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Abstract

We prove the existence of a weak solution to a fluid-structure interaction (FSI) problem
between the flow of an incompressible, viscous fluid modeled by the Navier-Stokes equations,
and a poroviscoelastic medium modeled by the Biot equations. The two are nonlinearly coupled
over an interface with mass and elastic energy, modeled by a reticular plate equation, which is
transparent to fluid flow. The existence proof is constructive, consisting of two steps. First, the
existence of a weak solution to a regularized problem is shown. Next, a weak-classical consistency
result is obtained, showing that the weak solution to the regularized problem converges, as the
regularization parameter approaches zero, to a classical solution to the original problem, when
such a classical solution exists. While the assumptions in the first step only require the Biot
medium to be poroelastic, the second step requires additional regularity, namely, that the Biot
medium is poroviscoelastic. This is the first weak solution existence result for an FSI problem
with nonlinear coupling involving a Biot model for poro(visco)elastic media.

1 Introduction and motivation

In this paper we study a time-dependent nonlinearly coupled fluid-structure interaction problem
between the flow of an incompressible, viscous fluid, modeled by the Navier-Stokes equations,
and bulk poroviscoelasticity modeled by the Biot equations. Bulk poroviscoelasticity means that
the dimensions of the “free fluid flow” domain and the poroviscoelastic medium domain are the
same. In particular, in this manuscript we consider the 2D case, see Fig. 1, which captures the
main mathematical difficulties of such coupling. The free fluid flow and the Biot poro(visco)elastic
medium are coupled across the current location of the interface, which has inertia and elastic energy,
modeled by the reticular plate equation. A reticular plate is a lattice-type structure characterized
by two properties: periodicity and small thickness, where periodicity refers to periodic cells (holes)
distributed in all directions [25]. The reticular plate interface is transparent to fluid flow. We are
interested in the existence of finite energy weak solutions (of the Leray-Hopf type).

The problem we study here arises in many applications. In particular, we mention encapsulation
of bioartificial organs [65] and blood flow in arteries which are modeled as poro(visco)elastic media
to study drug transport through the vascular walls [3, 16, 17]. The reticular plate can be used to
capture the elastodynamics behavior of the intima/elastic laminae layer of arterial walls which is in
direct contact with the blood flow on one side, and a poroelastic medium consisting of the arterial
media/adventitia complex on the other side.

From the mathematical point of view the primary difficulties in studying 2D or 3D Navier-Stokes
equations nonlinearly coupled to the 2D or 3D bulk poro(visco)elasticity arise from the fact that
the finite energy solutions do not posses sufficient regularity to (1) define the moving domain and
the corresponding traces, and (2) guarantee that all the integrals in the weak formulation of the

1



Figure 1: A sketch of the fluid-poroelastic structure interaction domain.

problem are well-defined. The first issue is related to the difficulties associated with 3D-3D fluid-
structure coupling. The second issue is a consequence of the geometric nonlinearities associated
with moving domain problems. These are the main reasons why to this day there have been no
works on the existence of weak solutions for the Biot-Navier-Stokes coupled problems in which the
coupling is assumed over a moving interface.

To get around these difficulties, we take the following approaches. First, the reticular plate
at the interface associates mass and elastic energy to the interface, and regularizes the boundary
of the fluid domain. This is, however, not sufficient to deal with the fact that in the nonlinearly
coupled problem, the Biot domain is also moving, and as a result certain integrals in the weak
formulation over the moving Biot domain are not well defined. This is why we introduce a “consis-
tent regularized weak formulation” of the coupled problem by introducing a suitably constructed
convolution in spatial variables and regularizing only the problematic terms in the weak formula-
tion of the coupled problem. We then prove the existence of a weak solution to the regularized
problem and show that as the regularization parameter tends to zero, this solution converges to the
solution of the original nonregularized problem in the case when the original problem has a classi-
cal solution and the Biot poroelastic matrix is viscoelastic, where a classical solution is a solution
that is smooth both temporally and spatially that hence satisfies the original system of PDEs for
the original FPSI problem pointwise. We call this type of result a weak-classical consistency
result. Namely, we prove that if a classical solution for the fluid-poroviscoelastic structure interac-
tion (FPSI) problem without regularization exists on time-interval [0,T], then a sequence of weak
solutions to the regularized FPSI problem constructed here, converges to the classical solution on
r0, T s as the regularization parameter converges to 0.

We mention that the existence of a weak solution to the regularized problem was considered
by the authors of this manuscript in [40], where only the main steps in the proof were outlined.
Here we present details of that proof, and show the weak-classical consistency result. Therefore, in
this manuscript we prove the existence of a weak solution to a nonlinearly coupled fluid-structure
interaction problem between the flow of an incompressible, viscous fluid modeled by the Navier-
Stokes equations, and a structure consisting of two solids – a thick poroviscoelastic medium modeled
by the Biot equations, and a thin interface with mass modeled by a reticular plate equation. We
mention that no viscoelasticity is needed for the proof of the existence of a weak solution to the
regularized problem. The existence of a weak solution to the regularized problem holds in the
purely poroelastic case (and in the viscoelstic case). Viscoelasticity of the Biot poroelastic matrix
is needed only in the proof of weak-classical consistency.

One of the interesting features of this work is that the proof of the existence of a weak solu-
tion is constructive. The main steps of the proof can be used to construct a numerical scheme
to capture the physical solution to the problem [56]. The main idea of the proof is based on
semidiscretizing the regularized FPSI problem in time by subdividing the time interval into N
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subintervals of width ∆t. At each time step we split the reticular plate subproblem from the regu-
larized fluid-Biot subproblem using a Lie operator splitting strategy [31]. To deal with the moving
domains we use the Lagrangian map for the Biot domain, and an Arbitrary Lagrangian-Eulerian
mapping for the fluid domain, which maps a fixed, reference domain onto the current, physical do-
main. We switch between the reference domain formulation and moving domain formulation in the
proof as needed. For each ∆t, approximate solutions are constructed by “solving” the sequence of
semidiscretized (linearized) problems defined on the current (approximate) moving domain for each
tn � n∆t, n � 1, . . . , N . For each fixed ∆t, we obtain energy estimates uniform in ∆t, which allow
us to deduce the existence of weakly and weakly* convergent subsequences. Since the problem is
highly nonlinear, these are not sufficient to pass to the limit in the weak formulations of the approx-
imate problems. Strong convergence of approximate sequences is then obtained by using several
compactness results: the classical Aubin-Lions compactness lemma [52] for the Biot displacement,
Arzela-Ascoli for the plate displacement, Dreher and Jüngel’s compactness result [28] for the Biot
and plate velocity and pore pressure, and a recent generalized Aubin-Lions-Simon compactness
result by Muha and Čanić [47], to deal with the most involved part, which is the free fluid veloc-
ity defined on different time-dependent fluid domains. Once strongly convergent subsequences are
obtained from the compactness results, one would like to pass to the limit in the weak formulation
to show that the limits of the subsequences are weak solutions to the regularized fluid-poroelastic
structure interaction problem. However, this cannot be done yet, since the velocity test functions
are also defined on moving domains and we need to construct “appropriate” test functions which
can be compared for different domains, and for which we can show converge to a test function
of the limiting, continuous problem. Luckily, in contrast with the classical fluid-elastic structure
interaction problems, in our case the fluid test functions decouple from the structure problem, and
so it is a bit easier to construct appropriate test functions for which one can show uniform pointwise
convergence to a test function for the continuous problem. With this final step, we can pass to the
limit in the weak formulations of approximate problems and show that the limits of approximate
subsequences satisfy the continuous weak formulation of the regularized problem. This existence
result is local in time because we can guarantee the nondegeneracy of the fluid domains both for
the free fluid flow and the filtrating flow through the poroelastic medium only locally in time.
However, using the approaches presented in [20, Section 5] the time of existence can be extended
to the maximal time until either (1) the moving fluid domain or Biot domain degenerates (e.g., the
interface touches the bottom of the fluid domain or the top of the Biot domain), (2) the pores in
the poroelastic matrix denegerate in the sense that the Lagrangian mapping stops being injective,
or (3) T � 8.

We finish this manuscript by addressing the weak-classical consistency of the regularized prob-
lem, namely, we prove, using a Gronwall-type estimate, that the energy of the difference between
the weak solution of the regularized problem and the classical (temporally and spatially smooth)
solution to the original, nonregularized problem with viscoelastic Biot poroelastic matrix, converges
to zero as the regularization parameter tends to zero. While the main idea is simple, the estimates
are quite nontrivial due to the fact that we need to work with the integrals over regularized Biot
domains and compare them with the integrals over the nonregularized moving domains. Details
are presented in Section 10.

2 Literature review

There is extensive past work on fluid-structure interaction studying fully coupled systems involving
incompressible, Newtonian fluids interacting with elastic structures. In many fluid-structure inter-
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action models considered in the literature, the solid structure, which is elastic or deformable, is mod-
eled by equations of elasticity. The models first considered in the literature are linearly coupled fluid-
structure interaction models [4, 5, 42], which pose the fluid equations on a fixed reference fluid do-
main, as a linearization that approximates real-life dynamics well when structure displacements and
deformations are small. In cases when displacements and deformations of the structure are large,
they can significantly affect the dynamics of the fluid in which case time-dependent moving fluid
domains that depend on the displacement itself must be taken into account. There has been exten-
sive work on studying such nonlinearly coupled models [8,20,22,23,26,27,32–36,41,43,44,47–51,55],
in which the time-dependent and a priori unknown fluid domain evolves according to the displace-
ment of the structure, giving rise to a fully coupled problem with two-way coupling between the
fluid and structure that has significant geometric nonlinearities arising from the moving boundary.
As a result of past work in fluid-structure interaction, significant progress has been made within
the past 20 years in the mathematical analysis of fluid-structure systems involving incompressible
fluids and elastic structures.

However, many elastic materials, such as biological tissues and sediments that interact with
fluids are not impermeable and can admit fluid flow through their pores, in which case poroelasticity
of the material needs to be taken into account. The study of poroelasticity was initiated in studies
by Biot modeling soil consolidation [9, 10], but has since been extended to broader applications.
Such porous media and poroelastic materials are found in applications to geoscience, including
the study of fractures in porous and poroelastic materials [30, 45] and more recently, applications
to biomedical science, including the study of the ocular poroelastic tissue known as the lamina
cribrosa, which is related to understanding the onset of glaucoma [18], and the modeling of intestinal
walls by equations of poroelasticity [66]. In addition to modeling, the mathematical study of
poroelastic materials and the Biot equations in terms of well-posedness has also been an active
area of research [6, 7, 11,13–15,54,59,60,63].

More recently, there has been a need in applications to understand not just poroelastic materials
by themselves, but the interaction between poroelastic materials and fluids. Mathematically, such
systems are described by coupling fluid equations (e.g. the Navier-Stokes or Stokes system) with
poroelasticity. These coupled problems are referred to as fluid-poroelastic structure interaction
(FPSI) problems, and have been analyzed, for instance, in [2,19,61], where linear coupling between
the free fluid equations and poroelastic medium was assumed. Recent progress in the design of
bioartificial organs, see e.g., [65], sparked the need to study FPSI problems in which the fluid-
structure interface has mass and elastic or poroelastic properties itself. Namely, in the recent work
on the design of a bioartificial pancreas [65], the bioartifical pancreas consists of an encapsulated
poroelastic agarose gel containing transplanted pancreatic cells, where the capsule containing the
poroelastic medium is itself poroelastic, and it is designed to protect the transplanted cells within
the poroelastic agarose gel from the patient’s own immune cells, while allowing the passage of oxygen
and nutrients to the cells for long time viability. This capsule is a thin poroelastic membrane/plate
which sits at the interface between the poroelastic gel containing the transplanted cells, and the
flow of blood carrying oxygen and nutrients to the bioartificial organ. The resulting mathematical
problem in [65] is a fluid-poroelastic structure interaction problem in which the structure consists
of two layers: a thin poroelastic plate located at the interface between the free fluid flow and a
thick poroelastic medium modeled by the linear and nonlinear Biot equations, coupled over a fixed
interface (linearized coupling). The well-posedness for this problem was studied in [12] for both
the linear and nonlinear Biot equations, where the nonlinearity refers to the dependence of the
permeability tensor in the Biot equations on the fluid content. In this work the fluid-structure
interface with mass serves as a regularizing mechanism and provides sufficient information about
the regularity of the interface and the free fluid domain to allow, for the first time, the proof of the
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existence of a finite energy weak solution.
None of the works that address weak solutions to fluid-structure interaction problems between

the flow of an incompressible, viscous fluid and a poroelastic solid have taken into account non-
linear coupling over the moving interface. Such problems, however, are of importance in many
applications, including the flow of blood in coronary arteries sitting on the surface of the heart, and
contracting and relaxing with each heart beat [17,64]. To understand large displacements that occur
due to the contractions of the heart muscle, and capture the flow of drugs through the vascular wall,
nonlinear coupling between the blood flow and vascular walls, modeled as poro(visco)elastic media,
needs to be taken into account. The goal of the current manuscript is to develop a well-posedness
theory for a nonlinearly coupled (moving boundary) fluid-poroelastic structure interaction prob-
lem by constructing new tools for dealing with the equations of poroelasticity defined on a priori
unknown and time-dependent domains.

3 Description of the main problem

We study fluid-structure interaction between the flow of an incompressible, viscous fluid and a
multilayered poro(visco)elastic structure consisting of two layers: a thick poro(visco)elastic layer
modeled by the Biot equations, and a thin elastic layer modeled by the reticular plate equation. The
problem is set on a two dimensional domain, which embodies all the main mathematical difficulties
associated with the analysis of this problem. The entire two dimensional domain Ω̂ is a union of the
reference domain for the fluid subproblem Ω̂f , the reference domain for the Biot poroviscoelastic

material Ω̂b, and the reference domain Γ̂ of the elastic reticular plate which serves as the interface
separating the free fluid flow and the Biot medium:

Ω̂ � Ω̂b Y Ω̂f Y Γ̂, where Ω̂b � p0, Lq � p0, Rq, Γ̂ � p0, Lq � t0u, Ω̂f � p0, Lq � p�R, 0q.

These domains will evolve in time, giving rise to the time-dependent Ωptq � Ωbptq Y Ωf ptq Y Γptq.
We will be using the hat notation to denote objects associated with the reference domain. On each
subdomain we will consider the following mathematical models.

3.1 The Biot equations on a moving domain

The Biot system consists of the elastodynamics equation, which in this work will be defined on the
Lagrangian domain Ω̂b, and the fluid equation, which in this work will be defined on the Eulerian
domain Ωbptq. Let η̂ : r0, T s� Ω̂b Ñ R2 denote the displacement of the Biot poroviscoelastic matrix
from its reference configuration, and let p̂ : Ω̂b Ñ R denote the fluid pore pressure. To specify the
fluid equation given in terms of the fluid pore pressure in Eulerian formulation, we introduce the
Lagrangian map by

Φ̂
η
b pt, �q � Id � η̂pt, �q : Ω̂b Ñ Ωbptq, (1)

with pΦη
b q�1pt, �q : Ωbptq Ñ Ω̂b denoting its inverse. The Biot equations are then given by:

ρbBttη̂ � ∇̂ � Ŝbp∇̂η̂, p̂q in Ω̂b, (2)

c0

rdetp∇̂Φ̂
η
b qs � pΦη

b q�1

D

Dt
p� α∇ � D

Dt
η � ∇ � pκ∇pq in Ωbptq, (3)

where D
Dt � d

dt �
��Btηpt, �q � pΦη

b q�1pt, �q� �∇� is the material derivative. The first equation de-
scribes the elastodynamics of the poroelastic solid matrix, while the second equation models the
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conservation of mass principle of the filtrating fluid. See, e.g., [58, 67]. To recover the filtration
fluid velocity q, Darcy’s law is used:

q � �κ∇p on Ωbptq, (4)

where κ is a positive permeability constant.
In this work, we will consider both the viscoelastic and the purely elastic consitutive models for

the Biot poroelastic matrix with the Piola-Kirchhoff stress tensor for the viscoelastic case given by

Ŝbp∇η, pq � 2µeD̂pη̂q � λep∇̂ � η̂qI � 2µvD̂pη̂tq � λvp∇̂ � η̂tqI � α detp∇̂Φ̂
η
b qp̂p∇̂Φ̂

η
b q�t, (5)

where superscript t denotes matrix transposition and A�t � pA�1qt. The purely elastic case has
the coefficients λv and µv equal to zero. Here, D denotes the symmetrized gradient, µe and λe
are the Lamé parameters related to the elastic stress, µv and λv are the corresponding parameters
related to the viscoelastic stress, and Φ̂

η
b is the Lagrangian map defined above. In equation (3) the

Biot material displacement η and the pore pressure p are defined on the physical domain Ωbptq as

ηpt, �q � η̂pt, pΦη
b q�1pt, �qq, ppt, �q � p̂pt, pΦη

b q�1pt, �qq, where Ωbptq � Φ̂
η
b pt, Ω̂bq.

We remark that in the last term of the Piola-Kirchhoff stress tensor (5), we have used the Piola
transform, which is a transformation that maps tensors in Lagrangian coordinates to corresponding
tensors in Eulerian coordinates in such a way that divergence-free tensors in Lagrangian coordinates
remain divergence free in Eulerian coordinates [24].

We note that a priori the notion of Ωbptq is not entirely clear, unless η̂ is sufficiently regular,
and furthermore, the formulation of this problem makes sense only if the map Φ̂

η
b � Id � η̂ is an

injective map from Ω̂b to Ωbptq. We address these important issues later.

3.2 The reticular plate equation

The elastodynamics of reticular plates, studied in [25] using homogenization, are governed by a
plate-type equation, defined on the equilibrium middle surface of the homogenized plate or shell Γ̂.
The homogenized equation is given in terms of transverse displacement ω̂ � ω̂ey from the reference
configuration:

ρpBttω̂ � ∆̂2ω̂ � F̂p, on Γ̂, (6)

where ρp is the plate density coefficient and F̂p is the external forcing on the plate in y direction, to
be specified later in the coupling conditions. The constant ρp is the “average” plate density, which
depends on the periodic structure. The in-plane bi-Laplacian ∆̂2 (Laplace-Beltrami operator for
curved Γ̂’s) is associated with the elastic energy of the plate. Typically, there is a coefficient D̃
in front of the bi-Laplacian, which contains information about the periodicity of the structure and
its stiffness properties [25]. In the present work, we will assume that it is equal to 1. The source
term F̂p corresponds to the loading of the poroelastic plate, which will come from the jump in the
normal stress (traction) between the free fluid on one side and the thick Biot poroelastic structure
on the other, see (7) below.

In our problem, the reticular plate separates the regions of free fluid flow and the Biot porovis-
coelastic medium, and is transparent to the flow between the two. The time-dependent configuration
of the plate

Γptq � tpx, yq : 0   x   L, y � ω̂pt, xqu,
forms the bottom boundary of the moving Biot domain Ωbptq, and the remaining left, top, and
right boundaries of the moving Biot domain Ωbptq are fixed in time. Hence, we impose η � 0 on
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the left, top, and right boundaries of Ωbptq. See Fig. 1. Hence, we can describe the moving domain
Ωbptq as

Ωbptq � tpx, yq : 0   x   L, ω̂pt, xq   y   Ru.

3.3 The Navier-Stokes equations on a moving domain

The free flow of an incompressible, viscous fluid will be modeled by the Navier-Stokes equations

Btu� pu �∇qu � ∇ � σf p∇u, πq
∇ � u � 0

*
in Ωf ptq, (7)

where u is the fluid velocity and π is the fluid pressure. The Cauchy stress tensor is given by

σf p∇u, πq � 2νDpuq � πI,

where π is the fluid pressure and ν is kinematic viscosity coefficient. Notice that the fluid problem
is defined on a moving domain, which is not known a priori . The moving fluid domain Ωf ptq is a
function of time and it is determined by the plate displacement ω̂, as follows:

Ωf ptq � tpx, yq : 0   x   L,�R   y   ω̂pt, xqu.

The fact that the free fluid domain depends on one of the unknowns in the problem presents a
geometric nonlinearity that is difficult to deal with. We will be using the following Arbitrary
Lagrangian Eulerian (ALE) mapping Φ̂

ω
f : Ω̂f Ñ Ωf ptq to map the fixed reference domain Ω̂f

onto the current, physical domain Ωf ptq:

Φ̂
ω
f px̂, ŷq �

�
x̂, ŷ �

�
1� ŷ

R



ω̂



, px̂, ŷq P Ω̂f . (8)

In our analysis, we will use this ALE mapping to will switch between the fixed and moving boundary
formulations of the coupled problem as needed.

