lengths less than or equal to 2iϵ2

n . The total weight of all those edges in any path in Fi is 2iϵ2.
Hence, for every path of length at least 2i, the total weight of contracted edges is significantly smaller
compared to the total length. We then construct the graph F ′

i similar to Fi. Let i
′ = i− log (nϵ−2)

and E′
2,<i =

⋃︁i−1
k=i′ E2,k, we compute the graph F ′

i as follow: first, contract all edges in E2,<i′ and

second, compute F ′
i from E′

2,<i similar to Fi. Instead of checking distE2(u, v) ≤ (1+κ2δ)∥uv∥ as in
the original algorithm, we check whether distF ′

i
(s, t) + ϵ22i ≤ (1 + ϵ)(1 + κ2δ)∥st∥. If true, we skip

the edge st. Otherwise, we keep st and add its approximate helper edge to E2. The approximate
helper edge is any edge between a net point in N(As,t) to a net point in N(Bs,t).

After the iteration (including two pruning phases), we update δ ← ∆′(κ, δ) = (1+δ)(1+κδ)(1+
5ϵ)(1 + κ2δ)(1 + ϵ)− 1 and α← logα.

5.3 Analysis

5.3.1 Stretch

We prove that Claim 4.2 still holds in our implementation. After the first pruning phase, for any
edge st ∈ E, we are guaranteed that distH1 ≤ (1 + κδ)(1 + 5ϵ) · ||st||. Throughout the execution of
the second phase, for any edge st ∈ E1 ∩ E, we have distH2(s, t) ≤ (1 + κ2δ)(1 + ϵ) · ∥st∥.

Claim 5.2. Throughout the execution of the first pruning phase, for any edge st ∈ E, we are
guaranteed that distH1(s, t) ≤ (1 + κδ)(1 + 5ϵ) · ∥st∥. Also, throughout the execution of the second
phase, for any edge st ∈ E1 ∩ E, we have distH2(s, t) ≤ (1 + κ2δ)(1 + ϵ) · ∥st∥.

The bound on the stretch after the first pruning phase can be proven using the same argument
as in Claim 4.2. We then focus on the second pruning phase. Claim 5.3 shows that if there is a
good approximation path from s to t in the cluster graph Fi, there is a good approximation path
from s to t in the current greedy spanner of E2.

Claim 5.3 (Lemma 3.2 and Lemma 3.3 [DN97]). Let st be a type-(ii) edge in E1 such that 2i ≤
∥st∥ ≤ 2i+1 for some i and Fi be the cluster graph constructed above. Let P be the shortest path

from s to t in H2 and PC be the shortest path from s to t in Fh. Then, 1 ≤ ∥PC∥
∥P∥ ≤ 1 + Θ(ϵ).

We observe that the distance in F ′
i is approximately the distance in Fi.

Observation 5.1. For all x, y ∈ X, we have distF ′
i
(s, t) ≤ distFi(s, t) ≤ distF ′

i
(s, t) + 2iϵ2.

Now Claim 5.3, combined with Observation 5.1, implies the following.

Claim 5.4. Let s and t be two points such that 2i ≤ ∥st∥ ≤ 2i+1, and Let F ′
i be the cluster graph

constructed above. Let P the shortest path from s to t in H2 = (X,E2) and P ′
C be the shortest path

from s to t in F ′
i . Then 1 ≤ ∥P ′

C∥+2iϵ2

∥P∥ ≤ 1 + ϵ.

Proof. Let PC be the shortest path from s to t in Fi. By Observation 5.1, we have ∥P ′
C∥ ≤ ∥PC∥ ≤

∥P ′
C∥ + 2iϵ2. Combined with Claim 5.3, we obtain 1 ≤ ∥P ′

C∥+2iϵ2

∥P∥ ≤ 1 + Θ(ϵ). The last term Θ(ϵ)
can be reduced to ϵ by scaling the cluster radius by a suitable constant.

We have the following corollary:

Corollary 5.1. Let st be a type-(ii) edge in E1 such that 2i ≤ ∥st∥ ≤ 2i+1. If distH2(s, t) ≤
(1 + κ2δ)∥st∥, then st is not added to E2.
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Proof. By Claim 5.4, the path from s to t in F ′
i has length at most (1 + ϵ)distH2(s, t) − ϵ22i ≤

(1 + κ2δ)(1 + ϵ)∥st∥ − ϵ22i. Hence, st is not added to E2 by our algorithm.

Then, for any edge st not added to E2, the distance from s to t in the spanner is at most
(1+κ2δ)(1+ ϵ)∥st∥+ ϵ22i. By proper scale of the cluster radius, we got distH2(s, t) ≤ (1+κ2δ)(1+
ϵ)∥st∥. This completes the proof of Claim 5.2.

Recall that after each iteration, we update δ = ∆′(κ, δ) with ∆′(κ, δ) = (1 + δ)(1 + κδ)(1 +
5ϵ)(1 + κ2δ)(1 + ϵ)− 1. Observe that

∆′(κ, δ) ≤ (1 + ϵ)(1 + 5ϵ)(1 + δ)(1 + κδ)(1 + κ2δ)− 1

≤ (1 + 7ϵ)(1 + δ)(1 + κδ)(1 + κ2δ)− 1 ≤ (κ+ 1)2δ
(12)

for sufficiently small ϵ. Therefore, after the update at the end of the i-th iteration, we have
δ ≤ (κ+ 1)2iϵ. After O(log∗(d/ϵ)) iterations, the stretch is bounded by (κ+ 1)O(log∗(d/ϵ))ϵ ≤ κ−5.

5.3.2 Sparsity

The charging scheme for sparsity is similar to Ψ0. The only change we make for a fast implemen-
tation, compared to the original Ψ0, is that we use A′

s,t and B′
s,t instead of As,t and Bs,t. For each

edge st ∈ E, let πs,t be a spanner path in Espa between s, t. If st is a type-(i) edge, then A′
s,t or B

′
s,t

is empty, implying that As,t or Bs,t is empty since A′
s,t and B′

s,t contain As,t and Bs,t, respectively.
Therefore, there must be a single edge e in πs,t that crosses the region As,t or Bs,t. We charge the
edge st to e. If st is a type-(ii) edge, there are two cases:

1. If either πs,t ∩ A′
s,t or πs,t ∩ B′

s,t is empty. In that case, there is an edge e = s′t′ on πs,t that
crosses either A′

s,t or B
′
s,t (and hence cross either As,t or Bs,t). If e only crosses one of the two

regions (say As,t), then we have

∥projst(s)− projst(s
′)∥ <

(︃
3

8
− 1

50

)︃
· ∥st∥,(︃

3

8
− 1

50

)︃
· ∥st∥ < ∥projst(t′)− projst(t)∥ <

(︃
5

8
− 1

50

)︃
· ∥st∥.

Recall that for each edge e ∈ Espa, we divide e evenly into κ sub-segments by adding at most
κ − 1 Steiner points on e and Y is the union of X and the set of added Steiner points. Let
z ∈ Y ∩ e be the Steiner points in As,t on segment e that is closest to s′; such a point z must

exist since each sub-segment of e has length at most ∥e∥
κ < ∥st∥

25 . Then, charge st to segment zt′

which has length at least
(︁

1
25 −

1
κ

)︁
∥st∥ > ∥st∥

26 .

If e crosses both regions As,t, Bs,t, then let z1 ∈ Y ∩ e be the Steiner point in As,t which is the
closest one from s′, and let z2 ∈ Y ∩ e be the Steiner point in Bs,t which is the closest one from

t′. Then, charge st to segment z1z2 which has length at least
(︁
1
4 + 1

25 −
2
κ

)︁
∥st∥ > ∥st∥

4 .

