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Abstract

We study spanners in planar domains, including polygonal domains, polyhedral terrain, and planar metrics.
Previous work showed that for any constant ε ∈ (0, 1), one could construct a (2 + ε)-spanner with O(n log(n))
edges (SICOMP 2019), and there is a lower bound of Ω(n2) edges for any (2−ε)-spanner (SoCG 2015). The main
open question is whether a linear number of edges suffices and the stretch can be reduced to 2. We resolve this
problem by showing that for stretch 2, one needs Ω(n logn) edges, and for stretch 2 + ε for any fixed ε ∈ (0, 1),
O(n) edges are sufficient. Our lower bound is the first super-linear lower bound for stretch 2.

En route to achieve our result, we introduce the problem of constructing non-Steiner tree covers for metrics,
which is a natural variant of the well-known Steiner point removal problem for trees (SODA 2001). Given a tree
and a set of terminals in the tree, our goal is to construct a collection of a small number of dominating trees
such that for every two points, at least one tree in the collection preserves their distance within a small stretch
factor. Here, we identify an unexpected threshold phenomenon around 2 where a sharp transition from n trees
to Θ(logn) trees and then to O(1) trees happens. Specifically, (i) for stretch 2 − ε, one needs Ω(n) trees; (ii) for
stretch 2, Θ(logn) tree is necessary and sufficient; and (iii) for stretch 2 + ε, a constant number of trees suffice.
Furthermore, our lower bound technique for the non-Steiner tree covers of stretch 2 has further applications
in proving lower bounds for two related constructions in tree metrics: reliable spanners and locality-sensitive
orderings. Our lower bound for locality-sensitive orderings matches the best upper bound (STOC 2022).

Finally, we study (1 + ε)-spanners in planar domains using Steiner points. In planar domains, Steiner points
are necessary to obtain a stretch arbitrarily close to 1. Here, we construct a (1 + ε)-spanner with an almost linear
dependency on ε in the number of edges; the precise bound is O((n/ε) · log(ε−1α(n)) · log ε−1) edges, where
α(n) is the inverse Ackermann function. Our result generalizes to graphs of bounded genus. For n points in a
polyhedral metric, we construct a Steiner (1 + ε)-spanner with O((n/ε) · log(ε−1α(n)) · log ε−1) edges.

1 Introduction
Let M = (X, δX) be a metric space and P ⊆ X be a set of n points in M. A t-spanner of P is an edge-weighted
graph G = (P,E,w) such that every edge (p, q) ∈ E has a weight w(p, q) = δX(p, q) and for every two points
x, y ∈ P , δG(x, y) ≤ t · δX(x, y). Here δG(x, y) denotes the shortest path distance between x and y in G. The
parameter t is called the stretch of the spanner G. One of the most well-studied class of spanners are Euclidean
spanners, where M is an Euclidean space. The pioneering work of Chew [32, 33] showed that in the Euclidean
plane R2, one can construct a spanner with O(n) edges and O(1) stretch. Over more than three decades, this
result has been refined, improved, and extended in various ways. Most notably, for any ε ∈ (0, 1), one can
construct a spanner with O(n/ε) edges and stretch 1 + ε for point sets in the Euclidean plane [35, 53], and the
number of edges is tight [60]. In higher dimensions d, one could obtain a similar bound: The number of edges is
O(n/εd−1) [65, 6], which is also tight [60].
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Planar Domains. While spanners for points on the Euclidean plane are well understood, in many practical
applications, the domain is planar but not Euclidean. One basic example is the polygonal domain routing in
robotics. Here, the metric space M contains points in a polygon—for example, the floor of a room—and there
are (polygonal) obstacles inside the polygon—representing furniture inside the room—called holes. The distance
between two points is measured by the shortest path avoiding the obstacles; see Figure 1(a). Another important
setting is polyhedral terrain. A polyhedral terrain is the graph of a piece-wise linear function f : D → R for some
convex polygonal region D ⊆ R2; see Figure 1(b). Polyhedral terrains are central in GIS (geographic information
system) to model the surfaces of mountains [49]. Abam, de Berg, and Seraji [2] noted that polyhedral terrain
generalizes polygonal domain. It is relatively easy to show that in both settings, achieving a (2− ε)-spanner for
any fixed ε ∈ (0, 1) requires Ω(n2) edges; see [1, Theorem 3]. The main problem is to construct a spanner with
stretch 2 or 2 + ε and a linear number of edges.
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Figure 1: (a) A polygon with holes, blue terminals, and a shortest path between terminals x and y. (b) A
polyhedral terrain and a shortest path between two points x and y.

Abam, Adeli, Homapour, and Asadollahpoor [1] constructed a (5 + ε)-spanner for any n-point set in a
polygonal domain of h holes with O(n

√
h log2(n)) edges for any fixed ε ∈ (0, 1). The number of edges depends

on h, which could be as large as n, and furthermore, there is still a gap in the stretch. Their results were
significantly generalized and improved by Abam, de Berg, and Seraji [2]. They constructed1 a (2 + ε)-spanner
with O(c(ε) · n log n) edges, where c(ε) = (1 + 2/ε)O(log(1/ε)). Note that the dependence on ε is quasi-polynomial.

The number of edges of the spanners in both generalized settings [1, 2] remains Ω(n log n) for a constant
ε > 0, while the number of edges of the spanner in the basic Euclidean setting is O(n). This log(n) factor gap
is due to a fundamental difference in the techniques. The spanner constructions in polygonal domains and
polyhedral terrains are based on divide-and-conquer strategy in which O(n) edges will be added in each level of
the recursion, resulting in O(n log n) edges since the recursion depth is O(log n). On the other hand, in Euclidean
spaces, spanner constructions are often non-recursive and directly exploit Euclidean geometry, which is not
available in generalized settings.

QUESTION 1.1. Can we construct a spanner of stretch 2 or 2 + ε for any fixed ε ∈ (0, 1) with O(n) edges? Could the
dependence on ε, if necessary, be reduced to be polynomial?

Both positive and negative answers to Question 1.1 require techniques that are different from those in [1, 2].
First, for stretch 2, we prove an Ω(n log n) lower bound on the number of edges. This is the first super-linear
lower bound for stretch 2. This lower bound suggests that the number of edges for stretch 2 + ε could be super-
linear. Our second result shows that this is not the case: We construct a (2 + ε)-spanner with O(n) edges for

1There was a technical issue in the proof of Abam, de Berg, and Seraji [2], which was recently fixed by de Berg, van Kreveld, and
Staals [16].
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any constant ε ∈ (0, 1), thus completely answering Question 1.1. Our results are summarized in the following
theorem.2

THEOREM 1.2. Let ε ∈ (0, 1) be a parameter.

1. There exists a polyhedral terrain and a set P of n points on the terrain such that any 2-spanner for P must have
Ω(n log n) edges.

2. Given any set P of n points in a polyhedral terrain, we can construct a (2 + ε)-spanner for P with Õ(n/ε6) edges.
The number of edges is O(n) for constant ε.

Our technique for proving Theorem 1.2 builds on a connection to what we call a non-Steiner tree cover for
trees, which will be formally defined in Section 1.1. There, we identify a rather surprising threshold phenomenon
around stretch 2; see Theorem 1.5. The lower bound (item 1) in Theorem 1.2 will be given in Section 5.2 and the
upper bound (item 2) construction will be given in Section 4.

Steiner Spanners. A complementary direction is to study how Steiner points could help constructing
spanners in planar domains. Here, Steiner points are points not in the input point set but in the ambient space.
In R2 (and generally in Rd for any d ≥ 2), Le and Solomon [60] showed that Steiner points could quadratically
reduce the dependence of the number of edges of the spanner on 1/ε, from O(n/ε) for non-Steiner spanners
to O(n/

√
ε) for Steiner spanners. Interestingly, the bound O(n/

√
ε) is tight [18, 60]. Here, we show that for a

polyhedral terrain, Steiner points could help in two different ways: They can reduce the stretch from 2 + ε to
1 + ε; and also reduce the dependence on ε. We observe that the construction in [2] could be used to construct a
Steiner (1+ε)-spanner with O(n log(n)/ε2) edges. Using a completely different technique, we almost remove the
log(n) factor and reduce the dependence on 1/ε to near linear, which we believe is optimal; see more discussion
below.

THEOREM 1.3. Let ε ∈ (0, 1) be a parameter. Let P be a set of n points in a polyhedral terrain. We can construct a Steiner
(1 + ε)-spanner for P with O

(︁
(n/ε) · log(ε−1α(n)) · log ε−1

)︁
edges, where α(n) is the inverse Ackermann function. The

same result holds even when P is on a polyhedral surface of bounded genus.

The proof of Theorem 1.3 will be given in Section 5. The high-level idea will be given below.

1.1 Key Techniques

1.1.1 Non-Steiner Spanners: Proof of Theorem 1.2 We now describe our technique for constructing (2 + ε)-
spanners. As alluded to above, improving upon the previous O(n log n) bound on the number of edges of a
(2 + ε)-spanner requires a novel technique. Our starting point is to understand tree metrics. It is not so hard
to see that tree metrics are a special case of polygonal domains. In this case, we are given a tree T and a subset
P of n vertices of V (T ), and we want to construct a sparse structure on P preserving distances between points
in P . Here, we introduce a new notion of a sparse structure, called non-Steiner tree cover for tree metrics;
the non-Steiner terminology is used to emphasize that the cover does not use Steiner vertices, those that are in
V (T )\P . Tree covers are a powerful tool that was instrumental for constructing spanners and distance oracles in
various metric spaces (such as low-dimensional Euclidean spaces, doubling spaces, planar metrics, and minor-
free graphs); see [9, 10, 13, 14, 27, 28, 42, 46, 51].

Non-Steiner Tree Covers for Trees. In this problem, we are given an edge-weighted tree T = (VT , ET , ωT ),
and a set of terminals K ⊆ VT . We say that a collection T = {T1, T2, . . . , Tβ} of β edge-weighted trees is an
(α, β)-non-Steiner tree cover if the following hold:

1. Steiner free. For every i ∈ [β], V (Ti) = K.

2. Dominating. For every i ∈ [β], dTi
(x, y) ≥ dT (x, y) for every pair of vertices x, y ∈ K.

3. Low stretch. mini∈[β] dTi(x, y) ≤ α · dT (x, y) for every pair of vertices x, y ∈ K.

2The Õ(.) notation hides logarithmic factors in 1/ε.
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Parameter α is called the stretch of the cover T , and parameter β is called the size of the cover T .
Our goal is to construct a non-Steiner tree cover with small stretch and size. As we will see later, the size-

stretch trade-off for the non-Steiner tree cover of tree metrics is central to our construction of spanners in planar
domains. While the weight of an edge e = (x, y) in a tree in the non-Steiner tree cover can be theoretically
different from dT (x, y), it is always better to set the weight w(e) = dT (x, y) since doing so will improve the
stretch while preserving all the properties of a non-Steiner tree cover.

The special case of only having exactly one tree in the tree cover is the well-known Steiner Point Removal (SPR)
problem for tree metrics, introduced by Gupta [47]. Gupta achieved stretch at most 8. This result has applications
in metric embedding [31, 40] and metric labeling [7]. Gupta also gave a stretch lower bound of 4 − o(1). This
lower bound was subsequently improved to 8− o(1) [25], matching the upper bound by Gupta [47].

Given that stretch 8 is the best possible for one tree, we ask if we could reduce the stretch by using more
than one tree. And more generally:

QUESTION 1.4. What is the precise trade-off between the number of trees and the stretch?

Our next result gives a complete answer to Question 1.4.

THEOREM 1.5. Let α ≥ 1 be a stretch parameter, and ε ∈ (0, 1) be any given constant. Let T be an edge-weighted tree
and K ⊆ V (T ) any set of terminals.

1. If α = 2 + ε, then O(1) trees suffice: we can construct a non-Steiner tree cover for K of size O(1) and stretch 2 + ε.
The number of trees is O(ε−2 log(ε−1)).

2. If α = 2, then O(log n) trees suffice. Furthermore, Ω(log n) trees are necessary: there exists a tree and a terminal set
such that any tree cover with stretch 2 for the terminals must have Ω(log n) trees.

3. If α = 2− ε, then Θ(n) trees are both necessary and sufficient.

Here, we also see the threshold phenomenon around stretch 2: (i) for α = 2− ε, one needs Ω(n) trees, (ii) for
α = 2, Θ(log n) trees are necessary and sufficient, and (iii) for α = 2 + ε, a constant number of trees suffice. We
note that both the lower bound and upper bound construction for the third case in Theorem 1.5 are very simple.
The upper bound is obtained by constructing a single star for each terminal to preserve the distances from the
terminal to other terminals. The lower bound is realized by the star graph with terminals being the leaves; this
example was also considered by Gupta [47]. The upper bound proofs in Theorem 1.5 will be given in Section 2,
and the lower bound of Ω(log n) trees will be given in Section 5.1.

Next, we discuss the connection between non-Steiner tree cover and spanners in planar domains.
Spanners in Planar Domains. Let M1 and M2 be two families of metric spaces. We say that M1 ⊑ M2 if for

every metric space M1 ∈ M1 (which could be infinite) and any finite point set P ∈ M1, there exists a metric
space M2 ∈ M2 such that P embeds isometrically into M2. That is, there exists a point set Q ∈ M2 and a
bijection f : P → Q such that δ1(x, y) = δ2(f(x), f(y)) for every point pair x, y ∈ P . Here δ1 and δ2 are the
distance functions of M1 and M2, respectively. If M1 ⊑ M2 and M2 ⊑ M1, we write that M1

∼= M2. If M1 ⊑ M2

and M2 ̸⊑ M1, then we write M1 ⊏ M2.
Let TREE, PLANAR, POLYDOM, TERRAIN, and POLYSURF be the family of shortest-path metrics in edge-

weighted trees, edge-weighted planar graphs, polygonal domains, polyhedral terrains, and polyhedral surfaces,
respectively. We observe that:

LEMMA 1.6. TREE ⊏ PLANAR ∼= POLYDOM ∼= TERRAIN ⊏ POLYSURF.

