
Coherence-Aided Memory Bandwidth Regulation

Ivan Izhbirdeev∗, Denis Hoornaert†, Weifan Chen∗, Alexander Zuepke†, Youssef Hammad†,

Marco Caccamo† and Renato Mancuso∗

∗Boston University, USA
†Technical University of Munich, Germany

Email: {ivani, wfchen, rmancuso}@bu.edu, {denis.hoornaert, alex.zuepke, youssef.hammad, mcaccamo}@tum.de

Abstract—With the increasing adoption of PS-PL (Proces-
sor System-Programmable Logic) platforms, also known as
CPU+FPGA systems, there arises a need for efficient resource
management strategies. This work explores memory bandwidth
regulation in such systems, leveraging the capabilities of tightly
coupled FPGAs to offer elegant, low-overhead solutions with
highly flexible regulation policies. We introduce MemCoRe, a
novel approach that exploits the FPGA’s interaction with cache
coherence interfaces and cross-trigger signals to achieve fine-
grained spatiotemporal awareness of processor activity and
software-free control. By comparing MemCoRe with state-of-the-
art software-based approaches, namely MemGuard and MemPol,
we demonstrate significant improvements in regulation precision
and overhead reduction. Key contributions include nanosecond-
scale memory bandwidth regulation, off-core memory bandwidth
accounting, address-aware regulation, low-overhead token-bucket
regulation, and asymmetric on-off core throttling. Our evaluation
on a Xilinx Zynq UltraScale+ ZCU102 CPU+FPGA platform
showcases MemCoRe’s capability to regulate memory bandwidth
with nanosecond-scale precision. Overall, MemCoRe presents a
promising avenue for efficient memory bandwidth regulation in
PS-PL platforms, with strong applicability to real-time systems.

Index Terms—bandwidth regulation, coherence, cache

I. INTRODUCTION

The proliferation of PS-PL (Processor System-

Programmable Logic) platforms, also known as CPU+FPGA

systems, is rapidly expanding across both the embedded

and general-purpose markets. Notably, the landscape has

witnessed the emergence of new contenders, such as the AMD

Embedded+ platforms and the recently announced AMD

Versal 2 platforms. These advancements mark a significant

stride, pushing beyond conventional boundaries into the realm

of many-core systems coupled with FPGA integration.

The rise in popularity of PS-PL platforms offers a unique

opportunity to rethink traditional approaches to system re-

source management. Following the state of the art, memory

bandwidth regulation is a topic that has been extensively

explored with the proposal of software-based techniques [1],

[2] and dedicated hardware units [3], [4]. Acknowledging the

importance of configurable bandwidth distribution in multicore

heterogeneous system-on-a-chip (SoC), vendors have also pro-

posed architectural solutions such as Intel RDT [5], [6], Arm

QoS [7], [8], and Arm MPAM [9], which are still making

their way into commercially available platforms. Nonetheless,

these approaches come with various shortcomings, from the

need to modify key layers in the system software to the need

for custom hardware redesign/integration. Even solutions like

RDT, QoS, and MPAM have limited programmability because

they cannot enact different regulation policies depending on

the exact downstream resource from which bandwidth is being

consumed.

In this paper, we demonstrate that if a tightly coupled FPGA

is available in an SoC, memory bandwidth regulation can

be done elegantly, with minimal overheads, while offering

the ability to produce highly flexible regulation policies. In

particular, this paper showcases the use of two key enabling

features of tightly coupled FPGAs, namely the ability of the

FPGA to interact with (1) cache coherence interfaces and

(2) cross-trigger signals. Importantly, the combination of these

mechanisms allows fine-grained spatiotemporal awareness of

the activity of the processors under regulation and software-

free control of said processors.

We call the presented approach MemCoRe to stress its

ability to perform Memory management via Coherence-aided

Regulation. MemCoRe improves on the two state-of-the-

art software-based memory bandwidth regulation approaches,

MemGuard [1] and MemPol [10] as follows. First, by enacting

regulation from outside the cores, MemCoRe overcomes the

intrinsic implementation overheads of MemGuard for fine-

grained regulation. Second, by optimizing the critical path in

bandwidth regulation, MemCoRe improves performance by an

order of magnitude and overcomes the problems of setpoint

overshooting observed in MemPol. Compared to solutions like

Intel RDT, Arm QoS, and Arm MPAM, MemCoRe sets itself

apart for its ability to enact regulation policies on a per-

memory-region basis while being immediately applicable in

SoCs with cache-coherent programmable-logic.

We compare MemCoRe with MemPol using its original soft-

ware implementation (MemPol-SW). For fairer comparison,

we also implemented a custom MemPol implementation in

FPGA (MemPol-HW). This allows us to discuss and evaluate

design trade-offs and optimizations to achieve the presented

nanosecond-scale bandwidth regulation. All the systems we

contrast, i.e., MemCoRe, MemPol-SW, and MemPol-HW, were

fully implemented and evaluated on a Xilinx Zynq UltraScale+

ZCU102 [11] CPU+FPGA platform where they are used to

regulate the memory bandwidth of the platform’s four Arm

Cortex-A53 cores.

We make the following key contributions in this work:

• Nanosecond-scale memory bandwidth regulation of ap-

plications cores from the FPGA component of a com-

mercially available PS-PL platform.

1



• Off-core memory bandwidth accounting based on moni-

toring the core’s coherency traffic instead of using per-

formance counters (PMCs).

• Address aware accounting of memory traffic that enables

fine-grained tuning of the regulation for different memory

regions.

• Memory bandwidth regulation based on token-bucket reg-

ulation with low implementation overhead in hardware.

• An asymmetric on-off core throttling approach that op-

timizes for fast halting of cores to overcome setpoint

overshooting of the regulation setpoint.

• A substantial design space exploration of alternative

approaches for implementing key modules in a PL-side

memory bandwidth regulator.

The rest of this paper is structured as follows. Sec. II

presents the background on memory bandwidth regulation.

Sec. III reviews challenges and discusses opportunities for

improvements in PS-PL platforms. Sec. IV details MemCoRe’s

design and Sec. V its implementation. We evaluate the pro-

posed approach in Sec. VI, with a discussion of key limitations

and possible avenues for future work in Sec. VII. Sec. VIII

discusses closely related work, and Sec. IX concludes the

paper.

II. BACKGROUND

A. Memory & Cache Model

Modern computer systems employ a hierarchical memory

architecture to bridge the performance gap between fast on-

chip processing elements (PEs) and the slower off-chip main

memory. The hierarchy consists of multiple levels of caches

and the main memory. The cache levels closer to the PE, such

as the L1 cache, are typically private to each PE. The last-

level cache (LLC) is generally shared among multiple PEs and

directly interfaces with the memory controller. The memory

controller is responsible for the data movement between the

on-chip logic and the off-chip main memory (e.g., DRAM).

Memory bandwidth is the rate at which cache lines are

transferred between the LLC and the main memory. Two

architectural events contribute to the memory activity: cache

refills and write-backs. Upon a refill, a cache line is fetched

from lower to higher levels of the hierarchy. During a write-

back, a dirty line being evicted from higher levels is written

back to lower levels, eventually reaching the main memory.

The combined rate of refills and write-backs between the LLC

and the memory controller constitutes the overall memory

bandwidth.

In hard real-time systems, memory budgets are dimensioned

using the maximum sustainable bandwidth—the highest band-

width a memory controller can sustain under worst-case work-

loads (e.g., row misses in the same bank). As documented

in [8], this can be much lower than the peak achievable

bandwidth. This conservative metric serves as the baseline for

memory regulation. Determining the sustainable bandwidth re-

quires platform-specific knowledge and experimentation [12],

[13].