3.4 The coupling conditions

The Navier-Stokes equations (7), the Biot equations (2), (3), and the reticular plate equation (6)
are coupled across the moving reticular plate interface Γptq via two sets of coupling conditions: the
kinematic and dynamic coupling conditions. To state these conditions, we introduce the following
notation:

� The Biot Cauchy stress tensor, defined on the physical domain, is obtained by applying the
Piola transform to the Biot Cauchy stress tensor Ŝbp∇η, pq on the reference domain:

Sbp∇η, pq � rdetp∇̂Φ̂
η
b q�1Ŝbp∇̂η̂, p̂qp∇̂Φ̂

η
b qts � pΦη

b q�1

�
�

1

detp∇̂Φ̂
η
b q
�
2µeD̂pη̂q � λep∇̂ � η̂q � 2µvD̂pη̂tq � λvp∇̂ � η̂tq

�
p∇̂Φ̂

η
b qt
�
� pΦη

b q�1 � αpI.

(9)

� The Eulerian structure velocity of the Biot poroviscoelastic matrix is given at each point of
the physical domain Ωbptq by

ξpt, �q � Btη̂
�
t, pΦη

b q�1pt, �q� . (10)
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� The normal unit vector to the moving interface Γptq will be denoted by nptq, and the normal
unit vector to the reference configuration of the interface Γ̂ will be denoted by n̂. Note that
n̂ � ey. The vectors nptq and n̂ point outward from Ωf ptq and Ωf , and inward towards Ωbptq
and Ωb.

The following two sets of coupling conditions give rise to a well-defined bounded energy of the
coupled problem:

(I) Kinematic coupling conditions:

� Continuity of normal components of velocity (conservation of mass of the fluid):

u � nptq � pq � ξq � nptq, on p0, T q � Γptq. (11)

� Slip in the tangential component of free fluid velocity, known as the Beavers-Joseph-Saffman
condition [38,39]:

βpξ � uq � τ ptq � σfnptq � τ ptq, on p0, T q � Γptq, (12)

where β ¥ 0 is a constant and τ ptq is the rightward pointing unit tangent vector to Γptq.
� Continuity of displacements:

η̂ � ω̂ey, on p0, T q � Γ̂. (13)

(II) Dynamic coupling conditions:

� Balance of forces describing the body forcing on the plate as the difference between the normal
components of normal stress coming from the Biot medium on one side, and free fluid flow
on the other:

F̂p � �detp∇Φ̂
ω
f qrσf p∇u, πq � Φ̂

ω
f sp∇Φ̂

ω
f q�tn̂ � n̂� Ŝbp∇̂η̂, p̂qn̂ � n̂|Γ̂, on Γ̂, (14)

where Φ̂
ω
f is the Arbitrary Lagrangian-Eulerian (ALE) mapping defined in (16).

� Balance of pressure at the interface:

� σf p∇u, πqnptq � nptq � 1

2
|u|2 � p, on p0, T q � Γptq. (15)

3.5 The initial and boundary conditions

For the fluid, we will assume rigid walls on BΩf ptqzΓptq and impose a no-slip condition

u � 0, on BΩf ptqzΓptq.
Similarly, we will assume that the boundaries of the Biot poroviscoelastic medium, excluding the
interface Γptq, are rigid and impose

η̂ � 0 and p̂ � 0, on BΩ̂bzΓ̂.
Finally, we prescribe the following initial conditions:

up0q � u0 in Ωf p0q,
η̂p0q � η̂0, Btη̂p0q � ξ̂0 in Ω̂b,

ω̂p0q � ω̂0, Btω̂p0q � ζ̂0 in Γ̂,

p̂p0q � p̂0 in Ω̂b.
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3.6 Preview of the main results

Our first main result is the existence of a weak solution to a regularized FPSI problem, introduced
in Sec. 5. The existence result holds for both elastic and viscoelastic Biot material. Here we state
the theorem informally and refer the reader to Theorem 5.1 for the precise statement.

Theorem 3.1 (Existence of a weak solution to the regularized problem). Let ρb, µe, λe, α, ρp, ν ¡ 0
and µv, λv ¥ 0. Moreover, assume that initial data are in the finite energy class and that initially,
the interface does not touch the bottom boundary of the fluid domain and the top boundary of
the Biot domain, and assume that certain compatibility conditions are satisfied. Then for every
regularization parameter δ ¡ 0, there exists T ¡ 0 (potentially depending on δ ¡ 0) such that
there is a weak solution on r0, T s to the regularized problem with regularization parameter δ.
Furthermore, the weak solution to the regularized problem exists on a maximal time interval r0, T s,
where either (1) T � 8 or (2) T is finite and is the time at which either:

� the fluid or Biot domain degenerates so that the moving interface collides with the bottom
boundary of Ω̂b or the top boundary of Ω̂b) or

� the (regularized) Lagrangian mapping Φ̂
ηδ

b for the Biot domain is no longer injective.

Our second main result is a weak-classical consistency result. Namely, in order to justify
our regularization procedure and the corresponding definition of weak solutions to the regularized
problem, we prove that weak solutions to the regularized problem indeed converge to the solution
of the original (non-regularized) FPSI problem. More precisely, we prove the following result, made
precise in Theorem 10.1.

Theorem 3.2 (Weak-classical consistency). Assume that a classical (smooth) solution to the FPSI
problem with a Biot poroviscoelastic medium exists on time-interval [0,T] for the case for which
the viscoelasticity parameters µv, λv ¡ 0. Then every sequence of weak solutions to the regularized
problem with regularization parameter δ ¡ 0 converges to the classical solution on r0, T s as the
regularization parameter δ converges to 0. In particular, the time interval of existence for the weak
solutions to the regularized problem is uniform in regularization parameter and solutions to the
regularized problem exists on the same time interval where the classical solution exists.

The heart of the proof of this theorem is a bootstrap argument presented in Section 10.4.
Namely, the main issue is that geometric quantities, such as the determinant of the displacement,
cannot be estimated by the energy, and thus are not uniformly bounded in the regularization
parameter δ. We derive appropriate bounds by using a bootstrap argument in combination with
optimal convergence rate estimates for the convolution regularization. The main technical issue
in comparing the classical solution with weak solutions to the regularized problem is the fact that
they are defined on different domains. Therefore, we use a change of variables that transfers
fluid velocities as vector fields and preserves the divergence-free condition. This transformation
was introduced by [37] and was used in proving weak-strong type of results in the context of FSI
in [21,53,57]. The corresponding estimates are carried out in Section 10.3.

4 Definition of a weak solution

Because the problem under consideration is nonlinearly coupled, the fluid domain Ωf ptq and the
Biot poroviscoelastic domain Ωbptq in physical space are time-dependent and not known apriori. To
handle the moving domains, it is useful to introduce the mappings that map the reference domains
Ω̂b, Γ̂, and Ω̂f onto the moving domains that depend on time and on the solution itself.
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4.1 Mappings between reference and physical domains

Let
Φ̂
η
b pt, �q : Ω̂b Ñ Ωbptq, Φ̂

ω
Γpt, �q : Γ̂ Ñ Γptq, Φ̂

ω
f pt, �q : Ω̂f Ñ Ωf ptq,

be such that
Φ̂
η
b � Id � η̂px̂, ŷq, px̂, ŷq P Ω̂b

Φ̂
ω
Γpx̂, 0q � px̂, ω̂px̂qq, x̂ P Γ̂

Φ̂
ω
f px̂, ŷq �

�
x̂, ŷ �

�
1� ŷ

R

	
ω̂px̂q

	
, px̂, ŷq P Ω̂f ,

(16)

with the inverse

pΦω
f q�1px, yq �

�
x,�R� R

R� ω̂
pR� yq



. (17)

We are using px̂, ŷq to denote the coordinates on the reference domain and px, yq the coordinates
on the physical domain. Note that these mapings are time-dependent, even though in the rest of
this manuscript we will not explicitly notate this time dependence for ease of notation.

The Jacobians of the transformations are given by:

Ĵ ω
f � 1� ω̂

R , Ĵ η
b � detpI � ∇̂η̂q, Ĵ ω

Γ �
a

1� |Bx̂ω̂|2, (18)

where Ĵ ω
Γ measures the arc length difference of between the reference and deformed configuration

of the plate. Notice that in the Jacobian Ĵ ω
f we dropped the absolute value sign since our results

will hold up until the time of domain degeneracy when |ω̂| ¥ R.
Under these mappings the functions are transformed as follows.
Tranformations under Φω

f . The fluid velocity u defined on Ωf ptq is transferred to the fixed

reference domain Ω̂f by

ûpt, x̂, ŷq � u � Φ̂f , for px̂, ŷq P Ω̂f .

Recall that on the moving domain Ωf ptq, the fluid velocity u is divergence free, i.e., ∇ � u �
0. However, when we pull the fluid velocity back to the reference domain, û is not necessarily
divergence free on Ω̂f . Hence, we want to reformulate the divergence free condition on the fixed
reference domain.

The divergence free condition. Let g be a function defined on Ωf ptq, then

∇g � ∇
�
ĝ � pΦω

f q�1
� � p∇̂ω

f ĝq � pΦω
f q�1,

where ∇̂ω
f is the transformed gradient operator :

∇̂ω
f �

�
Bx̂ � pR� yqBx̂ω̂ R

pR�ω̂q2
Bŷ

R
R�ω̂Bŷ

�
where y � ŷ �

�
1� ŷ

R



ω̂. (19)

Therefore, the divergence free condition and the symmetrized gradient on the fixed reference domain
Ω̂f are:

∇̂ω
f � û � 0, D̂

ω
f pûq �

1

2

�
∇̂ω
f û� p∇̂ω

f ûqt
	
.

Time derivatives. The time derivative transforms under the map Φ̂
ω
f as follows:

Btu � Btû� pŵ � ∇̂ω
f qû where ŵ � R� ŷ

R
Btω̂ey. (20)
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Tranformations under Φω
b . Given a scalar function g defined on Ωbptq the pull back of g to

the reference domain Ω̂b is given by
ĝ � g � Φ̂

η
b .

We claim that for some differential operator ∇̂η
b , which we will determine below,

∇g � ∇
�
ĝ � pΦη

b q�1
� � p∇̂η

b ĝq � pΦη
b q�1,

where ∇ is a gradient on the physical domain, ∇̂ is a gradient on the reference domain, and ∇̂η
b is

a differential operator (different from ∇̂) on the reference domain. For any function g defined on
the physical domain, we have that

∇̂
�
g � Φ̂

η
b

	
� rp∇gq � Φ̂

η
b s � pI � ∇̂η̂q.

Hence, for
∇̂η
b ĝ � p∇gq � Φ̂

η
b ,

we get the following explicit formula for the transformed gradient operator ∇̂η
b on Ω̂b:

∇̂η
b ĝ �

�Bĝ
Bx̂ ,

Bĝ
Bŷ


� pI � ∇̂η̂q�1. (21)

Notice that the invertibility of the matrix I � ∇̂η̂ will be related to whether the map px̂, ŷq Ñ
px̂, ŷq � η̂px̂, ŷq is a bijection between Ω̂b and Ωbptq.

4.2 Weak solution

We now derive the definition of a weak solution to the given FPSI problem, by means of the
following formal calculation. We start with the fluid equations and multiply by a test function
v. Recall the definition of the Eulerian structure velocity ξ from (10). For the inertia term of
the Navier-Stokes equations, using the Reynold’s transport theorem and integration by parts, we
obtain:»

Ωf ptq
pBtu� pu �∇quqq � v � d

dt

»
Ωf ptq

u � v �
»

Ωf ptq
u � Btv �

»
Γptq

pξ � nqu � v

� 1

2

»
Ωf ptq

rppu �∇quq � v � pu �∇qvq � us � 1

2

»
Γptq

pu � nqu � v

� d

dt

»
Ωf ptq

u �v�
»

Ωf ptq
u � Btv� 1

2

»
Ωf ptq

rppu �∇quq �v�ppu �∇qvq �us� 1

2

»
Γptq

pu �n�2ξ �nqu �v.

For the diffusive term of the Navier Stokes equations, we integrate by parts to obtain

�
»

Ωf ptq
p∇ � σf p∇u, πqq � v � 2ν

»
Ωf ptq

Dpuq : Dpvq �
»

Γptq
σf p∇u, πqn � v,

where we used the fact that the test function v is divergence free to eliminate the pressure, and we
use that the test function satisfies v � 0 on BΩf ptqzΓptq due to the boundary conditions for u.
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Next, we multiply the structure equation by a test function ψ̂ to obtain»
Ω̂b

pρbBttη̂ � ∇̂ � Ŝbp∇̂η̂, p̂qq � ψ̂ � ρb

�
d

dt

»
Ω̂b

Btη̂ � ψ̂ �
»

Ωb

Btη̂ � Btψ̂



�
»

Ω̂b

Ŝbp∇̂η̂, p̂q : ∇̂ψ̂ �
»

Γ̂
Ŝbp∇̂η̂, p̂qey � ψ̂ � ρb

�
d

dt

»
Ω̂b

Btη̂ � ψ̂ �
»

Ω̂b

Btη̂ � Btψ̂



�
»

Ω̂b

p2µeD̂pη̂q : D̂pψ̂q � λep∇̂ � η̂qp∇̂ � ψ̂q � 2µvD̂pBtη̂q : D̂pψ̂q � λvp∇̂ � Btη̂qp∇̂ � ψ̂qq

� α

»
Ωbptq

pp∇ �ψq �
»

Γ̂
Ŝbp∇η̂, p̂qer � ψ̂.

Except on Γ̂, there are no boundary terms, because η̂ � 0 on the left, top, and right boundaries
of Ω̂b, and hence the same condition holds for the corresponding test function ψ̂. Note that in the
integral over Ωbptq, ψ :� ψ̂ � pΦη

b q�1.
Finally, we test the second equation corresponding to the evolution of the pore pressure for the

Biot poroviscoelastic medium with a test function r, and recall the definition of the Darcy velocity
q from (4), keeping in mind that n is the inward normal vector to Ωbptq:»

Ωbptq

�
c0

rdetp∇̂Φ̂
η
b qs � pΦη

b q�1

D

Dt
p� α∇ � D

Dt
η �∇ � pκ∇pq

�
r

�
»

Ω̂b

c0Btp̂ � r̂ �
»

Ωbptq
α

�
∇ � D

Dt
η



r �

»
Ωbptq

κ∇p �∇r �
»

Γptq
pq � nqr

� d

dt

»
Ω̂b

c0p̂ � r̂ �
»

Ω̂b

c0p̂ � Btr̂ �
»

Ωbptq
α
D

Dt
η �∇r � α

»
Γptq

pξ � nqr �
»

Ωbptq
κ∇p �∇r �

»
Γptq

pq � nqr.

There are no boundary terms except on Γptq from the integration by parts in the integral involving
α and in the integral involving κ because of the Dirichlet boundary condition r � 0 (since p � 0)
on the left, top, and right boundaries of Ω̂b.

After adding the two stress terms, and recalling the definition of Φ̂
ω
Γ in (16) and Ĵ ω

Γ in (18) we
obtain:

�
»

Γptq
σf p∇u, πqn � v �

»
Γ̂
Ŝbp∇̂η̂, p̂qey � ψ̂

�
»

Γptq
σf p∇u, πqn � pψ � vq �

»
Γ̂
pŜbp∇̂η̂, p̂qey � Ĵ ω

Γ � pσf p∇u, πqn|Γptq �Φω
Γq � ψ̂.

Since the displacement of the plate is only in the y direction so that η̂ � ω̂ey on Γ̂, the test function

ψ̂ points in the y direction on Γ̂ as well. We will denote by ϕ̂ the magnitude of ψ̂|Γ̂ so that ψ̂ � ϕ̂ey
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on Γ̂. By the dynamic coupling condition (14), we have that the previous expression is equal to

�
»

Γptq
σf p∇u, πqn � pψ � vq �

»
Γ̂
F̂p � ϕ̂ �

»
Γptq

σf p∇u, πqn � pψ � vq �
»

Γ̂
pρpBttω̂ � ∆̂2ω̂qϕ̂

�
»

Γptq
σf p∇u, πqn � npψn � vnq �

»
Γptq

σf p∇u, πqn � τ pψτ � vτ q �
»

Γ̂
pρpBttω̂ � ∆̂2ω̂qϕ̂

�
»

Γptq
σf p∇u, πqn � npψn � vnq �

»
Γptq

βpξ � uq � τ pψτ � vτ q �
»

Γ̂
pρpBttω̂ � ∆̂2ω̂qϕ̂

�
»

Γptq

�
1

2
|u|2 � p



pψn � vnq �

»
Γptq

βpξ � uq � τ pψτ � vτ q

� d

dt

�»
Γ̂
ρpBtω̂ � ϕ̂



�
»

Γ̂
ρpBtω̂ � Btϕ̂�

»
Γ̂

∆̂ω̂ � ∆̂ϕ̂,

where we used the coupling conditions (12) and (15) in the last step.
The weak formulation then follows by summing everything together.

Definition 4.1. The ordered four-tuple pu, ω̂, η̂, pq satisfies the weak formulation to the nonlinearly
coupled FPSI problem if for every test function pv, ϕ̂, ψ̂, rq that is C1

c in time on r0, T s taking values
in the test space, satisfying ψ̂ � ϕ̂ey on Γ̂, we have that

�
» T

0

»
Ωf ptq

u � Btv� 1

2

» T
0

»
Ωf ptq

rppu �∇quq � v� ppu �∇qvq �us � 1

2

» T
0

»
Γptq

pu �n� 2ζey �nqu � v

� 2ν

» T
0

»
Ωf ptq

Dpuq : Dpvq �
» T

0

»
Γptq

�
1

2
|u|2 � p



pψn � vnq � β

» T
0

»
Γptq

pζey � uq � τ pψ � vq � τ

� ρp

» T
0

»
Γ̂
Btω̂ � Btϕ̂�

» T
0

»
Γ̂

∆̂ω̂ � ∆̂ϕ̂� ρb

» T
0

»
Ω̂b

Btη̂ � Btψ̂ � 2µe

» T
0

»
Ω̂b

D̂pη̂q : D̂pψ̂q

� λe

» T
0

»
Ω̂b

p∇̂ � η̂qp∇̂ � ψ̂q � 2µv

» T
0

»
Ω̂b

D̂pBtη̂q : D̂pψ̂q � λv

» T
0

»
Ω̂b

p∇̂ � Btη̂qp∇̂ � ψ̂q

� α

» T
0

»
Ωbptq

p∇ �ψ � c0

» T
0

»
Ω̂b

p̂ � Btr̂ � α

» T
0

»
Ωbptq

D

Dt
η �∇r � α

» T
0

»
Γptq

pζey � nqr

� κ

» T
0

»
Ωbptq

∇p �∇r �
» T

0

»
Γptq

ppu� ζeyq � nqr

�
»

Ωf p0q
up0q � vp0q � ρp

»
Γ̂
Btω̂p0q � ϕ̂p0q � ρb

»
Ω̂b

Btη̂p0q � ψ̂p0q � c0

»
Ω̂b

p̂p0q � r̂p0q. (22)

Remark 4.1. It is immediate to see that a classical (temporally and spatially smooth) solution
to the FPSI problem satisfies the weak formulation stated above. However, when considering less
regular solutions (in particular, weak solutions in the class of finite-energy solutions), the above
weak formulation is is inadequate for the regularity of finite-energy solutions for the following
reason. By the energy estimates (see Section 5.2), the regularity of the structure displacement η̂
on Ω̂b is L8p0, T,H1pΩ̂bqq, which is not enough regularity to interpret the term

α

»
Ωbptq

p∇ �ψ,

since the test function has regularity ψ̂ P H1pΩ̂bq on the fixed reference domain, due to the corre-
sponding finite energy regularity of η̂. Hence, after changing variables, which adds an extra factor
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of detpI�∇̂η̂q arising from the Jacobian, which is only in L8p0, T ;L1pΩ̂bqq in two dimensions, there
is not enough regularity to guarantee that this integral is finite. Therefore, we cannot interpret the
above notion of weak solution properly in the space of finite energy solutions, as the finite energy
space does not have enough regularity to make sense of certain integrals in the weak formulation,
involving the deformed domain Ωbptq.