2. Otherwise, we charge st fractionally to set of edges in Espa. Move along πs,t from s to t and let
p be the last vertex in A′

s,t and let q be the first vertex in B′
s,t. As ∥πs,t∥ ≤ (1 + ϵ) · ∥st∥, we

know that

∥πs,t[p, q]∥ ≤ ∥projst(p)− projst(q)∥+ ϵ · ∥st∥

≤ ∥projst(p)− projst(q)∥+ ϵ · 1(︁
5
8 −

1
50 − ϵ

)︁
−
(︁
3
8 + 1

50 + ϵ
)︁ · ∥projst(p)− projst(q)∥

≤ (1 + 10ϵ) · ∥projst(p)− projst(q)∥.
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for sufficiently small ϵ. Therefore, Lemma 3.1 yields

∥E(πs,t[p, q], st, 2
√
10ϵ)∥ > 0.5 · ∥projst(p)− projst(q)∥.

Then, for each edge e ∈ E(πs,t[p, q], st, 2
√
10ϵ), charge a fraction of 2∥e∥

∥projst(p)−projst(q)∥
of edge st

to edge e.

We then have our modified Claim 4.3.

Claim 5.5. If a type-(ii) edge st charges to an edge xy ∈ EY
spa, then angle ∠(st, xy) is at most

15
√
ϵ. Plus, the projection projst(z) of z onto line st lies in the segment st and satisfies ∥s−projst(z)∥

∥st∥ ∈[︁
3
8 −

1
50 − ϵ, 58 + 1

50 + ϵ
]︁
for all z ∈ {x, y}

The difference between Claim 4.3 and Claim 5.5 is the region of the projection of each edge that
st charges to. The region changes from

[︁
3
8 −

1
50 ,

5
8 + 1

50

]︁
to
[︁
3
8 −

1
50 − ϵ, 58 + 1

50 + ϵ
]︁
. This is due to

the design of our algorithm.
For sufficiently small ϵ, Claim 4.4 still holds for our algorithm. We now show that Claim 4.5

also holds.

Claim 5.6. During the first pruning phase, the number of new edges added to E1 is at most
O(|Espa| logα). After the first pruning phase, the number of type-(i) edges in E1 is at most
O(|Espa|).

Proof. We show by induction that during the first pruning phase, by the beginning of the i-th
sub-iteration, |E1 ∩ E(i)| is at most |Espa|α/2i−1. Suppose otherwise for the sake of contradiction.
Using the same argument as in the proof of Claim 4.5, we obtain that there exists a set F of more
than α/2i−1 edges charged to the same edge e = xy in Espa and there is an index j such that at
least α

2iκ
edges in Lj have been charged to e. Let x′y′ be the approximate edge of xy. We show

that P ′
x′,y′ ⊇ F ∩ Lj . For any edge st ∈ F ∩ Lj , by the charging scheme, we get

∥sx∥+ ∥xy∥+ ∥yt∥ ≤ (1 + ϵ)∥st∥.

By Claim 5.1, we have ∥xx′∥, ∥yy′∥ ≤ ϵ∥xy∥. Then, using the triangle inequality, we have

∥sx′∥+ ∥x′y′∥+ ∥y′t∥ ≤ ∥sx∥+ ∥xy∥+ ∥yt∥+ 2∥xx′∥+ 2∥yy′∥
≤ (1 + ϵ)∥st∥+ 4ϵ∥xy∥ ≤ (1 + 5ϵ)∥st∥.

Thus, the edge x′y′ must be added to our spanner and hence, all edges in F ∩ Lj are removed,
which is a contradiction.

Observation 4.1 also holds in our construction. We then prove an analogue of Lemma 4.1.

Lemma 5.1. Fix any edge e ∈ EY
spa and level index j ≥ 0. Then, after the second pruning phase,

there is at most one type-(ii) edge in E2 ∩ Lj that is charged to e.

Proof. Assume that two type-(ii) edges s1t1, s2t2 ∈ E2 ∩Lj are charged to the same edge e ∈ EY
spa;

and w.l.o.g. ∥s1t1∥ ≤ ∥s2t2∥. We prove that s2t2 could not have been added to E2 since there
is already a good approximation path from s2 to t2 at the time we consider s2t2. Let r be an
endpoint of e, and let c, w be the projections of a, r on s1t1, and let f, g, h be the projections
of a, r, b on s2t2 and p, q be the projections of c, w on s2t2. Let D be the length of s1t1, by the
design of our algorithm, we still have ∥cd∥ ≤ (0.29 + 2ϵ)D and ∠(s1t1, s2t2) ≤ 30

√
ϵ. Since s2t2
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also charges to e, we have ∥s2g∥/∥s2t2∥ ∈
[︁
3
8 −

1
50 − ϵ, 58 + 1

50 + ϵ
]︁
. Using the same argument as

in the proof of Lemma 4.1, we have that ∥s2a∥ ≤ ∥s2f∥ + 2170ϵD, ∥bt2∥ ≤ ∥ht2∥ + 2170ϵD and
∥ab∥ ≤ ∥fh∥+ 120ϵD. Then, we also have:

distH2(s2, a) + ||ab||+ distH2(b, t2) < (1 + κ2δ)∥s2t2∥.

Therefore, (s2t2) cannot be added to E2 due to the design of our algorithm.

Corollary 4.2 is then carries over. We conclude that the total number of edges of our spanner
after a single iteration is O(|Espa| logα). Therefore, after k iterations, the output spanner has

O(log(k)(ϵ−O(d))|Espa|) = O((log(k)(1/ϵ) + log(k−1)(d))|Espa|) edges.

5.3.3 Lightness

For the lightness, we keep the same charging schemes, Ψ1 and Ψ2, only changing regions As,t and
Bs,t to A′

s,t and B′
s,t, respectively. Using the same arguments as in the proof of sparsity, Claim 4.6,

Claim 4.7 and Claim 4.8 still hold. It remains to prove that each edge e ∈ EY
light receives O(∥e∥)

charges under the charging scheme Ψ2. For any single edge st ∈ E, we also let F ⊆ EY
light be the

set of edges that st charged to under the charging scheme Ψ1.

Claim 5.7. ∥F∥ > 1
10∥st∥.

Proof. The projection of F onto line st is projst(F ), whose length is at least 1
2

(︁
1
4 −

1
25 − 2ϵ

)︁
∥st∥ >

1
10∥st∥.

Let S be the subset of edges that are already charged by ⌈ α
2i
⌉ times by edges before st. If

∥S∥ ≤ 0.5∥F∥, we re-distribute the charge similar to the original proof. We now consider the case
when ∥S∥ > 0.5∥F∥. We now prove Lemma 4.2 for our implementation. Using the same proof as
Claim 4.10, for each edge e in S, there exists an edge χ(e) charging to e such that 1

κ∥st∥ ≥ ∥χ(e)∥ ≥
κ∥e∥. We define the set P = {χ(e) : e ∈ S} and construct the set Q = {a1b1, a2b2, . . . , aℓbℓ} similar
to the proof of Lemma 4.2. We obtain ∥Q∥ ≥ 1

320∥st∥ by using the same argument as in the proof
of Claim 4.11.

For each edge aibi, let ei = ziwi be the corresponding edge in S that aibi charged to and
χ(ei) = aibi. Let pi (qi) and ci (di) be the intersection of the hyperplane perpendicular to st
through zi (wi) with st and aibi. We then prove Claim 4.12.

Claim 5.8. Both points ci and di lie on the segment aibi; furthermore, min{∥aici∥, ∥dibi∥} ≥
0.25∥aibi∥.