Thus, three families of metrics, namely planar metrics, polygonal domains, and polyhedral terrains, are
equivalent, and they all strictly contain tree metrics. Abam, de Berg, and Seraji [2] showed that POLYDOM ⊑
TERRAIN by controlling the elevation of polyhedral terrains. We can show that TERRAIN ⊑ PLANAR by looking
at the arrangements of the geodesic paths in a polyhedral terrain. Finally, we show that PLANAR ⊑ POLYDOM
by using polygonal holes to “fill in” the faces of a planar-embedded graph, thereby proving Lemma 1.6; see
Section 4 for details. Note, however, that planar metrics need not embed in Euclidean spaces (without obstacles);
see [15, 63, 64].
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By Lemma 1.6, we could work with planar metrics instead of polyhedral terrains: given a set of n terminal
points in a planar metric, construct a spanner containing the terminals only. (The planar metric might contain
more points than the terminal points.) Specifically, we will use a recent (Steiner) tree cover developed by [27].
A Steiner tree cover3 of a metric M = (X, δX) is a collection of trees T such that for every tree T ∈ T we have
X ⊆ V (T ), and δX(x, y) ≤ dT (x, y) for every two points x, y ∈ X . The size of the tree cover T is the number
of trees in T and the stretch is at most α if dT (x, y)) ≤ α · δX(x, y) for some T ∈ T . Note that by definition, X
could be a strict subset of V (T ), and the points in V (T ) \ X are called Steiner points. In all existing tree cover
constructions, Steiner points are copies of the points in X . A different way to think about this is that a point p in
X could appear multiple times in T , and we only keep one copy of p in T as the image of p, and regard other
copies as Steiner points.

THEOREM 1.7. (THEOREM 1.2 IN [27]) Let G = (V,E,w) be an edge-weighted planar graph and ε ∈ (0, 1) be any
given parameter. We can construct a Steiner tree cover T for the shortest path metric of G such that (a) T has stretch 1+ ε
and (b) T has Õ(ε−3) trees. Furthermore, Steiner points of every tree in T are copies of points in X .

Theorem 1.7 allows us to use non-Steiner tree covers developed in Theorem 1.5 to construct a spanner for
points in planar metrics, and hence polyhedral terrain by Lemma 1.6. It is worth noting that our spanner is much
more structured than simply having a small number of edges: it is the union of a small number of distance-
preserving non-Steiner trees.

Ironically, looking at our series of constructions as a whole, one can see that we first construct a spanner for
a point set in a planar domain by adding more Steiner points (Theorem 1.7) and then removing all Steiner points
in the final step (Theorem 1.5).

We prove a lower bound (item 1 of Theorem 1.2) for tree metrics in Section 5; Lemma 1.6 implies that the
same lower bound holds for polyhedral terrains. Indeed, our lower bound applies to the comb graphs, with
terminals being the leaves. Here, we establish a connection between non-Steiner spanners for terminals in the
comb graphs and low-hop spanners for points in the line metric. Then, we can slightly adapt the lower bound
technique for points in the line metric in [58] to achieve our result.

Steiner Spanners: Proof of Theorem 1.3. Here, we use Lemma 1.6 again by constructing a Steiner spanner
for a set of terminals in a planar metric. For obtaining a linear number of edges at the cost of a polynomial factor
in 1/ε, Theorem 1.7 suffices: we simply union all the trees in the Steiner tree cover. However, to reduce the
dependency on 1/ε to nearly linear (cf. Theorem 1.3), we resort to more advanced tools, including net trees in
planar metrics [61], reduction to additive stretch [61, 27], and tree shortcutting [34, 30, 5, 67, 43]. The basic idea
is a reduction to constructing a spanner with additive distortion using the net-tree-based spanner technique. We
then apply shortest path separators [62, 68] and tree shortcutting to construct an additive spanner with an almost
linear dependency on 1/ε.

We believe that the linear dependency on 1/ε is optimal. For more restricted types of distance-preserving
structures, such as minor-free [57] or aligned planar structures [29]4, the number of edges was shown to be
Ω(n/ε) where n is the number of points.

1.2 Other Applications Here, we present two more applications of our technique for proving lower bound
Ω(log n) on the number of trees with stretch 2 in Theorem 1.5. All results claimed here are proven in Section 5.

Reliable Spanners. In this problem, we are given a metric space M = (X, δX) and a set P ⊆ X of n points,
a t-spanner G of P is (deterministic) ν-reliable for a parameter ν ∈ (0, 1) if for any subset B ⊆ P , there exists a
set B+ ⊇ B of size |B+| ≤ (1 + ν) |B| such that G[P \ B] is a t-spanner of all the points in P \ B+. That is, for
every x, y ∈ P \ B+, δG[P\B](x, y) ≤ t · δX(x, y). Informally, the spanner is reliable if whenever the vertices in a
set (B) fail, then it only affects a few other vertices (B+ \ B). We say that G is an oblivious ν-reliable spanner if
G is drawn from a distribution D and EG∼D[|B+|] ≤ (1 + ν)|B|.

Deterministic reliable spanners were introduced by Bose, Dujmović, Morin, and Smid [21] for point sets in
Euclidean spaces. Their results were improved greatly by Buchin, Har-Peled, and Oláh [22], who constructed a
deterministic ν-reliable (1+ε)-spanner of O

(︁
n(log n)(log log n)6

)︁
edges for point sets in Rd for constants ε, d and

3Prior work did not include the prefix “Steiner” in the Steiner tree cover terminology, since Steiner points are not their focus. Here we
clearly distinguish between Steiner and non-Steiner versions of tree covers.

4Refer to page 9 in the arXiv version of [29] for the exact definition of an aligned planar structure.
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ν. This almost matches the lower bound Ω(n log n) for d = 1 by [21]. In a follow-up work [23], the same authors
constructed an oblivious ν-reliable (1+ε)-spanner with O(n(log log n)) edges using locality sensitive orderings [26],
bypassing the Ω(n log n) lower bound for deterministic reliable spanners.

Har-Peled, Mendel, and Oláh [48] studied reliable spanners for metric spaces. One basic problem is to
construct reliable t-spanners for tree metrics. Specifically, for constants ν and ε, they constructed oblivious ν-
reliable spanners with stretch 3 + ε and O(n log2 n log2 Φ log(log(Φ) log(n))) edges where Φ is the aspect ratio of
the metric. Note that there exists a tree metric such that any oblivious reliable spanner with stretch 2− ε for any
constant ε ∈ (0, 1) must have Ω(n2) edges [42]. Filtser and Le [42] reduced the stretch to 2 (which is optimal) and
the number of edges to O

(︁
n log5(n)

)︁
by developing a variant of locality-sensitive orderings for tree metrics. The

main open problem is how many edges are necessary and sufficient for stretch 2. It is conceivable that, similar to
the Euclidean case, O(n(log log n)) edges suffice for tree metrics, given that the techniques in these settings are
quite similar. Here, we show that this is not the case by proving an Ω(n log n) lower bound for the number of
edges using the technique developed for Theorem 1.5. Our result separates Euclidean metrics from tree metrics.

THEOREM 1.8. There exists a tree metric T with n points such that any oblivious 1
3 -reliable 2-spanner for V (T ) must

have Ω(n log n) edges.

Locality Sensitive Ordering. Chan, Har-Peled, and Jones [26] introduced the notion of locality-sensitive
ordering (LSO) and showed that for any point set in Rd, one can construct a locality-sensitive ordering,
comprised of O(1) orderings for constant dimension d and stretch parameter ε ∈ (0, 1). Their LSO has many
surprising algorithmic applications, including dynamic spanners, dynamic approximate minimum spanning
trees, dynamic bichromatic closest pairs, approximate nearest neighbors [26], and reliable spanners [23].
However, for tree metrics, their notion of LSO is too strong: one needs Ω(n) orderings in an LSO for any fixed
ε ∈ (0, 1

2 ). Filtser and Le [42] introduced a more relaxed version of LSO tailored specifically for tree metrics,
called left-sided LSO. As defined in [42], a (τ, ρ)-left-sided LSO for a tree metric T of n points is a collection Σ of
linear orderings over subsets of V (T ) such that (i) every point x in T belongs to at most τ linear orderings, and (ii)
for any two points x, y ∈ T , there exists an ordering σ ∈ Σ with the following property: for any x′ ⪯σ x and
y′ ⪯σ y, δT (x′, y′) ≤ ρδT (x, y). That is, the distance between any two points to the left of x and y in σ is at most
ρ · δT (x, y). Parameter τ is the size of the ordering Σ and ρ is the stretch. Filtser and Le [42] showed that tree
metrics admit a left-sided LSO with O(log n) size and stretch ρ = 1. A question raised by their work is: Could
the size of the ordering be reduced to O(1)? We answer this question negatively by showing that O(log n) size is
indeed the best possible. We do so by using the technique developed in the proof of Theorem 1.5.

THEOREM 1.9. There exists a tree metric T with n points such that any (τ, ρ)-left-sided LSO for T with ρ = 1 must have
τ = Ω(log n), matching the O(log n) upper bound by Filtser and Le [42].

1.3 Further Related Work Steiner spanners were studied for point sets in Euclidean plane with obstacles [8],
which determines the same metric as a polygonal domain. In this setting, however, the vertices of the polygonal
obstacles belong to the point set. Arikati et al. [8] constructed a planar Steiner t-spanner for L1 distance with stretch
t = 1 + ε and O(n/ε2) edges; and for Lp distance with stretch t = 2(p−1)/p + ε and Oε(n) edges, where the
Oε(.) notation hides the dependence on ε, which was not explicitly computed in [8]. Specifically for Euclidean
distance, the stretch is

√
2 + ε. Our spanner in Theorem 1.3 has stretch 1 + ε and almost linear dependence on

1/ε; furthermore, the number of edges of our spanner does not depend on the number of vertices of the obstacles.
Kapoor and Li [52] constructed a Steiner (1 + ε)-spanner for points in a polyhedral surface P , which is a

higher-genus generalization of polyhedral terrains (cf. Lemma 1.6). Their spanner has O(γ(P)n/ε) edges, where
γ(P) is the geodesic dilation factor of the surface P , which measures how nice P is. In the worst case, γ(P) could
be up to Θ(n), and hence the spanner has a trivial O(n2) edges. Our spanner in Theorem 1.3 has linearly many
edges regardless of γ(P).

Another related direction is to study the complexity of geodesic spanners in planar and polyhedral domains.
An edge in our spanner might be realized by a geodesic path of up to Ω(n) edges in the input domain. For
example, in a polygonal domain, an edge (u, v) in our spanner could only be realized by a geodesic obstacle-
avoiding path of many straight-line edges in the domain. The total number of edges in the input domain to
“realize” our spanners is called the complexity of the spanners. This question has recently been studied in
depth for both non-Steiner spanners [16] and the Steiner version [17]. The main finding is that, for any k ≥ 1, a
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(2k + ε)-spanner for n points in a simple polygon with m vertices has complexity O(mn1/k + n log2 n) [16], and
that Steiner points do not help reducing the complexity by much [17].

Organization. We establish upper bounds for the sharp threshold phenomenon around stretch α = 2 for
non-Steiner tree covers (Theorem 1.5) in Section 2. We continue with constructing a Steiner (1 + ε)-spanner
for a set of terminals in a planar graph (Theorem 3.1) in Section 3; and sketch a generalization to polyhedral
surfaces of bounded genus (Theorem 3.14). Equipped with these technical tools, we can construct 2- and
(1 + ε)-spanners for planar domains (Theorem 1.2 and Theorem 1.3) in Section 4. We conclude in Section 5
with lower bound constructions: for tree covers (item 1 in Theorem 1.5), for spanners in polyhedral domains
(item 1 in Theorem 1.2), and for applications in locally-sensitive orderings (Theorem 1.9) and reliable spanners
(Theorem 1.8).

2 Non-Steiner Tree Cover for Trees
In this section, we prove Theorem 1.5, which we restate below.

THEOREM 1.5. Let α ≥ 1 be a stretch parameter, and ε ∈ (0, 1) be any given constant. Let T be an edge-weighted tree
and K ⊆ V (T ) any set of terminals.

1. If α = 2 + ε, then O(1) trees suffice: we can construct a non-Steiner tree cover for K of size O(1) and stretch 2 + ε.
The number of trees is O(ε−2 log(ε−1)).

2. If α = 2, then O(log n) trees suffice. Furthermore, Ω(log n) trees are necessary: there exists a tree and a terminal set
such that any tree cover with stretch 2 for the terminals must have Ω(log n) trees.

3. If α = 2− ε, then Θ(n) trees are both necessary and sufficient.

By scaling, we may assume that the minimum distance between any two vertices of T is at least 8 and the
maximum distance between any two vertices (i.e., the diameter) is at most ∆ for an integer ∆. (The distance
lower bound of 8 is somewhat arbitrary; any sufficiently large constant works.)

We view the edge-weighted tree T = (VT , ET , wT ) as a continuous tree by viewing each edge (u, v) as a
continuous line segment (i.e., a geometric realization of a 1D cell complex). We still use vertices to refer to the
vertices of the discrete tree T . The distances between points corresponding to vertices of T are the distances
in the tree, and the distance between any two points in the same line segment of an edge is the length of the
sub-segment of the edge connecting the two points. We could naturally extend the distance function to measure
the distance between any two points p1, p2 ∈ T as follows: let (ui, vi) be the edge containing pi for i = 1, 2; we
assign

(2.1) dT (p1, p2) = min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dT (p1, u1) + dT (u1, u2) + dT (u2, p2),

dT (p1, u1) + dT (u1, v2) + dT (v2, p2),

dT (p1, v1) + dT (v1, v2) + dT (v2, p2),

dT (p1, v1) + dT (v1, u2) + dT (u2, p2).

In a single tree construction by Gupta [47], one could assume that the terminals are in the leaves of T .
However, here we could not make the same assumption when constructing more than one tree in the cover,
making our construction more complicated.

To illustrate our new ideas, we first present the construction of a non-Steiner tree cover of stretch 3 + ε in
Section 2.1; the tree cover has size O(ε−1 log ε−1). Then, in Section 2.2, we reduce the stretch to 2 + ε at the
expense of another factor of ε−1 in the number of trees using additional insights. In Section 2.3, we construct a
tree cover with O(log n) trees and stretch exactly 2.

2.1 Stretch 3 + ε We describe a construction with stretch 3 + 12ε; we could recover stretch 3 + ε by scaling ε.
Suppose that we root T at a non-terminal point r0. We start with a brief overview of our construction: Starting
from r0, we recursively partition the (continuous) tree T into (continuous) subtrees, that we call ε-chops (or just
chop, for short). We ensuring that each ε-chop contains at most one terminal, and associated with the closest
terminal (even if it contains no terminals). The adjacency graph of the ε-chops is also a rooted tree. For every
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i ∈ {0, 1, . . . , k−1}, we consider all ε-chops on levels j, for all j ≡ i mod k, and construct a tree on the terminals
associated with these ε-chops based on the topology of T . We obtain k trees on the terminals (for i = 0, 1 . . . , k),
and then show that they form the required tree cover, with stretch 3 + 12ε. We continue with the details.

We assume that ε ∈ (0, 1). For every point x ∈ T , let C(x) be the terminal closest to x in the tree T , breaking
ties consistently, that is, according to some universal linear ordering on the terminals. The closest terminal might
not be in the subtree rooted at x. (This is in contrast to Gupta’s construction [47] where C(x) was defined to be
the closest terminal in the subtree rooted at x.) Let h(x) = dT (x,C(x)), which is the distance from x to its closest
terminal. We choose two parameters:

(2.2) k the smallest integer such that (1− ε)k ≤ ε, and p = ⌊1/ε⌋+ 1.