This is why we introduce a regularized problem, which is consistent with the original problem in
the sense that weak solutions to the regularized problem converge, as the regularization parameter
tends to zero, to a smooth solution of the original, nonregularized problem, when a smooth solution
exists. This weak-classical consistency result will be shown in Sec. 10.

5 Regularized weak solution and statement of existence result

Since all the mathematical challenges related to the inability to properly interpret all of the terms
in the weak solution arise fundamentally from the lack of regularity of η̂ on Ω̂b, we will regularize
η̂ via a convolution with a smooth, compactly supported kernel, and introduce an appropriate
regularized weak formulation of the original FPSI problem. Because we are working on a bounded
domain Ω̂b, we must be careful to introduce the convolution in a way that preserves the Dirichlet
condition on the left, top, and right boundaries of Ω̂b � p0, Lq � p0, Rq.

This is why we define an extended domain Ω̃b:

Ω̃b � r�L, 2Ls � r�R, 2Rs,

so that for δ   minpL,Rq the convolution of a function on Ω̃b with a smooth function of compact
support in the closed ball of radius δ gives a function defined on Ω̂b. We then introduce an odd
extension along the lines x̂ � 0, x̂ � L, ŷ � 0 and ŷ � R as follows.

Definition 5.1. Given η̂ defined on Ω̂b satisfying η̂ � 0 on x̂ � 0, x̂ � L, and ŷ � R and η̂ � ω̂ey
on ŷ � 0, define the odd extension of η̂ to Ω̃b by keeping η̂ the same on Ω̂b � r0, Ls � r0, Rs and
defining η̂ outside of the closure of Ω̂b as follows:

1. On r0, Ls � r�R, 0s, set η̂px̂, ŷq � ω̂px̂qey � pω̂px̂qey � η̂px̂,�ŷqq.
2. On r0, Ls � rR, 2Rs, set η̂px̂, ŷq � �η̂px̂, 2R� ŷq.
3. On r�L, 0s � r�R, 2Rs, set η̂px̂, ŷq � �η̂p�x̂, ŷq.
4. On rL, 2Ls � r�R, 2Rs, set η̂px̂, ŷq � �η̂p2L� x̂, ŷq.
Let σ be a radially symmetric function on R2 with compact support in the closed ball of radius

one such that

»
R2

σ � 1, and define

σδ � δ�2σpδ�1xq, on R2.

Definition 5.2. We define the following regularized functions which are spatially smooth on
Ω̂b:

� The regularized Biot displacement obtained by extending η̂ to Ω̃b by odd extension and
defining:

η̂δ � η̂ � σδ, on Ω̂b, (23)
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� The regularized Lagrangian mapping:

Φ̂
ηδ

b pt, �q � Id � η̂δpt, �q, (24)

� The regularized moving Biot domain:

Ωδ
bptq � Φ̂

ηδ

b pt, Ω̂bq. (25)

Note that even though the kinematic coupling condition holds for η̂ in the sense that η̂|Γ̂ �
ω̂ey, it is not necessarily true that η̂δ|Γ̂ � ω̂ey. Therefore, we will also define:

� The regularized moving interface:

Γδptq � Φ̂
ηδ

b pt, Γ̂q.
Alternatively, Γ̂δ is the plate interface if it were displaced from the reference configuration Γ̂

in the direction η̂δ|Γ̂, which is a purely transverse y displacement, as one can verify.

Note that by the way we extended η̂ to the larger domain Ω̃b we have that

η̂δ � 0 on BΩ̂bzΓ̂.
With these regularized versions of the Biot structure displacement and velocity, we can now

define the notion of a weak solution to the regularized weak FPSI problem with the regularization
parameter δ. We start by defining the solution and test space, which are motivated by the energy
estimates in Section 5.2, and then we state the regularized weak formulation in the moving domain
framework and in the fixed reference domain framework.

5.1 Functional spaces and definition of weak solutions

Definition 5.3. (Solution and test spaces for the regularized problem)

� Fluid function space (moving domain/Eulerian formulation).

Vf ptq � tu � pux, uyq P H1pΩf ptqq : ∇�u � 0, and u � 0 when x � 0, x � L, y � �Ru, (26)

Vf � L8p0, T ;L2pΩf ptqqq X L2p0, T ;Vf ptqq. (27)

� Fluid function space (fixed domain/Lagrangian formulation).

V ω
f � tû � pûx, ûyq P H1pΩ̂f q : ∇̂ω

f � û � 0, and û � 0 when x̂ � 0, x̂ � L, ŷ � �Ru, (28)

Vωf � L8p0, T ;L2pΩ̂f qq X L2p0, T ;V ω
f q. (29)

� Plate function space.

Vω �W 1,8p0, T ;L2pΓ̂qq X L8p0, T ;H2
0 pΓ̂qq. (30)

� Biot displacement function space.

Vd � tη̂ � pη̂x, η̂yq P H1pΩ̂bq : η̂ � 0 for x̂ � 0, x̂ � L, ŷ � R, and η̂x � 0 on Γ̂u, (31)

Vb �W 1,8p0, T ;L2pΩ̂bqq X L8p0, T ;Vdq XH1p0, T ;Vdq. (32)
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� Biot pore pressure function space.

Vp � tp̂ P H1pΩ̂bq : p̂ � 0 for x̂ � 0, x̂ � L, ŷ � Ru, (33)

Qb � L8p0, T ;L2pΩ̂bqq X L2p0, T ;Vpq. (34)

� Weak solution space (moving domain).

Vsol � tpu, ω̂, η̂, p̂q P Vf � Vω � Vb �Qb : η̂ � ω̂ey on Γ̂u. (35)

� Weak solution space (fixed domain).

Vωsol � tpû, ω̂, η̂, p̂q P Vωf � Vω � Vb �Qb : η̂ � ω̂ey on Γ̂u. (36)

� Test space (moving domain).

Vtest � tpv, ϕ̂, ψ̂, r̂q P C1
c pr0, T q;Vf ptq �H2

0 pΓ̂q � Vd � Vpq : ψ̂ � ϕ̂ey on Γ̂u. (37)

� Test space (fixed domain).

Vωtest � tpv̂, ϕ̂, ψ̂, r̂q P C1
c pr0, T q;V ω

f �H2
0 pΓ̂q � Vd � Vpq : ψ̂ � ϕ̂ey on Γ̂u. (38)

Remark 5.1. Because Γ̂ is one dimensional, for plate displacements ω̂ P Vω, we have that ω̂ P
Cp0, T ;C1pΓ̂qq and hence, there is a one-to-one correspondence between functions in Vsol and Vωsol

and functions in Vtest and Vωtest, given by composition with the ALE mapping (16).

Before we state the definition of a weak solution to the regularized problem, we introduce the
following notation. Define the transverse velocity of the plate by the variable ζ̂, so that

Btω̂ � ζ̂, (39)

and let ζ � ζ̂ � pΦω
Γq�1.

Definition 5.4. (Weak solution to the regularized problem, moving fluid domain formulation)
An ordered four-tuple pu, ω̂, η̂, pq P Vsol is a weak solution to the regularized nonlinearly coupled
FPSI problem with regularization parameter δ if for every test function pv, ϕ̂, ψ̂, r̂q P Vtest,

�
» T

0

»
Ωf ptq

u � Btv� 1

2

» T
0

»
Ωf ptq

rppu �∇quq � v� ppu �∇qvq �us � 1

2

» T
0

»
Γptq

pu �n� 2ζey �nqu � v

� 2ν

» T
0

»
Ωf ptq

Dpuq : Dpvq �
» T

0

»
Γptq

�
1

2
|u|2 � p



pψn � vnq � β

» T
0

»
Γptq

pζey � uq � τ pψ � vq � τ

� ρp

» T
0

»
Γ̂
Btω̂ � Btϕ̂�

» T
0

»
Γ̂

∆̂ω̂ � ∆̂ϕ̂� ρb

» T
0

»
Ω̂b

Btη̂ � Btψ̂ � 2µe

» T
0

»
Ω̂b

D̂pη̂q : D̂pψ̂q

� λe

» T
0

»
Ω̂b

p∇̂ � η̂qp∇̂ � ψ̂q � 2µv

» T
0

»
Ω̂b

D̂pBtη̂q : D̂pψ̂q � λv

» T
0

»
Ω̂b

p∇̂ � Btη̂qp∇̂ � ψ̂q

� α

» T
0

»
Ωδbptq

p∇ �ψ � c0

» T
0

»
Ω̂b

p̂ � Btr̂ � α

» T
0

»
Ωδbptq

Dδ

Dt
η �∇r � α

» T
0

»
Γδptq

pζey � nδqr

� κ

» T
0

»
Ωδbptq

∇p �∇r �
» T

0

»
Γptq

ppu� ζeyq � nqr

�
»

Ωf p0q
up0q � vp0q � ρp

»
Γ̂
Btω̂p0q � ϕ̂p0q � ρb

»
Ω̂b

Btη̂p0q � ψ̂p0q � c0

»
Ω̂b

p̂p0q � r̂p0q, (40)

16



where Dδ

Dt � d
dt �pξδ �∇q with ξδpt, �q � Btη̂δpt, pΦηδ

b q�1pt, �qq is the material derivative with respect
to the regularized displacement, n denotes the upward pointing normal vector to Γptq, and nδ

denotes the upward pointing normal vector to Γδptq.
Notice that only four terms contain regularization via convolution with parameter δ. While there

are many different ways to write the regularized weak formulation, the regularization presented
above is a regularization that deviates from the original, nonregularized problem, in the smallest
possible number of terms, and is still consistent with the original, nonregularized problem, as we
show later.

Remark 5.2. While the solution to the regularized problem above depends on the regularization
parameter δ implicitly, to simplify notation we will drop the δ notation whenever it is clear from
the context that we are working with the solution to the regularized problem.

Remark 5.3. We simplify notation by omitting the explicit compositions with the maps Φ̂
ω
f , Φ̂

ω
Γ,

Φ̂
η
b , and Φ̂

ηδ

b , and their inverses. The necessary compositions with such mappings will be clear from
the context. For example,

�α
» T

0

»
Ωδbptq

p∇ �ψ means � α

» T
0

»
Ωδbptq

�
p̂ � pΦηδ

b q�1
	
∇ �

�
ψ̂ � pΦηδ

b q�1
	
,

and

�
» T

0

»
Γptq

ppu� ζeyq � nqr means �
» T

0

»
Γptq

��
u� pζ � pΦω

Γq�1qey
� � n� �r̂ � pΦη

b q�1
�
.

Next, we reformulate the definition of a regularized weak solution on the fixed reference
domain. Recall that the Jacobians Ĵ ω

f , Ĵ η
b , and Ĵ ω

Γ in (18) will appear upon using a change of
variables to map the problem onto the reference domain. To transform the first term in the weak
formulation (40) above, we use (20) to transform the time derivatives and assume that |ω̂|   R so
that there is no domain degeneracy. After using (20) and (19) we get»

Ωf ptq
u � Btv �

»
Ω̂f

�
1� ω̂

R



û � Btv̂ �

»
Ω̂f

�
1� ω̂

R



û � rpŵ � ∇̂ω

f qv̂s

�
»

Ω̂f

�
1� ω̂

R



û � Btv̂ � 1

R

»
Ω̂f

û � rpR� ŷqBtω̂Bŷv̂s

�
»

Ω̂f

�
1� ω̂

R



û � Btv̂ � 1

2R

»
Ω̂f

û � rpR� ŷqBtω̂Bŷv̂s � 1

2R

»
Ω̂f

pBtω̂qû � v̂

� 1

2R

»
Ω̂f

rpR� ŷqBtω̂Bŷûs � v̂ � 1

2

»
Γ̂
pû � v̂qBtω̂

�
»

Ω̂f

�
1� ω̂

R



û � Btv̂ � 1

2

»
Ω̂f

�
1� ω̂

R



rppŵ � ∇̂ω

f qv̂q � û� ppŵ � ∇̂ω
f qûq � v̂s

� 1

2R

»
Ω̂f

pBtω̂qû � v̂ � 1

2

»
Γ̂
pû � v̂qBtω̂, (41)

where we integrated by parts in the ŷ direction. Note that the final term in (41) will combine with
the following term in (40): » T

0

»
Γptq

pζey � nqu � v �
» T

0

»
Γ̂
pû � v̂qBtω̂, (42)
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where we used n � p�Bx̂ω̂, 1q{Ĵ ω
Γ for the normal vector to the interface and ζey|Γptq � Btω̂ey.

Because the transformation from Γptq to Γ̂ cancels out the factor of Ĵ ω
Γ in the unit normal vector,

it is useful to define the following renormalized normal and tangent vectors:

n̂ω � p�Bx̂ω̂, 1q, τ̂ω � p1, Bx̂ω̂q. (43)

We similarly define

n̂ω
δ � p�Bx̂pη̂δ|Γ̂q, 1q. (44)

We are now ready to state the definition of a weak solution to the regularized problem on the fixed
reference domain.

Definition 5.5. (Weak solution to the regularized problem, fixed fluid domain formulation) An
ordered four-tuple pû, ω̂, η̂, p̂q P Vωsol is a weak solution to the regularized nonlinearly coupled FPSI

problem with regularization parameter δ if for all test functions pv̂, ϕ̂, ψ̂, r̂q P Vωtest, the following
equality holds:

�
» T

0

»
Ω̂f

�
1� ω̂

R



û � Btv̂ � 1

2

» T
0

»
Ω̂f

�
1� ω̂

R



rppû� ŵq � ∇̂ω

f ûq � v̂ � ppû� ŵq � ∇̂ω
f v̂q � ûs

� 1

2R

» T
0

»
Ω̂f

pBtω̂qû � v̂ � 1

2

» T
0

»
Γ̂
pû � n̂ω � ζ̂ey � n̂ωqû � v̂ � 2ν

» T
0

»
Ω̂f

�
1� ω̂

R



D̂pûq : D̂pv̂q

�
» T

0

»
Γ̂

�
1

2
|û|2 � p̂



pψ̂ � v̂q � n̂ω � β

Ĵ ω
Γ

» T
0

»
Γ̂
pζ̂ey � ûq � τ̂ωpψ̂ � v̂q � τ̂ω

� ρp

» T
0

»
Γ̂
Btω̂ � Btϕ̂�

» T
0

»
Γ̂

∆̂ω̂ � ∆̂ϕ̂� ρb

» T
0

»
Ω̂b

Btη̂ � Btψ̂ � 2µe

» T
0

»
Ω̂b

D̂pη̂q : D̂pψ̂q

� λe

» T
0

»
Ω̂b

p∇̂ � η̂qp∇̂ � ψ̂q � 2µv

» T
0

»
Ω̂b

D̂pBtη̂q : D̂pψ̂q � λv

» T
0

»
Ω̂b

p∇̂ � Btη̂qp∇̂ � ψ̂q

� α

» T
0

»
Ω̂b

Ĵ ηδ

b p̂∇̂ηδ

b � ψ̂ � c0

» T
0

»
Ω̂b

p̂ � Btr̂ � α

» T
0

»
Ω̂b

Ĵ ηδ

b Btη̂ � ∇̂ηδ

b r̂

� α

» T
0

»
Γ̂
pζ̂ey � n̂ωδqr̂ � κ

» T
0

»
Ω̂b

Ĵ ηδ

b ∇̂ηδ

b p̂ � ∇̂ηδ

b r̂ �
» T

0

»
Γ̂
ppû� ζ̂eyq � n̂ωqr̂

�
»

Ωf p0q
up0q � vp0q � ρp

»
Γ̂
Btω̂p0q � ϕ̂p0q � ρb

»
Ω̂b

Btη̂p0q � ψ̂p0q � c0

»
Ω̂b

p̂p0q � r̂p0q, (45)

where Ĵ ηδ

b and Ĵ ω
Γ are defined in (18), ŵ is defined in (20), ∇̂ω

f in (19), ∇̂ηδ

b ĝ in (21), and ζ̂ in (50).

5.2 Formal energy inequality

Here we show that the regularized problem is defined in a way that preserves the variational
structure of the problem. More precisely, we formally prove that a weak solution to the regularized
problem satisfies the following energy equality.

Lemma 5.1. Assuming that a weak solution exists, the following energy equality holds:

EKpT q � EEpT q �
» T

0

�
DV
f ptq �DV

b ptq �DV
fb
ptq �DV

β ptq
�
dt � EKp0q � EEp0q (46)
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where

EKptq � 1

2

»
Ωf ptq

|uptq|2 � 1

2
ρb

»
Ω̂b

|Btη̂ptq|2 � 1

2
c0

»
Ω̂b

|p̂ptq|2 � 1

2
ρp

»
Γ̂
|Btω̂ptq|2

is the sum of the kinetic energy of the fluid, the kinetic energy of the Biot poroviscoelastic matrix
motion, the kinetic energy of the filtrating fluid flow in the Biot medium, and the kinetic energy of
the plate motion, EEptq is defined by

EEptq � 2µe

»
Ω̂b

|D̂pη̂qptq|2 � 2λe

»
Ω̂b

|∇̂ � η̂ptq|2 �
»

Γ̂
|∆̂ω̂ptq|2,

which corresponds to the elastic energy of the Biot poroviscoelastic matrix and the elastic energy
of the plate, and

DV
f ptq � 2ν

»
Ωf ptq

|Dpuq|2, DV
b ptq � 2µv

»
Ω̂b

|D̂pBtη̂q|2 � λv

»
Ω̂b

|∇̂ � Btη̂|2,

DV
fb
ptq � κ

»
Ωδbptq

|∇p|2, DV
β ptq � β

»
Γptq

|pξ � uq � τ |2

correspond to dissipation due to fluid viscosity, viscosity of the Biot poroviscoelastic matrix, dis-
sipation due to permeability effects, and dissipation due to friction in the Beavers-Joseph-Saffman
slip condition.

Proof. To derive this energy equality we start by substituting pv̂, ϕ̂, ψ̂, r̂q � pû, ζ̂, Btη̂, p̂q into the
regularized weak formulation (45) defined on the fixed reference domain and calculate

1

2

»
Γ̂
pû� ζ̂eyq � n̂ω|û|2 �

»
Γ̂

�
1

2
|û|2 � p̂



pζ̂ey � ûq � n̂ω �

»
Γ̂
ppû� ζ̂eyq � n̂ωqp̂ � 0.

Furthermore, using integration by parts one obtains

α

�»
Ω̂b

Ĵ ηδ

b p̂∇̂ηδ

b � Btη̂ �
»

Ω̂b

Ĵ ηδ

b Btη̂ � ∇̂ηδ

b p̂�
»

Γ̂
pζ̂ey � n̂ωδqp̂



� α

�»
Ωδbptq

p∇ � ξ �
»

Ωδbptq
ξ �∇p�

»
Γδptq

pζey � nδqp
�
� 0,

where nδ is the upward pointing unit normal vector to Γδptq. Finally, by the Reynold’s transport
theorem » T

0

»
Ωf ptq

u � Btu� 1

2

» T
0

»
Γptq

pζey � nq|u|2 � 1

2

»
Ωf pT q

|u|2 � 1

2

»
Ωf p0q

|u|2.

By combining these calculations one obtains the final energy estimate:

1

2

»
Ωf pT q

|upT q|2� 2ν

» T
0

»
Ωf ptq

|Dpuq|2�β
» T

0

»
Γptq

|pξ�uq � τ |2� 1

2
ρp

»
Γ̂
|Btω̂pT q|2�

»
Γ̂
|∆̂ω̂pT q|2

� 1

2
ρb

»
Ω̂b

|Btη̂pT q|2 � 2µe

»
Ω̂b

|D̂pη̂qpT q|2 � 2λe

»
Ω̂b

|∇̂ � η̂pT q|2 � 2µv

» T
0

»
Ω̂b

|D̂pBtη̂q|2

� λv

» T
0

»
Ω̂b

|∇̂ � Btη̂|2 � 1

2
c0

»
Ω̂b

|p̂pT q|2 � κ

» T
0

»
Ωδbptq

|∇p|2 � 1

2

»
Ωf p0q

|up0q|2 � 1

2
ρp

»
Γ̂
|Btω̂p0q|2

�
»

Γ̂
|∆̂ω̂p0q|2 � 1

2
ρb

»
Ω̂b

|Btη̂p0q|2 � 2µe

»
Ω̂b

|D̂pη̂qp0q|2 � 2λe

»
Ω̂b

|∇̂ � η̂p0q|2 � 1

2
c0

»
Ω̂b

|p̂p0q|2.
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5.3 Statement of the main existence result for the regularized problem

We now state the main result on the existence of a weak solution to the regularized problem.