B. PMC-based Memory Bandwidth Regulation

Modern platforms typically contain performance monitoring

counters (PMCs) to count the occurrence of various architec-

tural events. Techniques such as MemGuard and MemPol use

PMCs to monitor the number of LLC refills and write-backs in

a given time window to estimate the main memory bandwidth

usage at runtime. If the estimated bandwidth exceeds the user-

set threshold, a regulation action is taken to throttle bandwidth

usage. Regulation actions could be scheduling a CPU-intensive

high-priority task or stalling the core exceeding the threshold.

MemGuard relies on the Performance Monitoring Unit’s

(PMU) ability to interrupt a PE when its PMC exceeds a

configured threshold. Thus, MemGuard periodically resets the

PMC to replenish a PE’s budget. Due to the interrupt overhead

for periodic replenishment, MemGuard regulates at millisec-

ond granularity [1], [14]. Conversely, MemPol periodically

polls the PMCs of all the monitored PEs from an auxiliary PE

and regulates the bandwidth by halting/resuming a specific PE

via on-chip debug signals. This allows MemPol to regulate at

microsecond granularity [10].

C. PS-PL Platforms

PS-PL platforms represent highly heterogeneous System-

on-Chip architectures characterized by the combination of

“traditional” PEs (the Processing System or PS) and a re-

programmable fabric (the Programmable Logic or PL). In

high-performance embedded PS-PL platforms, the PS typi-

cally features several CPU cores clustered together with an

LLC and connected to a DRAM controller through a Cache

Coherent Interconnect (CCI). Such platforms may also include

multiple real-time PEs to handle low-latency tasks. The PL-

side comprises a Field Programmable Gate Arrays (FPGA)

and is tightly connected to the PS-side via many memory and

I/O interfaces to enable a high degree of PS-PL cooperation.

Unidirectional high-speed bus interfaces. Several unidirec-

tional ports allow communication (1) from PS to PL and (2)

from PL to PS. Each PS-to-PL port is associated with a unique

SoC-wide physical address range so that any PE-originated

transaction can be non-ambiguously routed to the PL. Like-

wise, PL-to-PS ports allow the PL to access any memory

target using their SoC-wide addresses. This includes access to

on-chip memories and the main memory. In most embedded

platforms, these ports utilize the AXI-Full protocol [15].

Two-way coherent memory accesses. The PL is not confined

to host peripheral modules and non-coherent accelerators and

can be elevated to become a member of the SoC cache

coherence domain. This enables the PL to receive snoops from

the CCI, effectively exporting information about the memory-

related activity occurring in the PS to the PL. Previous

research [16] demonstrates the level of detail that can be

extracted and exploited this way.

Interrupts and cross-triggers. In addition, the PL can both

send/receive interrupts to/from the PS. In Arm-based plat-

forms, this can be done either via a FIQ (Fast Interrupt

Request) or IRQ (Interrupt Request). Moreover, PS and PL are

inter-connected via direct cross-trigger interface (CTI) lines

2



to/from the CoreSight infrastructure, which, when adequately

controlled, can command the PEs to halt/resume their execu-

tion in an invisible way to the software layers.

D. Cache Coherence

Fig. 1: SoC cache coherency architecture. The colored components
are in the same coherence domain. When an LLC miss occurs, CCI
will broadcast a snoop to the protocol compliant IP.

A cache coherence protocol facilitates the distribution of

cached data across the SoC while providing a consistent view

of the data items to all PEs adhering to the protocol. If the

caches of several PEs are kept coherent, they are said to be in

the same coherence domain. For example, on PS-PL platforms,

the PL can be configured to be in the same domain as the PS

using the ACE [15] protocol as depicted in Figure 1.

As is the case for ACE, cache coherence is often imple-

mented using a snoop-based cache coherence protocol [17].

In this case, whenever a coherent PE requests access to a

cache line (e.g., upon a refill), the coherency fabric broadcasts

a snoop request to all PEs of the coherency domain. These PEs

must reply to indicate whether they have a local copy of the

requested cache line. If so, they must perform adequate actions

to maintain cache coherence, e.g., updating the coherence state

of the cache line or providing the most up-to-date content of

the line. Likewise, PEs can use snoop requests to announce

state changes of cache lines, e.g. when a cache line needs

to be modified. Importantly, snoop requests carry meta-data

identifying the requested line, such as its physical address.

III. EXPLORING REGULATION IN PS-PL PLATFORMS

The feature-rich nature of PS-PL platforms opens a range

of opportunities to rethink memory bandwidth regulation to

overcome traditional challenges of state-of-the-art PMC-based

techniques such as MemGuard and MemPol. Without loss of

generality, all memory bandwidth regulators can be decom-

posed into three individual modules:

1) An accounting module whose objective is to obtain and/or

estimate the PEs’ memory activity metrics (e.g., refills,

write-backs).

2) A decision module whose objective is to decide on what

actions to undertake (i.e., halt, resume, no-action), based

on the current and past memory activity.

3) An enacting module whose objective is to conduct the

action dictated by decision module.

Realizing each of these modules on an off-the-shelf platform at

the software level comes with technical challenges that hinder

the regulation’s quality. Let us closely examine the models and

limitations of both regulators.

A. MemGuard Model

In a MemGuard-like regulator, as mentioned in Sec. II-B,

the PMC is used as a countdown counter. When its value

reaches zero, an interrupt is issued1 immediately to execute

the decision module. Hence, the delay between the moment

throttling is required and its enacting is short, meaning that

MemGuard does not suffer from budget overshooting. A

second periodic interrupt is required to replenish the budget

and enforce a given memory bandwidth value over time. Un-

fortunately, when higher enforcement granularity is requested,

the reliance on two interrupt handlers becomes problematic.

Achieving finer granularity with the same target bandwidth

implies that both the per-period budget and the replenishment

period must be smaller. Consequently, a ten-fold granularity

increase can lead to a twenty-fold increase in the delivered

interrupt rate. Due to this limitation, MemGuard typically op-

erates at millisecond-granularity. At microsecond-granularity,

it incurs prohibitive overhead [10]. In short, MemGuard is

good at preventing overshooting, but realistically, it can only

operate at millisecond-scale granularity.

B. MemPol Model

Recognizing the overhead problem, MemPol proposes to

use other auxiliary on-chip PE(s) to execute the regulation

logic. Now that the PMC(s) can be sampled from an external

PE and since the regulator also resides outside the core(s)

under regulation, the bandwidth estimation must be done

following a new approach. MemPol periodically polls the

value of the relevant PMCs associated with each regulated

core. It does so by accessing the PMCs via memory-mapped

(AXI) transactions to the PE’s CoreSight registers and using

the difference between two consecutively sampled values to

estimate the current bandwidth. To halt/resume the activity of

the cores, MemPol also accesses debug control registers via

memory-mapped transactions. The immediate benefit of using

said approaches for the accounting and enacting modules is

that MemPol no longer injects interrupts in the control flow of

the regulated PEs. With less overhead, MemPol can operate in

microsecond-scale granularity. However, the periodic sampling

nature makes it prone to overshooting problems. Indeed, regu-

lation can only react as fast as the maximum achievable polling

frequency. If a burst of memory transactions occurs, MemPol

cannot respond until the newest PMC reading is polled. In

short, MemPol can operate on microsecond-granularity due to

low overhead but is prone to overshooting problems.

1More precisely, the interrupt is issued when the counter overflows, so the
budget is encoded as the value representing the maximum precision of the
PMC minus the budget value to be tracked.

3



C. New Opportunities on PS-PL Platforms

Despite the improvement brought by MemPol at the cost

of dedicating a (low-power) PE, overcoming the challenges

described above requires shortening the accounting and enact-

ing stages, which is rendered difficult by the unsuitability of a

typical system’s architecture. For instance, in the accounting

stage, the impossibility for MemGuard and MemPol to swiftly

access or act on the PMCs’ content constitutes a major hurdle

against regulation granularity. Both architectures also suffer

from the inability to distinguish accesses to different memory

regions. They must, for instance, assume that all the accesses

target the same DRAM bank. Software-driven PMC-based

regulation on off-the-shelf platforms has hit a limit.