Here k will be the number of trees in the tree cover for stretch 3 + 12ε in Section 2.1, and k · p will be the number
of trees for stretch 2 + ε in Section 2.2. Note that k = Θ(ε−1 log ε−1). Let

(2.3) hε(x) =

{︄
ε · h(x) if h(x) ≥ (1− ε)k·p

ε otherwise.

Note that (1 − ε)k·p ≈ εΘ(1/ε) for the choice of k and p in Equation (2.2). Roughly speaking, hε(x) is about
εh(x) unless when h(x) is smaller than εΘ(1/ε).

ε-Chops. Let BT (r0, hε(r0)) be the ball of radius hε(r0) centered at r0, which contains all points in T
within distance at most hε(r0) from r0. We then “chop” the tree T by removing BT (r0, hε(r0)) from T .
We call BT (r0, hε(r0)) a 0-th level ε-chop rooted at r0. Note that BT (r0, hε(r0)) induces a connected
subtree of T . Let T1, . . . , Ta be the resulting subtrees of T after removing BT (r0, hε(r0)), with roots
r1 . . . , ra, respectively (see Figure 2(a)). We then recursively chop each tree Ti by removing a ball of
radius hε(ri), which is BTi(ri, hε(ri)), from the root ri for every i ∈ [a]. Each tree BTi(ri, hε(ri))
is called a 1st level ε-chop rooted at ri. We repeat the process for each remaining subtree until
every point of T is chopped at some level. The result of the chopping process is recorded by
C = {L0,L1, . . .} where Li contains ε-chops of T at level i.

Ideally, we want every chop at a root r to have radius εh(r). However, if we do so, we will never chop a
terminal; as the chopping process gets closer to the terminal, the radius of the chop decreases. We remedy this
by imposing a chop of radius ε whenever h(r) becomes smaller than (1− ε)pk. If hε(r) = εh(r), we call the chop
a regular chop; otherwise, hε(r) = ε, and we call the chop a jump chop; see Figure 2(b). The jump chop is a
technicality that we introduce to handle the case where internal nodes of the tree could be terminals, as alluded
to above.

We can define an ancestor-descendant relationship between two ε-chops: We say that an ε-chop X is an
ancestor of an ε-chop Y if the root of X is an ancestor of the root of Y . Furthermore, if Y ̸= X , we say that X is
a proper ancestor of Y .

OBSERVATION 2.1. Let Li and Lj be two collections of chops at levels i < j. Then, for every ε-chop X ∈ Lj , there exists
a unique ε-chop Y ∈ Li such that X is a descendant of Y .

CLAIM 2.2. Let X be an ε-chop rooted at x. Then X contains at most one terminal, and X contains a terminal if and only
if it is a jump chop. Furthermore, the terminal in X , if any, is the closest terminal to x in T and it is a vertex (of the discrete
tree T ) in X .

Proof. If X is a regular chop rooted at x, then the radius of the chop is ϵh(x) < h(x) ≤ d(x, t) for any terminal t,
and thus t cannot belong to X . If X is a jump chop and it contains a terminal t, then, for any other terminal t0 in
X , we have d(t0, x) ≥ d(t, t0)− d(x, t0) ≥ 8− ϵ by the triangle inequality, the definition of the jump chop and the
fact that distances between vertices in the tree are at least 8. Thus, clearly, t0 cannot belong to X and also t is the
closest terminal to x.
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r0

r1 r2
r3

r4
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1st-level

2nd-level

BT (r0, hε(r0))

r0

r0B0 B1 B2

(a)

(b)

(c)

(d)

Figure 2: (a) ε-chops; (b) a jump chop; (c) buckets of chops C for k = 3 that is partitioned into 3 buckets B0,B1,B2

in (d). Terminals are marked with squares.

Cover construction. We partition the chops in C into k buckets B0, . . .Bk−1 where Bi contains chops at level
i modulo k; see Figure 2(c) and (d). More precisely:

(2.4) Bi = {Lj : j ≡ i mod k}.

For each bucket Bi, we construct a tree Ti as follows:

Constructing Ti. We consider chops in Bi from lower levels to higher levels. For each ε-chop X in
Li+sk (at level i + sk), where s is an integer, and x is the root of X , we do the following. First, if
s = 0, then we simply add the terminal C(x) corresponding to the root of X . After this step, we have
a forest where each component is an isolated vertex. Next, let s ≥ 1. Let Y be the chop in Li+(s−1)k

that is the ancestor of X ; Y exists by Observation 2.1. We then add the terminal C(x) to Ti and
connect C(x) to C(y) with an edge. (The terminal C(y) corresponding to the root y of Y was added
when the algorithm considered Y in the previous step.) At this point, Ti is a forest—see Figure 3(a)
and (b)—where every tree is rooted at the terminal corresponding to trees at level-i chop. Finally,
we can designate an (arbitrary) root t of a tree in Ti and make the roots of other trees children of t;
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(e)
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(c)
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(b)
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5

7 8 9 4 10 6

εh(xb)

Figure 3: (a) The second bucket B2; (b) and (c) a tree constructed from B2; (d) all the ε-chops close enough to a
jump chop are segments on the same edge; and (e) z = LCA(x, y) belongs to a chop at some level i+ sk.

see Figure 3(c). Now, Ti is a tree that contains only terminals. We then set the weight of every edge
(t1, t2) in Ti to be dT (t1, t2).

Our tree cover is T = {T0, T1, . . . , Tk−1}. We note that in this construction, one terminal could appear
multiple times in Ti, but the copies of the same terminal will form a subtree of Ti (with edges of weight 0) since
we break ties consistently. Thus, we could contract all of them into a single terminal. Here, we keep the copies
separate to simplify the stretch analysis.

At this point, it might not be clear why each tree Ti contains all terminals since a terminal t might be chopped
by some chop in another bucket Bj for j ̸= i and hence might not be present in any tree in the chops in Bi.
However, we will show below that in this case, t will be used to replace the root of some tree in Bi, and hence
will be present in Ti.

First, we observe that, as we approach a terminal t in the chopping process, the roots of ε-chops close to t
will all be replaced by t.
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LEMMA 2.3. Let t be any terminal in T . Let Xi, Xi+1, . . . , Xj be a sequence of ε-chops at consecutive levels rooted
at xi, xi+1, . . . , xj , respectively, such that: (i) Xj contains t, (ii) Xa is an ancestor of Xa+1 for any i ≤ a ≤ j − 1,
and (ii) j − i ≤ pk − 1. Then Xi, Xi+1, . . . , Xj are (continuous) segments of the same edge (in the discrete T ), and
C(xi) = C(xi+1) = . . . = C(xj) = t.

Proof. Let us first note that, for any terminal t0 and s ∈ [i, j − 1] such that Xs is a regular chop, by the triangle
inequality we have

dT (xs+1, t0) ≥ dT (xs, t0)− ϵh(xs) ≥ (1− ε)dT (xs, t0).

Since Xj contains t, then by Claim 2.2, Xj must be a jump chop and C(xj) = t. Therefore, by the definition
of hε(xj), we have dT (xj , t) = dT (xj , C(xj)) < (1 − ε)kp. Assume that there is another jump chop among
Xi, . . . , Xj , and, moreover, ℓ ∈ [i, j − 1] is the largest index of the jump chop. Then Xℓ+1, . . . , Xj−1 are regular
chops. Using the displayed inequality above for s = j − 1, j − 2, . . . , ℓ+ 1 with t0 := t, we get that

dT (xℓ+1, t) ≤ (1− ε)ℓ+1−j(1− ε)kp ≤ 1− ϵ.

Here we used that j−ℓ−1 ≤ j− i ≤ pk−1. Thus, by the triangle inequality, dT (xℓ, t) ≤ dT (xℓ+1, t)+ε ≤ 1. From
here, we see that, for any terminal t0 ̸= t we have dT (xℓ, t0) ≥ dT (t, t0) − dT (xℓ, t) ≥ 8 − 1 = 7 by the triangle
inequality. That is, C(xℓ) = t. On the other hand, t is contained in Xj and thus Xℓ cannot contain t, implying
that dT (xℓ, t) > ε. Thus, xℓ is too far from a terminal, which is a contradiction with the definition of a jump chop.

We conclude that all chops Xi, . . . , Xj−1 are regular chops. By the same analysis as above, we have
dT (xs, t) ≤ 1 and C(xs) = t for each s ∈ [i, j]. Finally, the vertices xs, s ∈ [i, j − 1] must lie on the path
from t to the root r0, and, given that dT (xi, t) ≤ 1, must lie on the edge (u, t), where u is the parent of t.

A direct corollary is that every terminal will appear in some tree Ti.

COROLLARY 2.4. Let t be any terminal in T , and Bi be a bucket for some i ∈ {0, 1 . . . , k}. Let s ≥ 0 be the largest
integer such that there exists an ε-chop Xi+sk at level i+ sk containing an ancestor of t, meaning that there exists a point
in Xi+sk on the path from t to the root of T . Then C(xi+sk) = t where xi+sk is the root of Xi+sk.

Proof. Let Xi+sk, Xi+1+sk, . . . Xj+sk be the ε-chops at consecutive levels such that Xj+sk is the chop containing
t, and one chop is the ancestor of the next in the sequence. Let xa+sk be the root of Xa+sk for every i ≤ a ≤ j.
By the choice of s, we have |j − i| ≤ k − 1 and hence |j − i| ≤ pk − 1 as p ≥ 1. By Lemma 2.3,
C(xi+sk) = C(xi+1+sk) = . . . = C(xj+sk) = t, as claimed.

Stretch analysis. Let x, y be any two terminals and z = LCA(x, y) be the lowest common ancestor of x, y in
T . There must be a chop Li+sk at level i + sk for some i ∈ {0, . . . , k − 1} and s ≥ 0 such that z belongs to the
chop. Let ri+sk be the root of the subtree in Li+sk containing z. The next claim allows us to focus our attention
to analyzing the distance from x to ri+sk (and symmetrically, the distance from y to ri+sk). See Figure 3(e).

CLAIM 2.5. dT (x, y) ≥ (1− ε)dT (x, ri+sk) + (1− ε)dT (y, ri+sk)− 2ε.

Proof. Observe that

dT (x, y) = dT (x, z) + dT (z, y)

≥ dT (x, ri+sk) + dT (ri+sk, y)− 2dT (ri+sk, z)

≥ dT (x, ri+sk) + dT (ri+sk, y)− 2hε(ri+sk).

By definition, hε(ri+sk) ≤ ε + ε · h(ri+sk) and furthermore, h(ri+sk) = dT (ri+sk, C(ri+sk)) ≤ dT (ri+sk, x) since
x is a terminal. The same argument yields h(ri+sk) ≤ dT (ri+sk, y). Combining these bounds with the equation
above, we obtain

dT (x, y) ≥ dT (x, ri+sk) + dT (ri+sk, y)− (ε+ εdT (ri+sk, x))− (ε+ εdT (ri+sk, y))

≥ (1− ε)dT (ri+sk, x) + (1− ε)dT (ri+sk, y)− 2ε,

as claimed.
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Figure 4: (a) illustration for Claim 2.6; (b) illustration for Lemma 2.7; (c) illustration for Lemma 2.8.

We remark that dT (x, y) ≥ 8 and so the 2ε term in Claim 2.5 is less than εdT (x, y).
We have the following property of the regular chops.

CLAIM 2.6. Let Xi be a regular chop rooted at x at some level i. Let Xi+1 be a descendant chop of Xi rooted xi+1 at level
i+ 1. Then h(xi+1) ≥ (1− ε)h(xi) and h(xi+1) ≤ (1 + ε)h(xi).

Proof. Let ti and ti+1 be the closest terminal to xi and xi+1, respectively; see Figure 4(a). Note that dT (xi, xi+1) =
εh(xi) since Xi is a regular chop. Then by definition of ti, we have

h(xi) = dT (xi, ti) ≤ dT (xi, ti+1)

≤ dT (xi, xi+1) + dT (xi+1, ti+1)

= εh(xi) + dT (xi+1, ti+1)

= εh(xi) + h(xi+1) .

For the second inequality, we have

h(xi+1) ≤ dT (xi+1, ti) ≤ dT (xi+1, xi) + dT (xi, ti) = (1 + ε)h(xi),

as claimed.

LEMMA 2.7. Let Xi be a chop at some level-i chop Li with root xi. Let Xi+k be a descendant chop of Xi at level-(i + k)
chop Li+k with root xi+k. Let βi = dT (xi, C(xi)) and αi = dT (xi, xi+k) and βi+1 = dT (xi+k, C(xi+k)). Then:

1. βi ≤ (1 + 2ε)αi when ε ≤ 1/2.
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2. βi+1 ≤ αi + βi.

Proof. See Figure 4(b). We observe that the second item follows from the triangle inequality:

αi + βi ≥ dT (xi+k, C(xi)) ≥ dT (xi+k, C(xi+k)) = βi+1 .

We focus on proving the first item. Let Xi+j for 1 ≤ j ≤ k− 1 be the descendant chops of Xi and ancestor chops
of Xi+k, where Xi+j is at level i + j. Let xi+j be the root of Xi+j . If any of the chops between Xi and Xi+k,
excluding Xi+k, say Xi+b for some b ∈ [0, k − 1], is a jump chop, which contains a terminal t, then C(xi+j) = t
for every i ∈ [0, b] by Lemma 2.3. Furthermore, the path from xi to xi+k will go through t as Xi+b is the ancestor
of Xi+k. This means βi ≤ αi, and item 1 holds.

It remains to consider the case where every chop between Xi and Xi+k, excluding Xi+k, is regular.
This means that each Xi+j is formed by chopping the subtree rooted at xi+j with radius εh(xi+j) for every
j ∈ [0, k − 1]. Thus, we have αi = ε

∑︁k−1
j=0 h(xi+j). By Claim 2.6, h(xi+j+1) ≥ (1 − ε)h(xi+j). Consequently, we

obtain

αi ≥ ε
(︁
h(xi) + (1− ε)h(xi) + . . .+ (1− ε)k−1h(xi)

)︁
≥ εβi

(︁
1 + (1− ε) + . . .+ (1− ε)k−1

)︁
= βi

(︁
1− (1− ε)k

)︁
≥ βi(1− ε),

using the choice of k in Equation (2.2). This gives βi ≤ αi/(1− ε) ≤ (1 + 2ε)αi when ε ≤ 1
2 .

With Lemma 2.7 at hand, we are ready to bound dTi(ri+sk, x).

LEMMA 2.8. dTi(C(ri+sk), x) ≤ (3 + 4ε)dT (ri+sk, x). Similarly, dTi(C(ri+sk), y) ≤ (3 + 4ε)dT (ri+sk, y).