Proof. Let c′i be the projection of zi on aibi. Since ∠(aibi, st) ≤ 2
√
10ϵ, we also obtain ∥cic′i∥ <

10ϵ∥aibi∥ as in the proof of Claim 4.12. Since ∥aic′i∥/∥aibi∥ ∈ [0.355− ϵ, 0.655 + ϵ], we have

∥aici∥ ≥ ∥aic′i∥ − ∥cic′i∥ > (0.355− ϵ)∥aibi∥ − 10ϵ∥aibi∥ > 0.25∥aibi∥.

Similarly, ∥dibi∥ ≥ 0.25∥aibi∥.

We then prove an analogue of Claim 4.13.

Claim 5.9. Let ui = projst(ai), vi = projst(bi). Then, both ui and vi lie on segment st. Furthermore,
∥sui∥, ∥vit∥ > 1

3∥st∥, and ∥aiui∥, ∥bivi∥ ≤ 5
√
ϵ · ∥st∥.
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Proof. We have ∥spi∥ ≥
(︁
3
8 −

1
50 − ϵ

)︁
∥st∥. Therefore,

∥sui∥ ≥ ∥spi∥ − ∥aici∥ >
(︃
3

8
− 1

50
− ϵ

)︃
∥st∥ − 1

κ
∥st∥ > 1

3
∥st∥.

Similarly, ∥vib∥ > 1
3∥st∥, implying that ui and vi lie on segment st. Using the same argument as

in the proof of Claim 4.13, we obtain ∥aiui∥ ≤ 5
√
ϵ · ∥st∥.

The proof of Claim 4.14, Claim 4.15 and Claim 4.16 carry over. Using the proof of Lemma 4.2,
we obtain distH2(s, t) ≤ (1 + κ2δ), implying that st is not added to E2, a contradiction.

Therefore, the total weight of the spanner after a single iteration is O(∥Elight∥ logα). After k

iterations, the total weight is O(log(k)(ϵ−O(d))) · ∥Elight∥ = O(log(k)(1/ϵ) + log(k−1)(d)) · ∥Elight∥.

5.3.4 Running Time

We first show that for each edge st, we can determine whether st is type-(i) or type-(ii) in constant
time.

Claim 5.10. For every edge st, determining whether st is type-(i) or type-(ii) can be done in ϵ−O(d)

time.

Proof. Let h be the approximate level of st. Consider the net Nh at level h. Recall that A′
s,t =⋃︁

w∈N(As,t)
B(w, rh), where N(As,t) is the set of net points w ∈ Nh such that B(w, rh) ∩ As,t ̸= ∅.

Then, to determine whether an edge is type-(i) or type-(ii), we find all the net point w ∈ Nh such
that B(w, rh) ∩ As,t ̸= ∅ or B(w, rh) ∩ Bs,t ̸= ∅. To find them, we first find the ancestor (s′, h)
of (s, 0). Then, observe that the ellipsoid Γs,t is in B(s′, 2∥st∥). By the packing bound, there are
ϵ−O(d) net points in B(s′, 2∥st∥). For each net point w, checking whether B(w, rh) ∩ As,t ̸= ∅ or
B(w, rh) ∩ Bs,t ̸= ∅ takes constant time. Thus, the total running time of determining the type of
an edge is ϵ−O(d).

The net-tree spanner G can be constructed in Oϵ,d(n log n) time [HPM06]. The first pruning
phase can be implemented in ϵ−O(d)n time as follows: Start with a spanner that has sparsity ϵ−O(d)

and lightness ϵ−O(d), for each edge xy in G with ∥xy∥ ≥ βi/25, we find all type-(i) edges st in Lj

such that ∥sx∥+ ∥xy∥+ ∥yt∥ ≤ (1 + 5ϵ)∥st∥. We compute |P ′
x,y| as follows: For each type-(i) edge

st, we find all edge x′y′ in G such that ∥x′y′∥ ≥ βj/25 and st ∈ P ′
x′,y′ . Let γ = log βj/25, and

observe that any cross edge x′y′ ∈ E(G) satisfying st ∈ P ′
x′,y′ can only belong to O(log ϵ−1) levels

of the net-tree, between levels γ − log ϵ−1 and γ + log ϵ−1. Furthermore, any of those cross edges
must have two endpoints in the ellipsoid with foci s and t and focal distance (1 + 5ϵ)∥st∥. By the
packing bound, for each level from γ − log ϵ−1 to γ + log ϵ−1, there are ϵ−O(d) net points inside
such an ellipsoid. Thus, the total number of edges we need to check is at most ϵ−O(d). The overall
running time of the first pruning phases over the entire algorithm is ϵ−O(d)n · log∗ (d/ϵ).

Then, we prove that the second pruning phase can be implemented in Oϵ,d(n log2 n) time.
Assume that we are at the i-th checking iteration. All intra-cluster and inter-cluster edges in
F ′
i are computed by running Dijkstra’s algorithm. For each cluster center v, we run Dijkstra’s

algorithm to find all shortest paths from v with length at most 2i. Let H ′
2,<i be the graph H2,<i

after contracting all edges of length at most 2iϵ2

n . For any two vertices u and v for which uv ∈ E(F ′
i ),

let w(u, v) be the weight of uv in F ′
i . Then, we bound the time required to compute those single

source shortest path trees. We show that each point belongs to at most ϵ−O(d) trees of maximum
distance O(2i).
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Lemma 5.2. Each point in F ′
i belongs to at most ϵ−O(d) single source shortest path trees.

Proof. Recall that E2,<i is the set of edges with weight within [1, 2i), E′
2,<i is the set of edges with

weight within [ ϵ
22i

n , 2i) and H2,<i = (X,E2,<i). For any vertex u ∈ V (H ′
2,<i), let M(u) be the set

of points in X that are contracted to u. For any point u, let N(u) be the set of cluster centers s
such that distH′

2,<i
(s, u) ≤ 2i. We prove that |N(u)| = ϵ−O(d) for every u ∈ V (H ′

2,<i).

Let s be an arbitrary vertex in N(u). We prove that for every u′ ∈ M(u) and s′ ∈ M(s),
distH′

2,<i
(s′, u′) ≤ 2i+1. Observe that there exist some u0 ∈ M(u) and s0 ∈ M(s) such that

distH2,<i(u0, v0) ≤ 2i. Furthermore, since the path from u′ to u0 has at most n contracted edges,

distH2,<i(u
′, u0) ≤ n · ϵ22in = ϵ22i. Similarly, distH2,<i(s

′, s0) ≤ ϵ22i. Thus, distH2,<i(u
′, s′) ≤ 2i +

2ϵ22i ≤ 2i+1. Since distH2,<i(u
′, s′) ≥ ∥u′s′∥, we have ∥u′s′∥ ≤ 2i+1.

We continue with bounding the distance between two points in N(u).

Claim 5.11. Let s1 and s2 be two arbitrary vertices in N(u). For any s′1 ∈M(s1) and s′2 ∈M(s2),

∥s′1s′2∥ ≥ ϵ2i

1+(κ+1)2δ
.

Proof. From our construction of clusters, we have distH2,<i(s
′
1, s

′
2) ≥ distH′

2,<i
(s1, s2) ≥ ϵ2i. Sup-

pose, to the contrary, that ∥s′1s′2∥ < ϵ2i

1+(κ+1)2δ
. By the stretch argument, we have distH2(s

′
1, s

′
2) ≤

ϵ2i

1+(κ+1)2δ
· (1 + (κ + 1)2δ) = ϵ2i. Hence, the shortest path from s′1 to s′2 contains only edges of

length at most ϵ2i, implying that distH2(s
′
1, s

′
2) = distH2,<i(s

′
1, s

′
2). Since the distance in the contract

graph H ′
2,i is dominated by the distance in H2,<i, we have distH′

2,<i
(s1, s2) ≤ distH2,<i(s

′
1, s

′
2) ≤ ϵ2i.