To overcome these architectural limitations, we propose

Memory management via Coherence-aided Regulation (Mem-

CoRe). MemCoRe is a hardware module designed for off-the-

shelf PS-PL platforms. It addresses the aforementioned chal-

lenges by elevating the role of the PL to achieve fine-grained

bandwidth regulation of high-performance PEs. MemCoRe is

designed from its inception with three core concepts:

Accounting-regulation locality. We identify that one of the

primary sources of regulation latency—i.e., the time between

budget exhaustion and halting of the target PE—originates

from inadequate interfacing between the PMCs and the PE

driving the regulation. We argue that co-locating the account-

ing and the decision units is fundamental to reducing the

regulation latency and taming the overshooting.

On-time throttling. Another important intuition to tame bud-

get overshooting is allowing the decision unit to be informed of

budget overruns as soon as they occur. This way, it is possible

to immediately activate the enacting unit.

Discerned regulation. One common drawback of existing

PMC-based regulation mechanisms is their one-size-fits-all ap-

proach to throttling. Traditionally, any memory access gener-

ated by the PE under analysis counts against the assigned quota

of sustainable bandwidth. Modern systems, however, often

feature heterogeneous memory sub-systems—e.g., comprised

of multiple DRAM controllers, scratchpad memories, and non-

volatile memory. Thus, the budget consumed from different

memory targets should be appropriately differentiated.

Instead of fixing a single bandwidth target per PE, with

all tasks running on that PE sharing the same quota, we

postulate that bandwidth targets should be associated with

memory regions to allow for greater flexibility and reduced

pessimism when assigning bandwidth targets.

To do so, we propose elevating the PL’s role to that of

a (passive) coherent actor in the coherence domain. From

this position, the PL-located MemCoRe can collect virtually

all coherent bus activity information. This capability to ob-

serve the SoC memory activity is leveraged to implement

PMC-like counters within MemCoRe, effectively enabling the

accounting-regulation co-location we seek. It also enables

on-time throttling as the PMC-like registers can inform the

decision logic of bandwidth budget overruns with a delay of a

single clock cycle. Finally, thanks to the dedicated PL-to-PS

Fig. 2: MemCoRe block diagram. At each clock cycle, both threads
of hardware logic will be performed.

cross-trigger lines, halt and resume commands can be swiftly

sent to the PS-side PEs.

IV. DESIGN

This section describes the key design choices of MemCoRe.

To better leverage the flexibility offered by PS-PL platforms,

MemCoRe is designed with modularity in mind. Thus, Mem-

CoRe offers multiple alternative approaches to implement

the accounting, decision, and enacting modules. Figure 2

shows the logic organization of the most optimized version

of MemCoRe. The remainder of this section will explain each

component in detail.

A. System Requirements

In this work, we assume a PS-PL platform complying with

the description in Sec. II-C. In particular, we assume a cache

coherent interconnect linking one or more computing clusters

comprising one or more PEs (PS) and the programmable

logic (PL), with the ability to logically include the PL in

the same coherency domain as the cluster(s) to monitor cache

coherence messages. We further assume that a snoop-based

cache coherence protocol is used. For regulation, the PL must

efficiently halt and resume specific PEs. We assume that this

can be done in two ways: (1) by sending per-core interrupts

or (2) by using the debug infrastructure of the platform.

B. Accounting of Cache-Coherent Memory Transactions

In Sec. III, we identified that reading PMCs via their

memory-mapped CoreSight interface is a limiting factor as

the access delay scales linearly with the number of cores.

Moreover, read requests in the form of AXI transactions may

traverse bus segments shared with the route taken by the PE-

originated memory requests.

While MemCoRe can be configured to sample the PMCs in

this way, the full potential of MemCoRe is unlocked by allow-

ing the PL to observe the coherency traffic (cache snooping)

generated by the PEs, similar to the approach in [16]. For each

cache line refill operation that cannot be satisfied by the LLC,

the coherency fabric queries the other cache-coherent agents

in the system. This is done to access the latest version of

the cache line from other coherent caches in the system. Said

snoop requests identify the cache lines by physical address.

This allows the PL (1) to identify the source PE based on the

4



cluster ID and the cache line address, (2) to count all cache

coherent refill transactions for bandwidth regulation, and (3) to

apply different cost factors for accesses to different memory

regions associated to corresponding physical address ranges.

Unfortunately, the PL cannot immediately distinguish the

source PE in these transactions. Therefore, the PL must also

use the line address to differentiate between PEs. This is

usually not a problem when using partitioning hypervisors,

which typically allocate and assign memory to VMs statically

(memory range based) or when cache coloring is used (color

based), e.g., as described in [18], [19]. Also, the PL cannot ob-

serve the PEs’ write-back transactions, as voluntary write-back

transactions—write-backs of dirty cache lines evicted from

the LLC—do not need to be broadcasted on the coherence

interconnect.

Relying on coherence traffic scales better than using PMCs,

and it frees PMCs for software use. It also removes the

dependency on the CoreSight infrastructure that is otherwise

needed to access the per-core PMCs from outside the PEs.

Furthermore, the accounting stage no longer requires strict

serialization between the cores for reading the PMCs as in

MemPol. This allows a decision stage to run independently

for each core and in lock-step with the accounting module.

The new limiting factor becomes the sustainable throughput

of the cache coherent interconnect between the agents [16].

C. Per-Core Token Bucket Regulation

MemPol uses a sliding window method for regulation [10].

The sliding window effectively guarantees a minimum band-

width over time and allows PEs to spare bandwidth during

the window for short memory burst phases. We observe a

similarity between the sliding window method and the token

bucket regulation often used in networking. In a token bucket

regulation, a token dispenser constantly refills a proverbial

bucket with fresh tokens (replenishment) until the bucket is

full (available budget). A consumer can take tokens as long

as the bucket has tokens (burst). In our case, the tokens are

the cache lines contributing to memory bandwidth, and we use

the condition that the bucket is empty to halt a core. Unlike

in networking, where token bucket regulations are often used

as admission protocols, e.g., before sending data to a network,

MemCoRe cannot delay an ongoing memory transaction at the

source, and therefore must cope with overshooting. Hence, our

bucket level can become negative. In this case, we keep a core

halted until its available budget reaches the zero level again.

With this, a regulation of PE i at each replenishment period

of length ∆t comprises: (1) a configurable replenishment rate

Ri—number of cache lines per replenishment period ∆t,

(2) a configurable budget limit Bi—bucket size expressed

in number of cache lines, and (3) the currently available

budget Ai(t)—bucket level expressed in number of cache

lines, with Ai(t) ≤ Bi. We denote Ci(t) the number of cache

lines consumed by PE i, defined as the number of observed

cache refills during the time interval [(t−∆t), t] when using

a regulation period of length ∆t.

Under synchronous available budget tracking, we adjust the

available budget every ∆t (period) time units so that

Ai(t) = min(Ai(t−∆t) +Ri − Ci(t), Bi), (1)

i.e., we both replenish and consume in one step and do not let

the bucket overflow. MemCoRe throttles a core if Ai(t) < 0,

effectively halting it on the first instant at which the condition

Ai(t−∆t) ≥ 0 ∧Ai(t) < 0 (2)

holds; MemCoRe releases the core again as soon as

Ai(t−∆t) < 0 ∧Ai(t) ≥ 0 (3)

holds. In the model described above, the halt decision is

synchronous or “periodic” in the sense that the halt decisions

can only be made at the end of each replenishment period. We

will refer to this variant as MemCoRe-periodic.