Proof. Let {ri+(s+1)k, ri+(s+2)k, . . . , ri+(s+γ)k} be the set of all the roots of the chops in Bi that are on the path from
ri+sk to x. See Figure 4(c). Note that if γ = 0, then by Corollary 2.4, C(ri+sk) = x and hence dTi

(C(ri+sk), x) = 0,
so the lemma trivially holds. We now assume that γ ≥ 1.

Corollary 2.4 yields C(ri+(s+γ)k) = x. By construction, we have

dTi
(x,C(ri+sk)) = dTi

(C(ri+(s+1)k), C(ri+sk)) + . . .+ dTi
(C(ri+(s+γ)k), C(ri+(s+γ−1)k))

= dT (C(ri+(s+1)k), C(ri+sk)) + . . .+ dT (C(ri+(s+γ)k), C(ri+(s+γ−1)k)).
(2.5)

Let βa = dT (ri+(s+a)k, C(ri+(s+a)k)) for every 0 ≤ a ≤ γ and αa = dT (ri+(s+a)k, ri+(s+a+1)k) for every
0 ≤ a ≤ γ − 1. Let αγ = dT (ri+(s+γ)k, x); and note that αγ = βγ by Corollary 2.4. Now Lemma 2.7 and the fact
that αγ = βγ imply

(2.6) βa ≤ (1 + 2ε)αa ∀ 0 ≤ a ≤ γ.

Combing Equation (2.5) and the triangle inequality, we obtain

dTi
(x,C(ri+sk)) ≤ (β0 + α0 + β1) + (β1 + α1 + β2) + . . .+ (βγ−1 + αγ−1 + βγ)

=

γ−1∑︂
a=0

αa + 2

γ−1∑︂
a=1

βa + βγ + β0

≤
γ∑︂

a=0

αa + 2

γ∑︂
a=0

βa

≤ (3 + 4ε)

γ∑︂
a=0

αa (by Equation (2.6))

= (3 + 4ε)dT (x, ri+sk),

(2.7)

as desired.
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We can now bound the stretch of T .

LEMMA 2.9. The stretch of T is at most 3 + 12ε when ε ∈ (0, 1
8 ).

Proof. We continue analyzing the stretch between two terminals x and y. By Claim 2.5 and Lemma 2.8, we have

dT (x, y) ≥
(1− ε)

3 + 4ε
(dTi

(x,C(ri+sk)) + dTi
(y, C(ri+sk)))− 2ε

≥ (1− ε)

3 + 4ε
dTi(x, y)− 2ε

≥ (1− ε)

3 + 4ε
dTi(x, y)− εdT (x, y) (as dT (x, y) ≥ 8).

This gives

dTi
(x, y) ≤ (1 + ε)(3 + 4ε)

1− ε
dT (x, y) ≤ (3 + 12ε)dT (x, y)

when ε ≤ 1/8.

2.2 Stretch 2 + ε The construction in the previous section has stretch at most 3 + ε due to the sum 2
∑︁t

a=0 βa,
called β-sum, in Equation (2.7); each βa is approximately αa. The key idea is to reduce the contribution of
the β-sum by doing an even more fine-grained bucketing of each Bi modulo p for p ≈ 1/ε in Equation (2.2).
(So far, we have not really used p.) Importantly, the fined-grained bucketing allows us to bound 2

∑︁t
a=0 βa ≈∑︁t

a=0 αa + 1
p (
∑︁t

a=0 βa), which is approximately (1 + ε)
∑︁t

a=0 αa for p ≈ 1/ε. Plugging this into Equation (2.7),
we obtain an improved version of Lemma 2.8, where the stretch is 2 + O(ε). This ultimately leads to stretch
2 +O(ε) in our non-Steiner tree cover.

Cover Construction. Recall that p = ⌊1/ε⌋+1. We construct k buckets of chops B0, . . . ,Bk−1 as described in
Equation (2.4). We then further partition each bucket Bi for every i ∈ [0, k− 1] into p buckets Bi,0,Bi,1, . . . ,Bi,p−1

as follows. For each j ∈ [0, p− 1], let

(2.8) Bi,j = {Li+(j+sp)·k : s ≥ 0}.

We then obtain a set of k · p buckets of the form Bi,j where i ∈ [0, k − 1] and j = [0, p − 1]. For each bucket
Bi,j , we construct a tree Ti,j in the same way we construct Ti in the previous section. Our final tree cover is
T = {Ti,j : i ∈ [0, k − 1], j ∈ [0, p− 1]}.

Constructing Ti,j . Consider the ε-chops in Bi,j from lower levels to higher levels. Let X be an ε-
chop at level i+ (j + sp)k for some integers s ≥ 0, j ≥ 0; assume for now that s ≥ 1. Let x be the
root of X . Let Y the ε-chop at level i+ (j + (s− 1)p)k that is the child of X in Bi,j . We then add
terminal C(x) to Ti,j , and connect C(x) to C(y) with an edge. If s = 0, then we simply add a terminal
C(x) corresponding to the root of every tree X in the chop at level i+ j. Finally, we connect the roots
corresponding to s = 0 to form a tree. We set of the weight of every edge (t1, t2) in Ti.j to be dT (t1, t2).

One can think of the construction of Ti,j as skipping connections by exactly p consecutive levels in the tree
Ti constructed in the previous section; see Figure 5. (Again, one terminal could have multiple copies in a tree of
the cover, which could then be resolved by contraction.) By Lemma 2.3, every terminal will appear in Ti,j . We
now focus on the stretch analysis.

Stretch Analysis. We consider any two terminals x, y and z = LCA(x, y). There must be some chop
Li+(j+sp)k such that z belongs to the chop for some s ≥ 0. To simplify the presentation, w.l.o.g., we assume
that i = 0, j = 0, and s = 0. Thus, the chop containing z is L0. Let r0 be the root of the subtree containing z.
Claim 2.5 carries over for this setting, with r0 in place of ri+sk.

CLAIM 2.10. dT (x, y) ≥ (1− ε)dT (x, r0) + (1− ε)dT (y, r0)− 2ε.

We now prove an analogue of Lemma 2.8.
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Ti Ti,0 Ti,1

Figure 5: Construct two trees Ti,0 and Ti,1 from Ti by skipping 3 levels; here p = 3.

LEMMA 2.11. dT0,0
(C(r0), x) ≤ (2 + 2ε)dT (r0, x). Similarly, dT0,0

(C(r0), y) ≤ (2 + 2ε)dT (r0, y).

Proof. We focus on dT0,0(C(r0), x). Let rγpk, for some integer γ ≥ 0, be the root of a tree in a chop in B0,0 closest to
x such that rγpk is on the path from r0 to x; see Figure 6(b). Let rk, r2k, . . . , rγpk−1 be all the roots of consecutive
chops in B0 (not in B0,0) that are on the path from r0 to rγpk; see Figure 6(a). We note that C(rγpk) = x and
C(r0), C(rpk), C(r2pk), . . . , C(rγpk) is a path from C(r0) to x in T0,0. If γ = 0, then dT0,0

(x,C(r0)) = 0 and the
lemma trivially holds. It remains to consider the case γ ≥ 1.

For every a ∈ [0, γ · p], let βa = dT (rak, C(rak)) and αa = dT (rak, r(a+1)k), with r(γp+1)k defined to be x so
that dT (rγpk, r(γp+1)k) is well-defined. Note that αγp = βγp. By Lemma 2.7, we have

βa ≤ (1 + 2ε)αa ∀a ∈ [0, γp],

βa+1 ≤ αa + βa ∀a ∈ [0, γp− 1].
(2.9)

Next, we observe that

(2.10) dT0,0
(C(r0), x) ≤

γp−1∑︂
a=0

αa + β0 + 2

γ−1∑︂
ℓ=1

βℓp and
γp∑︂
a=0

αa = dT (r0, x).

For every ℓ ∈ [1, γ], we define ℓ̄ ∈ [1, p − 1] such that βℓ̄+(ℓ−1)p = min{β1+(ℓ−1)p, β2+(ℓ−1)p, . . . , βℓp−1}. See
Figure 6(c). We make the following two claims:

CLAIM 2.12. βℓp ≤ βℓ̄+(ℓ−1)p +
∑︁ℓp−1

a=ℓ̄+(ℓ−1)p
αa

By applying Equation (2.9) repeatedly, we have

βℓp ≤ βℓp−1 + αℓp−1

≤ βℓp−2 + αℓp−2 + αℓp−1

≤ βℓ̄+(ℓ−1)p +

ℓp−1∑︂
a=ℓ̄+(ℓ−1)p

αa,
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r0

C(r0)
α0

β1

β0

βa

rk

βa+
1

rak

α1

αa
r(a+1)k

βγp
−1 r(γp−1)k

αγp−1

rγpk

(a)

βγp = αγp

r0

C(r0)

β0

C(rpk)

βp rpk

(b)

β2p
r2pk

rγpk

βγp = αγp

r0

C(r0)

β0

r(`−1)pk

αa

β1+
(`−

1)
p

β ¯̀+(`−
1)
p

β`p
−1

x

(c)

C(ri+(s+1)k)

C(rak)

C(r(a+1)k)

C(ri(s+γ−1)k)

C(rγkp) = x

C(r2pk)

C(rγkp) = x

r(`p−1)k

α`p−1

r`pk

T0 T0,0

α¯̀+(`−1)p

Figure 6: (a) In T0, each root rak will be replaced by the corresponding closest terminal; (b) the roots of the ε-
chops in the construction T0,0, each root will also be replaced with a corresponding closest interval; (c) the root
corresponding to ℓ̄ is highlighted red.

implying Claim 2.12.

CLAIM 2.13. βℓ̄+(ℓ−1)p ≤ 1+ε
p−1

∑︁ℓp−1
a=1+(ℓ−1)p αa.

By the definition of ℓ̄, we have

βℓ̄+(ℓ−1)p ≤ 1

p− 1

ℓp−1∑︂
a=1+(ℓ−1)p

βa ≤ 1 + ε

p− 1

ℓp−1∑︂
a=1+(ℓ−1)p

αa

by Equation (2.9), implying Claim 2.13.
We continue with bounding dT0,0

(x,C(r0)). By Claim 2.12, we have

γ∑︂
ℓ=1

βℓp ≤
γ∑︂

ℓ=1

⎛⎝βℓ̄+(ℓ−1)p +

ℓp−1∑︂
a=ℓ̄+(ℓ−1)p

αa

⎞⎠
≤

γ∑︂
ℓ=1

⎛⎝βℓ̄+(ℓ−1)p +

ℓp−1∑︂
a=1+(ℓ−1)p

αa

⎞⎠ (since ℓ̄ ≥ 1)

≤
γ∑︂

ℓ=1

ℓp−1∑︂
a=1+(ℓ−1)p

(︃
1 +

1 + ε

p− 1

)︃
αa (by Claim 2.13)

(2.11)
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By Equation (2.10), we have

dT0,0(C(r0), x) ≤
γp−1∑︂
a=0

αa +

γ∑︂
ℓ=0

βℓp +

γ∑︂
ℓ=1

βℓp

≤
γp−1∑︂
a=0

αa +

γ∑︂
ℓ=0

(1 + 2ε)αℓp +

γ∑︂
ℓ=1

βℓp (by Equation (2.9))

≤
γp−1∑︂
a=0

αa +

γ∑︂
ℓ=0

(1 + 2ε)αℓp +

γ∑︂
ℓ=1

ℓp−1∑︂
a=1+(ℓ−1)p

(︃
1 +

1 + 2ε

p− 1

)︃
αa (by Equation (2.11))

≤
γp−1∑︂
a=0

αa + (1 + 2ε)

⎛⎝ γ∑︂
ℓ=0

αℓp +

γ∑︂
ℓ=1

ℓp−1∑︂
a=1+(ℓ−1)p

αa

⎞⎠ (since p = ⌊1/ε⌋+ 1 and ε ≤ 1)

≤ (2 + 2ε)

γp∑︂
a=0

αa

≤ (2 + 2ε)dT (r0, x) (by Equation (2.10))

as desired.

Now we can bound the stretch of T .

LEMMA 2.14. The stretch of T is at most 2 + 10ε when ε ∈ (0, 1
8 ).

Proof. By Claim 2.10 and Lemma 2.11, we have

dT (x, y) ≥
(1− ε)

2 + 2ε

(︁
dT0,0

(x,C(r0)) + dT0,0
(y, C(r0))

)︁
− 2ε

≥ (1− ε)

2 + 2ε
dT0,0

(x, y)− 2ε

≥ (1− ε)

2 + 2ε
dT0,0

(x, y)− εdT (x, y) (as dT (x, y) ≥ 8).

This gives

dT0,0
(x, y) ≤ (1 + ε)(2 + 3ε)

1− ε
dT (x, y) ≤ (2 + 10ε)dT (x, y)

when ε ≤ 1/8.

2.3 Stretch 2 In this subsection, we construct a tree cover of stretch 2 that has O(log n) trees. We say that a
vertex v is a centroid of a tree T if every connected component of T \ {v} has at most n/2 vertices. Initially,
T = ∅. For each vertex u, we denote by C(u) the closest terminal to u. (If u is a terminal, then C(u) = u.) Our
construction is recursive.

1. Step 1. If T contains a single terminal (the base case), then we simply return a singleton tree. Otherwise,
we find a centroid v of T . Then we make a star Xv with center C(v), and for every terminal u ∈ K \{C(v)},
we add an edge (C(v), u) to Xv and set the weight wXv

(C(v), u) = dT (u,C(v)). Then we add Xv to T .

2. Step 2. Let T̄ 1, T̄ 2, . . . , T̄κ be all the connected components of T \ {v}. We recursively construct a non-
Steiner tree cover T̄ j for each component T̄ j , where j ∈ [κ]. Let s = maxj∈[κ] |T̄ j |. By making duplicate
copies if necessary, we assume that every cover T̄ j contains exactly s trees, denoted by {Y j

1 , Y
j
2 , . . . , Y

j
s }.

Then, we create s trees {Z1, Z2 . . . , Zs}: for each a ∈ [s], the a-th tree Za is formed by taking all the a-th trees
Y 1
a , Y

2
a , . . . , Y

κ
a , one from each tree cover; we then connect Y j

a to Y 1
a for every j ∈ {2, . . . , κ} by adding an

edge (tj , t1) from an (arbitrary) terminal tj ∈ Y j
a to an arbitrary terminal t1 ∈ Y 1

a . By adding all the edges
(tj , t1), we effectively connect every Y j

a to Y 1
a , and finally get a tree Za. The weight of the edge (tj , t1) is

wZa
(tj , t1) = dT (tj , t1). We then add all the trees Z1, . . . , Zs to T .
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It follows directly from the construction that every tree in T is non-Steiner. Furthermore, for every tree
X ∈ T , every edge (x, y) ∈ X has a weight wX(x, y) = dT (x, y). Thus, by the triangle inequality, X is dominating.
It remains to bound the number of trees, as well as the stretch of T .