However, by our construction, distH′
2,<i

(s1, s2) > ϵ2i, a contradiction.

Let N(u) = {s1, s2, . . . , sl} and s′1, s
′
2, . . . , s

′
l be arbitrary vertices in M(s1),M(s2), . . . ,M(sl),

respectively. By Claim 5.11, ∥s′h1
s′h2
∥ ≥ ϵ2i

1+(κ+1)2δ
for any h1 ̸= h2. On the other hand, ∥ush∥ ≤ 2i+1

for any h ∈ [1, l]. Therefore, by the packing bound, we have

|N(u)| = l ≤
(︃

2i+1

ϵ2i/(1 + (κ+ 1)2δ)

)︃−O(d)

= ϵ−O(d).

This completes the proof of Lemma 5.2.

Lemma 5.2 implies that each edge is considered at most ϵ−O(d) times in the construction of
all single source shortest path trees. Since the running time of Dijkstra’s algorithm for a con-
nected graph of m edges is bounded by O(m logm), the total construction time of all graphs F ′

i is
ϵ−O(d)n log(n/ϵ2) log n = ϵ−O(d)n log2 n.

For each query st, we prove that the shortest path from s to t in F ′
i contains a constant number

of edges. Here, we abuse the notation of s and t for vertices in F ′
i .

Claim 5.12. For any two points s and t in X such that 2i ≤ ∥st∥ < 2i+1, if distF ′
i
(s, t) ≤

(1 + ϵ)(1 + κ2δ)∥st∥, then there exists a shortest path P ′
C from s to t in F ′

i comprising a constant
number of edges. Furthermore, only the first and the last edge in P ′

C are intra-cluster.

Proof. Let P ′
C = ⟨s = v1, v2, . . . vl = s⟩ be a shortest path from s to t in F ′

i with the least number
of intra-cluster edges. Observe that P ′

C contains at most 2 intra-cluster edges. Otherwise, if there
is an intra-cluster edge vhvh+1 such that 1 < h < l, then vh or vh+1 is not a cluster center. Assume
that vh+1 is not a cluster center. Hence, vh+1vh+2 is also an intra-cluster edge and vh+2 is a
cluster center. However, by our construction, there is an edge from vh to vh+2 with weight at
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most distH2,<i(vh, vh+2) ≤ distH2,<i(vh, vh+1) + distH2,<i(vh, vh+1) = w(vh, vh+1) + w(vh+1, vh+2).
Replacing vhvh+1 and vh+1vh+2 by vhvh+2 in P ′

C , we obtain another shortest path from s to t with
fewer intra-cluster edges, a contradiction.

Furthermore, the intra-cluster edges can only be v1v2 and/or vl−1vl. Consider the sub-path
Q = ⟨v2, v3, . . . vl−1⟩. We have w(vh, vh+1) + w(vh+1, vh+2) > 2i for any 1 ≤ h ≤ l − 3, since
otherwise there is an edge from vh to vh+2 by our construction. Then, we have:

∥Q∥ ≥
⌊l/2⌋−1∑︂
h=1

(︁
w(v2h, v2h+1) +w(v2h+1v2h+2)

)︁
≥ (⌊l/2⌋ − 1) · 2i.

On the other hand, since ∥P ′
C∥ ≤ (1+ϵ)(1+κ2δ)∥st∥ ≤ 8·2i, we get that (⌊l/2⌋−1)·2i ≤ ∥Q∥ ≤ 8·2i.

Thus, l ≤ 19.

For each vertex u, let Clusters(u) be the set of clusters containing u. From Claim 5.12, for

any edge st ∈ E
(i)
i , among all shortest paths from s to t in F ′

i , there exists a path P ′
C such that

all edges that are incident to neither s nor t in P ′
C are inter-cluster. For each pair (s, t), we only

need to check the shortest paths from the centers of all clusters in Clusters(s) to the center of all
clusters in Clusters(t) containing a constant number of inter-cluster edges. By the packing bound,
the total number of inter-cluster edges incident to a vertex is bounded by ϵ−O(d). Thus, the total
time complexity of checking each edge st is also ϵ−O(d).

To find a helper edge, we find two net points: one in N(As,t) and one in N(Bs,t). (Recall that
N(As,t) contains all net points w ∈ Nh such that B(w, ϵrh)∩As,t ̸= ∅ with h being the approximate
level of st.) Then, we add the edge between those net-points to E2. Since the number of net points
in N(As,t) (resp., N(Bs,t)) is ϵ

−O(d), one can find a helper edge in ϵ−O(d) time per edge.
Therefore, the total time complexity of a single run of the second pruning phase is ϵ−O(d)n log2 n.

This bound absorbs the time complexity of a single run of the first pruning phases. After summation
over all log∗ (d/ϵ) iterations, the construction time of our spanner is log∗ (d/ϵ) · ϵ−O(d)n log2 n =
ϵ−O(d)n log2 n.

6 Lower Bounds for the Greedy Spanner

In this section, we construct point sets in the plane for which the lightness and sparsity of the greedy
spanner far exceed the instance-optimal lightness and sparsity, respectively. In Section 6.1, we first
construct hard examples against the greedy (1+ ϵ)-spanner and (1+ 1.2 ϵ)-spanner (Theorem 6.1),
and then generalize the ideas to work against the greedy (1+xϵ)-spanner for all x, 1 ≤ x ≤ o(ϵ−1/3),
by refining both the design of the point set and the of the greedy algorithm (Theorem 1.1). Since
both the greedy and the sparsest spanner use edges of comparable weight, this construction already
establishes the same lower bound for lightness (Corollary 6.2). In Section 6.2, we lower bounds for
lightness with a stronger dependence on ϵ, and a weaker dependence on x: The points sets in these
constructions are uniformly distributed along a suitable circular arc (Theorems 1.2 and 6.2).

6.1 Sparsity Lower Bounds

We begin with lower bound construction in Euclidean plane against the greedy (1 + ϵ)-spanner.
The same construction also works well against the greedy (1 + xϵ)-spanner when 1 ≤ x ≤ 1.2.

Theorem 6.1. For every sufficiently small ϵ > 0, there exists a finite set S ⊂ R2 such that

|Egr| = |Egr(1.2)| ≥ Ω(ϵ−1/2) · |Espa|,
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where Egr is the edge set of the greedy (1+ϵ)-spanner, Egr(1.2) is the edge set of the greedy (1+1.2 ϵ)-
spanner, and Espa is the edge set of a sparsest (1 + ϵ)-spanner for S.

Proof. Let ϵ > 0 be given. We construct a point set S as follows; refer to Fig. 9. All points are in
an axis-aligned rectangle R of width 1 and height tanα, where α is determined by the equation

1

cosα
= 1 + ϵ. (13)

This means, in particular, that the diagonal of R is exactly 1+ ϵ.Using the Taylor estimate 1
cosx =

1 + x2

2 + O(x4), we obtain α =
√
2ϵ + O(ϵ). Using the Taylor estimate tanx = x + O(x3), this

implies that the height of R is tanα = Θ(α) = Θ(
√
ϵ).
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Figure 9: Lower bound construction for the sparsity of the greedy algorithm. Greedy adds all red
and blue edges, but it does not add any edges between c and the points in the left and right sides
of R. However, it adds all edges between A and B.