Theorem 5.1. Let ρb, µe, λe, α, ρp, ν ¡ 0 and µv, λv ¥ 0. Consider initial data for the plate

displacement ω̂0 P H2
0 pΓ̂q, plate velocity ζ̂0 P L2pΓ̂q, Biot displacement η̂0 P H1pΩ̂bq, Biot velocity

ξ̂0 P H1pΩ̂bq in the case of a viscoelastic Biot medium µv, λv ¡ 0 and ξ̂0 P L2pΩ̂bq otherwise
for the case of a purely elastic Biot medium, Biot pore pressure p̂0 P L2pΩ̂bq, and fluid velocity
u0 P H1pΩf p0qq which is divergence-free. Suppose further that |ω̂0| ¤ R0   R for some R0,

η̂0|Γ � ω̂0ey, and ξ̂0|Γ � ζ̂0ey, and for some arbitrary but fixed regularization parameter δ ¡ 0,
suppose that Id� η̂δ0 is an invertible map with detpI�∇η̂δ0q ¡ 0. Then, there exists a weak solution
pu, ω̂, η̂, p̂q to the regularized FPSI problem with regularization parameter δ on some time interval
r0, T s, for some T ¡ 0.

While T in general depends on δ, we will show that if there exists a smooth solution to the
nonregularized FPSI problem, then this time T for the regularized problem is independent of δ.
This will allow us to pass to the limit as δ Ñ 0 and show that weak solutions to the regularized
FPSI problems constructed in this manuscript, converge to a smooth solution of the original,
nonregularized problem, when a smooth solution to the nonregularized problem exists.

Remark 5.4. The result above is a local result, since it holds up to some time T ¡ 0, which needs
to be sufficiently small. However, it is easy to show that this T ¡ 0 can be made maximal, in the
sense that it holds until the time for which Id � η̂δ fails to be invertible or |ω̂p�, xq| � R for some
x P Γ̂ when the reticular plate collides with the boundary. This can be shown using a standard
method, see e.g., pg. 397-398 of [20], or the proof of Theorem 7.1 in [47].

An important notational convention. For notational simplicity, we will no longer use the
“hat” notation to distinguish between functions and domains in the physical or reference config-
uration: for example, we will denote both the pore pressure p on Ωbptq and p̂ on Ω̂b by p, as the
distinction between these two will be clear from context. In addition, we will remove the “hat”
convention from the reference domains, and for example, we will denote the reference domain Ω̂b

for the Biot medium by Ωb. We will follow this notational convention for the rest of the manuscript.
The proof of Theorem 5.1 is constructive, and based on an operator splitting scheme. This is

an approach that has been used in constructive existence proofs of weak solutions for a variety of
FSI problems, see for example [47].

6 The splitting scheme

The splitting scheme is defined as follows. First, semidiscretize the problem in time by introducing
the time step ∆t � T {N , and subdivide the time interval r0, T s into N subintervals, each of
width ∆t. The approximations of the fluid velocity, plate displacement and velocity, and Biot
poroviscoelastic material displacement and pressure will be denoted by

pun�
i
2

N , ω
n� i

2
N , ζ

n� i
2

N ,η
n� i

2
N , p

n� i
2

N q, for n � 0, 1, ...., N and i � 0, 1.

For the splitting scheme we will work on the fixed reference domain and hence, we will semi-
discretize the regularized weak formulation (45) on the fixed reference domain. Backwards Euler
discretization will be used to approximate time derivatives, with the following shorthand notation:

9f
n� i

2
N � f

n� i
2

N � f
n� i

2
�1

N

∆t
.
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6.1 The plate subproblem

Only the plate displacement and velocity ω
n� 1

2
N and ζ

n� 1
2

N are updated in this subproblem, leaving
the remaining variables unchanged:

u
n� 1

2
N � unN , η

n� 1
2

N � ηnN , p
n� 1

2
N � pnN .

The new plate displacement and velocity are calculated from the following weak formulation of the

plate subproblems: find ω
n� 1

2
N P H2

0 pΓq and ζ
n� 1

2
N P H2

0 pΓq, such that»
Γ

��ω
n� 1

2
N � ω

n� 1
2

N

∆t

�
� φ � »
Γ
ζ
n� 1

2
N � φ, for all φ P L2pΓq, (47)

ρp

»
Γ

��ζ
n� 1

2
N � ζnN

∆t

�
� ϕ� »
Γ

∆ω
n� 1

2
N �∆ϕ � 0, for all ϕ P H2

0 pΓq. (48)

When n � 0, we set ω
� 1

2
N � ωp0q and ζ0

N � ζp0q. In particular, ωp0qey � ηp0q|Γ and ζp0qey � ξp0q.
Lemma 6.1. Problem (47), (48) has a unique solution which satisfies the following energy equality:

1

2
ρp

»
Γ
|ζn�

1
2

N |2 � 1

2
ρp

»
Γ
|ζn�

1
2

N � ζnN |2 �
1

2

»
Γ
|∆ωn�

1
2

N |2 � 1

2

»
Γ
|∆pωn�

1
2

N � ω
n� 1

2
N q|2

� 1

2
ρp

»
Γ
|ζn�

1
2

N |2 � 1

2

»
Γ
|∆ωn�

1
2

N |2. (49)

Proof. To prove this, we first notice that

ζ
n� 1

2
N � ω

n� 1
2

N � ω
n� 1

2
N

∆t
(50)

so that ω
n� 1

2
N P H2

0 pΓq above satisfies the following weak formulation:

ρp

»
Γ
ω
n� 1

2
N � ϕ� p∆tq2

»
Γ

∆ω
n� 1

2
N �∆ϕ � ρp

»
Γ
pωn�

1
2

N � p∆tqζnN q � ϕ, for all ϕ P H2
0 pΓq.

The bilinear form

Brω, ϕs � ρp

»
Γ
ω � ϕ� p∆tq2

»
Γ

∆ω �∆ϕ

is coercive on H2
0 pΓq, and

ϕÑ ρp

»
Γ

�
ω
n� 1

2
N � p∆tqζnN



� ϕ

is a continuous linear functional on H2
0 pΓq, since we will have ω

n� 1
2

N P H2
0 pΓq and ζnN P L2pΓq by

the way our splitting scheme is defined. Thus, by the Lax-Milgram lemma, there exists a unique

solution ω
n� 1

2
N P H2

0 pΓq, from which we also recover ζ
n� 1

2
N P H2

0 pΓq using (50) above.

The energy equality above follows by substituting ϕ � ζ
n� 1

2
N � ω

n� 1
2

N �ω
n� 1

2
N

∆t P H2
0 pΓq into the

weak formulation and using the identity

pa� bq � a � 1

2
p|a|2 � |a� b|2 � |b|2q.
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6.2 The fluid and Biot subproblem

For the fluid and Biot subproblem, we update the quantities related to the fluid and the Biot
medium. Due to the kinematic coupling between the Biot medium displacement and the plate
displacement, we must also update the plate velocity, as the dynamics of the Biot medium affect
the kinematics of the plate. In this step, only the plate displacement remains unchanged:

ωn�1
N � ω

n� 1
2

N .

To state the weak formulation of the fluid and Biot subproblem, we define the solution and test
spaces, respectively:

Vn�1
N � tpu, ζ,η, pq P Vω

n
N

f �H2
0 pΓq � Vd � Vpu, (51)

Qn�1
N � tpv, ϕ,ψ, rq P V ωnN

f �H2
0 pΓq � Vd � Vp : ψ � ϕey on Γu, (52)

where V ω
f , Vd, and Vp are defined in (28), (31), and (33).

The weak formulation now reads: find pun�1
N , ζn�1

N ,ηn�1
N , pn�1

N q P Vn�1
N defined on the reference

domain, such that for all test functions pv, ϕ,ψ, rq P Qn�1
N defined on the reference domain, the

following holds:

»
Ωf

�
1� ωnN

R



9un�1
N � v � 2ν

»
Ωf

�
1� ωnN

R



D
ωnN
f pun�1

N q : D
ωnN
f pvq �

»
Γ

�
1

2
un�1
N � unN � pn�1

N



pψ � vq � nωnN

� 1

2

»
Ωf

�
1� ωnN

R


���
unN � ζ

n� 1
2

N

R� y

R
ey



�∇ωnN

f un�1
N



� v �

��
unN � ζ

n� 1
2

N

R� y

R
ey



�∇ωnN

f v



� un�1

N

�
� 1

2R

»
Ωf

ζ
n� 1

2
N un�1

N � v � 1

2

»
Γ
pun�1

N � 9ηn�1
N q � nωnN punN � vq

� β

J ωnN
Γ

»
Γ
p 9ηn�1

N � un�1
N q � τωnN pψ � vq � τωnN � ρb

»
Ωb

�
9ηn�1
N � 9ηnN

∆t

�
�ψ

� ρp

»
Γ

��ζn�1
N � ζ

n� 1
2

N

∆t

�
ϕ� 2µe

»
Ωb

Dpηn�1
N q : Dpψq � λe

»
Ωb

p∇ � ηn�1
N qp∇ �ψq

� 2µv

»
Ωb

Dp 9ηn�1
N q : Dpψq � λv

»
Ωb

p∇ � 9ηn�1
N qp∇ �ψq � α

»
Ωb

J pηnN q
δ

b pn�1
N ∇pηnN q

δ

b �ψ

� c0

»
Ωb

pn�1
N � pnN

∆t
r � α

»
Ωb

J pηnN q
δ

b 9ηn�1
N �∇pηnN q

δ

b r � α

»
Γ
p 9ηn�1

N � npωnN qδqr

� κ

»
Ωb

J pηnN q
δ

b ∇pηnN q
δ

b pn�1
N �∇pηnN q

δ

b r �
»

Γ
rpun�1

N � 9ηn�1
N q � nωnN sr � 0,

(53)
and »

Γ

�
ηn�1
N � ηnN

∆t

�
� φ �

»
Γ
ζn�1
N ey � φ, for all φ P L2pΓq. (54)

Lemma 6.2. Problem (53), (54) has a unique solution provided that the following assumptions
hold:
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1. Assumption 1A: Boundedness of the plate displacement away from R. There exists a positive
constant Rmax such that

|ωk�
i
2

N | ¤ Rmax   R, for all k � 0, 1, ..., n and i � 0, 1. (55)

2. Assumption 2A: Invertibility of the map from fixed to moving Biot domain. The map

Id � pηnN qδ : Ωb Ñ pΩbqn,δN is invertible, (56)

where we define pΩbqn,δN to be the image of Ωb under the map Id � pηnN qδ.
Additionally, the weak solution satisfies the following energy equality:

1

2

»
Ωf

�
1� ωn�1

N

R

�
|un�1
N |2 � 1

2
ρb

»
Ωb

| 9ηn�1
N |2 � 1

2
c0

»
Ωb

|pn�1
N |2 � µe

»
Ωb

|Dpηn�1
N q|2 � 1

2
λe

»
Ωb

|∇ � ηn�1
N |2

� 1

2
ρp

»
Γ
|ζn�1
N |2 � 2µvp∆tq

»
Ωb

|Dp 9ηn�1
N q|2 � λvp∆tq

»
Ωb

|∇ � 9ηn�1
N |2 � κp∆tq

»
Ωb

J pηnN q
δ

b |∇pηnN q
δ

b pn�1
N |2

� βp∆tq
J ωnN

Γ

»
Γ
|p 9ηn�1

N � un�1
N q � τωnN |2 � 1

2
ρb

»
Ωb

| 9ηn�1
N � 9ηnN |2 �

1

2
c0

»
Ωb

|pn�1
N � pnN |2 � µe

»
Ωb

|Dpηn�1
N � ηnN q|2

� 1

2
λe

»
Ωb

|∇ � pηn�1
N � ηnN q|2 �

1

2

»
Ωf

�
1� ωnN

R



|unN |2 �

1

2
ρb

»
Ωb

| 9ηnN |2 �
1

2
c0

»
Ωb

|pnN |2 � µe

»
Ωb

|DpηnN q|2

� 1

2
λe

»
Ωb

|∇ � ηnN |2 �
1

2
ρp

»
Γ
|ζn�

1
2

N |2.

The proof is based on using the Lax-Milgram Lemma. However, in this case the proof is more
involved for two reasons. First, the bilinear form associated with problem (53) and (54) is not

coercive on the Hilbert space Vω
n
N

f � Vd � Vp, because of a mismatch between the hyperbolic and
parabolic scaling in the problem. The second reason is that it is not a priori clear that Korn’s
inequality, which is needed in the proof of the existence, holds for the Biot domain. To deal with the
first difficulty and recover the coercive structure of the problem, the test functions can be rescaled
so that

v Ñ p∆tqv, r Ñ p∆tqr. (57)

This scaling of the test functions is valid because if pv, ϕ,ψ, vq P Qn�1
N , then the rescaled test

function satisfies pp∆tq�1v, ϕ,ψ, p∆tq�1rq P Qn�1
N also. To deal with the second difficulty, one can

show by explicit calculation that the following Korn’s inequality holds for this problem:

Proposition 6.1. Korn’s inequality for the Biot poroviscoelastic domain. For all
η P Vd, »

Ωb

|Dpηq|2 ¥ 1

2

»
Ωb

|∇η|2.

Proof. By a standard approximation argument, it suffices to assume that η is smooth. Because
ηx � 0 on Γ and because η � 0 on the left, top, and right boundaries of Ωb, we have from integration
by parts, that »

Ωb

Bηx
By

Bηy
Bx � �

»
Ωb

ηx
B2ηy
BxBy �

»
Ωb

Bηx
Bx

Bηy
By .
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Therefore, by using the inequality a2 � 2ab� b2 ¥ 0, we obtain»
Ωb

|Dpηq|2 �
»

Ωb

�Bηx
Bx


2

�
�Bηy
By


2

� 1

2

�Bηx
By � Bηy

Bx

2

�
»

Ωb

�Bηx
Bx


2

�
�Bηy
By


2

� 1

2

��Bηx
By


2

�
�Bηy
Bx


2
�
� Bηx

By
Bηy
Bx

�
»

Ωb

�Bηx
Bx


2

� Bηx
Bx

Bηy
By �

�Bηy
By


2

� 1

2

��Bηx
By


2

�
�Bηy
Bx


2
�
¥ 1

2

»
Ωb

|∇η|2.

Proof. Proof of Lemma 6.2. Rewrite the weak formulation (53) and (54) so that all of the
functions at the pn � 1qst time step are on the left hand side while all other quantities are on the
right hand side. In addition, we rewrite ζn�1

N in terms of ηnN and ηn�1
N by using (54):

ζn�1
N ey � ηn�1

N � ηnN
∆t

���
Γ
.

After using the rescaling (57) of the test functions, the weak formulation involves the following
coercive and continuous bilinear form:

Bru,v,η,ψ, p, rs :� p∆tq2
»

Ωf

�
1� ωnN

R



u � v

� 1

2
p∆tq3

»
Ωf

�
1� ωnN

R


���
unN � ζ

n� 1
2

N

R� y

R
ey



�∇ωnNu



� v �

��
unN � ζ

n� 1
2

N

R� y

R
ey



�∇ωnNv



� u
�

� p∆tq3 � 1

2R

»
Ωf

ζ
n� 1

2
N u � v � 1

2
p∆tq3

»
Γ
pu� p∆tq�1ηq � nωnN punN � vq

� 2νp∆tq3
»

Ωf

�
1� ωnN

R



D
ωnN
f puq : D

ωnN
f pvq � p∆tq2

»
Γ

�
1

2
u � unN � p



pψ � p∆tqvq � nωnN

� β

J ωnN
Γ

p∆tq2
»

Γ
rp∆tq�1η � us � τωnN pψ � p∆tqvq � τωnN � ρb

»
Ωb

η �ψ � ρp

»
Γ
η �ψ

� p2µep∆tq2 � 2µvp∆tqq
»

Ωb

Dpηq : Dpψq � pλep∆tq2 � λvp∆tqq
»

Ωb

p∇ � ηqp∇ �ψq

� αp∆tq2
»

Ωb

J pηnN q
δ

b p∇pηnN q
δ

b �ψ � c0p∆tq2
»

Ωb

pr � αp∆tq2
»

Ωb

J pηnN q
δ

b η �∇pηnN q
δ

b r

� αp∆tq2
»

Γ
pη � npωnN qδqr � κp∆tq3

»
Ωb

J pηnN q
δ

b ∇pηnN q
δ

b p �∇pηnN q
δ

b r

� p∆tq3
»

Γ
rpu� p∆tq�1ηq � nωnN sr.

With this notation, the weak formulation reads: find pun�1
N ,ηn�1

N , pn�1
N q P Vω

n
N

f � Vd� Vp such that

for all test functions pv,ψ, rq P Vω
n
N

f � Vd � Vp,
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Brun�1
N ,v,ηn�1

N ,ψ, pn�1
N , rs � p∆tq2

»
Ωf

�
1� ωnN

R



unN � v � 1

2
p∆tq2

»
Γ
ηnN � nωnN punN � vq

� β

J ωnN
Γ

p∆tq
»

Γ
ηnN � τωnN pψ � p∆tqvq � τωnN � ρb

»
Ωb

p2ηnN � ηn�1
N q �ψ � ρp

»
Γ
pηnN � p∆tqζn�

1
2

N eyq �ψ

� 2µvp∆tq
»

Ωb

DpηnN q : Dpψq � λvp∆tq
»

Ωb

p∇ � ηnN qp∇ �ψq

�c0p∆tq2
»

Ωb

pnNr�αp∆tq2
»

Ωb

J pηnN q
δ

b ηnN �∇pηnN q
δ

b r�αp∆tq2
»

Γ
pηnN �npω

n
N q

δqr�p∆tq2
»

Γ
pηnN �nω

n
N qr.

(58)

We now show that the bilinear form Bru,v,η,ψ, p, rs is coercive and continuous as a bilinear

form on the Hilbert space Vω
n
N

f � Vd � Vp, with the inner product given by

xpu,η, pq, pv,ψ, rqy �
»

Ωf

pu � v �∇u : ∇vq �
»

Ωb

pη �ψ �∇η : ∇ψq �
»

Ωb

pp � r �∇p �∇rq.

We focus on establishing coercivity, since continuity follows by standard arguments. To show
coercivity we calculate Bru,u,η,η, p, ps. In this calculation we note that after integration by
parts, the sum of the following terms becomes zero:

�αp∆tq2
»

Ωb

J pηnN q
δ

b p∇pηnN q
δ

b � η � αp∆tq2
»

Ωb

J pηnN q
δ

b η �∇pηnN q
δ

b p� αp∆tq2
»

Γ

�
η � npωnN qδ

	
p � 0.

Indeed, to see this, we bring the integrals back to the time-dependent physical domain, which we
can do as long as pηnN qδ is a bijection from Ωb to pΩbqn,δN , which is provided by Assumption
2A (56), and perform the following computation:

� αp∆tq2
»

Ωb

J pηnN q
δ

b p∇pηnN q
δ

b � η � αp∆tq2
»

Ωb

J pηnN q
δ

b η �∇pηnN q
δ

b p� αp∆tq2
»

Γ

�
η � npωnN qδ

	
p

� �αp∆tq2
�»

pΩbq
n,δ
N

p∇ � η �
»
pΩbq

n,δ
N

η �∇p�
»

Γn,δN

pη � nqp
�
� 0,

where we used integration by parts, the fact that n points outwards from Ωf and hence inwards
towards Ωb, and also use that η � 0 on the left, right, and top boundaries of Ωb. Combining this

with the fact that p∆tqζn�
1
2

N � ω
n� 1

2
N � ω

n� 1
2

N � ωn�1
N � ωnN , we obtain

Bru,u,η,η, p, ps :� p∆tq2
»

Ωf

�
1� ωnN � ωn�1

N

2R

�
|u|2 � 2νp∆tq3

»
Ωf

�
1� ωnN

R


 ���DωnN
f puq

���2
� β

J ωnN
Γ

p∆tq
»

Γ

��pη � p∆tquq � τωnN ��2 � ρb

»
Ωb

|η|2 � ρp

»
Γ
|η|2 � p2µep∆tq2 � 2µvp∆tqq

»
Ωb

|Dpηq|2

� pλep∆tq2 � λvp∆tqq
»

Ωb

|∇ � η|2 � c0p∆tq2
»

Ωb

|p|2 � κp∆tq3
»

Ωb

J pηnN q
δ

b |∇pηnN q
δ

b p|2.