Bounding the Number of Trees in T . Let s(n) be the number of trees in T when applying the above
algorithm to a tree T with n vertices. Then we have

s(n) ≤ s(n/2) + 1,

where the +1 term is due to the tree Xv in Step 1, and s(n/2) is an upper bound for the size of all the covers
T̄ 1, T̄ 2, . . . , T̄ κ, as each connected component of T \ {v} has at most n/2 vertices. Solving the above recurrence
gives s(n) = O(log n).

Analyzing the Stretch. Let x and y be any two terminals in T . If x and y are in the same component of
T \ {v}, then we get stretch 2 by induction. If x and y are in different components of T \ {v}, then we have

dXv (x, y) = wXv (x,C(v)) + wXv (y, C(v))

= dT (x,C(v)) + dT (y, C(v))

≤ dT (x, v) + dT (v, C(v)) + dT (y, v) + dT (v, C(v)) (by triangle inequality)
= dT (x, y) + 2dT (v, C(v))

≤ dT (x, y) + dT (v, x) + dT (v, y) (by definition, dT (v, C(v)) ≤ min{dT (v, x), dT (v, y)})
= 2dT (x, y),

implying that the stretch is at most 2 for the pair x, y.

3 Steiner Spanners for Terminals in Planar Graphs
Recall that a metric space (X, dX) is planar if there exists an edge-weighted planar graph G = (V,E,w) such that
X ⊆ V and dX is the shorted-path metric of G restricted to X .

THEOREM 3.1. Let ε ∈ (0, 1) be a parameter. Let T be a set of n points (terminals) in a planar metric. We can construct
a Steiner (1+ ε)-spanner for T with O((n/ε) ·max{α(n), log ε−1} · log ε−1) edges, where α(n) is the inverse Ackermann
function.

In this section, we prove Theorem 3.1. We start in Section 3.1 with reviewing a classical spanner construction
based on a net trees, in planar metrics [61]. The problem of constructing (1 + ε)-spanners is reduced to additive
spanners [61, 27] on each level of a net tree in Section 3.1, and further to additive spanners in each subgraph
in a cover decomposition in Section 3.2. Finally in Section 3.3, we construct the required additive spanners for
bounded-diameter planar graphs using shortest path separators [43, 54, 68] and tree shortcutting [5, 20, 30].

3.1 Net Trees Based Spanners Let G = (V,E,w) be an edge-weighted planar graph, and let T ⊂ V be a set of n
terminals. In this section, we work with the planar metric (T, dG), where dG is the shortest path distance between
the terminals in G. The aspect ratio of the metric is the ratio of the maximum to the minimum distance between
distinct vertices: ρ = maxx,y∈T dG(x, y)/minx,y∈T,x ̸=y dG(x, y). Without loss of generality, we may assume that
minimum distance between distinct terminals is 1, i.e., minx,y∈T,x ̸=y dG(x, y) = 1. In particular, the maximum
distance between terminals is G(V ) = ρ.

An δ-net in a metric space (X, d) is a subset N ⊂ X such that for every x ∈ X there exists y ∈ N such that
d(x, y) ≤ δ (i.e., the closed balls of radius δ centered in N cover X) and minx,y∈N,x̸=y d(x, y) ≥ δ (i.e., the open
balls of radius δ/2 centered in N are pairwise disjoint).

For a given ε ∈ (0, 1
4 ), we construct a hierarchy of nets on the terminals T = N0 ⊇ N1 ⊇ . . . ⊇ N⌈log2 ρ⌉,

where Ni is a 2i-net. This hierarchy induces a net-tree T , where level i of the tree is the net Ni, and the parent
of a vertex v ∈ Ni is v ∈ Ni+1 (if v ∈ Ni−1) or another vertex u ∈ Ni+1 such that dG(u, v) ≤ 2i+1. Every vertex
v ∈ T has a unique ancestor in the net Ni, that we denote by v(i) ∈ Ni. Using geometric series, we obtain

(3.12) dG(v, v
(i)) ≤

i∑︂
j=1

dG(v
(j−1), v(j)) ≤

i∑︂
j=1

2j < 2i+1.
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We construct a spanner Hnet for the planar metric (T, dG) as follows: At level i = 0, we have N0 = T
and we connect every terminal u ∈ T to all other terminal v ∈ T such that dG(u, v) ≤ 18

ε . For every level
i ∈ {1, 2, . . . , ⌈log2 ρ⌉}, let ∆i = 2i/ε; and connect every terminal u ∈ Ni to all other terminal v ∈ Ni such that

8∆i ≤ dG(u, v) ≤ 19∆i.

Using a standard proof by induction, we show that Hnet is a (1 + ε)-spanner on T .

LEMMA 3.2. For ε ∈ (0, 1
4 ), the graph Hnet is a (1 + ε)-spanner for the metric (T, dG).

Proof. Consider the
(︁
n
2

)︁
point pairs {x, y} ⊂ T sorted in nondecreasing order by distance dG(x, y). Let {xj , yj}

denote the j-th pair. We prove, by induction on j, that dHnet(xj , yj) ≤ (1 + ε)dG(xj , yj).
In the base case, {x1, y1} is a closest pair in G, and we have dG(x1, y1) = 1 by assumption. The edge xy

was added to Hnet at level 0, and so dHnet
(x1, y1) = dG(x1, y1). In fact, the same argument holds for all pairs

{xj , yj} ⊂ V with dG(xj , yj) ≤ 18
ε .

For the induction step, consider a pair {xj , yj} ⊂ V with dG(xj , yj) > 18
ε , and assume that dH(x, y) ≤

(1 + ε)dG(x, y) for all pairs {x, y} ⊂ V such that dG(x, y) < dG(xj , yj). Then xj and yj are not adjacent at level 0.
Since dG(xj , yj) ≤G (V ) ≤ ρ, there exists i ∈ {1, 2, . . . , ⌈log2 ∆⌉} such that

9∆i < dG(xj , yj) ≤ 18∆i.

Considering the ancestors of xj and yj at level i, Equation (3.12) and the triangle inequality yield

dG(x
(i)
j , y

(i)
j ) ≤ dG(x

(i)
j , xj) + dG(xj , yj) + dG(yj , y

(i)
j ) ≤ 18∆i + 2 · 2i+1 ≤ (4 + 4ε)∆i ≤ 19∆i,

dG(x
(i)
j , y

(i)
j ) ≥ dG(xj , yj)− dG(x

(i)
j , xj)− dG(yj , y

(i)
j ) ≥ 9∆i − 2 · 2i+1 ≥ (2− 4ε)∆i ≥ 8∆i,

for ε ∈ (0, 1
4 ). Consequently, the edge x

(i)
j y

(i)
j has been added to Hnet at level i.

By the induction hypothesis, Hnet contains paths π(xj , x
(i)
j ) and π(xj , x

(i)
j ) of length at most (1 + ε)2i+1.

Concatenate the path π(xj , x
(i)
j ), the edge x

(i)
j y

(i)
j , and the path π(yj , y

(i)
j ). We obtain a path in Hnet between xj

and yj of length

w(π(xj , x
(i)
j )) + dG(x

(i)
j , y

(i)
j ) + w(π(yj , y

(i)
j )) ≤ dG(x

(i)
j , y

(i)
j ) + 2(1 + ε)2i+1

≤ dG(x
(i)
j , xj) + dG(xj , yj) + dG(yj , y

(i)
j ) + 4(1 + ε)2i

≤ dG(xj , yj) + 2 · 2i+1 + 4(1 + ε)2i

= dG(xj , yj) + (8 + 4ε)2i

≤ dG(xj , yj) + (8 + 4ε)ε∆i

≤ dG(xj , yj) + (8 + 4ε)ε · 1
9
dG(xj , yj)

=

(︃
1 +

8 + 4ε

9
· ε
)︃
· dG(xj , yj)

≤ (1 + ε) · dG(xj , yj),

as required. This completes the induction step, hence the entire proof.

Reduction to Additive Spanners in Net-Trees We reduce the problem to additive spanners. Specifically, we
show that Lemma 3.3 below implies Theorem 3.1. The proof of Lemma 3.3 is presented in Sections 3.2 and 3.3

LEMMA 3.3. For every i ∈ N, there exists a spanner Hi on Ni such that

1. for all x, y ∈ Ni, if dG(x, y) = Θ(∆i), then dHi
(x, y) ≤ dG(x, y) + ε∆i, and

2. |E(Hi)| ≤ O
(︂
|Ni| ε−1 · log(ε−1α(n))

)︂
,

where α(.) denotes the inverse Ackermann function.
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Spanner construction. Let Hi be the additive spanners provided by Lemma 3.3 for each level Ni of a net
tree T ; and let H =

⋃︁
i∈N Hi.

LEMMA 3.4. For ε ∈ (0, 1
4 ), the graph H is a (1 + 2ε)-spanner for the metric (T, dG).

Proof. Let x, y ∈ T be a pair of terminals in the edge-weighted graph G = (V,E,w). By Lemma 3.2, the net-based
spanner Hnet contains an path πxy = (x = v0, v1, v2, . . . , vk = y) of weight at most (1 + ε)d+G (x, y).

Each edge e of Hnet was added at some level of the net-tree T . Recall that at level 0, we added edges of
length in the range [1, 18/ε]. We can also partition the edges at level 0 into O(log ε−1) subsets such that in each
subset the ratio between the edge lengths is bounded by a constant: For every edge e of Hnet, there is an index
i ∈ {−⌈log2(18/ε)⌉, . . . , ⌈log2 ρ⌉} such that 8∆i ≤ w(e) ≤ 19∆i. In particular, for every j ∈ {1, . . . , k}, there exists
i(j) ∈ {−⌈log2(18/ε)⌉, . . . , ⌈log2 ρ⌉} such that 8∆i(j) ≤ dG(vj−1, vj) ≤ 19∆i(j).

By Lemma 3.3, for every j ∈ {1, . . . , k}, the additive spanner Hi(j) contains a path π(vj−1, vj) from vj−1 to
vj of weight w(π(vj−1, vj)) ≤ dG(vj−1, vj) + ε∆i(j) ≤ (1 + ε/8) · dG(vj−1, vj). The concatenation of the paths
π(v0, v1), . . . , π(vk−1, vk) is a path in H of weight at most

dH(x, y) ≤
k∑︂

j=1

w(π(vj−1, vj))

≤
k∑︂

j=1

(︂
1 +

ε

8

)︂
· dG(vj−1, vj)

=
(︂
1 +

ε

8

)︂
w(πxy)

≤
(︂
1 +

ε

8

)︂
(1 + ε)dG(x, y)

=

(︃
1 +

9

8
ε+

ε2

8

)︃
dG(x, y)

< (1 + 2ε)dG(x, y),

for any ε ∈ (0, 1
4 ), as claimed.

3.2 Reduction to Planar Metrics of Bounded Diameter Consider the planar metric (Ni, dG) on a single level
of the net-tree. In this section, we reduce the problem of construction of Hi (claimed in Lemma Lemma 3.3) to
subspaces of Ni of bounded diameter.

DEFINITION 3.5. A (β, s,∆)-sparse cover for a graph G is a collection C = {C1, . . . , Ct} of subgraphs of G (called
clusters) such that

1. (Cj) ≤ ∆;

2. for every v ∈ V (G), there is a cluster Cj ∈ C such that BG(v,∆/β) ⊆ Cj (that is, Cj contains all vertices at
distance at most ∆/β from v); and

3. every v ∈ Ni is contained in at most s clusters (that is, |{j : v ∈ Cj ∈ C}| ≤ s).

Sparse covers were introduced by Awerbuch and Peleg [11]. For planar graphs, Busch et al. [24] showed that
one can construct (β, s,∆)-sparse cover for any ∆ with constant τ and s.

THEOREM 3.6. ([24]) There exist absolute constants β, s ∈ O(1) such that for every ∆ > 0 and every planar graphs, a
(β, s,∆)-sparse cover can be constructed in polynomial time.

Recall that for each level i of the net tree, the minimum distance between any two points of the net Ni

is at least 2i = ε · ∆i. Using Theorem 3.6 with parameter ∆ = 20β∆i, we obtain a (β, s,∆i)-sparse cover
Ci = {C1, . . . , Ct} of the planar graph G. We only care about the clusters Cj ∈ C where |Ni ∩ Cj | ≥ 2.
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3.3 Recursive Shortest-Path Separators Consider a single cluster, Cj ∈ Ci, which is a planar graph with
diameter O(∆i) = O(2i/ε), and recall the distance between any two net points in Ni is at least ε∆i. In this
section, we construct a (1 + ε)-spanner for Ni ∩ Cj when |Ni ∩ Cj | ≥ 2.

Shortest Path Separators. We recursively partition Cj along shortest path separators until each subgraph
contains at most one net point in Ni ∩ Cj . A balanced separator (for short, separator) of a graph G is a set of
vertices S ⊂ V (G) such that every connected component of G − S has at most 2

3 · |V (G)| vertices. According to
a celebrated result by Lipton and Tarjan [62], every n-vertex planar graph admits a balanced separator of size
O(

√
n) A recursive partition of planar (or minor-free) graphs along balanced separators is well-known powerful

technique; see [12, 27, 28, 41, 50, 55, 68] for examples. Goodrich [45] noticed that one can choose balanced
separators in planar graph as the vertices of a fundamental cycle, which his composed of two shortest paths from
a common endpoint such that the other two endpoints of the paths are adjacent in G (if G is a triangulation) or
at least incident to a common face (in general). Such a balanced separator is called a shortest path separator. Since
can use a shortest path tree to recursively partition a planar graph [54, 68], and maintain the additional property
that the each subgraph in the recursion is bounded by O(1) shortest paths. We use the terminology presented in
[43]:

DEFINITION 3.7. Given an edge-weighted graph G = (V,E,w), a vertex r ∈ V , and a parameter η > 0, an η-rooted
shortest path decomposition (for short, η-RSPD) with root r, denoted by Φ, is a binary tree with the following properties:

Each node α ∈ Φ is associated with a subgraph Gα of G, called a piece, such that:

(P1) The subtree of Φ rooted at α has height O(log |V (Gα)|.

(P2) For every piece Gα, there is a set of boundary vertices Qα ⊂ V (Gα) such that every path between a vertex
u ∈ V (Gα) and v ∈ V (G) \ V (Gα) in G contains a vertex in Qα. The vertices in V (Gα) \Qα are called internal
vertices of Gα.

(P3) For every piece Gα, all boundary vertices in Qα are contained in at most η shortest paths in G with a common
endpoint r.

(P4) If α is the root of Φ, then G− α = G; if α is a leaf of Φ, then Gα has at most η internal vertices. Otherwise, α is an
internal node of Φ with exactly two children β1 and β2. It holds that Gα = Gβ1 ∪ Gβ2 and V (Gβ1) ∩ V (Gβ1) ⊆
Qβ1

∩Qβ2
.