Alternatively, the halt decision can be decoupled from the

replenishment strategy and be made asynchronous. As the

accounting module on the PL-side operates at each clock cycle,

the token accounting is continuously updated, and a halt deci-

sion can be fired whenever the tokens are depleted. The best-

performing version of MemCoRe employs said “asynchronous-

halt” approach. This model is described in Figure 2, and we

quantify the performance gain achieved through asynchronous-

halt in our evaluation in Sec. VI.

D. Core Throttling using CTI Triggers

MemPol uses the PEs’ debug interfaces to halt and resume

cores. In particular, MemPol triggers specific halt and resume

signals of the PEs exposed via memory-mapped CTI trigger

registers on the CoreSight interface that let PEs enter or leave

the debug halt state. As noted in Sec. III, and similar to the

accounting stage, accesses to the memory-mapped CoreSight

registers require serialization to guarantee bounded access

times and bounded reaction times. However, promptly halting

the PEs is more critical to reduce regulation overshooting than

resuming them.

With this insight, a deeper platform analysis has shown that

an alternative mechanism exists to trigger CTI signals from the

PL. Indeed, the PL can directly trigger up to four debug signals

that can either halt or resume PEs, or even listen to CTI signals

from the cores. Therefore, we wire the PEs’ halt signals to the

PL and allow it to halt the PEs directly. This eliminates any

dependency on CoreSight transactions to halt a PE and further

allows the enacting module to be activated in lock-step with

both accounting and decision modules, independently for each

PE.

To resume any PE, the enacting module uses serialized

AXI transactions as in MemPol. This effectively introduces

a release delay D for a previously halted PE that depends

on the number of pending AXI transactions on the CoreSight

interface. On the other hand, the delay allows the PEs to accu-

mulate some budget, preventing them from being immediately

throttled after release. However, the bucket should not fully

fill up during the delay, so D ≤ Bi

Ri

∆t. This effectively puts

a lower limit on bandwidth settings.

5



E. Core Throttling using Interrupts

As an alternative to CTI-based core throttling, e.g., on plat-

forms where the PL has no access to the PE debug infrastruc-

ture, we can also consider an interrupt-based regulation. Here,

the PL raises an interrupt to halt a PE, and the PE’s interrupt

handler keeps the core in a busy waiting state as long as the

PE is halted. However, the interrupt handler’s code and data

footprint contribute to unavoidable overshooting. Therefore,

the code path to throttle the PE in the interrupt handler must

be as short as possible. But we also have to consider that

the regulation interrupts compete with other interrupt activity

in the system. The Arm Generic Interrupt Controller (GIC)

architecture supports interrupt prioritization. This could reduce

the competition to, at most, one currently ongoing interrupt. To

further reduce interference, the Arm architecture defines two

interrupt groups (FIQ and IRQ) with independent handlers,

where FIQs take precedence over IRQs [20]. However, FIQs

are often used for firmware purposes and require a handler

at the firmware level. Besides testing the general feasibility

of interrupt-based regulation, we refrained from extensively

modifying the Arm Trusted Firmware (ATF). We, therefore,

focus on CTI-based throttling in the rest of this paper. Note

that all interrupt-based regulation mechanisms share these

problems, including MemGuard.

F. Address Awareness

As mentioned in Sec. IV-B, the address awareness of

the proposed regulation approach allows using different cost

factors for accesses to different memory regions. This becomes

handy for several reasons. For instance, (1) when accessing

read-only memory, e.g., code segments or video data from an

incoming camera stream, the cache lines can never become

dirty and thus need never to be written back. This enables

reducing the pessimism for access to these memory regions, as

mentioned in Sec. IV-C. (2) DRAM-like memories of different

types, such as external byte-addressable non-volatile memory,

chip-internal scratchpad memory, or GPU-local memory, can

be characterized by different speed grades and bandwidth

limitations. Even within a single DRAM controller, one could

separately track the bandwidth extracted from each bank,

lowering the pessimism in the considered saturation thresh-

olds. Using per-region cost factors allows combining different

memory accesses into a single regulation scheme. Moreover,

address awareness allows one to use independent regulation

schemes and bandwidth budget settings for each memory

type, similar to the read and write bandwidth regulation for

MemGuard in [14].

G. Global Regulation to Distribute Unused Bandwidth

MemPol provides a global regulation mechanism that dis-

tributes the PEs’ unused bandwidth among PEs that are

currently short of bandwidth. The same technique can be used

for MemCoRe with adaptions.

The global regulation accumulates the sum of the consumed

bandwidth of all PEs Ag(t) =
∑

∀i Ai(t). The budget is set to

the sum of the all per-core budgets Bg =
∑

∀i Bi if the global

Fig. 3: Integration of MemCoRe into the SoC’s cache coherency
architecture. The blue arrow indicates the snoop direction. The
red arrows indicate the directions of the enacting signals. The red
components are from CoreSight.

regulation is enabled, or to Bg = 0 otherwise. The global

regulation overrides the decision of the per-core regulation to

halt a core if the global budget is underutilized. A core i is

then throttled if

Ai(t) < 0 ∧Ag(t) < 0. (4)

In the case of helping a halted core out, MemPol’s global

regulation additionally needs to adjust the point of reference

of the sliding window regulation of the core to prevent the

core’s over-utilization of bandwidth from becoming a penalty.

We overwrite and reset the core’s available budget to zero in

an analogous step in MemCoRe, i.e. Ai(t) = 0.

V. IMPLEMENTATION

To discuss our MemCoRe implementation, we consider

the features available in the most widely used family of

commercially available PS-PL platforms, namely the Xilinx

Zynq UltraScale+ SoCs [11]. These platforms include multiple

application processor units (APU) and a sizeable onboard

programmable fabric (PL). The APU cores feature private L1

caches and a shared L2 cache (LLC). Importantly, the PL-side

is also attached to the system’s CCI via an ACE port. Thus,

the PL-side can be placed in the same coherence domain as the

LLC. The PL-side also features two high-performance (HPM)

PS-to-PL ports for memory-mapped access. An instance of

a standard ARM CCI-400 component is used as the system

CCI [21].

CoreSight is Arm’s solution for hardware debugging [22],

which defines registers of memory-mapped debug devices

accessible through a debug access port (DAP). The target

family of PS-PL platforms includes a typical CoreSight infras-

tructure. A CoreSight component, the Cross-Trigger Interface

(CTI), is generally used by external hardware debuggers to

halt/resume cores. The PS-PL SoCs of reference include CTI

lines on the PL-side, allowing the latter to act as an external

6



debugger. A Cross-Trigger Matrix (CTM) [11] is responsible

for propagating signals among CTIs. Fig. 3 illustrates the

hardware components employed and signal paths. Further

details are provided in the subsequent sections.

A. Accounting Module Implementation

To accurately monitor memory bandwidth in different re-

gions of physical memory, MemCoRe is interfaced with the

coherence interconnect through the ACE port. This configura-

tion enables passive monitoring of coherence traffic.

To systematically measure memory bandwidth utilizing co-

herence in the PL, the following steps are needed:

• Integration of the PL into the coherence domain is

done by modifying the Arm Trusted Firmware (ATF) to

enable the PL-facing ACE port, which allows the PL to

participate in the coherence protocol.

• Once integrated, the PL receives traffic via the CCI. This

traffic is similar to that on the AXI interface and consists

of requests that the PL can either respond to or simply ob-

serve. Some requests, such as Distributed Virtual Memory

(DVM) operations and synchronization packets, require

proper handling in terms of timely responses. Neglecting

these requests will lead to system-wide freezes, as the

coherence protocol mandates responses to such requests

from all participants. For our purpose of passive obser-

vation, the PL issues simple acknowledgments to remain

compliant.