Coercivity of this form follows from the fact that |ωk�
i
2

N |   R, see Assumption 1A in (55), and
Korn inequality, see Proposition 6.1, once we handle the last term and show that

κp∆tq3
»

Ωb

J pηnN q
δ

b |∇pηnN q
δ

b p|2 ¥ c

»
Ωb

|∇p|2,
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for some positive constant c ¡ 0. To show this, we first recall the definitions

J pηnN q
δ

b � detpI �∇pηnN qδq, ∇pηnN q
δ

b p � ∇p � pI �∇pηnN qδq�1.

Then, letting | � | denote the matrix norm, we have

κp∆tq3
»

Ωb

J pηnN q
δ

b |∇pηnN q
δ

b p|2 ¥ κp∆tq3
»

Ωb

J pηnN q
δ

b |I �∇pηnN qδ|�2|∇p|2. (59)

Assumption 2A (56) implies that I � pηnN qδ is an invertible map from Ωb to pΩbqn,δN , and we
further note that |I � ∇pηnN qδ| is continuous on Ωb and hence is bounded from above. Thus,
|I � ∇pηnN qδ|�2 ¥ c0 ¡ 0 for some positive constant c0. The assumption that I � pηnN qδ is
invertible implies that detpI � ∇pηnN qδq ¡ 0. However, since this determinant is a continuous
function on the compact set Ωb, we conclude that there exists a positive constant c1 ¡ 0 such that
detpI �∇pηnN qδq ¥ c1 ¡ 0. This establishes coercivity.

Existence of a unique weak solution pun�1
N ,ηn�1

N , pn�1
N q P Vω

n
N

f � Vd � Vp now follows from the

Lax-Milgram lemma. From here, we recover ζn�1
N , by using ζn�1

N ey � ηn�1
N � ηnN

∆t

���
Γ
. Note that

ηn�1
N � ηnN

∆t

���
Γ

points in the y direction because the trace of any function η P Vd on Γ points in the

y direction by definition, see (31).
Energy equality: We substitute v � un�1

N , ϕ � ζn�1
N , ψ � 9ηn�1

N , and r � pn�1
N into (53), and

use the identity

pa� bq � a � 1

2
p|a|2 � |a� b|2 � |b|2q.

Since ωn�1
N � ω

n� 1
2

N and p∆tqζn�
1
2

N � ω
n� 1

2
N � ωnN , we obtain the following energy equality:

1

2

»
Ωf

�
1� ωn�1

N

R

�
|un�1
N |2 � 1

2
ρb

»
Ωb

| 9ηn�1
N |2 � 1

2
c0

»
Ωb

|pn�1
N |2 � µe

»
Ωb

|Dpηn�1
N q|2 � 1

2
λe

»
Ωb

|∇ � ηn�1
N |2

� 1

2
ρp

»
Γ
|ζn�1
N |2 � 2µvp∆tq

»
Ωb

|Dp 9ηn�1
N q|2 � λvp∆tq

»
Ωb

|∇ � 9ηn�1
N |2 � κp∆tq

»
Ωb

J pηnN q
δ

b |∇pηnN q
δ

b pn�1
N |2

� βp∆tq
J ωnN

Γ

»
Γ
|p 9ηn�1

N � un�1
N q � τωnN |2 � 1

2
ρb

»
Ωb

| 9ηn�1
N � 9ηnN |2 �

1

2
c0

»
Ωb

|pn�1
N � pnN |2 � µe

»
Ωb

|Dpηn�1
N � ηnN q|2

� 1

2
λe

»
Ωb

|∇ � pηn�1
N � ηnN q|2 �

1

2

»
Ωf

�
1� ωnN

R



|unN |2 �

1

2
ρb

»
Ωb

| 9ηnN |2 �
1

2
c0

»
Ωb

|pnN |2 � µe

»
Ωb

|DpηnN q|2

� 1

2
λe

»
Ωb

|∇ � ηnN |2 �
1

2
ρp

»
Γ
|ζn�

1
2

N |2,

where the terms containing parameter α cancel out after bringing the integrals back to the time-
dependent domain, integrating by parts, and recalling that the normal vector points inward towards
the Biot domain:

� α

»
Ωb

J pηnN q
δ

b pn�1
N ∇pηnN q

δ

b � 9ηn�1
N � α

»
Ωb

J pηnN q
δ

b 9ηn�1
N �∇pηnN q

δ

b pn�1
N � α

»
Γ

�
9ηn�1
N � npωnN qδ

	
pn�1
N

� �α
»
pΩbq

n,δ
N

pn�1
N p∇ � 9ηn�1

N q � α

»
pΩbq

n,δ
N

9ηn�1
N �∇pn�1

N � α

»
Γn,δN

p 9ηn�1
N � nqpn�1

N � 0.

This completes the proof of the Lemma.
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6.3 The coupled semi-discrete problem: weak formulation and energy

To obtain uniform energy estimates for approximate solutions of our semidiscretized scheme it is
useful to present the scheme in monolithic form:»

Ωf

�
1� ωnN

R



9un�1
N � v � 2ν

»
Ωf

�
1� ωnN

R



D
ωnN
f pun�1

N q : D
ωnN
f pvq �

»
Γ

�
1

2
un�1
N � unN � pn�1

N



pψ � vq � nωnN

� 1

2

»
Ωf

�
1� ωnN

R


���
unN � ζ

n� 1
2

N

R� y

R
ey



�∇ωnN

f un�1
N



� v �

��
unN � ζ

n� 1
2

N

R� y

R
ey



�∇ωnN

f v



� un�1

N

�
� 1

2R

»
Ωf

ζ
n� 1

2
N un�1

N � v � 1

2

»
Γ
pun�1

N � 9ηn�1
N q � nωnN punN � vq � β

J ωnN
Γ

»
Γ
p 9ηn�1

N � un�1
N q � τωnN pψ � vq � τωnN

� ρb

»
Ωb

�
9ηn�1
N � 9ηnN

∆t

�
�ψ � ρp

»
Γ

�
ζn�1
N � ζnN

∆t

�
ϕ� 2µe

»
Ωb

Dpηn�1
N q : Dpψq � λe

»
Ωb

p∇ � ηn�1
N qp∇ �ψq

� 2µv

»
Ωb

Dp 9ηn�1
N q : Dpψq � λv

»
Ωb

p∇ � 9ηn�1
N qp∇ �ψq � α

»
Ωb

J pηnN q
δ

b pn�1
N ∇pηnN q

δ

b �ψ � c0

»
Ωb

pn�1
N � pnN

∆t
r

� α

»
Ωb

J pηnN q
δ

b 9ηn�1
N �∇pηnN q

δ

b r � α

»
Γ
p 9ηn�1

N � npωnN qδqr � κ

»
Ωb

J pηnN q
δ

b ∇pηnN q
δ

b pn�1
N �∇pηnN q

δ

b r

�
»

Γ
rpun�1

N � 9ηn�1
N q � nωnN sr �

»
Γ

∆ω
n� 1

2
N �∆ϕ � 0, @pv, ϕ,ψ, rq P Qn�1

N ,

(60)»
Γ

��ω
n� 1

2
N � ω

n� 1
2

N

∆t

�
φ � »
Γ
ζ
n� 1

2
N φ,

»
Γ

�
ηn�1
N � ηnN

∆t

�
�φ �

»
Γ
ζn�1
N ey �φ, @φ,φ P L2pΓq. (61)

This formulation implies uniform energy estimates for the following discrete energy and discrete
dissipation:

E
n� i

2
N � 1

2

»
Ωf

�
1� ωnN

R



|un�

i
2

N |2 � 1

2
ρb

»
Ωb

| 9η
n� i

2
N |2 � 1

2
c0

»
Ωb

|pn�
i
2

N |2 � µe

»
Ωb

|Dpηn�
i
2

N q|2, .

� 1

2
λe

»
Ωb

|∇ � ηn�
i
2

N |2 � 1

2
ρp

»
Γ
|ζn�

i
2

N |2 � 1

2

»
Γ
|∆ωn�

i
2

N |2, i � 0, 1.

Dn�1
N � 2νp∆tq

»
Ωf

�
1� ωnN

R


 ���DωnN
f pun�1

N q
���2 � 2µvp∆tq

»
Ωb

|Dp 9ηn�1
N q|2 � λvp∆tq

»
Ωb

|∇ � 9ηn�1
N |2

� κp∆tq
»

Ωb

J pηnN q
δ

b |∇pηnN q
δ

b pn�1
N |2 � βp∆tq

J ωnN
Γ

»
Γ

��p 9ηn�1
N � un�1

N q � τωnN ��2 .
(62)

Lemma 6.3. The following discrete energy equalities hold for the semi-discretized formulation
(60), (61):

E
n� 1

2
N � 1

2
ρp

»
Γ

����ζn� 1
2

N � ζnN

����2 � 1

2

»
Γ

����∆pωn� 1
2

N � ω
n� 1

2
N q

����2 � EnN (63)

En�1
N �Dn�1

N � 1

2

»
Ωf

�
1� ωnN

R


 ��un�1
N � unN

��2 � 1

2
ρb

»
Ωb

��
9ηn�1
N � 9ηnN

��2 � 1

2
c0

»
Ωb

��pn�1
N � pnN

��2
� µe

»
Ωb

��Dpηn�1
N � ηnN q

��2 � 1

2
λe

»
Ωb

��∇ � pηn�1
N � ηnN q

��2 � 1

2
ρp

»
Γ
|ζn�1
N � ζ

n� 1
2

N |2 � E
n� 1

2
N . (64)
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We remark that the terms not included in the definition of E
n� i

2
N and Dn�1

N , appearing in (63)
and (64), are numerical dissipation terms.

These energy identities immediately imply that E
n� i

2
N and

°N
n�1D

n
N are uniformly bounded

by a constant C independent of n and N .
The semidiscretized splitting scheme defines semidiscretized approximations of the solution to

the regularized problem at discrete time points. To work with approximate functions and show that
they converge to the solution of the continuous problem, we need to extend the semidiscrete ap-
proximations to the entire time interval and investigate uniform boundedness of those approximate
solution functions. This is done next.

7 Approximate solutions

Now that we have defined the numerical solutions at each time step, we collect the solutions into
approximate solutions defined on the whole time interval r0, T s, for which we will obtain uniform
estimates from our previous energy estimates.

We define the following two extensions of the approximate functions to the entire interval r0, T s:

� Piecewise constant approximate solutions, for pn� 1q∆t   t ¤ n∆t:

uN ptq � unN , ηN ptq � ηnN , pN ptq � pnN , ωN ptq � ω
n� 1

2
N , ζN ptq � ζ

n� 1
2

N , ζ�N ptq � ζnN ;

� Linear interpolations:

ηN pn∆tq � ηnN , pN pn∆tq � pnN , ωN pn∆tq � ω
n� 1

2
N , for n � 0, 1, ..., N,

where we formally set ω
� 1

2
N � ω0.

Note that by construction, we have that

BtωN � ζN , BtηN |Γ � ζ�Ney.

From the preceding energy estimates, we have the following lemma on uniform boundedness.

Lemma 7.1. Uniform boundedness of approximate solutions. Assume:

1. Assumption 1B: Uniform boundedness of plate displacements. There exists a pos-
itive constant Rmax such that for all N ,

|ωn�
1
2

N | ¤ Rmax   R, for all n � 0, 1, ..., N, (65)���pηnN qδ|Γ��� ¤ Rmax   R, for all n � 0, 1, ..., N. (66)

2. Assumption 2B: Uniform invertibility of the ALE mapping (Jacobian). There
exists a positive constant c0 such that for all N ,

detpI �∇pηnN qδq ¥ c0 ¡ 0, for all n � 0, 1, ..., N. (67)
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3. Assumption 2C: Uniform boundedness of the ALE mapping (matrix norm). There
exists positive constants c1 and c2 such that for all N ,

|pI �∇pηnN qδq�1| ¤ c1, |I �∇pηnN qδ| ¤ c2, for all n � 0, 1, ..., N. (68)

Then for all N :

� uN is uniformly bounded in L8p0, T ;L2pΩf qq and L2p0, T ;H1pΩf qq.
� ηN is uniformly bounded in L8p0, T ;H1pΩbqq.
� pN is uniformly bounded in L8p0, T ;L2pΩbqq and L2p0, T ;H1pΩbqq.
� ωN is uniformly bounded in L8p0, T ;H2

0 pΓqq.
In addition, we have the following estimates on the linear interpolations.

� ηN is uniformly bounded in W 1,8p0, T ;L2pΩbqq.
� ωN is uniformly bounded in W 1,8p0, T ;L2pΓqq.

Remark 7.1. A crucial remark about invertibility. At first, it would appear that to
show the uniform boundedness results above, we also need to have a fourth assumption, which is
Assumption 2A (56) from before, that the map Id � pηnN qδ : Ωb Ñ R2 is injective (and is hence
a bijection onto its image), for each n � 0, 1, ..., N and for all N . However, this is implied by an
injectivity theorem, see Ciarlet [24] Theorem 5-5-2. Note also that Assumption 1A (55) from before
is automatically satisfied once we verify Assumption 1B (65), (66). In particular, this injectivity
theorem is as follows. Since detpI � ∇pηnN qδq ¡ 0 by Assumption 2B (67), it suffices to show
that Id � pηnN qδ � ϕ0 on BΩb, for some injective mapping ϕ0 : Ωb Ñ R2, for example a standard
ALE mapping ϕ0px, yq �

�
x, y � �

1� y
R

�
ω
�

can be used. This implies the very useful fact that
pId�pηnN qδqpΩbq � ϕ0pΩbq, which means that the deformed configuration is fully determined by the
behavior on the boundary.

Proof. The uniform boundedness of approximate solutions follows from the uniform energy esti-
mates. More precisely, the uniform boundedness of uN in L8p0, T ;L2pΩf qq follows from Assump-
tion 1B (65). The uniform boundedness of uN in L2p0, T ;H1pΩf qq follows from Korn’s inequality
on the fluid domain. The uniform boundedness of ηN in L8p0, T ;H1pΩbqq follows from combining
the uniform energy estimates with Korn’s inequality, stated in Proposition 6.1. To establish the
uniform boundedness of pN in L2p0, T ;H1pΩbqq, we recall that by the uniform dissipation estimate,

Ņ

n�1

κp∆tq
»

Ωb

J pηnN q
δ

b |∇pηnN q
δ

b pn�1
N |2 ¤ C,

for some constant C uniform in N , where J pηnN q
δ

b � detpI � ∇pηnN qδq, and ∇pηnN q
δ

b r � ∇r � pI �
∇pηnN qδq�1 on Ωb. By Assumption 2B (67), we conclude that

p∆tq
Ņ

n�1

»
Ωb

|∇pηnN q
δ

b pn�1
N |2 ¤ C.
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Since on Ωb, we have that ∇pn�1
N � ∇pηnN q

δ

b pn�1
N � pI �∇pηnN qδq, we use Assumption 2C (68), which

implies |I �∇pηnN qδ| ¤ c2, and obtain the estimate

p∆tq
Ņ

n�1

»
Ωb

|∇pn�1
N |2 ¤ |I �∇pηnN qδ|2 � p∆tq

Ņ

n�1

»
Ωb

|∇pηnN q
δ

b pn�1
N |2 ¤ C,

for a constant C independent of N . Thus, pN is uniformly bounded in L2p0, T ;H1pΩbqq.

The above uniform boundedness result implies the following weak convergence results.

Proposition 7.1. Assume that the three assumptions listed in Lemma 7.1 hold. Then, there exists
a subsequence such that the following weak convergence results hold:

� uN á u weakly* in L8p0, T ;L2pΩf qq, uN á u weakly in L2p0, T ;H1pΩf qq,
� ηN á η weakly* in L8p0, T ;H1pΩbqq, ηN á η weakly* in W 1,8p0, T ;L2pΩbqq,
� pN á p weakly* in L8p0, T ;L2pΩbqq, pN á p weakly in L2p0, T ;H1pΩbqq,
� ωN á ω weakly* in L8p0, T ;H2

0 pΓqq, ωN á ω weakly* in W 1,8p0, T ;L2pΓqq.
Furthermore, η � η and ω � ω.

To use these results and to be able to construct approximate solutions, it is essential to show
that the assumptions from Lemma 7.1 hold. This is given by the following lemma.

Lemma 7.2. Suppose that the initial data satisfies |ω0| ¤ R0   R for some R0, and suppose that
η0 has the property that Id � pη0qδ is invertible with detpI � ∇pη0qδq ¥ c0 ¡ 0 on Ωb for some
positive constant c0. Then, there exists a sufficiently small time T ¡ 0 such that for all N ,
all three assumptions in Lemma 7.1 hold and the splitting scheme is well defined until time T .

Proof. First, notice that the assumptions on the initial data immediately imply that the three
assumptions from Lemma 7.1 hold for the initial data, i.e., for n � 0. In particular, there exist
constants α0, α1, and α2 such that

detpI �∇pη0qδq ¥ α0 ¡ 0, (69)

|I �∇pη0qδ| ¥ α1 ¡ 0, |pI �∇pη0qδq�1| ¥ α2 ¡ 0. (70)

This is because detpI�∇pη0qδq, |I�∇pη0qδ|, and |pI�∇pη0qδq�1| are positive continuous functions
on the compact set Ωb.

Next, we want to define an appropriate time T ¡ 0 such that the three assumptions hold
uniformly for all N and n∆t up to time T . To do this, we use the energy estimates. Define the
initial energy determined by the initial data by E0. Then, by the uniform energy estimates, we
have that

E
k� 1

2
N ¤ E0, Ek�1

N ¤ E0, for all k � 0, 1, ..., N � 1.

Therefore, after completing both subproblems of the scheme on the time step rk∆t, pk� 1q∆ts, we
obtain that

|| 9ηnN ||L2pΩbq ¤ C, for n � 0, 1, ..., k � 1, (71)

||ωn�
1
2

N ||H2
0 pΓq

¤ C, for n � 0, 1, ..., k, (72)
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||ζn�
i
2

N ||L2pΓq ¤ C, for 0 ¤ n� i

2
¤ k � 1 and i � 0, 1, (73)

for a constant C depending only on the initial energy E0.
Step 1. We first find a condition on T such that Assumption 1B (65) is satisfied. Suppose that

the linear interpolation ωN is defined up to time pk � 1q∆t. Then, by (72) and (73), we have

||ωN ||W 1,8p0,pk�1q∆t;L2pΓqq ¤ C, ||ωN ||L8p0,pk�1q∆t;H2
0 pΓqq

¤ C, (74)

where C depends only on E0 and is independent of N . Thus, following the method in [47], we
obtain by an interpolation inequality that for all t, t� τ P r0, pk � 1q∆ts with τ ¡ 0,

||ωN pt� τq � ωN ptq||H1pΓq ¤ C||ωN pt� τq � ωN ptq||1{2L2pΓq
||ωN pt� τq � ωN ptq||1{2H2pΓq

. (75)

Here, we used a Sobolev interpolation inequality, see for example Theorem 4.17 (pg. 79) of [1]. By
the Lipschitz continuity of ωN taking values in L2pΓq and by the boundedness of ωN in H2

0 pΓq,
||ωN pt� τq � ωN ptq||H1pΓq ¤ C � τ1{2 (76)

for a constant C depending only on E0 (and in particular, not depending on k or N). Therefore,
setting t � 0 and τ � pk � 1q∆t and using the continuous embedding of H1pΓq into CpΓq,

||ωk�1
N � ω0||CpΓq ¤ C � rpk � 1qts1{2 ¤ C � T 1{2, (77)

where C depends only E0. Because |ω0|   R, we can choose T ¡ 0 sufficiently small so that

C � T 1{2   R� ||ω0||CpΓq. (78)

This will give the first part of Assumption 1B, which is (65).
Step 2. Next, we find a condition on T so that the remaining assumptions (66), (67), and (68)

are satisfied. We do this by controlling the behavior of the structure displacement η. First note
that

||ηk�1
N � η0||L2pΩbq ¤ p∆tq

k�1̧

n�1

|| 9ηnN ||L2pΩbq ¤ Cpk � 1qp∆tq ¤ CT,

for C depending only on E0. By the odd extension defined in Definition 8.2,

||ηk�1
N � η0||L2pΩ̃bq

¤ C
�
||ηk�1

N � η0||L2pΩbq � ||ωk�1
N � ω0||L2pΓq

	
¤ CT,

for a constant C depending only on E0, where the estimate ||ωk�1
N � ω0||L2pΓq ¤ CT follows from

the bound (74). By regularization, we then have that for a constant depending only on δ and E0,

||pηk�1
N qδ � pη0qδ||H3pΩbq ¤ Cpδ, E0q � T.