Let G = (V,E,w) be an edge-weighted planar graph. We may assume that G is a triangulation (i.e., an
edge-maximal planar graph) by adding edges of sufficiently large weight (that do not change the shortest path
distance). Thorup [68, Section 2.5] showed that for a triangulated wedge-weighed planar graph with n vertices,
one can compute a an η-RSPD with η = O(1) in O(n log n) time (an RSPD is called frame separator decomposition
in Thorup’s paper).

Note that if α and β are siblings in Φ, then Gα and Gβ may share boundary vertices. That is, V (G) =⋃︁
{V (Gα) : α ∈ Φ is a leaf node} is not a partition. In order to avoid duplication, for each net point v ∈ Ni ∩ G,

we specify a lowest node φ(v) ∈ Φ such that v ∈ V (Gφ(v)). For every node α ∈ Φ, let Nα denote the
set of net points v ∈ Ni such that φ(v) is a descendant of α (possibly φ(v) = α). With this notation,
Ni =

⋃︁
{Nα : α ∈ Φ is a leaf node} is a partition; and we have |Ni| =

∑︁
leaf α∈Φ

|Nα|.
Filtser and Le [41] used the η-RSDP for an (exact) emulator for tree metrics with treewidth O(log logn) and

hop-diameter O(log log n); not for Steiner spanners. However, they proved the following lemma.

LEMMA 3.8. (LEMMA 4 IN [43]) Let α and β be two nodes in Φ. Let Puv be any path between two vertices u and v in
G such that u ∈ Qα and v ∈ Qβ . Let (α = λ1, λ2, . . . , λk = β) be a set of nodes in the unique path Φ[α, β] such that
λi+1 ∈ Φ[λi, β] for any 1 ≤ i ≤ k − 1. Then, there exists a sequence of vertices (u = x1, x2, . . . , xk = v) such that
xi ∈ Puv ∩Qλi

and xi+1 ∈ Puv ∩ P [xi, v] for any 1 ≤ i ≤ k − 1.

REMARK 3.9. Assume that Φ[α, β] = (α = λ1, λ2, . . . , λk = β) is the (unique) path in Φ between α and β. Then
Lemma 3.8 states that the shortest path Puv contains some boundary vertices from Qλ1

,λ2
, . . . , Qλk

is this order (a vertex
can belong to several boundary sets). However, it does not say that the shortest path is contained in the union of these
pieces,

⋃︁k
i=1 Gλi

. It is possible that Puv passes though some additional pieces—but this will not affect our construction.
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Shortcut Edges in RSPD. Let Φ be an η-RSPD for G with a constant η. It is a binary tree of height O(log n),
and so its diameter is O(log n). We augment Φ with shortcut edges in order to reduce its diameter.

Chung and Garay [34] initiated the studied the minimum number of shortcut edges for paths and trees.
Chazelle [30] showed that a n-vertex tree can be augmented with m new edges to reduce the diameter
to O(α(n,m)), where α(n,m) is the two-parameter inverse Ackermann function. This bound is the best
possible [69], and was later rediscovered several times [5, 20]; see also [19, 43, 58, 67] for algorithmic aspects
and generalizations. Alternatively, the diameter of a tree with n vertices can be reduced to 2k by adding
O(nαk(n)) edges, where αk(n) is the inverse of a certain Ackermann-style function at the ⌊k/2⌋th level of the
primitive recursive hierarchy: Specifically, α0(n) = ⌈n/2⌉, α1(n) = ⌈

√
n⌉, α2(n) = ⌈log n⌉, α3(n) = ⌈log log n⌉,

α4(n) = log∗ n, etc.. Moreover, α2α(n)+2(n) ≤ 4, where α(n) is the one-parameter inverse Ackermann function,
which is an extremely slowly growing function [5, 58, 66].

We apply the above results to the η-RSPD Φ carefully. For our purposes, we distinguish between two types
of shortcut edges: type 1 shortcut edges between internal nodes of Φ; and type 2 shortcut edges between a leaf
and an internal node. For our purposes (discussed below), a shortcut edge of type 1 costs roughly O(ε−2); and
one of type 2 costs roughly O(ε−1). For this reason, we prefer shortcut edges of type 2. We add shortcut edges
to Φ as follows.

Φ
Φtop

Φbot

Ψ
Ψtop

Ψbot

Figure 7: Left: a binary tree Φ, with Φtop and Φbot. Right: The augmented graph Ψ, with Ψtop and Ψbot.

We decompose the tree Φ as follows. Let λ be a parameter to be optimized later (we shall choose
λ = ε−1α(n)/ log(ε−1α(n))). Let Φtop denote the subtree of Φ induced by all nodes α with |V (Gα)| ≥ λ, and
Φbot the forest induced by all other nodes of Φ and the leaves of Φtop. Then Φtop has O(n/λ) nodes; and the
height of (each tree in) Φbot is O(log λ). Now we augment Φ to a graph Ψ with shortcut edges as follows (see
Fig. 7):

1. Reduce the diameter of Φtop to O(1) [5, 20, 30];

2. augment Φbot by connecting every leaf of the forest Φbot to all of its ancestors in Φbot.

Denote by Ψtop and Ψbot, resp., the subgraph of Ψ induced by the vertices of Φtop and Φbot.

LEMMA 3.10. The graph Ψtop has O(nα(n)/λ) edges; and the forest Ψbot has O(n log λ) edges incident to its leaves.

Proof. Since Ψtop is a binary tree on O(n/λ) nodes, it has O(n/λ) edges. The first augmentation phase adds
O((n/λ)α(n/λ)) ≤ O(nα(n)/λ) shortcut edges, and so Ψtop has O(nα(n)/λ) edges.

The forest Φbot has O(n) leaves, each of which is incident to only one edge in Φ. Since the height of Φbot

is O(log λ), the second augmentation step adds O(n log λ) new edges to every leaf. Overall, Ψbot has O(n log λ)
edges incident to leaves.

Portals along Shortest Path Separators. Recall that every node α corresponds to a piece Gα, and the
boundary vertices Qα of Gα all lie in η = O(1) shortest paths of G.
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We place Steiner points, that we call portals, along the shortest path in Qα as follows; see Fig. 8. Let α be a
node of Φ, and suppose that the vertices in Qα lie in the shortest paths P1, P2, . . . , Pη in G. The length of each
path is at most (G) ≤ ∆i. For each j, 1 ≤ j ≤ η, we place portals at the two endpoint of Pj , and recursively
place portals at internal nodes until any two consecutive portals at at distance at most ε

10 ∆1 apart or are adjacent
along Pj . Let Sα denote the set of portals (i.e., Steiner points) over all η paths. It follows that we place O(ε−1)
portals along each shortest path, and so |Sα| ≤ O(η · ε−1) = O(ε−1).

We can now define the Steiner spanner Hi,j for Ni ∩ Cj . Let the vertex set of Hi be Ni ∪
⋃︁

α∈Φ Sα, that is,
the net points in Ni ∩ Cj and all portals defined above. We add the following edges to Hi,j , each with the same
weight as in G:

1. For every edge αβ in Ψtop, add a complete bipartite graph between the portals Sα and Sβ ;

2. for every edge αβ of Ψ, where α is a leaf of Ψbot, add a complete bipartite graph between Nα and Sβ ;

3. for every leaf α, add a complete graph among its internal net vertices Ni ∩ (Gα \ Qα) and a complete
bipartite graph between Nα and Sα.

Figure 8: A recursive partition of a plane graph along shortest paths into pieces, until there are at most η = O(1)
terminals in the interior of each piece. Terminals (red crosses) and portals (blue squares).

We are now ready to prove Lemma 3.3.

LEMMA 3.11. We have |E(Hi,j)| ≤ O
(︂
|Ni ∩ Cj | · ε−1 log(ε−1α(n))

)︂
,

Proof. By Lemma 3.10, the graph Ψtop has O(|Ni ∩Cj |α(n)/λ) edges, and for each such edge we add a complete
bipartite graph with O(ε−2) edges to Hi. This contributes O(ε−2 |Ni ∩ Cj |α(n)/λ) edges to Hi. By Lemma 3.10,
the graph Ψ has O(|Ni ∩ Cj | log λ) edges incident to leaves of Ψbot, and for each such edge we add a star with
O(ε−1) edges to Hi,j . This contributes O(ε−1|Ni ∩ Cj | log λ) such edges to Hi,j .

We choose λ := ε−1α(n)/ log(ε−1α(n)) to balance the above two contributions. They both amount to
O
(︂
ε−1|Ni ∩ Cj | log(ε−1α(n))

)︂
.

Finally, each leaf node α ∈ Φ has at most η = O(1) internal vertices. The complete graphs among internal net
vertices contribute at most η · |Ni ∩Cj | = O(|Ni ∩Cj |) edges contribute a total of O(η2 · |Ni ∩Cj) = O(|Ni ∩Cj)
edges.

LEMMA 3.12. For all x, y ∈ Ni ∩ Cj , if dG(x, y) = Θ(∆i), then dHi,j
(x, y) ≤ dG(x, y) + ε∆i.

Proof. Let x, y ∈ Ni such that dG(x, y) = Θ(∆i). Then x ̸= y, and the η-RSPC has two leaves φ(x), φ(y) ∈ Φ such
that x ∈ Nφ(x) and y ∈ Nφ(y). We distinguish between three cases:
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Case 1: φ(x) = φ(y). If both x and y are internal vertices of Gφ(α), then the complete graph on
Nα ∩ (Gφ(α) \ Qφ(α)) contains the edge xy. Otherwise we may assume w.l.o.g. that x is a boundary vertex, that
is, x ∈ Qφ(α). Then x lies on a shortest path in Qφ(α), and there is a portal s ∈ Sφ(α) such that dG(x, s) ≤ ε

10∆i.
The complete bipartite graph between Nφ(α) and Sφ(α) contains the edge sy. Consequently,

dHi,j
(x, y) ≤ dHi

(x, s) + dHi
(s, y) = dG(x, s) + dG(s, y)

≤
(︂
dG(x, y) + dG(s, y)

)︂
+ dG(s, y) = dG(x, y) + 2dG(s, y)

≤ dG(x, y) + 2 · ε

10
∆i < dG(x, y) + ε∆i,

as required.
Case 2: φ(x) ̸= φ(y) and LCA{φ(x), φ(y)} is in Φbot. In this case, by construction, Ψ contains the path

Ψ[φ(x),LCA{φ(x), φ(y)}, φ(y)]. By Lemma 3.8, the shortest path Pxy in G contains a sequence of vertices
(x = x0, x1, x2 = y) in this order such that x1 ∈ QLCA{φ(x),φ(y)}. The construction of portals ensures that
there exists a portal s1 ∈ SLCA{φ(x),φ(y)} with dG(x1, s) ≤ ε∆i. Consequently,

dHi,j
(xy) ≤ dHi

(x, s1) + dHi
(s1, y)

= dG(x, s1) + dG(s1, y)

≤
(︂
dG(x, s1) + dG(s1, x1)

)︂
+

(︂
dG(x1, s1) + dG(s1, y)

)︂
≤ dG(x, x1) + dG(x1, y) + 2 · ε

10
·∆i

< dG(x, y) + ε ·∆i,

as required.
Case 3: φ(x) ̸= φ(y) and LCA{φ(x), φ(y)} is not in Φbot. Nodes φ(x) and φ(y) have ancestors α and β,

resp., that are leaves in Φtop. Furthermore, α ̸= β or else we would be in Case 2. Due to the shortcut edges,
the distance between α and β is at most 4 in Ψtop. Consequently, Ψ contains a path Ψ[φ(x), φ(y)] = (φ(x) =
λ0, λ1, . . . , λk = φ(y)) of length at most k ≤ 6. By Lemma 3.8, the shortest path Pxy in G contains a sequence of
vertices (x = x0, x1, . . . , xk = y) in this order such that xj ∈ Qλj

. The construction of portals ensures that there
exist portals sj ∈ Sλj

with dG(xj , sj) ≤ ε∆i for all j ∈ {1, . . . , k − 1}. The construction of Hi,j guarantees that
the edges xs1, s1s2, . . . , sk−2sk−1, sk−1y are present in Hi. Consequently,

dHi,j (xy) ≤ dHi(x, s1) + dHi(s1, s2) + . . .+ dHi(sk−2, sk−1) + dHi(sk−1, y)

= dG(x, s1) + dG(s1, s2) + . . .+ dG(sk−2, sk−1) + dG(sk−1, y)

≤
(︂
dG(x, s1) + dG(s1, x1)

)︂
+
(︂
dG(x1, s1) + dG(s1, s2) + dG(s2, x2)

)︂
+ . . .+

(︂
dG(xk−1, sk−1) + dG(sk−1, y)

)︂
≤

k∑︂
j=1

dG(xi−1, xi) + 2(k − 1) · ε

10
·∆i

≤ dG(x, y) + ε ·∆i,

as required.

The combination of Lemma 3.11 and Lemma 3.12 implies Lemma 3.3, that we restate for convenience:

LEMMA 3.3. For every i ∈ N, there exists a spanner Hi on Ni such that

1. for all x, y ∈ Ni, if dG(x, y) = Θ(∆i), then dHi
(x, y) ≤ dG(x, y) + ε∆i, and

2. |E(Hi)| ≤ O
(︂
|Ni| ε−1 · log(ε−1α(n))

)︂
,

where α(.) denotes the inverse Ackermann function.

Proof. At every level i ∈ N, we have constructed a (β, s,∆i)-sparse cover Ci = (C1, . . . , Ct(i)) of G; and for every
j ∈ {1, . . . , t}, we have constructed and an additive spanner Hi,j for Ni ∩ Cj . Let Hi =

⋃︁t
j=1 Hi,j . We claim that
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1. (stretch condition) for all x, y ∈ Ni, if ∆i ≤ dG(x, y) ≤ ∆i

β , then dHi
(x, y) ≤ dG(x, y) + ε∆i, and

2. (size condition) |E(Hi)| ≤ O
(︂
|Ni| · ε−1 log(ε−1α(n))

)︂
,

where α(.) denotes the inverse Ackermann function.
Stretch analysis. Let x, y ∈ Ni such that ∆i ≤ dG(x, y) ≤ ∆i

β . By the definition of (β, s,∆i)-sparse
covers, there exists a cluster Cj ∈ Ci such that BG(x,∆/β) ⊆ Cj . Then x, y ∈ Cj . By Lemma 3.12, we have
dHi

(x, y) ≤ dHi,j(x, y) ≤ dG(x, y) + ε∆i, as required.
Size analysis. By the definition of (β, s,∆i)-sparse covers, each net point v ∈ Ni is contained in at most

s = O(1) clusters in Ci. Consequently,
∑︁t

j=1 |Ni ∩ Cj | ≤ s · |Ni| = O(|Ni|). Summation of the bound in
Lemma 3.11 now yields

|E(Hi)| ≤
t∑︂

j=1

|E(Hi,j)| ≤
t∑︂

j=1

O
(︂
|Ni ∩ Cj | · ε−1 log(ε−1α(n))

)︂
≤ O

(︂
|Ni| · ε−1 log(ε−1α(n))

)︂
,

as required.