• Only snoop requests are relevant for accounting purposes.

When an LLC miss occurs, a snoop is broadcast by

the CCI to query all coherence domain participants.

The snoop contains the corresponding physical memory

address of the cache line. The PL does not need to send

a reply unless it intends to actively participate in the co-

herence protocol [16]. In our implementation, MemCoRe

records the physical address associated with the snoop

request. This address is checked against the configured

address ranges under monitoring, and a counter for the

matching address range is incremented accordingly.

B. Decision Logic with Asynchronous-halt

The token bucket model described in Sec. IV-C is imple-

mented on the PL. When a snoop request is received, the

decision module decrements the associated bucket value and

checks whether the value is negative. If so, a halt decision

is made immediately, and the decision module signals the

enacting module to execute it. The replenishment logic runs

independently. Every ∆t cycles, the replenishment value is

added to the bucket. If this results in a negative bucket

becoming positive, then a resume decision is made, with the

decision module signaling the enacting module to execute it.

C. Enacting via PL-side CTI Signaling

Zuepke et al. [10] describe in detail how to utilize the CTI

via memory-mapped accesses to instruct a core to enter/leave

debug state in software. In summary, to enter/leave, a write

transaction to the corresponding CTI is necessary. Addition-

ally, another write transaction to the CTI to acknowledge a

previous debug request before leaving the debug state is also

required. The regulation action can be done faster due to the

existence of PL-side CTI. Indeed, the PL-side CTI contains

lines that can propagate direct signals to the CTIs of other

clusters on the platform (see Figure 3).

To fully appreciate the advantage of utilizing the PL-side

CTI, it is beneficial to explain the semantics of the afore-

mentioned “write to CTI” step. A CTI consists of eight 1-bit

input triggers and eight 1-bit output triggers. The connectivity

between the triggers and the outside components is typically

hardwired. To propagate signals among CTIs, a total of four

shared channels are present and exposed to each CTI on the

platform. Inside a CTI, the connectivity between the channels

and triggers is programmable. If an input trigger connects

to a channel, an outside event driving the trigger high will

drive the channel high. If a channel connects to an output

trigger, when the channel is driven high, the output trigger will

also be driven high. By programming the connectivity in each

CTI, a signal can be propagated to other CTIs via the shared

channel2. Additionally, a channel can also be driven high

for the duration of one cycle with a write to the APPPULSE

register. Thus, the aforementioned “write” is a software write

to APPPULSE setting the appropriate bit corresponding to a

specific channel. The channel is, in turn, connected to output

triggers that command a CPU to enter/leave the debug halt

state. The software write is an AXI transaction.

By directly leveraging the PL-side CTI, MemCoRe can be

designed to have pins connected to the input triggers. Thus,

instead of an AXI transaction, the regulator can simply drive

the corresponding trigger pin high to deliver a signal for en-

tering/leaving the debug state. Note that the acknowledgment

still needs to be done through an AXI transaction. Directly

driving a pin high is significantly faster than issuing an AXI

transaction. Our measurements show that the time it takes

for an AXI transaction originating from the PL to complete

entering/leaving/acknowledging actions is 420 ns. Directly

driving a pin high for entering/leaving the debug state takes

around 100 ns. Our observed worst-case was 350 ns.

D. Implementation Variations

The modular implementation allows different choices for

each of the three modules. The accounting module can rely

on either polling the PMCs or listening to the snoops. For

the decision module, the halt decision can be made either

periodic or asynchronous. The decision to resume a halted

core is made periodically at the end of each replenishment

period. The enacting module involves signaling the halt/re-

sume (either through AXI or CTI trigger) and acknowledg-

ment (through AXI only). This again offers four options.

In total, this provides 16 combinations. From our experi-

ments, we find that the best performance is provided by the

2The gate register GATE of a CTI can be programmed so that the CTI will
keep the channel state local, thus not propagating signals to other CTIs/CTMs.

7



configuration where (1) snoops are used in the accounting

module, (2) asynchronous-halt for the decision module, and

(3) halt/resume via PL-side CTI trigger was employed in the

enacting module. From now on, MemCoRe refers to this spe-

cific configuration. We will also evaluate other representative

implementations in Sec. VI.

VI. EVALUATION

This evaluation aims to study and ensure the capabilities of

MemCoRe and its key variants against MemPol. To this end, we

deploy MemPol and each variant of MemCoRe on the Xilinx

Zynq UltraScale+ ZCU102 SoC [11]. The ZCU102 is a high-

performance embedded PS-PL platform with one Application

Processing Unit (APU), one Real-time Processing Unit, and

one tightly integrated FPGA (PL). The application processing

unit is composed of four ARM Cortex-A53 cores operating

at 1.2 GHz and clustered together with a 1 MB LLC. In all

our experiments, we chose the APU’s cores as the PEs to be

regulated. The Real-time Processing Unit is a smaller cluster

of two ARM Cortex-R5F cores operating at 500 MHz. For

the purpose of our evaluation, these PEs are only used when

regulating with MemPol. The PL hosting MemCoRe and its

variants is clocked at 100 MHz and is included in the same

coherence domain as the APU as described in Sec. V.

For benchmarking purposes, the APU runs a full-fledged

Linux kernel v6.1. We employ a set of memory-intensive

benchmarks issued from the San-Diego Vision Benchmark

Suite [23] (SD-VBS)3 and the Isolbench’s Bandwidth bench-

mark [24]. In particular, we use the RT-Bench [25] compatible

version of these benchmarks.

To satisfy MemCoRe’s requirement for physically contigu-

ous address chunks to distinguish between different cores and

the way Linux dynamically allocates memory, we employ a

tailor-made kernel module. This module holds several pointers

to distinct and physically contiguous memory regions. When

used in conjunction with RT-Bench’s malloc wrapping feature,

it allows the processes’ heap to be seamlessly located in one

of the regions. This means that all snoops can be immedi-

ately associated with the corresponding Linux process under

regulation at runtime and during the offline analysis.

Finally, to analyze and conclude on the regulator’s behavior,

we deploy an ACE bus tracer on the PL-side to obtain clock-

cycle-accurate insight into the bus activity. This module is

inspired by the silent-spy presented in [16] and is attached to

the ACE bus, linking the CCI to MemCoRe in a non-invasive

way. It can be configured to monitor specific address ranges,

such that when a snoop carrying this address is observed,

a tracing packet containing a timestamp and the address is

created. These packets are then sent and stored in the PL-side

DRAM, where they can be recovered for later offline analysis.

TABLE I: Total memory usage (unit: MB).

Actual-usage PMU-global PMU-targeted Co-global Co-targeted

Bandwidth 1024.0 1051.34 1026.91 1051.34 1022.08
Disparity N/A 257.81 233.49 257.81 225.83
MSER N/A 24.01 6.83 24.01 2.56
Sift N/A 67.09 46.57 67.09 41.20
Stitch N/A 29.39 10.39 29.39 6.79
Tracking N/A 30.91 12.71 30.91 8.39
Local. N/A 22.19 4.91 22.19 0.14

A. Accounting Equivalence

This experiment aims to evaluate the precision with which

MemCoRe can monitor the system memory traffic. We com-

pare the number of transactions recorded by MemCoRe and

the PMCs when benchmarks from RT-Bench are executed.

We consider four different ways, as shown in Table I, to

count the number of LLC cache refills occurring in the system:

(1) PMU-global uses the PMU for all cores; (2) PMU-targeted

uses the PMU for the core under analysis; (3) Co-global uses

MemCoRe for all cores; and (4) Co-targeted uses MemCoRe

for the core under analysis. When derivable, Actual-usage

reports on the ground-truth value.