By using the trace theorem and the continuous embedding of H2pΓq into CpΓq, we thus conclude
that

||pηk�1
N qδ|Γ � pη0qδ|Γ||CpΓq ¤ Cpδ, E0q � T. (79)

Since H2pΩbq embeds continuously into CpΩbq, we also have that

||∇pηk�1
N qδ �∇pη0qδ||CpΩbq ¤ Cpδ, E0q � T. (80)

Note that detpI �Aq is a continuous function of the entries of A. Also note that the matrix
norms |I�A| and |pI�Aq�1| are continuous functions of the matrix A. Furthermore, we emphasize
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that the constant Cpδ, E0q depends only on δ and E0 and hence is independent of k and N . This
dependence on δ is allowable, since for this existence proof, δ is an arbitrary but fixed regularization
parameter.

Thus, there exists T sufficiently small so that by (79) and (80), the remaining assumptions (66),
(67), and (68) are satisfied, since these assumptions are all satisfied for the initial displacement η0.
Furthermore, we can choose the constants c0, c1, c2, and Rmax (defined in the statement of those
assumptions) independently of N and n � 0, 1, ..., N , because of the fact that the constant Cpδ, E0q
in our estimates does not depend on k (satisfying pk � 1q∆t ¤ T ) or N .

8 Compactness arguments

We next want to pass to the limit in the semidiscrete formulation for the approximate solutions,
stated in (60) and (61). Because this is a nonlinear problem with geometric nonlinearities, we must
obtain stronger convergence than just weak and weak* convergence in Proposition 7.1, in order to
pass to the limit. To do this, we will use compactness arguments of two types: the classical Aubin-
Lions compactness theorem for functions defined on fixed domains, and generalized Aubin-Lions
compactness arguments introduced in [52] for functions defined on moving domains, see also [47].
We will first deal with compactness arguments for the plate displacement and the Biot domain
displacement. Then, we will deal with compactness arguments for the fluid velocity defined on
moving domains.

8.1 Compactness for Biot poroelastic medium displacement

We show strong convergence of the Biot structure displacements ηN by using a standard Aubin-
Lions compactness argument. In particular, we have the following strong convergence result for the
Biot medium displacement:

Lemma 8.1. The following compact embedding holds true W 1,8p0, T ;L2pΩbqqXL8p0, T ;H1pΩbqq ��
Cp0, T ;L2pΩbqq, which implies the existence of a subsequence such that

ηN Ñ η strongly in Cp0, T ;L2pΩbqq.

Proof. The compact embedding above is a direct consequence of the standard Aubin-Lions compact-
ness lemma in the case of p � 8, which gives a stronger compact embedding into Cp0, T ;L2pΩbqq
rather than just L8p0, T ;L2pΩbqq. The fact that we can find a strongly convergent subsequence
follows from this compact embedding, once we recall that tηNu8N�1 are uniformly bounded in the
Banach space W 1,8p0, T ;L2pΩbqq X L8p0, T ;H1pΩbqq by the uniform energy estimates.

8.2 Compactness for the plate displacement

The uniform boundedness of the linear interpolation of the plate displacement ωN inW 1,8p0, T ;L2pΓqq
and L8p0, T ;H2

0 pΓqq implies the following strong convergence result:

Proposition 8.1. Given arbitrary 0   s   2, there exists a subsequence such that the following
strong convergences hold:

ωN Ñ ω, in Cp0, T ;HspΓqq,
ωN Ñ ω, in L8p0, T ;HspΓqq.
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Proof. Using the same argument as in Step 1 of the proof of Lemma 7.2, one can show the following
uniform estimate for the linear interpolations ωN and τ ¡ 0, t, t� τ P r0, T s:

||ωN pt� τq � ωN ptq||H2αpΓq ¤ Cτ1�α, for 0   α   1,

where the constant C is independent of N , but can depend on the choice of α. Because C is
independent of N , the estimate implies that for a given arbitrary α P p0, 1q, the functions ωN
are uniformly bounded as functions in C0,1�αp0, T ;H2αpΓqq. Hence, the strong convergence of ωN
follows directly from the Arzela-Ascoli theorem and the fact that H2α embeds compactly into any
H2α�ε for ε ¡ 0, once we choose α P p0, 1q and ε ¡ 0 appropriately so that 2α � ε � s for a
given arbitrary 0   s   2. Hence, we obtain the desired strong convergence, as the equicontinuity
condition for the Arzela-Ascoli theorem follows from the above estimate.

To show a similar strong convergence result for ωN , we must show that

||ωN ptq � ωN ptq||L8p0,T ;HspΓqq Ñ 0,

for arbitrary 0   s   2. Once we observe that ωN pn∆tq � ωN ptq for n∆t ¤ t   pn � 1q∆t, this
follows immediately from the above Hölder continuity estimate, as

||ωN ptq � ωN ptq||L8p0,T ;HspΓqq ¤ Cp∆tq1� s
2 Ñ 0, as N Ñ8.

Thus, ωN and ωN have the same limit in L8p0, T ;HspΓqq for 0   s   2.

Next, we will obtain compactness for the Biot velocity, plate velocity, pore pressure, and fluid
velocity. Because the test space (52) has the pore pressure and fluid velocity decoupled from the
Biot/plate velocity, we can handle the compactness argument for each of these quantities separately.
In particular, we recall the definition of the discrete test space from (52) and note that we can
decouple this test space into three smaller test spaces, one for the Biot/plate displacement/velocity,
one for the pore pressure, and one for the fluid velocity. In the next section we show compactness
results for the Biot velocity and plate velocity, which must be treated together since they are
coupled by a kinematic coupling condition at the plate interface Γ.

8.3 Compactness for the Biot velocity and plate velocity

Theorem 8.1. For �1{2   s   0, there exists a subsequence such that

pξN , ζN q Ñ pξ, ζq strongly in L2p0, T ;H�spΩbq �H�spΓqq.

Proof. We will establish this result by using a compactness criterion for piecewise constant functions
due to Dreher and Jüngel [28]. To simplify arguments, we define a slightly more regular Biot/plate
velocity test space:

Qv � tpψ, ϕq P pVd XH2pΩbqq �H2
0 pΓq : ψ � ϕey on Γu. (81)

We will use the following chain of embeddings

L2pΩbq � L2pΓq �� H�spΩbq �H�spΓq � Q1
v,

where the first embedding is compact, as required for the Dreher-Jüngel compactness criterion [28].
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Let τ∆t denote the time shift τ∆tfpt, �q � fpt � ∆t, �q for a function f defined on r0, T s. As
required by the Dreher-Jüngel compactness criterion [28], to obtain compactness we must verify
that the following inequality is satisfied for a uniform constant C and for all ∆t � T {N :��������τ∆tpξN , ζN q � pξN , ζN q

∆t

��������
L1pτ,T ;Q1

vq

� ||pξN , ζN q||L8p0,T ;L2pΩbq�L2pΓqq ¤ C. (82)

The second term in this inequality is uniformly bounded by Lemma 7.1, which gives exactly
the uniform boundednenss of pξN , ζN q in L8p0, T ;L2pΩbq � L2pΓqq.

To deal with the first term in (82) we use the coupled semidiscrete formulation (60), (61) and
set the test functions v and r for the fluid velocity and Biot pore pressure to be zero because we
are considering only the Biot and plate velocities. We obtain that for all test functions pψ, ϕq P Qv,
where Qv is defined in (81), the following holds:

ρb

»
Ωb

�
ξn�1
N � ξnN

∆t

�
�ψ � ρp

»
Γ

�
ζn�1
N � ζnN

∆t

�
� ϕ

� �
»

Γ

�
1

2
un�1
N � unN � pn�1

N



pψ � nωnN q �

»
Γ

β

J ωnN
Γ

pζn�1
N ey � un�1

N q � τωnN pψ � τωnN q

� 2µe

»
Ωb

Dpηn�1
N q : Dpψq � λe

»
Ωb

p∇ � ηn�1
N qp∇ �ψq � 2µv

»
Ωb

Dpξn�1
N q : Dpψq

� λv

»
Ωb

p∇ � ξn�1
N qp∇ �ψq � α

»
Ωb

J pηnN q
δ

b pn�1
N ∇pηnN q

δ

b �ψ �
»

Γ
∆ω

n� 1
2

N �∆ϕ.

The estimate for the first term in (82) will follow if we can estimate the right-hand side in terms of
the Q1

v norm. For this purpose consider an arbitrary ||pψ, ϕq||Qv ¤ 1, so that ||ψ||H2pΩbq ¤ 1 and
||ϕ||H2

0 pΓq
¤ 1. By the uniform estimates in Lemma 7.1 and the regularity of the test functions in

(81), it is clear that the terms on the right hand side are all uniformly bounded by a constant C,
independent of ||pψ, ϕq||Qv ¤ 1, except possibly the term

α

»
Ωb

J pηnN q
δ

b pn�1
N ∇pηnN q

δ

b �ψ.

To estimate this term we recall the definitions

J pηnN q
δ

b � detpI �∇pηnN qδq, ∇pηnN q
δ �ψ � tr

�
∇ψ � pI �∇pηnN qδq�1

�
.

By assumption 2C (68) and the fact that ||ψ||H1pΩbq ¤ 1, we have that ||∇pηnN q
δ �ψ||L2pΩbq is uniformly

bounded, while by the boundedness of ηnN in H1pΩbq, we have that |J pηnN q
δ

b | ¤ C. Therefore, using
the fact that pN is uniformly bounded in L8p0, T ;L2pΩbqq, we obtain the desired estimate����α »

Ωb

J pηnN q
δ

b pn�1
N ∇pηnN q

δ

b �ψ
���� ¤ C.

Finally, we conclude that�����
�����pξn�1

N , ζn�1
N q � pξnN , ζnN q

∆t

�����
�����
Q1
v

¤ C, for a constant C that is independent of n and N,
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and since
N�1̧

n�1

p∆tq
�����
�����pξn�1

N , ζn�1
N q � pξnN , ζnN q

∆t

�����
�����
Q1
v

¤ p∆tq
N�1̧

n�1

C ¤ CT,

we conclude that (82) holds for a uniform constant C. This establishes the desired result.

8.4 Compactness for the pore pressure

Theorem 8.2. There exists a subsequence such that

pN Ñ p strongly in L2p0, T ;L2pΩbqq.
Proof. The proof is based on a similar application of the Dreher-Jüngel compactness criterion for
piecewise constant functions [28] as in the previous compactness result. We first observe that
we have the following chain of embeddings H1pΩbq �� L2pΩbq � pVp X H2pΩbqq1, and so by the
Dreher-Jüngel compactness criterion [28] it suffices to show that the following inequality holds for
a constant C independent of N :��������τ∆tpN � pN

∆t

��������
L1p∆t,T ;pVpXH2pΩbqq1q

� ||pN ||L2p0,T ;H1pΩbqq ¤ C. (83)

To obtain this estimate, we observe that the approximate solutions for the pore pressure satisfy
the following weak formulation for all test functions r P Vp, where Vp is defined by (33):

c0

»
Ωb

�
pn�1
N � pnN

∆t

�
� r � α

»
Ωb

J pηnN q
δ

b 9ηn�1
N �∇pηnN q

δ

b r � α

»
Γ
p 9ηn�1

N � npωnN qδqr

� κ

»
Ωb

J pηnN q
δ

b ∇pηnN q
δ

b pn�1
N �∇pηnN q

δ

b r �
»

Γ
rpun�1

N � 9ηn�1
N q � nωnN sr � 0.

We use more regularity for the test space VpXH2pΩbq to make the following estimates simpler. We
compute that for any r P Vp XH2pΩbq we have

c0

»
Ωb

�
pn�1
N � pnN

∆t

�
� r � α

»
Ωb

J pηnN q
δ

b ξn�1
N �∇pηnN q

δ

b r � α

»
Γ
pζn�1
N ey � npωnN qδqr

� κ

»
Ωb

J pηnN q
δ

b ∇pηnN q
δ

b pn�1
N �∇pηnN q

δ

b r �
»

Γ
rpun�1

N � ζn�1
N eyq � nωnN sr.

We estimate the right hand side for ||r||VpXH2pΩbq ¤ 1. Recall that J pηnN q
δ

b � detpI �∇pηnN qδq,

∇pηnN q
δ

b r �
� Br
Bx̃ ,

Br
Bỹ


� pI�∇pηnN qδq�1, and ∇pηnN q

δ

b pn�1
N �

�
Bpn�1

N

Bx̃ ,
Bpn�1

N

Bỹ

�
� pI�∇pηnN qδq�1.

We have by Assumption 2C (68) that |pI � ∇pηnN qδq�1| is uniformly bounded, and furthermore,

J pηnN q
δ

b is positive and bounded above. By combining these facts with standard estimates we obtain
that �����

�����pn�1
N � pnN

∆t

�����
�����
pVpXH2pΩbqq1

¤ C for a constant C that is independent of n and N .

Combining this with the fact that pN is uniformly bounded in L2p0, T ;H1pΩbqq gives the desired
estimate (83).
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8.5 Compactness for the fluid velocity

We will obtain convergence of the fluid velocity along a subsequence by using a generalized Aubin-
Lions compactness theorem for functions defined on moving domains [52]. The reason we must use
a generalized Aubin-Lions compactness theorem is that the approximate fluid velocities are defined
on different time-dependent fluid domains. To prepare for an application of the generalized Aubin-
Lions compactness argument we will map our approximate fluid problem back onto the physical
domain

Ωn
f,N � tpx, yq P R2 : 0 ¤ x ¤ L,�R ¤ y ¤ ωnN pxqu,

where we redefine the fluid velocity solution and test spaces as follows:

V n�1
N � tu P H1pΩn

f,N q : ∇ �u � 0 on Ωn
f,N ,u � 0 on BΩn

f,NzΓnNu, QnN � V n�1
N XH3pΩn

f,N q. (84)

The approximate fluid velocity un�1
N P V n�1

N on the physical domain satisfies the following semidis-
crete formulation:»

Ωnf,N

un�1
N � ũnN

∆t
� v � 2ν

»
Ωnf,N

Dpun�1
N q : Dpvq

� 1

2

»
Ωnf,N

���
ũnN � ζ

n� 1
2

N

R� y

R� ωnN
ey



�∇un�1

N



� v �

��
ũnN � ζ

n� 1
2

N

R� y

R� ωnN
ey



�∇v



� un�1

N

�
� 1

2R

»
Ωnf,N

R

R� ωnN
ζ
n� 1

2
N un�1

N � v � 1

2

»
ΓnN

pun�1
N � 9ηn�1

N q � npũnN � vq

�
»

ΓnN

�
1

2
un�1
N � ũnN � pn�1

N



pv � nq � β

»
ΓnN

p 9ηn�1
N � un�1

N q � τ pv � τ q � 0, @v P QnN (85)

where

ũnN � unN �Φ
ωn�1
N
f � pΦωnN

f q�1,

unN is originally defined on Ωn�1
f,N , and the ALE map Φ

ωnN
f : Ωf Ñ Ωn

f,N is defined by (16).
To be able to compare functions on different physical domains we introduce a maximal domain

ΩM
f which contains all the physical domains. The existence of such a domain, and the extensions

of the velocity functions onto the maximal domain are discussed next.

8.5.1 Extension to maximal domain

We consider the following maximal fluid domain which contains all the physical fluid domains:

ΩM
f � tpx, yq P R2 : 0 ¤ x ¤ L,�R ¤ y ¤Mpxqu,

where the function Mpxq is obtained from the following proposition, established in Lemma 2.5
in [62] and Lemma 4.5 in [52] in the context of fluid-structure interaction between an incompressible
viscous Newtonian fluid and an elastic Koiter shell:

Proposition 8.2. There exists smooth functions mpxq and Mpxq defined on Γ � r0, Ls, satisfying
mp0q � mpLq �Mp0q �MpLq � 0, such that

mpxq ¤ ωnN pxq ¤Mpxq, for all x P r0, Ls, N, and n � 0, 1, ..., N.

Furthermore, there exist smooth functions mn,l
N pxq and Mn,l

N pxq defined for positive integers N ,
n � 0, 1, ..., N � 1 and l � 0, 1, ..., N � n, such that
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1. mn,l
N pxq ¤ ωn�iN pxq ¤Mn,l

N pxq, for all x P r0, Ls and i � 0, 1, ..., l.

2. Mn,l
N pxq �mn,l

N pxq ¤ C
?
l∆t, for all x P r0, Ls.

3. ||Mn,l
N pxq �mn,l

N pxq||L2pΓq ¤ Cpl∆tq,

where C is independent of n, l, and N . Finally, the functions Mn,l
N pxq and mn,l

N pxq for all n, l, and
N , are Lipschitz continuous with a Lipschitz constant that is uniformly bounded above by some
constant L ¡ 0 independent of n, l, and N .

Once the maximal fluid domain is defined, we can extend the fluid velocities unN from Ωn
f,N

to this common maximal domain ΩM
f , using extensions by zero in ΩM

f X pΩn
f,N qc. Notice that

since ωnN pxq are all uniformly Lipschitz, the extensions by zero of the H1 functions unN defined
on Lipschitz domains to ΩM

f are uniformly bounded in HspΩM
f q for all s such that 0   s   1{2.

Indeed, we have the following lemma, which follows from Theorem 2.7 in [46].

Lemma 8.2. The approximate fluid velocities tuNu8N�1 defined on the maximal fluid domain ΩM
f

by extension by zero are uniformly bounded in L2p0, T ;HspΩM
f qq for s P p0, 1{2q.

8.5.2 Velocity convergence via a generalized Aubin-Lions compactness argument

We now show strong convergence as N Ñ8 along a subsequence of the approximate fluid velocities
uN , which are now functions in time defined on the fixed maximal domain ΩM

f .

Proposition 8.3. The sequence uN is relatively compact in L2p0, T ;L2pΩM
f qq.

Proof. The proof is based on using the generalized Aubin-Lions compactness theorem, Theorem
3.1 in [52], for problems on moving domains. For this purpose we define the Hilbert spaces V and
H from the statement of the theorem to be

H � L2pΩM
f q, V � HspΩM

f q, for 0   s   1{2,
where we note that indeed V �� H as required by Theorem 3.1 in [52]. Additionally, the spaces
pV n

∆t, Q
n
∆tq from the statement of the theorem correspond to our spaces pV n

N , Q
n
N q defined by (84).

Notice that V n
N � QnN embeds continuously into V � V as required by the statement of Theorem

3.1 in [52], where the embedding can be achieved by the extension by zero operator to the maximal
domain ΩM

f , uniformly in n and N .

To obtain compactness of the sequence uN in L2p0, T,Hq, by Theorem 3.1 in [52], seven proper-
ties need to be satisfied by the sequence uN and the spaces V n

N and QnN . They are called Properties
A1-3, B, and C1-3.

The proof that approximate solutions uN satisfy Properties A1-3 and C1-3 is analogous to the
corresponding proof in [52] (Section 4.2). The main difficulty is to verify Property B, which is a
condition on equicontinuity of uN , stated as follows:

Property B, [52]. There exists a constant C ¡ 0 independent of N such that�����
�����PnN un�1

N � unN
∆t

�����
�����
pQnN q

1

¤ C
�

1� ||un�1
N ||V n�1

N

	
, for all n � 0, 1, ..., N � 1. (86)

The sequence uN constructed in this manuscript, however, does not satisfy this property . Never
the less, uN satisfy the following generalized Property B which implies the desired equicontinuity
under which the generalized Aubin-Lions theorem from [52] still holds:
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Generalized Property B. There exist a constant C independent of n and N , an expo-
nent p, 1 ¤ p   2, and a sequence of nonnegative numbers tanNuN�1

n�0 for each N , satisfying

p∆tq°N�1
n�0 |anN |2 ¤ C uniformly in N , such that�����

�����PnN un�1
N � unN

∆t

�����
�����
pQnN q

1

¤ C
�
anN � ||unN ||V nN � ||un�1

N ||V n�1
N

	p
, for all n � 0, 1, ..., N �1, (87)

where PnN denotes the orthogonal projection onto the closed subspace QnN
H

of the Hilbert space H.
Indeed, with this Generalized Property B the compactness theorem, Theorem 3.1 in [52] still

holds, as we still obtain the essential equicontinuity estimate needed in the proof. In particular, for
the original form of Property B in (86), one has from Lemma 3.1 in [52] the following equicontinuity
estimate for a constant C ¡ 0 that is independent of N :

||Pn,l∆t pun�lN � unN q||pQn,lN q1
¤ C

?
l∆t.