3.4 Proof of Theorem 3.1 We can now put the pieces of the puzzle together and prove Theorem 3.1. Recall the
definition of the graph H . For each level Ni of a net tree T , Lemma 3.3 yields an additive spanner Hi; and we
put H =

⋃︁
i∈N Hi. We already know (Lemma 3.4) that H is a (1 + 2ε)-spanner for the metric (T, dG). It remains

to bound the number of edges in H .

LEMMA 3.13. The graph H has O
(︂
n · log(ε−1α(n)) · ε−1 log ε−1

)︂
edges

Proof. We are given a set T of n terminals in an edge-weighted planar graph G = (V,E,w). We defined
⌈log2(18/ε)⌉ + ⌈log2 ϱ⌉ + 1 levels, constructed an (β, s,∆i)-sparse cover Ci = (C1, . . . , Ct(i)) on each level, and
the created an additive spanner Hi,j on the net points Ni ∩Cj if |Ni ∩Cj | ≥ 2 (Lemma 3.3). We may assume that
Hi,j is the empty graph when |Ni ∩ Cj | ≤ 1. Then by Lemma 3.11, Hi,j has

max{0, |Ni ∩ Cj | − 1|} ·O
(︁
ε−1 log(ε−1α(n))

)︁
edges for all j ∈ {1, 2, . . . , t(i)}. To complete the proof of Lemma 3.13, it is enough to show that

(3.13)
⌈log2 ρ⌉∑︂

i=−⌈log2(18/ε)⌉

t(i)∑︂
j=1

max{0, |Ni ∩ Cj | − 1|} = O
(︂n
ε

)︂
.

The proof of Equation (3.13) is based on the following key observation: We have (Ni ∩ Cj) ≤ 20β∆i =
20β2i/ε, and Ni is a 2i-net (i.e., the minimum distance between net points in Ni is 2i). This implies that at most
one point of Ni ∩ Cj is present in Ni+M , where M := ⌈log2 20β/ε⌉. That is,

(3.14) max{0, |Ni ∩ Cj | − 1|} ≤
⃓⃓⃓
(Ni \Ni+M ) ∩ Cj

⃓⃓⃓
+ 1 ≤ 2 ·

⃓⃓⃓
(Ni \Ni+M ) ∩ Cj

⃓⃓⃓
.

Based on this observation, we partition the levels into M groups: Specifically, for every g ∈ {0, 1, . . . ,M−1},
group g comprises all levels i such that i ≡ g (mod M). Recall that at each level i, every net point in Ni is
contained in at most s = O(1) clusters of the (β, s,∆i)-sparse cover Ci. Combined with Equation (3.13), this
gives

t(j)∑︂
j=1

max{0, |Ni ∩ Cj | − 1|} ≤ 2s ·
⃓⃓⃓
Ni \Ni+M

⃓⃓⃓
.

Summation over all levels in any group g ∈ {0, 1, . . . ,M − 1} yields

∑︂
i≡g (mod M)

t(i)∑︂
j=1

max{0, |Ni ∩ Cj | − 1|} ≤ 2s ·
∑︂

i≡g mod M

⃓⃓⃓
Ni \Ni+M

⃓⃓⃓
≤ 2s · |N0| = O(n).
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Finally, summation over all M = O(ε−1) groups gives

⌈log2 ρ⌉∑︂
i=−⌈log2(18/ε)⌉

t(i)∑︂
j=1

max{0, |Ni ∩ Cj | − 1|} =

M−1∑︂
g=0

⎛⎝ ∑︂
i≡g (mod M)

t(i)∑︂
j=1

max{0, |Ni ∩ Cj | − 1|}

⎞⎠
≤

M−1∑︂
g=0

O(n) = O
(︂n
ε

)︂
,

as required.

The combination of Lemmas 3.4 and 3.13 readily implies Theorem 3.1.

3.5 Generalization to Graphs of Bounded Genus In this section, we generalize Theorem 3.1 to polyhedral
metrics.

THEOREM 3.14. Let ε ∈ (0, 1) be a parameter. Let T be a set of n points (terminals) in a polyhedral metric. We can
construct a Steiner (1+ε)-spanner for T with O((n/ε)·log(ε−1α(n))·log ε−1) edges, where α(n) is the inverse Ackermann
function.

Every step of the proof of Theorem 3.1 generalizes to graphs of bounded genus. We briefly sketch the key
differences. In Section 3.1, the construction of net-tree based spanners and Lemma 3.2–Lemma 3.4 hold for any
metric space (X, dX). In Section 3.2, we used (β, s,∆)-sparse covers to reduce the problem to planar graphs of
bounded diameter. Klein et al. [56] constructed (β, s,∆)-sparse covers for minor-free classes of graphs, where
β and s depend on H (i.e., β and s are constants for fixed H). Busch et al. [24] later constructed (β, s,∆)-sparse
covers for planar graphs with better constants; and Abraham et al. [4] for Kr,r-free graphs for any r ∈ N.

In Section 3.3, we used a η-RSPD (η-rooted shortest path decomposition) for planar graphs of bounded
diameter, based on Thorup [68, Section 2.5]. For graphs of constant genus g, we first reduce this step to planar
graphs at the expense of increasing the diameter by a factor of O(g). 5 A cut graph is a graph C embedded on a
surface S such that S \ C is homeomorphic to a closed disk [37]. It is NP-hard to find the shortest cut subgraph
in a given graph embedded in an oriented surface [39, 36]. However, a cut graph has a very simple structure: It
consists of a tree T with g cross edges, and can be computed in O(n) time [38, 39, 44]. If we start with a shortest
path tree T , we obtain a cut graph C that consists of O(g) pairwise noncrossing shortest paths. When we cut the
surface S (and the graph G) along C, the edges and vertices on C are duplicated. If we start with a graph G of
genus g, we obtain a planar graph G′.

LEMMA 3.15.

1. Every shortest path in G′ is the union of O(g) shortest paths in G, and

2. every shortest path in G is the union of O(g) shortest paths in G′.

Proof. The cut graph C of G is a union of O(g) noncrossing shortest paths {γ1, . . . , γk}. By the optimal
substructure property, every subpath of a shortest path is a shortest path.

(1) Let P ′ be a shortest path in G′. Then P ′ has a connected intersection with each path γi, which is a shortest
path in G. Every component of P ′ \ C is a shortest path in G. Overall, P ′ has O(g) subpaths along the the paths
γi, consequently P ′ \ C has O(g) components. All O(g) subpaths of P ′ are shortest paths in G.

(2) Let P be a shortest path in G. Then P ′ has a connected intersection with each path γi, which is a shortest
path in both G and G′. Furthermore, every component of P \ C is a shortest path in both G and G′. Overall, P
decomposes into O(g) subpaths that are shortest paths in both G and G′.

5We note that for graphs of bounded genus, Abraham and Gavoille [3] constructed a weaker decomposition than η-RSPD: Specifically,
property (P3) of η-RSPD stipulates that for every node α ∈ Φ, the boundary vertices Qα are contained in at most η shortest paths of Gα.
In [3], the boundary vertices are covered in at most η successive shortest paths, that is, Qα is contained in paths γ1, . . . , γk where k ≤ η,
and γi is a shortest path in the graph Gα \

⋃︁
j<i γj . Unfortunately, the removal of one or more paths may increase the diameter—and is

unsuitable for our purposes.
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By Lemma 3.15(1), we have (G′) ≤ O(g · (G)). We can compute recursive shortest paths separators in G′ as
in Section 3.3; but the very first separator is C, which consists of O(g) shortest paths. Given a shortest path Puv

in G, it is a union of O(g) shortest paths in G′ by Lemma 3.15(2), each of which can be traced in the recursive
decomposition of G′ by Lemma 3.8. Our construction of portals and Steiner spanners now works for G′ as
described in Section 3.3 but the number of portals (and Steiner points) increases by a factor of O(g). With these
modifications, the proof of Lemma 3.3 in Section 3.3 and Theorem 3.1 in Section 3.4 go through with a constant
O(g) factor increase for any constant genus g.

4 Spanners in Planar Domains
In this section, we prove (item 2 in) Theorem 1.2 and Theorem 1.3 using tools we develop in Section 2 and
Section 3. First, we show Lemma 1.6, which implies that planar metrics and polyhedral domain are equivalent.

LEMMA 1.6. TREE ⊏ PLANAR ∼= POLYDOM ∼= TERRAIN ⊏ POLYSURF.

Proof. Observe that TREE ̸∼= PLANAR since (the metric induced by) the unweighted cycle graph Cn with n
vertices cannot be embedded isometrically into any tree metrics. Thus, TREE ⊏ PLANAR.

Abam, de Berg, and Seraji [2] showed that POLYDOM ⊑ TERRAIN by controlling the elevation of polyhedral
terrains. Next, we show that TERRAIN ⊑ PLANAR.

Let P be a set of points on the polyhedral terrain. Our goal is to show that there exists a planar metric induced
by an edge-weighted planar graph G and a subset of points Q ⊆ V (G) such that there exists an isometry from P
to Q.

We start by taking the arrangements of geodesic paths between all points in P ; that is, we draw the shortest
path between any two points in P on the terrain. We say that two lines that meet at a point a are intersecting if
they are not equal on one of the two sides of a as shown in Figure 9.

a b
c

Figure 9: The black and purple lines intersect in a and c but not in b

We can modify paths so that any two of them only intersect at at most two points. Suppose two shortest
paths p and q intersect at three points a, b and c. By the suboptimality principle, the section of p and q between a
and b are the same length. We modify q to be equal to p between a and b. This does not change the length of q.
After doing the same between b and c, p and q only intersect in a and c.

We choose an ordering σ : P 2 ↦→
[︂(︁|P |

2

)︁]︂
of the paths and modify the path as described above such that, if

two distinct paths p and q with σ(p) < σ(q) intersect in more than two points, we replace the sections of q with
the sections of p. This gives an arrangement of geodesic paths such that any two paths intersect at at most two
points.

We add Steiner points at all intersection points of the geodesic paths and denote by G the graph obtained.
Then G is planar by construction since no pair of edges are intersecting. The point set Q contains the vertices
corresponding to P . Since all the shortest distances between points in P are preserved in G, the natural mapping
from every point in P to its copy in Q is an isometry, showing that TERRAIN ⊑ PLANAR.

Next, we show that PLANAR ⊑ POLYDOM. Let G be an edge-weighted planar graph realizing a planar
metric M1 and P be a subset of vertices of G. We draw G on the plane so that every edge is a polygonal curve,
with its length being the weight of the edge. Let R be a sufficiently big rectangle that encloses the drawing of
G. Removing all points (in the drawing) of G from R, we get a set of polygonal regions, where each region
corresponds to a face of G, except one region which corresponds to the intersection of the infinite face of G and
R. We now regard each polygonal region as a hole, a.k.a., a polygonal obstacle, thereby obtaining a polygonal
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domain M2. Let Q be the points in R2 that correspond to the vertices of P in the drawing. Clearly, the geodesic
distance between any two points of Q in M2 is the shortest path distance in G, and hence (the metric induced
by) P can be embedded isometrically int M2.

Lastly, we show that TERRAIN ⊏ POLYSURF. Consider a point set P on a polyhedral surface, which is a
piece-wise linear function f : D → R for some convex polygonal region D ⊂ R2. Since P is finite, all shortest
paths between points in P lie in a compact subset of the terrains. Consequently, we may assume w.l.o.g. that D
is compact and (after scaling) lies in a unit square, D ⊂ [0, 1]2; and f > 0. Extend f to a larger square domain
[−1, 2]2 ⊂ R2, and let consider the solid S = {(x, y, z) ∈ R3 : (x, y) ∈ D and 0 ≤ z ≤ f(x, y)}. Now the boundary
of S is a polyhedral surface that contains the terrain (as well as all points in P ), and the shortest paths among P
are the same in both metrics.

To see that TERRAIN ̸⊑ POLYSURF, let M1 be the shortest path metric of K3,3 (with unit edge weights).
It is in POLYSURF, as K3,3 can be realized in R3 with noncrossing polygonal arcs of unit length, which are
shortest paths in some polyhedral surface of sufficiently high genus. However, in any realization of K3,3 on
a polyhedral terrain M2, two shortest paths will cross. Assume that the a1b1- and a2b2-paths cross. Then
δ2(a1, a2) + δ(b1, b2) ≤ δ2(a1, b1) + δ2(a2, b2) = 2, in the metric δ2 of the terrain, and so δ2(a1, a2) < 2 and
δ(b1, b2) < 2, while δ1(a1, a2) = δ1(b1, b2) = 2 in the metric of K3,3.

We are now ready to construct the spanners claimed in the second item in Theorem 1.2 and in Theorem 1.3.

THEOREM 1.2. Let ε ∈ (0, 1) be a parameter.

1. There exists a polyhedral terrain and a set P of n points on the terrain such that any 2-spanner for P must have
Ω(n log n) edges.

2. Given any set P of n points in a polyhedral terrain, we can construct a (2 + ε)-spanner for P with Õ(n/ε6) edges.
The number of edges is O(n) for constant ε.

Proof. [Proof of item 2] By Lemma 1.6, it suffices to construct a (2 + 4ε)-spanner for a set of point P in a planar
metric realized by an edge-weighted planar graph G. One can obtain a (2 + ε)-spanner by simply scaling ε. We
first construct a tree cover T for G with O(ε−3 log(ε−1)) trees using Theorem 1.7. The union of trees of T is a
(1 + ε)-spanner of G. In each tree in T , we remove the Steiner points using Theorem 1.5. This gives a family of
O(ε−3 log(ε−1)) trees on P , each with O(ε−2 log(ε−1)) vertices. The Steiner points removal operation increases
the stretch by a factor of 2 + ε or less. The union of trees is therefore a non-Steiner spanner for the shortest path
metric over P , with at most (1 + ε)(2 + ε) ≤ (2 + 4ε) stretch and O(nε−5 log2(ε−1)) edges.

THEOREM 1.3. Let ε ∈ (0, 1) be a parameter. Let P be a set of n points in a polyhedral terrain. We can construct a Steiner
(1 + ε)-spanner for P with O

(︁
(n/ε) · log(ε−1α(n)) · log ε−1

)︁
edges, where α(n) is the inverse Ackermann function. The

same result holds even when P is on a polyhedral surface of bounded genus.