As reported in Table I, the experiment’s results show that

the activity recorded by MemCoRe is in line with what the

PMU reports. When system-wide activity is monitored, Co-

global reports exactly the same amount of transactions (here

expressed in MB) as PMU-global. However, discrepancies can

be observed between the recording of PMU-targeted and Co-

targeted, with the latter always reporting higher activity than

the former. These discrepancies stem from a difference in the

monitoring capabilities of MemCoRe and the PMUs. In fact,

since the PMUs monitor all refill events occurring on the CPU

core, it also accounts for other processes’ activity. On the

other hand, MemCoRe account refill events for and only for

the address range(s) of interest. When looking at the results

for Bandwidth, Co-targeted is just 1.92 MB away from the

Actual-usage whereas PMU-targeted is 27.34 MB away. This

indicates that the accounting via coherence is accurate.

B. Phase-aware Throttling

The following experiment demonstrates that MemCoRe can

effectively apply differential throttling even within a task

during different execution phases. For evaluation purposes,

we designed a template application in which two phases

(Pcritical and Pnon-critical) execute alternatively in a loop. Pcritical

is assumed to be a mission-critical section whose QoS has to

be guaranteed, while Pnon-critical can be executed following a

best-effort approach. By instructing MemCoRe to only throttle

the memory bandwidth occurring within the address range

of Pcritical, the differential regulation can be achieved. The

trace of this experiment is shown in Figure 4. In general,

MemCoRe supports the definition of arbitrarily many regions,

each regulated at a configurable bandwidth setpoint.

3For all SD-VBS benchmarks, we use the qcif input size due to the tracer

buffer size, except for Figure 7 in which vga is used to be consistent with
MemPol’s evaluation [10].

8









down counters that generate interrupts upon depletion to enact

regulation actions. Instead, methods that periodically sample

the PMCs’ values [29] enable broader regulation strategies,

such as building distribution-driven memory regulation [32].

Another sampling-based method, MemPol, not only takes con-

sideration of the global memory bandwidth while distributing

the bandwidth to each core, but it also moves the controlling

logic to other processing elements on the SoC to reduce the

overhead [10].

Modern MPSoCs offer QoS enforcement mechanisms such

as the one from Arm [7], [33]. Works exist that utilize those

offered primitives to implement bandwidth regulators [13],

[28], [34]–[36]. However, since these primitives still monitor

bandwidth consumption at the platform interconnect level, they

cannot be immediately used to monitor/regulate the traffic of

a specific core.

From the hardware side, the work [4] develops a custom

drop-in hardware module to regulate the bandwidth directly

at the hardware level to achieve finer monitoring granularity.

The work [37] proposes an FPGA module that can monitor

and regulate different types of requests and is deployed on a

prototype RISC-V design [38]. Conversely, our work requires

no architectural modifications to commercially available PS-

PL platforms.

To reduce the worst-case latency of memory transactions

facing multi-core contention, various adaptations for the mem-

ory controller are proposed [39]–[43]. To improve the timely

predictability at the memory interconnect level, Time Division

Multiplexing hardware is also proposed [44]–[47].

On PS-PL platforms, the design principle of cache coher-

ence backstabbing inspires our work. SchIM [48] can schedule

individual memory transactions by redirecting CPU memory

transactions through the FPGA. The work [49] proposes an

FPGA-based closed-loop controller. In this case, the authors

propose attaching an external FPGA to the debug-trace port of

the multi-core system to be regulated. As such, MemCoRe is

the first work that leverages the passive analysis of coherence

traffic and direct halt/resume signaling to push the envelope

of memory bandwidth regulation in tightly coupled PS-PL

platforms.

IX. CONCLUSION

MemCoRe is a novel hardware-assisted memory bandwidth

regulation technique that leverages the PL on modern SoCs to

monitor cache coherence traffic and throttle cores accordingly.

By observing coherence snoops directly in hardware, Mem-

CoRe avoids the bottleneck of serially reading performance

counters faced by prior software approaches.

MemCoRe improves over state-of-the-art memory band-

width regulators that can be instantiated in commercially

available PS-PL platforms, pushing the regulation granularity

to nanosecond-scale, solving the overshooting problem, and

enabling address-aware bandwidth throttling strategies. Over-

all, MemCoRe makes a compelling case for the potential of

leveraging the PL in modern SoCs to enable fine-grained,

precise, and flexible memory bandwidth regulation.

X. ACKNOWLEDGMENTS

The material presented in this paper is based upon work

supported by the National Science Foundation (NSF) under

grant number CNS-2238476. Marco Caccamo was supported

by an Alexander von Humboldt Professorship endowed by the

German Federal Ministry of Education and Research.

REFERENCES

[1] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory
bandwidth management for efficient performance isolation in multi-core
platforms,” IEEE Trans. Computers, vol. 65, no. 2, pp. 562–576, 2016.
[Online]. Available: https://doi.org/10.1109/TC.2015.2425889

[2] H. Yun, W. Ali, S. Gondi, and S. Biswas, “BWLOCK: A dynamic
memory access control framework for soft real-time applications on
multicore platforms,” IEEE Trans. Computers, vol. 66, no. 7, pp.
1247–1252, 2017. [Online]. Available: https://doi.org/10.1109/TC.2016.
2640961

[3] Y. Zhou and D. Wentzlaff, “MITTS: memory inter-arrival time traffic
shaping,” in 43rd ACM/IEEE Annual International Symposium on

Computer Architecture, ISCA 2016, Seoul, South Korea, June 18-22,

2016. IEEE Computer Society, 2016, pp. 532–544. [Online]. Available:
https://doi.org/10.1109/ISCA.2016.53

[4] F. Farshchi, Q. Huang, and H. Yun, “BRU: bandwidth regulation unit
for real-time multicore processors,” in IEEE Real-Time and Embedded

Technology and Applications Symposium, RTAS 2020, Sydney, Australia,

April 21-24, 2020. IEEE, 2020, pp. 364–375. [Online]. Available:
https://doi.org/10.1109/RTAS48715.2020.00011

[5] Intel, “Resource Director Technology,” Accessed: 2024-01-01,
2024. [Online]. Available: https://www.intel.com/content/www/us/en/
architecture-and-technology/resource-director-technology.html

[6] P. Sohal, M. Bechtel, R. Mancuso, H. Yun, and O. Krieger, “A
closer look at intel resource director technology (rdt),” in Proceedings

of the 30th International Conference on Real-Time Networks and

Systems, ser. RTNS ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 127–139. [Online]. Available:
https://doi.org/10.1145/3534879.3534882

[7] ARM, “Quality of Service in ARM Systems: An Overview,” Accessed:
2024-01-01, 2014. [Online]. Available: https://community.arm.
com/arm-community-blogs/b/soc-design-and-simulation-blog/posts/
quality-of-service-in-arm-systems-an-overview

[8] P. Sohal, R. Tabish, U. Drepper, and R. Mancuso, “Profile-driven
memory bandwidth management for accelerators and cpus in qos-
enabled platforms,” Real-Time Syst., vol. 58, no. 3, p. 235–274, Sep.
2022. [Online]. Available: https://doi.org/10.1007/s11241-022-09382-x

[9] ARM, “Arm Architecture Reference Manual Supplement. Memory
System Resource Partitioning and Monitoring (MPAM) for Armv8-A,”
Accessed: 2024-01-01, 2022. [Online]. Available: https://developer.arm.
com/docs/ddi0598/db/

[10] A. Zuepke, A. Bastoni, W. Chen, M. Caccamo, and R. Mancuso,
“Mempol: Policing core memory bandwidth from outside of the
cores,” in 29th IEEE Real-Time and Embedded Technology and

Applications Symposium, RTAS 2023, San Antonio, TX, USA,

May 9-12, 2023. IEEE, 2023, pp. 235–248. [Online]. Available:
https://doi.org/10.1109/RTAS58335.2023.00026