Now we can describe the point set S. Along the left and right edges of R, resp., place points
A = {a1, . . . , ak} and B = {b1, . . . , bk} such that a1 and b1 are the upper-left and upper-right corners
of R, the distance between any two points is at least 2ϵ, and diam(A) = diam(B) = tan(α/10).
The set S comprises A∪B and three additional points: the center c of R, and points p and q in the
interior of R such that p, c, q lie on a horizontal line and ∠ca1p = α and ∠cb1q = α. This completes
the description of S. Note that |S| = 2k + 3. We have k = Θ( tan(α/10)ϵ ) = Θ(α/ϵ) = Θ(ϵ−1/2),

consequently |S| = Θ(ϵ−1/2).

Optimal sparsity. We construct a (1+ϵ)-spanner H for S with Θ(|S|) edges (i.e., sparsity O(1)).
Let H contain the vertical paths ⟨a1, a2, . . . , ak⟩ and ⟨b1, b2, . . . , bk⟩, the horizontal path pc◦cq, and
all edges between {p, c, q} and A ∪ B. Clearly, H has Θ(|S|) edges. To show that H is a (1 + ϵ)-
spanner, consider a pair of points that are not adjacent in H. If both points are in A (or both are
in B), then they are on a vertical path in H. The point pair {p, q} is connected by the horizontal
path pc ◦ cq. It remains to consider the pairs {ai, bj} for ai ∈ A and bj ∈ B. We show that the
path aic ◦ cbj has weight at most (1 + ϵ)∥aibj∥. On one hand, A and B lie on two parallel lines at
distance 1 apart, hence ∥aibj∥ ≥ 1. On the other hand, ∥aic∥ ≤ ∥a1c∥ = 1

2 cosα = 1+ϵ
2 and similarly,

∥cbj∥ ≤ ∥cb1∥ = 1
2 cosα = 1+ϵ

2 . Consequently, ∥aic∥+ ∥bjc∥ ≤ ∥a1c∥+ ∥b1c∥ ≤ 1+ ϵ ≤ (1+ ϵ)∥aibj∥,
as required.

Greedy sparsity. Now let us consider the greedy algorithm on the point set S. The same
analysis works for the greedy (1 + ϵ)-spanner and the greedy (1 + 1.2 ϵ)-spanner (for short, the
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greedy spanner). First observe that the greedy spanner contains all edges of the vertical paths
⟨a1, a2, . . . , ak⟩ and ⟨b1, b2, . . . , bk⟩, and the horizontal path pc◦cq. It also contains all edges between
p and A, and all edges between q and B (since the distance between any two points in A and any
two points in B is at least 2ϵ). However, the greedy algorithm does not add any of the edges
between c and A∪B, because for every ai ∈ A, the path aip ◦ pc has weight less than (1 + ϵ)∥aic∥.
Indeed, both segments aip and cp make an angle at most α with aic. Combined with (13), this
already implies ∥aip∥+∥pc∥ ≤ (1+ ϵ)∥aic∥. Similarly for every bj ∈ B, the path bjq ◦ qc has weight
at most (1 + ϵ)∥bjc∥.

Finally, we show that the greedy algorithm will add all |A| · |B| = Ω(ϵ−1) edges between A and
B. On the one hand, for any ai ∈ A and any bj ∈ B, we have

∥aibj∥ ≤
1

cos(α/10)
= 1 +

α2

200
+O(α4) = 1 +

ϵ

100
+O(ϵ2). (14)

On the other hand, when the greedy algorithm considers adding edge aibj , the shortest aibj-path
in the current greedy spanner is aip ◦ pc ◦ cq ◦ qbj . For ai = a1 and b = b1, the length of this path is
(1 + ϵ)2 = 1 + 2ϵ+ ϵ2 > (1 + ϵ)∥a1b1∥. In general, for i, j ∈ {1, . . . , k}, the length of this aibj-path
is minimized for ai = ak and bj = bk, that is,

∥aip∥+ ∥pq∥+ ∥qbj∥ ≥ ∥akp∥+ ∥pq∥+ ∥qbk∥. (15)

By construction, ∆a1b1c, ∆a1cp, and ∆b1cq are isosceles triangles, and so ∥a1p∥ = ∥pc∥ =
∥cq∥ = ∥b1q∥. Due to the choice of α, we have ∥a1c∥+∥b1c∥ = 1+ϵ and ∥a1p∥+∥pc∥+∥cq∥+∥b1q∥ =
(1 + ϵ)2 = 1 + 2ϵ+ ϵ2. This implies ∥a1p∥ = ∥pc∥ = ∥cq∥ = ∥b1q∥ = 1

4 + ϵ
2 +O(ϵ2).

Note that a1p and akp have the same orthogonal projection to the x-axis, and so

∥a1p∥ cos(2α) = ∥akp∥ cos∠(−→pak,−→cp). (16)

Since ∥a1ak∥ ≤ tan α
10 < 1

8 · tanα for all sufficiently small ϵ > 0, then ∠(−→pak,−→cp) < 3α
2 . This,

combined with (16), the Taylor estimate cosx = 1− x2

2 +O(x4), and α =
√
2ϵ+O(ϵ), yields

∥akp∥ > ∥a1p∥
cos(2α)

cos(3α/2)

= ∥a1p∥
(︁
1− 2α2 +O(α4)

)︁(︃
1 +

9α2

8
+O(α4)

)︃
=

(︃
1

4
+

ϵ

2
+O(ϵ2)

)︃(︁
1− 4ϵ+O(ϵ2)

)︁(︃
1 +

9ϵ

4
ϵ+O(ϵ2)

)︃
=

1

4
+

ϵ

16
+O(ϵ2).

Overall, using (14) and (15), we obtain

∥aip∥+ ∥pq∥+ ∥qbj∥ ≥ ∥akp∥+ ∥pq∥+ ∥qbk∥
= 2∥akp∥+ 2∥pc∥

> 2

(︃
1

4
+

ϵ

16
+O(ϵ2)

)︃
+ 2

(︃
1

4
+

ϵ

2
+O(ϵ2)

)︃
= 1 +

5ϵ

4
+O(ϵ2)

> (1 + 1.2 ϵ)
(︁
1 + ϵ/100 +O(ϵ2)

)︁
≥ (1 + 1.2 ϵ)∥aibj∥
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for sufficiently small ϵ > 0. This shows that the greedy algorithm must add edge aibj for all ai ∈ A
and bj ∈ B. Consequently, the greedy (1+ ϵ)-spanner and the greedy (1+1.2 ϵ)-spanner both have
at least |A′| · |B′| = Ω(ϵ−1) edges.

The construction above implies a lower bound for the lightness ratio, as well. We obtain a
better bound in Section 6.2.

Corollary 6.1. For every sufficiently small ϵ > 0, there exists a finite set S ⊂ R2 such that

∥Egr∥ = ∥Egr(1.2)∥ ≥ Ω(ϵ−1/2) · ∥Elight∥,

where Egr is the edge set of the greedy (1+ϵ)-spanner, Egr(1.2) is the edge set of the greedy (1+1.2·ϵ)-
spanner, and Elight is the edge set of a minimum-weight spanner for S.

Proof. For ϵ > 0, consider the point set S constructed in the proof of Theorem 6.1. We have
shown that S admits a (1+ ϵ)-spanner H with O(ϵ−1/2) edges, each of weight O(1). Consequently,
∥Elight∥ ≤ ∥E(H)∥ = O(ϵ−1/2).

We have also shown that the greedy (1+ϵ)- and (1+1.2ϵ)-spanner each contain Ω(|S|2) = Ω(ϵ−1)
edges, each of weight Ω(1). Consequently, their total weight is Ω(ϵ−1), which is Ω(ϵ−1/2)∥Elight∥.