With the generalized form of Property B that we use above in (87), the same arguments as in the
proof of Lemma 3.1 in [52] will still give rise to the following equicontinuity estimate for a constant
C ¡ 0 that is independent of N :

||Pn,l∆t pun�lN � unN q||pQn,lN q1
¤ Cpl∆tq1� p

2 ,

where the generalized Aubin-Lions compactness theorem on moving domains still holds with this
new equicontinuity estimate. This is because 1 ¤ p   2 and hence, Cpl∆tq1� p

2 still converges to
zero as ∆tÑ 0.

We can now complete the proof of Proposition 8.3 by verifying that our sequence unN indeed
satisfies the Generalized Property B.

Verification that unN satisfies the Generalized Property B. First, recall that by definition,�����
�����PnN un�1

N � unN
∆t

�����
�����
pQnN q

1

� max
||v||Qn

N
¤1

�����
»

Ωnf,N

un�1
N � unN

∆t
� vdx

����� . (88)

To estimate the right hand-side, we use�����
»

Ωnf,N

un�1
N � un

∆t
� vdx

����� ¤
�����
»

Ωnf,N

un�1
N � ũnN

∆t
� vdx

������
�����
»

Ωnf,N

ũnN � unN
∆t

� vdx
����� . (89)

To estimate the first term on the right hand-side we use the semidiscrete formulation for the fluid
velocity on the physical domain given by (85) to obtain�����
»

Ωnf,N

un�1
N � ũnN

∆t
� vdx

����� ¤ 2ν

�����
»

Ωnf,N

Dpun�1
N q : Dpvq

�����
� 1

2

�����
»

Ωnf,N

���
ũnN � ζ

n� 1
2

N

R� y

R� ωnN
ey



�∇un�1

N



� v �

��
ũnN � ζ

n� 1
2

N

R� y

R� ωnN
ey



�∇v



� un�1

N

������
� 1

2R

�����
»

Ωnf,N

R

R� ωnN
ζ
n� 1

2
N un�1

N � v
������ 1

2

�����
»

ΓnN

pun�1
N � 9ηn�1

N q � npũnN � vq
�����

�
�����
»

ΓnN

�
1

2
un�1
N � ũnN � pn�1

N



pv � nq

������ β

�����
»

ΓnN

p 9ηn�1
N � un�1

N q � τ pv � τ q
����� . (90)
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We can bound the terms on the right hand-side uniformly in n, N , and ||v||QnN ¤ 1 as follows. By

the boundedness of un�1
N in the uniform energy estimates we immediately have

2ν

�����
»

Ωnf,N

Dpun�1
N q : Dpvq

����� ¤ C||un�1
N ||H1pΩnf,N q

.

The second term on the right hand-side of the above inequality is bounded as follows. First notice
that because ||v||QnN ¤ 1, and by the definition of QnN in (84), we have that v is bounded in

H3pΩn
f,N q, and hence, v and ∇v are bounded pointwise. Furthermore, by the boundedness of the

fluid velocity unN on the reference domain due to the uniform energy estimate, and by the uniform

boundedness of the Jacobian of the ALE map Φ
ωnN
f , we obtain the following bound:

1

2

�����
»

Ωnf,N

���
ũnN � ζ

n� 1
2

N

R� y

R� ωnN
ey



�∇un�1

N



� v �

��
ũnN � ζ

n� 1
2

N

R� y

R� ωnN
ey



�∇v



� un�1

N

������
¤ C

�
||ũnN ||L2pΩnf,N q

� ||ζn� 1
2 ||L2pΓq

	
||un�1

N ||H1pΩnf,N q
� ||v||H3pΩnf,N q

¤ C||un�1
N ||H1pΩnf,N q

.

Similarly, the next term in (90) is bounded as follows:

1

2R

�����
»

Ωnf,N

R

R� ωnN
ζ
n� 1

2
N un�1

N � v
����� ¤ C||ζn�

1
2

N ||L2pΓq||un�1
N ||L2pΩnf,N q

� ||v||H3pΩnf,N q
¤ C||un�1

N ||L2pΩnf,N q
.

To bound the next term we observe that || 9ηn�1
N ||L2pΓq is bounded uniformly and furthermore, the

arc length element on ΓnN is uniformly bounded pointwise since ηnN is uniformly bounded in H2
0 pΓq.

Therefore, by using the trace inequality on Ωf we have the following estimate:

1

2

�����
»

ΓnN

pun�1
N � 9ηn�1

N q � npũnN � vq
�����

¤ C
�||un�1

N ||L4pΓq � ||unN ||L4pΓq � ||v||L2pΓq � || 9ηn�1
N ||L2pΓq � ||unN ||L4pΓq � ||v||L4pΓq

�
¤ C

�
||un�1

N ||H1{4pΓq � ||unN ||H1{4pΓq � ||v||H1pΩf q � || 9ηn�1
N ||L2pΓq � ||unN ||H1{4pΓq � ||v||H1{4pΓq

	
¤ C

�
||un�1

N ||H3{4pΩf q
� ||unN ||H3{4pΩf q

� || 9ηn�1
N ||L2pΓq � ||unN ||H3{4pΩf q

	
� ||v||H3pΩf q

¤ C
�
||un�1

N ||1{4
L2pΩf q

||un�1
N ||3{4

H1pΩf q
||unN ||1{4L2pΩf q

||unN ||3{4H1pΩf q
� || 9ηn�1

N ||L2pΓq||unN ||1{4L2pΩf q
||unN ||3{4H1pΩf q

	
¤ C

�
||un�1

N ||3{4
H1pΩf q

� ||unN ||3{4H1pΩf q
� ||unN ||3{4H1pΩf q

	
¤ C

�
1� �||unN ||V nN � ||un�1

N ||V nN
�3{2

�
.

The second to last term in (90) is estimated as follows:��� »
ΓnN

�
1

2
un�1
N � ũnN � pn�1

N



pv � nq

���
¤ C

�||un�1
N ||L4pΓq � ||unN ||L4pΓq � ||v||L2pΓq � ||pn�1

N ||L2pΓq � ||v||L2pΓq

�
¤ C

�
||un�1

N ||H1{4pΓq � ||unN ||H1{4pΓq � ||v||H1pΩf q � ||pn�1
N ||H1pΩbq � ||v||H1pΩf q

	
¤ C

�
||un�1

N ||H3{4pΩf q
� ||unN ||H3{4pΩf q

� ||pn�1
N ||H1pΩbq

	
¤ C

�
||un�1

N ||1{4
L2pΩf q

||un�1
N ||3{4

H1pΩf q
� ||unN ||1{4L2pΩf q

||unN ||3{4H1pΩf q
� ||pn�1

N ||H1pΩbq

	
¤ C

�
1�

�
||pn�1

N ||H1pΩbq � ||unN ||V nN � ||un�1
N ||V n�1

N

	3{2
�
.
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Finally, we estimate the last term

β

�����
»

ΓnN

p 9ηn�1
N � un�1

N q � τ pv � τ q
����� ¤ C

�|| 9ηn�1
N ||L2pΓq � ||v||L2pΓq � ||un�1

N ||L2pΓq � ||v||L2pΓq

�
¤ C

�
1� ||un�1

N ||H1pΩf q

	
.

Therefore, we obtain the final estimate of the first term in (89) which implies the existence of a
constant C independent of n and N , such that

max
||v||Qn

N
¤1

�����
»

Ωnf,N

un�1
N � ũnN

∆t
� vdx

����� ¤ C
�
anN � ||unN ||V nN � ||un�1

N ||V n�1
N

	3{2
,

for anN :� 1� ||pn�1
N ||H1pΩbq, where p∆tq

N�1̧

n�0

|anN |2 ¤ 2
�
p∆tqN � ||pN ||2L2p0,T ;H1pΩbqq

�
¤ C. (91)

To complete the estimate (89), it remains to show that the second term

�����
»

Ωnf,N

ũnN � unN
∆t

� vdx
�����

is uniformly bounded. This follows from the same estimates as those presented in [52] which show
that there exists a constant C independent of n and N , such that

max
||v||Qn

N
¤1

�����
»

Ωnf,N

ũnN � unN
∆t

� vdx
����� ¤ C. (92)

Combining (91) and (92) with (88) and (89) establishes Generalized Property B and completes the
proof of Proposition 8.3.

9 Passing to the limit in the regularized weak formulation

We have so far established the following strong convergence results:

ηN Ñ η, in Cp0, T ;L2pΩbqq,
ωN Ñ ω, in L8p0, T ;HspΓqq for 0   s   2,

ζ�N Ñ ζ, in L2p0, T ;H�spΓqq, for � 1{2   s   0,

ζN Ñ ζ, in L2p0, T ;H�spΓqq, for � 1{2   s   0,

ξN Ñ ξ, in L2p0, T ;H�spΩbqq, for � 1{2   s   0,

uN Ñ u, in L2p0, T ;L2pΩM
f qq, pN Ñ p, in L2p0, T ;L2pΩbqq,

where ζ�N and ζN converge to the same limit in L2p0, T ;H�spΓqq for �1{2   s   0 due to the numer-

ical dissipation estimates
°N
n�1 ||ζnN�ζ

n� 1
2

N ||2L2pΓq ¤ C, which imply that ||ζN�ζ�N ||L2p0,T ;L2pΓqq Ñ 0.
These strong convergence results will be used to pass to the limit in the semidiscrete formulation

of the coupled problem (60) and show that the limit satisfies the weak formulation of the regularized
problem. Before we can do this, there are two more convergence results that need to be established.
One is a strong convergence result for the traces for the fluid velocity on the boundary of the
fluid domain, and the other is a convergence result for the test functions, which are defined on
approximate moving domains.

We start with the convergence result for the trace of the fluid velocity ûN |Γ along Γ.
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9.1 Strong convergence of the fluid velocity traces on Γ

Proposition 9.1. The traces ûN |Γ of the approximate fluid velocities on Γ converge to the trace
of the limiting fluid velocity on Γ as N Ñ8:

ûN |Γ Ñ û|Γ, in L2p0, T ;Hs� 1
2 pΓqq, for s P p0, 1q,

where ûN � uN � Φτ∆tωN
f and û � u � Φω

f .

To prove Proposition 9.1, we will use the following elementary lemma.

Lemma 9.1. Suppose that the functions tfnu8n�1 and f are all uniformly bounded in L2p0, T ;H1pΩf qq
and fn Ñ f in L2p0, T ;L2pΩf qq. Then, fn Ñ f in L2p0, T ;HspΩf qq for s P p0, 1q and hence

fn|Γ Ñ f |Γ in L2p0, T ;Hs� 1
2 pΓqq for s P p1{2, 1q.

Proof of Lemma 9.1. For s P p0, 1q, we compute using Sobolev interpolation that

||fn � f ||2L2p0,T ;HspΩf qq
�
» T

0
||pfn � fqptq||2HspΩf q

dt

¤
» T

0
||pfn� fqptq||2p1�sqL2pΩf q

� ||pfn� fqptq||2sH1pΩf q
dt ¤ ||fn� f ||2p1�sqL2p0,T ;L2pΩf qq

� ||fn� f ||2sL2p0,T ;H1pΩf qq
.

The result then follows from the fact that ||fn�f ||L2p0,T ;H1pΩf qq ¤ C for a constant C that does not
depend on N , the assumption that ||fn� f ||L2p0,T ;L2pΩf qq Ñ 0 as N Ñ8, and the trace embedding

which gives that ||fn|Γ � f |Γ||2
L2p0,T ;Hs� 1

2 pΓqq
¤ ||fn � f ||2L2p0,T ;HspΩf qq

for s P p1{2, 1q.

We can use the elementary lemma above to show the desired strong convergence of the fluid
velocity traces.

Proof of Proposition 9.1. We would like to combine the fact that uN Ñ u in L2p0, T ;L2pΩM
f qq

with the fact that uN and u are all uniformly bounded in L2p0, T ;H1pΩf ptqqq for all N , to deduce
strong convergence of the traces of the fluid velocities using the previous elementary lemma. We
do this in the following steps.

Step 1. We show that ûN Ñ û on L2p0, T ;L2pΩf qq, for ûN and û defined on the reference fluid
domain.

To prove this, we compute ||ûN � û||2L2p0,T ;L2pΩf qq
using the functions uN and u which are

defined on the maximal domain ΩM
f :

||ûN � û||2L2p0,T ;L2pΩf qq
�
» T

0

»
Ωf

���uN �t, x, y � �
1� y

R

	
τ∆tωN

	
� u

�
t, x, y �

�
1� y

R

	
ω
	���2

¤ 2pI1 � I2q,

where

I1 �
» T

0

»
Ωf

���uN �t, x, y � �
1� y

R

	
τ∆tωN

	
� u

�
t, x, y �

�
1� y

R

	
τ∆tωN

	���2 ,
I2 �

» T
0

»
Ωf

���u�t, x, y � �
1� y

R

	
τ∆tωN

	
� u

�
t, x, y �

�
1� y

R

	
ω
	���2 .
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We show that I1 Ñ 0 as N Ñ 8 by using the fact that 1 � ωnN
R is uniformly bounded from above

by a positive constant, and the fact that ΩM
f contains all of the domains Ωn

f,N , so that we can
estimate:

I1 �
N�1̧

n�0

» pn�1q∆t

n∆t

»
Ωnf,N

�
1� ωnN

R



|un�1
N � u|2 ¤ C

N�1̧

n�0

» pn�1q∆t

n∆t

»
Ωnf,N

|un�1
N � u|2

¤ C||uN � u||2
L2p0,T ;L2pΩMf qq

Ñ 0.

For I2, we break up the integral into two parts:

I2 � I2,1 � I2,2,

where

I2,1 �
» T

0

» L
0

» minp0,y�pt,xqq

�R

���u�t, x, y � �
1� y

R

	
τ∆tωN

	
� u

�
t, x, y �

�
1� y

R

	
ω
	���2 ,

I2,2 �
» T

0

» L
0

» 0

minp0,y�pt,xqq

���u�t, x, y � �
1� y

R

	
τ∆tωN

	���2 ,
for y�pt, xq � ω�τ∆tωN

R�τ∆tωN
. We can interpret y�pt, xq as the y value for which y � �

1� y
R

�
τ∆tωN � ω.

Now, note that

I2,1 ¤
» T

0

» L
0

» minp0,y�pt,xqq

�R

�» y�p1� y
Rqω

y�p1� y
Rqτ∆tωN

|Byupt, x, y1q|dy1
�2

¤
» T

0

» L
0

» minp0,y�pt,xqq

�R

�» y�p1� y
Rqω

y�p1� y
Rqτ∆tωN

|Brupt, x, y1q|2dy1
�
�
�

1� y

R

	
� |ω � τ∆tωN |.

We note that τ∆tωN Ñ ω pointwise uniformly on r0, T s � Γ as N Ñ 8 by Proposition 8.1, which
implies ωN Ñ ω in Cp0, T ;HspΓqq for 0   s   2, and by the estimate (76). Combining this with
the fact that ||∇u||L2p0,T ;L2pΩωf ptqqq

is bounded, we have that I2,1 Ñ 0 as N Ñ8.

Next, by Poincare’s inequality,

I2,2 ¤
» T

0

» L
0
|minp0, y�pt, xqq| � max

wPr�R,ωpt,xqs
|upt, x, wq|2

¤
» T

0

» L
0
|minp0, y�pt, xqq| �

» ωpt,xq
�R

|Brupt, x, y1q|2dy1,

so we conclude that I2,2 Ñ 0 as N Ñ8 by the fact that |minp0, y�pt, xqq| Ñ 0 uniformly on r0, T s�
Γ, and by the boundedness of ||∇u||L2p0,T ;L2pΩωf ptqq

. Thus, we have that ||ûN�û||L2p0,T ;L2pΩf qqq Ñ 0.

Step 2. We claim that the functions ûN for positive integers N and û are all uniformly bounded
in L2p0, T ;H1pΩf qq. Recall from Lemma 7.1 that the approximate solutions ûN are uniformly
bounded in L2p0, T ;H1pΩf qq. Since û is the strong limit of ûN in L2p0, T ;L2pΩf qq and ûN converge
weakly in L2p0, T ;H1pΩf qq along a subsequence to a weak limit which hence must also be û, we
conclude that û is also in L2p0, T ;H1pΩf qq, which establishes the desired result of this step.

Step 3. From Step 1, we have that ûN Ñ û in L2p0, T ;L2pΩf qq and from Step 2, the functions
ûN and û are bounded in L2p0, T ;H1pΩf qq independently of N , so we can conclude the proof of
Proposition 9.1 by using Lemma 9.1.
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9.2 Convergence of the test functions on approximate fluid domains

The main difficulty in passing to the limit will be the test functions for the fluid velocity. In
particular, on the fixed reference domain Ωf for the fluid, we note that the test functions for the
fluid velocity in (38) satisfy ∇ω

f � v � 0 on Ωf , where ω is the solution for the plate displacement.
However, the test functions for the fluid velocity in the semidiscrete formulation in the semidiscrete
test space Qn�1

N , defined by (52), satisfy ∇ωnN � v � 0 on Ωf . Hence, we need a way of comparing
test functions in Qn�1

N to test functions in the actual test space Vωtest.
To do this, recall that we have defined the maximal domain ΩM

f that contains all of the numerical

fluid domains Ωn
f,N . We then propose to work with the test functions that are defined on ΩM

f , and
are constructed in such a way that the restrictions of those test functions to the domain defined by
the plate displacement ω, and composed with the ALE mapping Φω

f defined in (16), gives a space
of test functions X ω

f that is dense in the fluid velocity test space Vωf . The space of all such test

functions defined on ΩM
f is denoted by X and it is defined as follows.

The test space X : The test space X consists of functions v P C1
c pr0, T q;H1pΩM

f qq satisfying
the following properties for each t P r0, T q:

1. For each t P r0, T q, vptq is a smooth vector-valued function on ΩM
f .

2. ∇ � vptq � 0 on ΩM
f for all t P r0, T q.

3. vptq � 0 on BΩM
f zΓM for all t P r0, T q, where ΓM � tpx,Mpxqq : 0 ¤ x ¤ Lu is the top

boundary of the maximal fluid domain ΩM
f .

Given v P X , define
ṽ � v|Ωωf �Φω

f and ṽN � v|ΩωNf �ΦωN
f . (93)

The test functions ṽ are dense in the fluid velocity test space Vωf associated with the fixed domain

formulation, and the test functions ṽN restricted to rn∆t, pn�1q∆tq are dense in V
ωnN
f , where V

ωnN
f

is the velocity test space for the semidiscretized problem(s) given in (52). Therefore, for each fixed
N , we can consider the semidiscrete formulation with the test function ṽN , which we emphasize is
discontinuous in time, due to the jumps in ωN at each n∆t. To pass to the limit as N Ñ 8 we
can use the same approach as in Lemma 7.1 in [47] and Lemma 2.8 in [62], to obtain the following
strong convergence results of the velocity test functions ṽN and their gradients, which will allow
us to pass to the limit in the semidiscrete weak formulations:

Proposition 9.2. Consider v P X , and ṽ and ṽN defined in (93). Then

ṽN Ñ v, ∇ṽN Ñ ∇v,

pointwise, uniformly on r0, T s � Ωf , as N Ñ8.