[11] Xilinx, “Zynq UltraScale+ Device Technical Reference Manual,” 2019.
[Online]. Available: https://www.xilinx.com/support/documentation/
user guides/ug1085-zynq-ultrascale-trm.pdf

[12] G. Schwäricke, R. Tabish, R. Pellizzoni, R. Mancuso, A. Bastoni,
A. Zuepke, and M. Caccamo, “A real-time virtio-based framework
for predictable inter-vm communication,” in 42nd IEEE Real-Time

Systems Symposium, RTSS 2021, Dortmund, Germany, December

7-10, 2021. IEEE, 2021, pp. 27–40. [Online]. Available: https:
//doi.org/10.1109/RTSS52674.2021.00015

[13] A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J.
Cazorla, “Leveraging hardware qos to control contention in the
xilinx zynq ultrascale+ mpsoc,” in 33rd Euromicro Conference on

Real-Time Systems, ECRTS 2021, July 5-9, 2021, Virtual Conference,
ser. LIPIcs, B. B. Brandenburg, Ed., vol. 196. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021, pp. 3:1–3:26. [Online].
Available: https://doi.org/10.4230/LIPIcs.ECRTS.2021.3

12



[14] M. G. Bechtel and H. Yun, “Denial-of-service attacks on shared
cache in multicore: Analysis and prevention,” in 25th IEEE

Real-Time and Embedded Technology and Applications Symposium,

RTAS 2019, Montreal, QC, Canada, April 16-18, 2019, B. B.
Brandenburg, Ed. IEEE, 2019, pp. 357–367. [Online]. Available:
https://doi.org/10.1109/RTAS.2019.00037

[15] ARM, “AMBA AXI and ACE Protocol Specification,” 2013. [Online].
Available: https://developer.arm.com/documentation/ihi0022/e/

[16] S. Roozkhosh, D. Hoornaert, and R. Mancuso, “CAESAR: coherence-
aided elective and seamless alternative routing via on-chip FPGA,” in
IEEE Real-Time Systems Symposium, RTSS 2022, Houston, TX, USA,

December 5-8, 2022. IEEE, 2022, pp. 356–369. [Online]. Available:
https://doi.org/10.1109/RTSS55097.2022.00038

[17] C. Ravishankar and J. Goodman, “Cache implementation for multiple
microprocessors,” in Proceedings of IEEE COMPCON, February 1983,
pp. 346–350. [Online]. Available: https://www.cs.ucr.edu/∼ravi/Papers/
NWConf/ravishankar 83.pdf

[18] P. Modica, A. Biondi, G. C. Buttazzo, and A. Patel, “Supporting
temporal and spatial isolation in a hypervisor for ARM multicore
platforms,” in IEEE International Conference on Industrial Technology,

ICIT 2018, Lyon, France, February 20-22, 2018. IEEE, 2018, pp. 1651–
1657. [Online]. Available: https://doi.org/10.1109/ICIT.2018.8352429

[19] J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto, “Bao:
A lightweight static partitioning hypervisor for modern multi-core
embedded systems,” in Workshop on Next Generation Real-Time

Embedded Systems, NG-RES@HiPEAC 2020, January 21, 2020,

Bologna, Italy, ser. OASIcs, M. Bertogna and F. Terraneo, Eds., vol. 77.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 3:1–3:14.
[Online]. Available: https://doi.org/10.4230/OASIcs.NG-RES.2020.3

[20] ARM, “Arm Architecture Reference Manual for A-profile architecture,”
Accessed: 2024-01-01, 2016. [Online]. Available: https://developer.arm.
com/docs/ddi0487/ak/

[21] Xilinx, “ARM® CoreLink™ CCI-400 Cache Coherent Interconnect,”
2015. [Online]. Available: https://developer.arm.com/documentation/
ddi0470/k/functional-description/snoop-connectivity-and-control

[22] ARM, “Arm coresight architectural specification v3.0,” 2022. [Online].
Available: https://developer.arm.com/documentation/ihi0029/latest/

[23] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. M. Louie, S. Garcia,
S. J. Belongie, and M. B. Taylor, “SD-VBS: the san diego vision
benchmark suite,” in Proceedings of the 2009 IEEE International

Symposium on Workload Characterization, IISWC 2009, October 4-6,

2009, Austin, TX, USA. IEEE Computer Society, 2009, pp. 55–64.
[Online]. Available: https://doi.org/10.1109/IISWC.2009.5306794

[24] P. K. Valsan, H. Yun, and F. Farshchi, “Taming non-blocking
caches to improve isolation in multicore real-time systems,” in
2016 IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), Vienna, Austria, April 11-14, 2016. IEEE
Computer Society, 2016, pp. 161–172. [Online]. Available: https:
//doi.org/10.1109/RTAS.2016.7461361

[25] M. Nicolella, S. Roozkhosh, D. Hoornaert, A. Bastoni, and R. Mancuso,
“Rt-bench: an extensible benchmark framework for the analysis and
management of real-time applications,” in RTNS 2022: The 30th

International Conference on Real-Time Networks and Systems, Paris,

France, June 7 - 8, 2022, Y. Abdeddaı̈m, L. Cucu-Grosjean, G. Nelissen,
and L. Pautet, Eds. ACM, 2022, pp. 184–195. [Online]. Available:
https://doi.org/10.1145/3534879.3534888

[26] N. Dagieu, A. Spyridakis, and D. Raho, “Memguard: A memory
bandwith management in mixed criticality virtualized systems
memguard KVM scheduling,” in 10th Int. Conf. on Mobile Ubiquitous

Comput., Syst., Services and Technologies (UBICOMM), 2016, pp.
21–27. [Online]. Available: https://www.thinkmind.org/index.php?view=
article&articleid=ubicomm 2016 1 40 10072

[27] M. G. Bechtel and H. Yun, “Cache bank-aware denial-of-service attacks
on multicore ARM processors,” in 29th IEEE Real-Time and Embedded

Technology and Applications Symposium, RTAS 2023, San Antonio, TX,

USA, May 9-12, 2023. IEEE, 2023, pp. 198–208. [Online]. Available:
https://doi.org/10.1109/RTAS58335.2023.00023

[28] P. Sohal, R. Tabish, U. Drepper, and R. Mancuso, “E-warp: A system-
wide framework for memory bandwidth profiling and management,”
in 41st IEEE Real-Time Systems Symposium, RTSS 2020, Houston,

TX, USA, December 1-4, 2020. IEEE, 2020, pp. 345–357. [Online].
Available: https://doi.org/10.1109/RTSS49844.2020.00039

[29] A. Saeed, D. Dasari, D. Ziegenbein, V. Rajasekaran, F. Rehm,
M. Pressler, A. Hamann, D. Mueller-Gritschneder, A. Gerstlauer,

and U. Schlichtmann, “Memory utilization-based dynamic bandwidth
regulation for temporal isolation in multi-cores,” in 28th IEEE

Real-Time and Embedded Technology and Applications Symposium,

RTAS 2022, Milano, Italy, May 4-6, 2022. IEEE, 2022, pp. 133–145.
[Online]. Available: https://doi.org/10.1109/RTAS54340.2022.00019

[30] NXP, “NXP S32V234SBC,” Accessed: 2024-01-01. [Online].
Available: https://www.nxp.com/design/development-boards/
automotive-development-platforms/s32v-mpu-platforms/
s32v2-vision-and-sensor-fusion-low-cost-evaluation-board:
SBC-S32V234

[31] ——, “NXP S32G2,” Accessed: 2024-01-01., 2024. [Online]. Available:
https://www.nxp.com/products/processors-and-microcontrollers/
arm-processors/s32g-vehicle-network-processors/
s32g2-processors-for-vehicle-networking:S32G2