The lower bound construction generalizes to the case when the stretch is (1 + xϵ) for some
1 ≤ x ≤ o(ϵ−1/2), and we compare the sparsest (1 + ϵ)-spanner with the greedy (1 + xϵ)-spanner.

Theorem 1.1 (Sparsity lower bound for greedy). For every sufficiently small ϵ > 0 and 1 ≤ x ≤
o(ϵ−1/3), there exists a finite set S ⊂ R2 such that

|Egr(x)| ≥ Ω

(︄
ϵ−1/2

x3/2

)︄
· |Espa|,

where Egr(x) is the edge set of the greedy (1 + xϵ)-spanner, and Espa is the edge set of a sparsest
(1 + ϵ)-spanner for S.

Proof. Let ϵ > 0 and 1 ≤ x ≤ o(ϵ−1/3) be given. We construct a point set S as follows; refer to
Fig. 10. Let R be an axis-aligned rectangle R of width 1 and height tanα, where α is determined
by the equation

1

cosα
= 1 + ϵ. (17)

This means, in particular, that the diagonals of R have length precisely 1 + ϵ. Using the Taylor
estimate 1

cosx = 1 + x2

2 + O(x4), we obtain α =
√
2ϵ + O(ϵ). Using the Taylor estimate tanx =

x+O(x3), this implies that the height of R is tanα =
√
2ϵ+O(ϵ) = Θ(

√
ϵ).

Denote by a1 and b1 the upper-left and upper-right corners of R, respectively, and let c be the
center of R. Next, place points p and q below the segments a1c and b1c, resp., such that

∥a1p∥ = ∥pc∥ = ∥cq∥ = ∥qb1∥ =
1

2
(1 + xϵ)∥a1c∥ =

1

4
(1 + xϵ)(1 + ϵ) =

1

4

(︂
1 + (x+ 1)ϵ+O(ϵ2)

)︂
.

Note that ∆a1cp and ∆b1cq are isosceles triangles, where β := ∠ca1p = ∠pca1 = ∠b1cq = ∠qb1c
and β =

√
2xϵ+O(xϵ). Let Ra be the rectangle with one side a1c and the opposite side containing

p; and similarly let Rb be the rectangle with one side b1c and the opposite side containing q.
Now we can describe the point set S. Along the left side of Ra and the right side of Rb,

resp., place equally spaced points A = {a1, . . . , ak} and B = {b1, . . . , bk} such that the distance
between any two points is at least 2xϵ, and diam(A) = diam(B) = 1

20
√
x
tanα. Our point set is

S = A ∪B ∪ {c, p, q}. Note that |S| = 2k + 3. We have k = Θ( tanα√
x·xϵ) = Θ( α

x3/2ϵ
) = Θ(ϵ−1/2/x3/2),

consequently |S| = Θ(ϵ−1/2/x3/2).
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Figure 10: Lower bound construction for the sparsity of the (1 + xϵ)-greedy spanner. The locus of
all points p such that ∥a1p∥ + ∥pc∥ = (1 + xϵ)∥a1c∥ is an ellipse with foci a1 and c. The greedy
(1 + xϵ)-spanner contains all red and blue edges, as well as all edges between A and B.

Optimal sparsity. We construct a (1+ϵ)-spanner H for S with Θ(|S|) edges (i.e., sparsity O(1)).
Let H contain the paths ⟨a1, a2, . . . , ak⟩ and ⟨b1, b2, . . . , bk⟩, the edges of the triangle ∆cpq, and all
edges between {p, c, q} and A ∪B. Clearly, H has Θ(|S|) edges.

To show that H is a (1 + ϵ)-spanner, consider a pair of points that are not adjacent in H. Any
pair of points in A (resp., B), are connected by a path of collinear edges. Consider a point pair
{ai, bj}, where ai ∈ A and bj ∈ B. We show that the path aic◦cbj has weight at most (1+ ϵ)∥aibj∥.
This clearly holds for i = j = 1, where ∥a1c∥+ ∥cb1∥ = (1 + ϵ) = (1 + ϵ)∥a1b1∥ by the choice of α.
In particular, c ∈ E(a1, b1), where E(f1, f2) denotes the ellipse with foci f1 and f2 and great axis
(1 + ϵ)∥f1f2∥. For all i ∈ {1, . . . , k}, the segment aibi is horizontal and ∥aibi∥ ≥ ∥a1b1∥, therefore
E(ai, bi) is obtained from E(a1, b1) by a vertical translation and scaling; hence c ∈ E(ai, bi). Finally,
for all j ≥ i, we have ∥aibj∥ ≥ ∥aibi∥, and E(ai, bj) is obtained from E(ai, bj) by a rotation about
ai and scaling; and so c ∈ E(ai, bj). Overall, we have c ∈ E(ai, bj) for all i, j ∈ {1, . . . , k}, which
implies ∥aic∥+ ∥bjc∥ ≤ 1 + ϵ ≤ (1 + ϵ)∥aibj∥, as required.

Greedy sparsity. Now let us consider the greedy (1 + xϵ)-spanner Ggr(x) = (S,Egr(x)) on the
point set S. The greedy algorithm sorts the point pairs in S by weight: It adds all edges of the
paths (a1, . . . , ak) and (b1, . . . , bk) to Ggr(x). It then considers the edges between p and A (resp.,
q and B) by increasing weight: We claim that it adds all these edges to Ggr(x). By symmetry,
it is enough to show that if the greedy algorithm has already added aip for some 1 < i ≤ k/2,
then it also adds ai−1p. That is, ∥ai−1ai∥ + ∥aip∥ ≥ (1 + xϵ) ∥ai−1p∥. Since ∥ai−1ai∥ ≥ 2xϵ by
construction, then ai−1 lies outside of the ellipse with foci ai and p, and great axis (1 + xϵ)∥aip∥.
Thus the greedy spanner contains all edges between A and p, and between B and q.

Next, we show that the greedy algorithm does not add any edge between A and {c, q}. We
claim that for any point ai ∈ A, the paths aip ◦ pc and aip ◦ pc ◦ cq have stretch at most 1 + xϵ.
This clearly holds for the path a1p ◦ pc by the definition of p. An easy calculation shows that it
holds for all other point pairs in A × {c, q}. Symmetrically, the greedy (1 + xϵ)-spanner has no
edges between B and {p, c}.

Finally, the greedy algorithm considers pairs {ai, bj} for ai ∈ A and bj ∈ B sorted by weight.
We show that for all such pairs, we have ∥aip ◦ pc ◦ cq ◦ qbj∥ ≥ (1 + xϵ)∥aibj∥, and the greedy
algorithm must add the edge aibj to Ggr(x). This is clear for the pair {a1, b1}, where the definition
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of p and q gives

∥a1p ◦ pc ◦ cq ◦ qb1∥ = (1 + xϵ)(1 + ϵ) = 1 + (x+ 1)ϵ+O(xϵ2) > (1 + xϵ)∥a1b1∥. (18)

In general, consider an arbitrary point pair (ai, bj) ∈ A × B. The distance between ai and bj is
maximized for ai = ak and bj = bk, where

∥aibj∥ ≤ ∥akbk∥ = 1 + 2 · tanα
20
√
x
sinα ≤ 1 +

√
2ϵ

10
·
√
2ϵ+O(ϵ3/2) = 1 +

ϵ

5
+O(ϵ3/2).