Proof. By Lemma 1.6, it suffices to construct a Steiner (1 + ε)-spanner for a set P of n points in a planar metric
realized by an edge-weighted planar graph G. Here, we apply Theorem 3.1 on G with P as our set of terminals.
(Alternatively, we can apply Theorem 3.14 on a polyhedral surface of bounded genus.) The number of edges of
the spanner is O((n/ε) · log(ε−1α(n)) · log ε−1).

5 Lower Bounds
5.1 Stretch 2 Tree Cover We now prove that Ω(log n) trees are sometimes necessary in any non-Steiner tree
cover with stretch 2, as claimed in item 2 in Theorem 1.5. Instead of proving a bound on the number of trees
directly, we show a stronger lower bound (Lemma 5.1 below): any 2-spanner that does not contain any Steiner
points must have Ω(n log n) edges. As the union of k trees in a Steiner-tree cover with stretch 2 gives a 2-spanner
with O(nk) edges, it follows that k = Ω(log n).

LEMMA 5.1. There exists a weighted tree T and a subset of vertices S ⊆ V (T ) with n points in T such that any non-
Steiner 2-spanner G = (S,E,w) for S must have |E| = Ω(n log n).

Let Pn be the unweighted path graph with n vertices {1, 2, . . . , n} = [n]. We say that an edge-weighted graph
H = ([n], EH , wH) is a 2-hop t-spanner for Pn if for every two points x, y ∈ Pn, dPn

(x, y) ≤ dH(x, y) and there
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exists a path Qxy containing at most two edges such that wH(Qx,y) ≤ t · dPn
(x, y). In [58], the authors showed

that any 2-hop 3
2 -spanner for Pn must have Ω(n log n) edges. Here, we observe that their proof actually implies

that any 2-hop t-spanner for any constant t ≥ 1 must have Ω(n log n) edges; we reproduce their poof with the
required changes for completeness. Our proof of Lemma 5.1 requires that t = 2.

LEMMA 5.2. (ADAPTED FROM [58]) Let H = ([n], EH , wH) be any 2-hop t-spanner for Pn with t ≥ 1 and n ≥ 2, then
|EH | = Ω(n log n/t).

Proof. We will show a slightly stronger statement by induction. Think of Pn as n integer points on the line, and
we allow H to contain edges with integer endpoints outside Pn. (But H only needs to preserve distances between
points of Pn, not the distances to the integer points outside Pn.) Our goal is to lower bound the minimum number
of edges, denoted by T (n), in a 2-hop t-spanner on [n] with both endpoints in Pn.

1a 2
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x y

L
-R R
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4t+2
n +2
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1 2
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xpy y

L
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Figure 10: (a) if Qxy contains an integer point a ≤ 0, then w(Qxy) > 2|xy|; (b) A cross edge (py, y) if x is not
incident to a cross edge.

Let L = {1, . . . , ⌊n/2⌋} be the left half of Pn and R = Pn \ L be the right half; see Figure 10. Note that EH is
a 2-hop t-spanner for both L and R. By induction, EH has at least T (⌊n/2⌋) edges with both endpoints in L and
EH has at least T (|R|) ≥ T (⌊n/2⌋) edges with both endpoints in R. Note that these two sets are disjoint. Let EC

be the set of edges with exactly one endpoint in L and another in R, called cross edges. Then we have

(5.15) T (n) ≥ 2T (⌊n/2⌋) + |EC |.

We now bound the number of cross edges by Ω(n/t). To avoid notational clutter, we will drop the floors and
ceilings, and assume that n is even. Let L− = {n/2 − n/(4t + 2) + 1, n/2 − n/(4t + 2) + 2, . . . , n/2} be the last
n/(4t+ 2) points of L and similarly, R− = {n/2 + 1, n/2 + 2, . . . , n/2 + n/(4t+ 2)} be the first n/(4t+ 2) of R.

We claim that for any two points x ∈ L− and y ∈ R−, any t-spanner path Qxy in H of the pair (x, y)
must contain only integer points in Pn. Since otherwise, w.l.o.g, assume that Qxy contains a point a ≤ 0, see
Figure 10(a), then

(5.16)
w(Qxy)

|xy|
>

n/2− n/(4t+ 2)

|xy|
=

n/2− n/(4t+ 2)

2n/(4t+ 2)
= t,

contradicting that Qxy is a t-spanner path.
Now we continue to bound |EC |. If every vertex in L− is incident to a cross edge, which is an edge with an

endpoint in R, then |EC | ≥ |L−| = n/(4t+ 2). Otherwise, there is a point x ∈ L− that has no crossing edge. For
any y ∈ R−, there must be a 2-hop path between x and y of the form {x, py, y} for some py in L \ L− (because
the 2-hop path does not leave Pn as claimed above). See Figure 10(b). Thus, there is a cross edge (py, y) for
every y ∈ R−, meaning that the number of cross edges is |EC | ≥ |R−| = n/(4t + 2). In both cases, we have
|EC | ≥ n/(4t+ 2) and Equation (5.15) becomes

(5.17) T (n) ≥ 2T (⌊n/2⌋) + Ω(n/t) .
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The recurrence in Equation (5.17) solves to T (n) = Ω(nt log n).

Proof. [Proof of Lemma 5.1] Our lower bound is obtained by a reduction to a lower bound for 2-hop 2-spanner
for the path graph. We construct a tree T as follows. Let Pn be the path with n vertices, where every edge
has weight 1. Let T be obtained by attaching to each vertex i ∈ Pn a distinct vertex si via an edge of weight
wT (si, i) = M for an integer M ≥ n. See Figure 11(a) and (b). We call the resulting graph the comb graph,
denoted by COMBn.

Let S = {s1, . . . , sn}. Note that dT (si, sj) = 2M + |j− i| for any j ̸= j, and in particular, dT (si, sj) ≥ 2M . Let
G = (S,E,w) be any non-Steiner 2-spanner for S.

n
nP

T

1 2

i jt

i jt

n

M M M

1

s1

2 i

(a) (b)

(c) (d)

si sn

MM M

st si sj

Figure 11: (a) path Pn and (b) tree T . Here M ≥ n. (c) A path Qij in G between si and sj containing blue edges
and (d) the corresponding 2-hop path Zij in H between i and j containing red edges.

We construct another graph H = ([n], EH , wH) as follows: for every edge (si, sj) in G, we add an edge (i, j) to
H of weight wH = |j−i|. We claim that H is a 2-hop 2-spanner of Pn; this will imply that |E| ≥ |EH | = Ω(n log n)
by Lemma 5.2.

Let i, j be any two vertices in H with j > i, and two corresponding vertices si and sj in G, respectively. If
there is an edge (si, sj) ∈ G, then (i, j) ∈ EH and hence (i, j) has a path (which is an edge) of stretch 1 in H .

We now assume that there is no direct edge from i to j. Let Qij be the shortest path from si to sj in G. Note
that dT (si, sj) = 2M + (j − i). Since G is a 2-spanner of S, we have

(5.18) w(Qij) ≤ 4M + 2(j − i).

First, we claim that Qij contains exactly one point st with t ̸∈ {i, j}. Suppose otherwise, Qi,j contains at least
two points st1 , st2 . Assume w.l.o.g. that t1 is closer to i than t2 on Qij .Then we have

w(Qij) ≥ dT (si, st1) + dT (st1 , st2) + dT (t2, sj)

≥ 2M + 2M + 2M = 6M > 4M + 2(j − i),

since M ≥ n, contradicting Equation (5.18). Thus, Qij = (si, st, sj) for some t ̸= i, j; see Figure 11(c). Then
w(Qij) = 4M + |i− t|+ |j − t|. By Equation (5.18), we have:

(5.19) |i− t|+ |j − t| ≤ 2(j − i).

Let Zij = {i, t, j}; see Figure 11(d). Clearly, Zij is a 2-hop path in H by the construction of H . Furthermore,
wH(Zij) = |i− t|+ |j − t| and hence by Equation (5.19), Zij has stretch 2. Thus, H is a 2-hop 2-spanner of Pn as
claimed.
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5.2 Spanners in Polyhedral Terrains with Stretch 2 We now prove the lower bound for stretch 2 as claimed
in item 1 in Theorem 1.2.

THEOREM 1.2. Let ε ∈ (0, 1) be a parameter.

1. There exists a polyhedral terrain and a set P of n points on the terrain such that any 2-spanner for P must have
Ω(n log n) edges.

2. Given any set P of n points in a polyhedral terrain, we can construct a (2 + ε)-spanner for P with Õ(n/ε6) edges.
The number of edges is O(n) for constant ε.

Proof. [Proof of item 1] By Lemma 1.6, any lower bound for non-Steiner spanners in tree metrics will imply the
same lower bound for point sets in a polyhedral terrain. Thus, by Lemma 5.1, there exists a set of n points P
such that any 2-spanner for P must have Ω(n log n) edges.

5.3 Locality-Sensitive Ordering In this section, we prove an Ω(log n) lower bound on the size of the left-sided
LSO stated in Theorem 1.9. We restate the theorem for convenience.

THEOREM 1.9. There exists a tree metric T with n points such that any (τ, ρ)-left-sided LSO for T with ρ = 1 must have
τ = Ω(log n), matching the O(log n) upper bound by Filtser and Le [42].

Proof. Let COMBn be the comb graph constructed in the proof of Lemma 5.1 with terminal set S to be the leaves
of COMBn. Let Σ be a (τ, 1)-left-sided LSO for COMBn. For any linear ordering σ ∈ Σ, let σS be the linear
ordering obtained by removing all vertices not in S from σ. Thus, σS only contains (a subset of) vertices in S.
Let ΣS = {σS |σ ∈ Σ} be the resulting set of linear orderings.

We now construct a non-Steiner 2-spanner for S, denoted by G, as follows. For each ordering σS ∈ ΣS , let
v∗σS

be the leftmost endpoint of σS . That is, v∗σS
is the smallest vertex in the ordering σS . Then for every x ∈ σS ,

we add an edge (v∗σS
, x) to G. The weight of every edge in G is the distance between its endpoints in COMBn.

This completes the construction of G.
We now argue that G is a spanner with stretch 2 for S. Let s1 and s2 be any two vertices in S. By the

definition of left-sided LSO, there exists a linear ordering σS ∈ Σ containing both s1 and s2 such that for any
x ⪯σS

s1 and y ⪯σS
s2, we have dCOMBn(x, y) ≤ dCOMBn(s1, s2). Applying this property to x = v∗σS

and y = s2,
yields dCOMBn(v

∗
σS

, s2) ≤ dCOMBn(s1, s2). By a symmetric argument, we alos have dCOMBn(v
∗
σS

, s1) ≤ dCOMBn(s1, s2).
Thus, dCOMBn

(v∗σS
, s1) + dCOMBn

(v∗σS
, s2) ≤ 2 · dCOMBn

(s1, s2), which gives dG(s1, s2) ≤ 2 · dCOMBn
(s1, s2) since G

contains both (v∗σS
, s1) and (v∗σS

, s2).
Observe that for every ordering σS , we add at most |σS | − 1 edges to G, where |σS | is the number of points

in σS . Thus, on average, we add at most 1 edge per vertex to G. This means that the total number of edges we
add to G is at most τn since every vertex appears in at most τ linear orderings in Σ. By Lemma 5.1, we obtain
τn = Ω(n log n), implying that τ = Ω(log n), as claimed.

5.4 Reliable Spanners To establish a lower bound for reliable spanners in trees, we use a density-sensitive
version of Lemma 5.2 developed in [59]. Let P be a point set in an interval [0, L] for some L ≥ 1. We say that
P satisfies the unit interval condition if every unit sub-interval of [0, L] contains at most one point in P . Le,
Milenković, and Solomonn [59] proved the following.

LEMMA 5.3. (ADAPTED FROM LEMMA 12 [59]) Let P be a set of n ≥ 2 points in the interval [0, L] satisfying the unit
interval condition. Let H be any Steiner 2-hop t-spanner for P with t ≥ 1, then |EH | = Ω(n2 log n/L).

Le, Milenković, and Solomonn [59] stated their lower bound in Lemma 5.3 for stretch 1+ε where ε ∈ (0, 1/4].
However, following the same modification we made in the proof of Lemma 5.2, the lower bound holds for any
constant stretch. Note that in Lemma 5.3, we allow H to contain points in [0, L] that are not in P . The lower bound
in Lemma 5.2 also applies to Steiner spanners, but we do not need this property for the proof of Lemma 5.1.
However, for proving lower bounds on reliable spanners, we do need the lower bound to hold even for Steiner
spanners. We now prove Theorem 1.8 which we restate below.

THEOREM 1.8. There exists a tree metric T with n points such that any oblivious 1
3 -reliable 2-spanner for V (T ) must

have Ω(n log n) edges.
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Proof. Let COMBn be the comb graph (with 2n vertices) and D be a distribution of oblivious ν-reliable 2-spanners
for COMBn with ν = 1/3. Our goal is to show that there exists a graph in the support of D with Ω(n log n) edges.

Let the attack set B contain all the internal nodes of COMBn. By definition, EG∼D[|B+|] ≤ (1 + ν)|B|. Thus,
there exists a graph G ∈ D such that |B+| ≤ (1 + ν)|B| = 4n/3. Next we will show that |E(G)| = Ω(n log n).

Observe that there are at least 2n− 4n/3 ≥ 2n/3 (leaf) vertices that are not in B+. Let this set of leaves be A.
By definition, G[V (COMBn) \B] is a 2-spanner for vertices in A. Note that V (COMBn) \B only contain leaves of
COMBn.

Similar to the proof of Lemma 5.1, we construct another graph H = ([n], EH , wH) as follows: for every
edge (si, sj) in G between two leaves si, sj of COMBn, we add an edge (i, j) to H of weight wH = |j − i|. Let
AH = {j|sj ∈ A} be the set of points corresponding to vertices in A.

Since G[V (COMBn) \ B] is a 2-spanner for vertices in A, H is a Steiner 2-spanner for AH . By translation, we
can assume that the vertices of H are in the interval [n, 2n], and thus, any Steiner point in H is inside [0, 3n].
Since AH satisfies the unit interval condition with L = 3n, by Lemma 5.3, we have

(5.20) |E(H)| = Ω

(︃
|AH |2 log(|AH |)

3n

)︃
.

Combined with |AH | = |A| ≥ 2n/3, this implies |E(G)| = Ω(n log n), as desired.
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[21] Prosenjit Bose, Vida Dujmović, Pat Morin, and Michiel Smid. Robust geometric spanners. SIAM Journal on Computing,
42(4):1720–1736, 2013. doi:10.1137/120874473.
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[36] Vincent Cohen-Addad, Éric Colin de Verdière, Dániel Marx, and Arnaud de Mesmay. Almost tight lower bounds for

hard cutting problems in embedded graphs. J. ACM, 68(4):30:1–30:26, 2021. doi:10.1145/3450704.
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