[32] A. Saeed, D. Hoornaert, D. Dasari, D. Ziegenbein, D. Mueller-
Gritschneder, U. Schlichtmann, A. Gerstlauer, and R. Mancuso,
“Memory latency distribution-driven regulation for temporal isolation
in mpsocs,” in 35th Euromicro Conference on Real-Time Systems,

ECRTS 2023, July 11-14, 2023, Vienna, Austria, ser. LIPIcs,
A. V. Papadopoulos, Ed., vol. 262. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2023, pp. 4:1–4:23. [Online]. Available:
https://doi.org/10.4230/LIPIcs.ECRTS.2023.4

[33] ARM, “ARM CoreLink QoS-400 Network Interconnect Advanced
Quality of Service r1p0,” Accessed: 2024-01-01, 2016. [Online].
Available: https://developer.arm.com/docs/dsu0026/f/

[34] P. Houdek, M. Sojka, and Z. Hanzálek, “Towards predictable
execution model on arm-based heterogeneous platforms,” in 26th

IEEE International Symposium on Industrial Electronics, ISIE 2017,

Edinburgh, United Kingdom, June 19-21, 2017. IEEE, 2017, pp. 1297–
1302. [Online]. Available: https://doi.org/10.1109/ISIE.2017.8001432

[35] M. Zini, G. Cicero, D. Casini, and A. Biondi, “Profiling and controlling
i/o-related memory contention in COTS heterogeneous platforms,”
Softw. Pract. Exp., vol. 52, no. 5, pp. 1095–1113, 2022. [Online].
Available: https://doi.org/10.1002/spe.3053

[36] S. Garcia-Esteban, A. Serrano-Cases, J. Abella, E. Mezzetti, and F. J.
Cazorla, “Quasi isolation qos setups to control mpsoc contention in
integrated software architectures,” in 35th Euromicro Conference on

Real-Time Systems, ECRTS 2023, July 11-14, 2023, Vienna, Austria,
ser. LIPIcs, A. V. Papadopoulos, Ed., vol. 262. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2023, pp. 5:1–5:25. [Online].
Available: https://doi.org/10.4230/LIPIcs.ECRTS.2023.5

[37] J. Cardona, C. Hernández, J. Abella, and F. J. Cazorla, “Maximum-
contention control unit (MCCU): resource access count and contention
time enforcement,” in Design, Automation & Test in Europe Conference

& Exhibition, DATE 2019, Florence, Italy, March 25-29, 2019, J. Teich
and F. Fummi, Eds. IEEE, 2019, pp. 710–715. [Online]. Available:
https://doi.org/10.23919/DATE.2019.8715155

[38] N.-J. Wessman, F. Malatesta, J. Andersson, P. Gomez, M. Masmano,
V. Nicolau, J. Le Rhun, G. Cabo, F. Bas, R. Lorenzo, O. Sala,
D. Trilla, and J. Abella, “De-RISC: the first RISC-V space-
grade platform for safety-critical systems,” in 2021 IEEE Space

Computing Conference (SCC), 2021, pp. 17–26. [Online]. Available:
https://ieeexplore.ieee.org/document/9546286

[39] R. Mirosanlou, M. Hassan, and R. Pellizzoni, “Drambulism: Balancing
performance and predictability through dynamic pipelining,” in IEEE

Real-Time and Embedded Technology and Applications Symposium,

RTAS 2020, Sydney, Australia, April 21-24, 2020. IEEE, 2020, pp. 82–
94. [Online]. Available: https://doi.org/10.1109/RTAS48715.2020.00-15

[40] M. Hassan, H. D. Patel, and R. Pellizzoni, “PMC: A requirement-aware
DRAM controller for multicore mixed criticality systems,” ACM Trans.

Embed. Comput. Syst., vol. 16, no. 4, pp. 100:1–100:28, 2017. [Online].
Available: https://doi.org/10.1145/3019611

[41] P. K. Valsan and H. Yun, “MEDUSA: A predictable and high-
performance DRAM controller for multicore based embedded systems,”
in 2015 IEEE 3rd International Conference on Cyber-Physical Systems,

Networks, and Applications, CPSNA 2015, Kowloon, Hong Kong,

China, August 19-21, 2015. IEEE Computer Society, 2015, pp. 86–93.
[Online]. Available: https://doi.org/10.1109/CPSNA.2015.24

[42] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: a predictable
SDRAM memory controller,” in Proceedings of the 5th International

Conference on Hardware/Software Codesign and System Synthesis,

CODES+ISSS 2007, Salzburg, Austria, September 30 - October 3,

2007, S. Ha, K. Choi, N. D. Dutt, and J. Teich, Eds. ACM, 2007, pp.
251–256. [Online]. Available: https://doi.org/10.1145/1289816.1289877

13



[43] A. F. de Lecea, M. Hassan, E. Mezzetti, J. Abella, and F. J. Cazorla,
“Improving timing-related guarantees for main memory in multicore
critical embedded systems,” in IEEE Real-Time Systems Symposium,

RTSS 2023, Taipei, Taiwan, December 5-8, 2023. IEEE, 2023, pp.
265–278. [Online]. Available: https://doi.org/10.1109/RTSS59052.2023.
00031

[44] F. Hebbache, M. Jan, F. Brandner, and L. Pautet, “Shedding the
shackles of time-division multiplexing,” in 2018 IEEE Real-Time

Systems Symposium, RTSS 2018, Nashville, TN, USA, December

11-14, 2018. IEEE Computer Society, 2018, pp. 456–468. [Online].
Available: https://doi.org/10.1109/RTSS.2018.00059

[45] M. Jun, K. Bang, H. Lee, N. Chang, and E. Chung, “Slack-based bus
arbitration scheme for soft real-time constrained embedded systems,”
in Proceedings of the 12th Conference on Asia South Pacific Design

Automation, ASP-DAC 2007, Yokohama, Japan, January 23-26, 2007.
IEEE Computer Society, 2007, pp. 159–164. [Online]. Available:
https://doi.org/10.1109/ASPDAC.2007.357979

[46] Y. Li, B. Akesson, and K. Goossens, “Architecture and analysis
of a dynamically-scheduled real-time memory controller,” Real Time

Syst., vol. 52, no. 5, pp. 675–729, 2016. [Online]. Available:
https://doi.org/10.1007/s11241-015-9235-y

[47] A. Kostrzewa, S. Saidi, and R. Ernst, “Slack-based resource arbitration
for real-time networks-on-chip,” in 2016 Design, Automation & Test

in Europe Conference & Exhibition, DATE 2016, Dresden, Germany,

March 14-18, 2016, L. Fanucci and J. Teich, Eds. IEEE, 2016, pp.
1012–1017. [Online]. Available: https://ieeexplore.ieee.org/document/
7459454/

[48] D. Hoornaert, S. Roozkhosh, and R. Mancuso, “A memory scheduling
infrastructure for multi-core systems with re-programmable logic,” in
33rd Euromicro Conference on Real-Time Systems, ECRTS 2021, July

5-9, 2021, Virtual Conference, ser. LIPIcs, B. B. Brandenburg, Ed., vol.
196. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 2:1–
2:22. [Online]. Available: https://doi.org/10.4230/LIPIcs.ECRTS.2021.2

[49] J. Freitag and S. Uhrig, “Closed loop controller for multicore
real-time systems,” in Architecture of Computing Systems - ARCS

2018 - 31st International Conference, Braunschweig, Germany, April

9-12, 2018, Proceedings, ser. Lecture Notes in Computer Science,
M. Berekovic, R. Buchty, H. Hamann, D. Koch, and T. Pionteck,
Eds., vol. 10793. Springer, 2018, pp. 45–56. [Online]. Available:
https://doi.org/10.1007/978-3-319-77610-1 4

14