We give a lower bound for ∥aip◦pc◦ cq ◦ qbj∥ using Equation (18) and the differences ∥a1p∥−∥aip∥
and ∥b1q∥ − ∥bkq∥. By symmetry and monotonicity, it is enough to give an upper bound for
∥a1p∥ − ∥akp∥. Let r denote the bottom-right vertex of Ra; see Figure 10. The Pythagorean
theorem for the right triangles ∆a1pr and ∆akpr, combined with the identity

√
y −
√
z = y−z√

y+
√
z
,

yields

∥a1p∥ − ∥akp∥ =
√︁
∥a1r∥2 + ∥pr∥2 −

√︁
∥akr∥2 + ∥pr∥2

=
∥a1r∥2 − ∥akr∥2√︁

∥a1r∥2 + ∥pr∥2 +
√︁
∥akr∥2 + ∥pr∥2

<
(∥a1ak∥+ ∥akr∥)2 − ∥akr∥2

∥a1p∥

=
∥a1ak∥2 + 2 · ∥a1ak∥ · ∥akr∥

∥a1p∥

<
2 · ∥a1ak∥ · ∥a1r∥

∥a1p∥

=
2 · tanα

20
√
x
· 14(1 + ϵ) tanβ

1
4(1 + ϵ)(1 + xϵ)

=
tanα · tanβ
10
√
x(1 + xϵ)

=
1

10
√
x

(︂√
2ϵ+O(ϵ)

)︂(︂√
2xϵ+O(xϵ)

)︂(︂
1− xϵ+O(x2ϵ2)

)︂
≤ ϵ

5
+O(ϵ3/2).

Overall, for all ai ∈ A and bj ∈ B, we have

∥aip ◦ pc ◦ cq ◦ qbj∥ ≥ ∥a1p ◦ pc ◦ cq ◦ qb1∥ −
(︂
∥a1p∥ − ∥aip∥

)︂
−
(︂
∥b1q∥ − ∥bjq∥

)︂
≥ ∥a1p ◦ pc ◦ cq ◦ qb1∥ − 2 ·

(︂
∥a1p∥ − ∥akp∥

)︂
≥
(︂
1 + (x+ 1)ϵ+O(xϵ2)

)︂
− 2 ·

(︂ ϵ
5
+O(ϵ3/2)

)︂
≥ 1 +

(︃
x+

3

5

)︃
ϵ+O(ϵ3/2)

> (1 + xϵ)
(︂
1 +

ϵ

5
+O(ϵ3/2)

)︂
≥ (1 + xϵ)∥aibj∥
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for all sufficiently small ϵ > 0 and x = o(ϵ−1/3). This shows that the greedy (1+xϵ)-spanner contains
edges aibj for all ai ∈ A and bj ∈ B. In particular, we have |Espa| = O(|S|) and |Egr(x)| = Ω(|S|2).
Consequently, |Egr(x)| ≥ Ω(|S|) · |Espa| ≥ Ω(ϵ−1/2/x3/2) · |Espa|.

The construction above has |S| = O(ϵ−1/2/x3/2) points. However, we can obtain arbitrarily
large point sets with the same property as a disjoint union of translated copies of the construction
above: Both Gspa and Ggr(x) would have only one extra edge per copy, so the bound |Egr(x)| ≥
Ω(ϵ−1/2/x3/2) · |Espa| carries over.

Corollary 6.2. For every sufficiently small ϵ > 0 and 1 ≤ x ≤ o(ϵ−1/3), there exists a finite set
S ⊂ R2 such that

∥Egr(x)∥ ≥ Ω

(︄
ϵ−1/2

x3/2

)︄
· ∥Elight∥,

where Egr(x) is the edge set of the greedy (1+xϵ)-spanner, and Elight is the edge set of a minimum-
weight (1 + ϵ)-spanner for S.

Proof. For ϵ > 0, consider the point set S constructed in the proof of Theorem 1.1. We have shown
that S admits a (1 + ϵ)-spanner H with O(|S|) = O(ϵ−1/2/x3/2) edges, each of weight O(1).

We have also shown that the greedy (1 + xϵ)-spanner has Ω(|S|2) edges, each of weight Ω(1).
Consequently, ∥Egr(x)∥/∥Elight∥ ≥ Ω(|S|) ≥ Ω(ϵ−1/2/x3/2).

6.2 Lightness Lower Bounds

Theorem 6.2. For every sufficiently small ϵ > 0, there exists a finite set S ⊂ R2 such that

∥Egr∥ ≥ ∥E′
gr∥ ≥ Ω(ϵ−1) · ∥Elight∥,

where Egr is the edge set of a greedy (1 + ϵ)-spanner, E′
gr is the edge set of the greedy (1 + 1.01 ϵ)-

spanner, and Elight is the edge set of a minimum-weight (1 + ϵ)-spanner for S.

Proof. Let ϵ > 0 be given. We construct a point set S as follows; refer to Fig. 11. The points in S
lie on a circular arc C, which is an arc of length α+β of a circle of radius 1 centered at the origin o,
for angles α < β to be specified later. For any s, t ∈ C, let C(s, t) denote the subarc of C between s
and t, and let arc(s, t) = ∥C(s, t)∥ denote the length of the circular arc C(s, t). First, we place four
points p1, . . . , p4 ∈ C such that arc(p1, p2) = α, arc(p2, p3) = β − α, and arc(p3, p4) = α. Now we
construct the point set S as follows: Place a large number of equally spaced points along C(p1, p2)
and C(p2, p3), and then populate C(p3, p4) with the rotated copy of the points in C(p1, p2). Note
that, by construction, S contains a large number of point pairs {s, t} ⊂ S with ∥st∥ = ∥p1p3∥.

Let P be the spanning path of S that connects pairs of consecutive points along the circle. For
s, t ∈ S, let P (s, t) denote the subpath of P between s and t. If the points in S are sufficiently
dense along C, the length of P (s, t) will be arbitrarily close to arc(s, t). In the remainder of this
proof, we assume that ∥P (s, t)∥ = ∥arc(s, t)∥+O(ϵ2) for all s, t ∈ S.

Using the Taylor estimates for sine and the bound arc(s, t) ≤ 2β = O(ϵ1/2), the difference
between arc(s, t) and the length of the line segment st is

∥P (s, t)∥ − ∥st∥ = arc(s, t)− 2 sin

(︃
1

2
arc(s, t)

)︃
+O(ϵ2) =

(arc(s, t))3

48
+O(ϵ2). (19)

To complete the construction, we specify α and β. We set α = β
10 and choose β such that

∥P (p1, p3)∥ > (1 + ϵ)∥p1p3∥, (20)
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Figure 11: Lower bound construction for the weight of the greedy algorithm.

but ∥P (s, t)∥ ≤ (1 + ϵ)∥st∥, for all s, t ∈ C with ∥P (s, t)∥ < ∥P (p1, p3)∥. Recall that ∥P (p1, p3)∥ =
arc(p1, p3) + O(ϵ2) = β + O(ϵ2). The line segment p1p3 has length ∥p1p3∥ = 2 sin β

2 . Using the

Taylor estimate x− x3

6 ≤ sinx ≤ x− x3

6 +O(x5), we have β(1− β2

48 ) ≤ ∥p1p3∥ ≤ β(1− β2

48 +O(β4)).

Now ∥P (p1, p3)∥ = (1 + ϵ)∥p1p3∥+O(ϵ2) is attained for ϵ = β2/48 + Θ(β4) or β =
√
48ϵ+Θ(ϵ).

Optimal weight. We show that the minimum weight of an (1 + ϵ)-spanner for S is ∥Elight∥ =
O(ϵ1/2). We claim that the graph H comprised of the path P and the edge p2p3 is a (1+ ϵ)-spanner
for S. Consequently, ∥Elight∥ ≤ ∥E(H)∥ = ∥P∥+ ∥p2p3∥ ≤ (α+ β) + (β − α) = 2β = O(ϵ1/2).

To prove the claim, note first that for any pair s, t ∈ S with ∥st∥ < ∥p1p3∥, the path P (s, t) ⊂ H
has weight at most (1 + ϵ)∥st∥ due to the choice of β (cf., Equation (20)). Consider now a pair
s, t ∈ S with ∥st∥ ≥ ∥p1p3∥. Then the points s and t lie in two distinct arcs C(p1, p2) and C(p3, p4).
We may assume w.l.o.g. that s ∈ C(p1, p2) and t ∈ C(p3, p4). Then H contains the st-path
P (s, p2) ◦ p2p3 ◦ P (p3, t). The weight of this st-path is bounded by:

∥P (s, p2) ◦ p2p3 ◦ P (p3, t)∥ ≤ arc(s, p2) + ∥p2p3∥+ arc(p3, t) +O(ϵ2)

≤
(︂
arc(s, p2) + arc(p2, p3) + arc(p3, t)

)︂
+
(︁
∥p2p3∥ − arc(p2, p3)

)︁
+O(ϵ2)

= arc(s, t) +
(︂
∥p2p3∥ − arc(p2, p3)

)︂
+O(ϵ2)

= ∥st∥+
(︂
arc(s, t)− ∥st∥

)︂
+
(︂
∥p2p3∥ − arc(p2, p3)

)︂
+O(ϵ2)

= ∥st∥+ (arc(s, t))3 − (arc(p2, p3))
3

48
+O(ϵ2)

≤ ∥st∥+ (arc(p1, p4))
3 − (arc(p2, p3))

3

48
+O(ϵ2)

= ∥st∥+ (α+ β)2 − (β − α)3

48
+ (ϵ2)

= ∥st∥+ (1.13 − 0.93)β3

48
+O(ϵ2)

< ∥st∥+ 0.7 · (
√
48ϵ+Θ(ϵ))3

48
+O(ϵ2)

= ∥st∥+ 0.7 ·
√
48ϵ · ϵ+O(ϵ2)

= ∥st∥+ 0.7 · β · ϵ+O(ϵ2)
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< ∥st∥+ 0.7 ·
(︃
∥p1p2∥+

β3

48
+O(ϵ2)

)︃
· ϵ+O(ϵ2)

=
(︂
1 + 0.7 · ϵ

)︂
∥st∥+O(ϵ2)

< (1 + ϵ)∥st∥, (21)

for a sufficiently small ϵ > 0. This confirms that H is a (1 + ϵ)-spanner for S, as claimed.

Greedy weight. We show that the greedy (1 + ϵ)-spanner and the greedy (1 + 1.01 ϵ)-spanner
for S both have weight Ω(ϵ−1/2). We argue about the greedy (1 + ϵ)-spanner (greedy spanner, for
short), but essentially the same argument holds for the greedy (1 + 1.01 ϵ)-spanner, as well. Let
Ggr = (S,Egr). The greedy algorithm adds the entire path P = P (p1, p4) to Ggr, and then considers
point pairs sorted by increasing weight. For all point pairs {s, t} ⊂ S with ∥st∥ < ∥p1p3∥, we have
∥P (s, t)∥ < (1 + ϵ)∥st∥, and so none of these edges is added to Ggr. By construction, S contains
a large number of point pairs {s, t} with ∥st∥ = ∥p1p3∥. We show that the greedy algorithm adds
Ω(α/ϵ) such pairs to Ggr.

Specifically, we claim that every circular arc of length 2ϵβ of C(p1, p2) contains an endpoint
of some edge of weight ∥p1p3∥ in Ggr. Suppose, for the sake of contradiction, that this is not the
case. Then there is a point pair {s, t} with ∥st∥ = ∥p1p3∥ such that Ggr does not contain any edge
of this weight whose endpoints are within arc distance ϵ β from s or t. This means that when the
greedy algorithm considers the point pair {s, t}, all st-paths have length more than (1 + ϵ)∥st∥:
The path P (s, t) has weight more than (1+ ϵ)∥st∥ due to (20). Furthermore, any st-path that goes
thought a previously added edge of weight ∥p1p3∥ must include subpaths of length at least ϵ β in
the neighborhood of s and t, resp., and so its total length is at least 2ϵβ + ∥p1p2∥ > (1 + ϵ)∥st∥.
Consequently, the greedy algorithm must add st to the spanner, which is a contradiction. This
completes the proof of the claim.

Since arc(p1, p2) = α, then Ggr contains Ω(α/(ϵβ)) = Ω(ϵ−1) edges of weight ∥p1p3∥ = Θ(β) =
Θ(ϵ1/2), and so the weight of the greedy spanner is ∥Egr∥ ≥ Ω(ϵ−1 · ϵ1/2) = Ω(ϵ−1/2).

The lower bound generalizes to the case where we relax the stretch to a+xϵ for 2 ≤ x ≤ O(ϵ−1/2),
and compare the lightest (1 + ϵ)-spanner with the greedy (1 + xϵ)-spanner.

Theorem 1.2 (Lightness lower bound for greedy). For every sufficiently small ϵ > 0 and x ∈
[2, ϵ−1/2/48], there exists a finite set S ⊂ R2 such that

∥Egr(x)∥ ≥ Ω

(︃
ϵ−1

x2 · log x

)︃
· ∥Elight∥,

where Egr(x) is the edge set of the greedy (1+xϵ)-spanner, and Elight is the edge set of a minimum-
weight (1 + ϵ)-spanner for S.

Proof. We use the point set in the proof of Theorem 6.2, with xϵ in place of ϵ. That is, S is a set of
points on a circular arc of radius 1 and angle αx+ βx, where αx = βx/10 and βx =

√
48xϵ+O(xϵ).

In the proof of Theorem 6.2, we saw that ∥Ggr(x)∥ = Ω((xϵ)−1/2).

Optimal weight. We show that S admits a (1 + ϵ)-spanner of weight O(ϵ1/2 · x2 log x). Specif-
ically, we construct a graph H on S that comprises the path P and a set of chords. For i =
−2,−1, 0, 1, . . . , 2 ⌈10x log

√
x⌉, we augment H with a maximal collection of chords, each of length√

48ϵ ·
(︁
1 + 1

10x

)︁i/2
, such that the arc distance between the left endpoints of any two chords is

1
20 ·
√
48ϵ ·

(︁
1 + 1

10x

)︁i
.
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We claim that H is a (1 + ϵ)-spanner for S. Consider a point pair s, t ∈ S. If arc(s, t) ≤
√
48ϵ,

then ∥P (s, t)∥ ≤ (1 + ϵ)∥st∥. Otherwise, there exists a chord ab ∈ H such that a, b ∈ C(s, t) and(︃
1 +

1

10x

)︃−1

arc(s, t) ≤ arc(a, b) ≤
(︃
1 +

1

10x

)︃−1/2

arc(s, t).

Equation (21) now shows (substituting βx =
√
48xϵ + O(xϵ) instead of β =

√
48ϵ + O(ϵ)) that

∥P (sa)∥+ ∥ab∥+ ∥P (bt)∥ ≤ (1 + ϵ)∥st∥.
It remains to bound the weight of H. The weight of the path P is ∥P∥ = O(β) = O(

√
xϵ). For

every i ∈ {−2,−1, . . . , 2 ⌈10x log
√
x⌉}, the total weight of the chords of length

√
48ϵ ·

(︁
1 + 1

10x

)︁i
is

O(20 · βx) = O(
√
xϵ). Consequently, ∥E(H)∥ = O(

√
xϵ · x log x) = O(ϵ1/2 · x3/2 log x).
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