Remark 9.1. We emphasize that we were able to construct such a test space X because in the
definition of the full test space Vωtest in (38), the only component of the test space whose definition
depends on the plate displacement is the fluid velocity, and fortunately, this fluid velocity component
of the test space is decoupled from the other components. This is a feature of fluid-poroelastic
structure interaction problems. In the purely elastic case of FSI, the fluid velocity test space is
coupled to that of the structure, and the construction of the test functions that converge on the
approximate fluid domains in more involving, see e.g., [20, 47,49].
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9.3 Passing to the limit

We are now in a position to pass to the limit in the semidiscrete formulation. From (60) we obtain
that for all pṽN , ϕ,ψ, rq in the test space with v P X , the following holds:» T

0

»
Ωf

�
1� τ∆tωN

R

	
BtuN � ṽN � 1

2

» T
0

»
Ωf

�
1� τ∆tωN

R

	���
τ∆tuN � ζN

R� y

R
ey



�∇τ∆tωN

f uN



� ṽN

�
��

τ∆tuN � ζN
R� y

R
ey



�∇τ∆tωN

f ṽN



� uN

�
� 1

2R

» T
0

»
Ωf

ζNuN � ṽN

� 1

2

» T
0

»
Γ
puN � ζ�Neyq � nτ∆tωN pτ∆tuN � ṽN q � 2ν

» T
0

»
Ωf

�
1� τ∆tωN

R

	
Dτ∆tωN
f puN q : Dτ∆tωN

f pṽN q

�
» T

0

»
Γ

�
1

2
uN � τ∆tuN � pN



pψ � ṽN q � nτ∆tωN � β

J τ∆tωN
Γ

» T
0

»
Γ
pζ�Ney � uN q � τ τ∆tωN pψ � ṽN q � τ τ∆tωN

� ρb

» T
0

»
Ωb

�
ξN � τ∆tξN

∆t



�ψ � ρp

» T
0

»
Γ
BtζN � ϕ� 2µe

» T
0

»
Ωb

DpηN q : Dpψq

� λe

» T
0

»
Ωb

p∇ � ηN qp∇ �ψq � 2µv

» T
0

»
Ωb

DpξN q : Dpψq � λv

» T
0

»
Ωb

p∇ � ξN qp∇ �ψq

� α

» T
0

»
Ωb

J pτ∆tηN q
δ

b pN∇pτ∆tηN q
δ

b �ψ � c0

» T
0

»
Ωb

BtpN � r � α

» T
0

»
Ωb

J pτ∆tηN q
δ

b ξN �∇pτ∆tηN q
δ

b r

� α

» T
0

»
Γ
pζ�Ney � npτ∆tωN q

δqr � κ

» T
0

»
Ωb

J pτ∆tηN q
δ

b ∇pτ∆tηN q
δ

b pN �∇pτ∆tηN q
δ

b r

�
» T

0

»
Γ
rpuN � ζ�Neyq � nτ∆tωN sr �

» T
0

»
Γ

∆ωN �∆ϕ � 0.

Using the strong convergence results established above, combined with the previously estab-
lished weak convergence results in Proposition 7.1, we can pass to the limit in all of the terms in
the semidiscrete weak formulation except those involving time derivatives. However, we can handle
these by a discrete integration by parts. For example, for the first integral, we can use a discrete
integration by parts to obtain:» T

0

»
Ωf

�
1� τ∆tωN

R

	
BtuN � ṽN

Ñ �
» T

0

»
Ωf

�
1� ω

R

	
u � Btṽ � 1

R

» T
0

»
Ωf

pBtωqu � ṽ �
»

Ωf

�
1� ω0

R

	
up0q � ṽp0q,

where ṽN � v � Φτ∆tωN
f and ṽ � v � Φω

f for v P X . See for example pg. 79-81 in [62].
The limiting weak formulation holds for all velocity test functions in the smooth test space,

which can be extended to the general test space Vωtest defined in (38) by using a density argument.
Therefore, we have shown that the approximate weak solutions converge, up to a subsequence, to
a weak solution to the regularized problem, as stated in Theorem 5.1.

This completes the main result of this manuscript, stated in Theorem 5.1 providing existence of
a weak solution to the nonlinearly coupled, regularized fluid-poroviscoelastic structure interaction
problem, given in Definition 5.5.

We conclude this section by making the important observation that the weak solution that we
have constructed to the regularized FPSI problem satisfies the desired energy estimate. This will

44



be important for showing weak-classical consistency in the next section, and can be shown easily
by using the discrete energy estimate for the approximate solutions.

Proposition 9.3. (Energy estimate for the limiting solution to the regularized problem.)
The weak solution pu,η, p, ωq constructed from the splitting scheme as the limit of approximate
solutions satisfies the following energy estimate for almost every t P r0, T s:

1

2

»
Ωf ptq

|u|2 � 1

2
ρb

»
Ωb

|ξ|2 � 1

2
c0

»
Ωb

|p|2 � µe

»
Ωb

|Dpηq|2

� 1

2
λe

»
Ωb

|∇ � η|2 � 1

2
ρp

»
Γ
|ζ|2 � 1

2

»
Γ
|∆ω|2 � 2ν

» t
0

»
Ωf psq

|Dpuq|2

� 2µv

» t
0

»
Ωb

|Dpξq|2 � λv

» t
0

»
Ωb

|∇ � ξ|2 � κ

» t
0

»
Ωδbpsq

|∇p|2 � β

» t
0

»
Γpsq

|pζey � uq � τ q|2 ¤ E0,

(94)

where E0 is the initial energy of the problem.

Proof. The approximate solutions puN ,ηN , pN , ωN q satisfy the following energy inequality:

1

2

»
Ωf,N ptq

|uN |2 � 1

2
ρb

»
Ωb

|ξN |2 �
1

2
c0

»
Ωb

|pN |2 � µe

»
Ωb

|DpηN q|2

� 1

2
λe

»
Ωb

|∇ � ηN |2 �
1

2
ρp

»
Γ
|ζN |2 � 1

2

»
Γ
|∆ωN |2 � 2ν

» t
0

»
Ωf,N psq

|DpuN q|2

� 2µv

» t
0

»
Ωb

|DpξN q|2 � λv

» t
0

»
Ωb

|∇ � ξN |2 � κ

» t
0

»
Ωδb,N psq

|∇pN |2 � β

» t
0

»
Γpsq

|pζ�Ney � uN q � τ |2 ¤ E0.

By using the weak and weak-star convergences of the approximate solutions, stated in Proposition
7.1 and lower semicontinuity, we can pass to the limit in the energy inequality, one recovers the
energy inequality (94).

10 Weak-classical consistency

We have now shown the existence of weak solutions to the regularized FPSI problem (40). How-
ever, it is not clear that the solutions to this regularized problem are physically relevant, since the
regularized weak formulation is not equivalent to the original weak formulation without the regu-
larization. However, we will demonstrate the following weak-classical consistency result: given a
spatially and temporally smooth solution pu,η, p, ωq to the FPSI problem, then the weak solutions
to the regularized problem with regularization parameter δ, which we will denote by puδ,ηδ, pδ, ωδq,
converge to the smooth solution as δ Ñ 0.

10.1 Notation

Since we will have to use spatial convolution of the solution to the regularized problem puδ,ηδ, pδ, ωδq,
and spatial convolution of the smooth solution pu,η, p, ωq, we introduce the following notation to
avoid additional superscripts involving δ.

1. Recall that puδ,ηδ, pδ, ωδq denotes the weak solutions to the regularized problem (40);
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2. We will use pu,η, p, ωq to denote a spatially and temporally smooth solution pu,η, p, ωq to
the original FPSI problem (2), (3), (6), (7), (11)-(15);

3. We will use the superscript δ notation

ηδδ � pηδqδ :� δ�2ηδ � σpx{δq

to denote the spatial convolution defined by (23) of the weak solution to the regularized
problem with the smooth convolution δ kernel;

4. Similarly, we will use
ηδ � pηqδ � δ�2η � σpx{δq (95)

to denote the spatial convolution of the classical solution η with the convolution kernel;

5. We will use superscript δ to denote the physical Biot domain under the regularized displace-
ment:

Ωδ
b,δptq � pI � ηδδptqqpΩbq. (96)

Weak formulations reformulated. We note that even though the weak formulation (22) and
the regularized weak formulation (40) are stated up until a fixed final time T , we can reformulate
the weak formulation for almost every time t P r0, T s by using a cutoff function (see for example
the proof of Lemma 12.2 in the appendix where this is done explicitly).

Thus, the classical (temporally and spatially smooth) solution pu,η, p, ωq satisfies the fol-
lowing non-regularized weak formulation for almost all t P r0, T s, for all test functions pv, ϕ,ψ, rq P
Vtest with the (moving domain) test space Vtest defined in (37):

�
» t

0

»
Ωf psq

u � Btv � 1

2

» t
0

»
Ωf psq

rppu �∇quq � v � ppu �∇qvq � us � 1

2

» t
0

»
Γ1psq

pu � n� 2ξ1 � nqu � v

� 2ν

» t
0

»
Ωf psq

Dpuq : Dpvq �
» t

0

»
Γ1psq

�
1

2
|u|2 � p



pψn � vnq � β

» t
0

»
Γ1psq

pξ � uq � tpψt � vtq

� ρp

» t
0

»
Γ
Btω � Btϕ�

» t
0

»
Γ

∆ω �∆ϕ� ρb

» t
0

»
Ωb

Btη1 � Btψ � 2µe

» t
0

»
Ωb

Dpη1q : Dpψq

� λe

» t
0

»
Ωb

p∇ � η1qp∇ �ψq � 2µv

» t
0

»
Ωb

DpBtηq : Dpψq � λv

» t
0

»
Ωb

p∇ � Btηqp∇ �ψq

� α

» t
0

»
Ωbpsq

p∇ �ψ � c0

» t
0

»
Ωb

pBtr � α

» t
0

»
Ωbpsq

D

Dt
η1 �∇r � α

» t
0

»
Γpsq

pξ1 � nqr

� κ

» t
0

»
Ωbpsq

∇p �∇r �
» t

0

»
Γ1psq

ppu� ξ1q � nqr

� �
»

Ωf ptq
uptq � vptq � ρp

»
Γ
ζptq �ψptq � ρb

»
Ωb

ξptq �ψptq � c0

»
Ωb

pptq � rptq

�
»

Ωf p0q
u0 � vp0q � ρp

»
Γ
β0 �ψp0q � ρb

»
Ωb

ξ0 �ψp0q � c0

»
Ωb

p0 � rp0q. (97)

Similarly, the solution to the regularized FPSI problem puδ,ηδ, pδ, ωδq satisfies the fol-
lowing regularized weak formulation for every test function pv, ϕ,ψ, rq P Vtest, and for almost every
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t P r0, Tδs where the final time Tδ potentially depends on δ:

�
» t

0

»
Ωf,δpsq

uδ � Btv � 1

2

» t
0

»
Ωf,δpsq

rppuδ �∇quδq � v � ppuδ �∇qvq � uδs

� 1

2

» t
0

»
Γδpsq

puδ � n� 2ξδ � nquδ � v � 2ν

» t
0

»
Ωf,δpsq

Dpuδq : Dpvq

�
» t

0

»
Γδpsq

�
1

2
|uδ|2 � pδ



pψn � vnq � β

» t
0

»
Γδpsq

pξδ � uδq � tpψt � vtq

� ρp

» t
0

»
Γ
Btωδ � Btϕ�

» t
0

»
Γ

∆ωδ �∆ϕ� ρb

» t
0

»
Ωb

Btηδ � Btψ � 2µe

» t
0

»
Ωb

Dpηδq : Dpψq

� λe

» t
0

»
Ωb

p∇ � ηδqp∇ �ψq � 2µv

» t
0

»
Ωb

DpBtηδq : Dpψq � λv

» t
0

»
Ωb

p∇ � Btηδqp∇ �ψq

� α

» t
0

»
Ωδb,δpsq

pδ∇ �ψ � c0

» t
0

»
Ωb

pδBtr � α

» t
0

»
Ωδb,δpsq

Dδ

Dt
ηδ �∇r � α

» t
0

»
Γδpsq

pξδ � nqr

� κ

» t
0

»
Ωδb,δpsq

∇pδ �∇r �
» t

0

»
Γδpsq

ppuδ � ξδq � nqr

� �
»

Ωf,δptq
uδptq � vptq � ρp

»
Γ
ζδptq � ϕptq � ρb

»
Ωb

ξδptq �ψptq � c0

»
Ωb

pδptq � rptq

�
»

Ωf p0q
u0 � vp0q � ρp

»
Γ
β0 � ϕp0q � ρb

»
Ωb

ξ0 �ψp0q � c0

»
Ωb

p0 � rp0q, (98)

where Dδ

Dt is the material derivative with respect to the regularized Biot displacement. We remark
that while our existence proof in the previous sections holds for both a purely elastic and vis-
coelastic Biot medium, our weak-classical consistency result will hold in the specific case of a Biot
poroviscoelastic medium so that the viscoelasticity parameters µv and λv are strictly positive, and
hence, the plate velocity ζδey in the weak formulation is equivalently the trace of the Biot medium
velocity ξδ P L2p0, T ;H1pΩbqq along Γ.

10.2 Statement of the result

In the remainder of the manuscript, we will prove the weak-classical consistency result. Before
stating the result, we need to introduce some additional notation. Namely, to prove the weak-
classical consistency, we will subtract the weak formulations for the two solutions u and uδ and
test formally with the difference of the two solutions v � u�uδ. However, the functions u and uδ
are defined on different domains, and hence, the difference u�uδ is not well-defined. Therefore, we
will have to use a transformation to bring a divergence-free function defined on one fluid domain
to a divergence-free function on another fluid domain.

For this purpose consider the two fluid domains

Ωf ptq � tpx, yq P R2 : 0 ¤ x ¤ L,�R ¤ y ¤ ωpt, xqu,

Ωf,δptq � tpx, yq P R2 : 0 ¤ x ¤ L,�R ¤ y ¤ ωδpt, xqu,
that are associated to the plate displacements ω and ωδ.

We define a map between Ωf ptq and Ωf,δptq, and a transformation that sends functions on one
domain to functions on the other domain as follows. Let ψδptq : Ωf,δptq Ñ Ωf ptq be the mapping
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defined by

ψδpt, x, yq � pt, x, γδpt, xqpR� yq �Rq, where γδpt, xq � R� ωpt, xq
R� ωδpt, xq . (99)

This mapping, unfortunately, does not preserve the divergence free condition. However, if we
calculate the gradient of the composite mapped function we get

∇pu � ψδq � rp∇uq � ψδsJδ (100)

where

Jδpt, x, yq �
�

1 0
pR� yqBxγδpt, xq γδpt, xq



. (101)

Similarly, for the regularized problem we define

J̃δ � Jδ � ψ�1
δ �

�
1 0

pR� yqγ�1
δ Bxγδpt, xq γδpt, xq



. (102)

These Jacobian matrices will now be used to define the transformations that map divergence free
functions to divergence free functions.

Definition 10.1. Part I: Given a divergence-free function u on Ωf ptq, the following transformationp : u ÞÑ pu maps u to a divergence free function pu on Ωf,δptq:pu � γδJ
�1
δ � pu � ψδq. (103)

Part II: Given a divergence-free function uδ on Ωf,δptq the following transformation q : uδ ÞÑ quδ
maps uδ to a divergence free function quδ on Ωf ptq:quδ � γ�1

δ J̃δ � puδ � ψ�1
δ q. (104)

Remark 10.1. Both transformations preserve the trace of functions along Γ.

Note that even though the definition of pu depends on δ, we will not explicitly notate this
dependence, as δ will be clear from the context. We now state the weak-classical consistency result.

Theorem 10.1. (Weak-classical consistency) Let pη0, ξ0, ω0, ζ0, p0,u0q be smooth initial data
for the nonlinearly coupled FPSI problem (2), (3), (6), (7), (11)-(15). Suppose pη, ω, p,uq is a
classical (temporally and spatially smooth) solution to this FPSI problem on the time interval
r0, T s. Let pηδ, ωδ, pδ,uδq denote the weak solution to the regularized FPSI problem (40) with
regularity parameter δ.

Then the following holds true:

1. pηδ, ωδ, pδ,uδq is uniformly defined on the time interval r0, T s for all δ ¡ 0;

2. The energy norm of the difference between the two solutions Eδptq converges to zero as δ Ñ 0,
for all t P r0, T s, where

Eδptq :� ||ppu1 � uδqptq||2L2pΩf,δptqq
�
» t

0
||Dppu1 � uδqpsq||2L2pΩf,δpsqq

ds

� ||pξ � ξδqptq||2L2pΓq � ||pω � ωδqptq||2H2pΓq � ||pξ � ξδqptq||2L2pΩbq

� ||Dpη � ηδqptq||2L2pΩbq
� ||p∇ � pη � ηδqqptq||L2pΩbq �

» t
0
||Dpξ � ξδqpsq||2L2pΩbq

ds

�
» t

0
||∇ � pξ � ξδqpsq||L2pΩbq � ||pp� pδqptq||2L2pΩbq

�
» t

0
||∇pp� pδqpsq||2L2pΩδb,δpsqq

.

(105)
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Preview of the main steps of the proof of weak-classical consistency. The proof is based on Gron-
wall’s inequality for Eδptq. However, there are several obstacles to applying Gronwall’s inequality
due to the fact that we are working on a moving domain problem. We summarize those main
obstacles, and the main ideas behind their resolution here.

The main idea is to estimate the energy difference between pu,η, p, ωq and puδ,ηδ, pδ, ωδq,
defined in (105) and obtain an estimate for Eδptq in terms of Eδp0q, the integral of Eδpsq for times
s P r0, ts, and other terms that have sufficiently strong convergence in δ as δ Ñ 0:

Eδptq ¤ C

�» t
0
||∇η �∇ηδ||2L2pΩbq

�
» t

0
Eδptqds



(106)

and then apply Gronwall’s inequality to obtain

Eδptq ¤ Cδ3eCt,

where C is independent of δ, and conclude that Eδptq Ñ 0 as δ Ñ 0. We remark that the factor
of δ3 appearing in the Gronwall estimate comes from an estimate of the convergence rate of the
spatial convolution ηδ to η in H1pΩbq, which we establish in the upcoming Lemma 10.2.

To do this, we will test the weak formulations for u and uδ with appropriate test functions and
use the energy inequality (9.3). More precisely, the main steps in the proof are:

1. Test the non-regularized weak formulation (97) for the classical solution pu,η, p, ωq with
the “difference” of pu, Btη, p, Btωq and puδ, Btηδ, pδ, Btωδq, where the notion of the difference
between these two solutions will be made precise in Section 10.3;

2. Test the regularized weak formulation (98) for puδ,ηδ, pδ, ωδq with pu, Btη, p, Btωq;
3. Rewrite the energy inequality (94) for puδ,ηδ, pδ, ωδq so that it parallels the terms in the weak

formulation (98);

4. Combine the equations from Step 1, Step 2, and Step 3. This will give us an expression that
we can analyze term by term in order to obtain estimate (107) for the energy difference Eδptq.
Details will be presented in Section 10.3;

5. Construct a bootstrap argument. Namely, at a first pass, Gronwall’s inequality is proven
locally in time, namely, on the interval r0, Tδs along which the assumptions on the determinant
of the Jacobian of the transformation from the moving domain to the fixed domain is bounded
for the solution of the regularized problem. However, we need the Gronwall’s inequality to
hold along the entire time interval r0, T s, along which the classical solution is defined. This
will be done by a construction of a bootstrap argument, see Section 10.4.

6. Apply Gronwall’s inequality to (107) holding on r0, T s to obtain the following bound for Eδptq:

Eδptq ¤ Cδ3eCt,

where C is independent of δ, and conclude that Eδptq Ñ 0 as δ Ñ 0.

Before we start with the proof of weak-classical consistency, we emphasize that there are two
main mathematical difficulties that need to be addressed in the proof:
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1. In step 1 above, we want to test (97) with the difference of pu, Btη, p, Btωq and puδ, Btηδ, pδ, Btωδq.
This is formal because the test functions in Vtest, defined in (37), must be continuously dif-
ferentiable in time, and furthermore, for the fluid velocities, the difference between u and uδ
does not make sense, since these functions are defined on different fluid domains. Thus, we
must carefully define which test functions we will use. This is addressed at the beginning of
Section 10.3 below.

2. As mentioned in step 5 above, the regularized weak formulation involves integrals on the
physical time-dependent Biot domain Ωδ

b,δptq, which give an extra factor of detpI �∇ηδδq in
the integrand from the Jacobian, when the integrals are transferred to the fixed reference
Biot domain Ωb. This factor cannot be estimated in the finite energy space where ηδ is
only bounded uniformly in δ in the function space L8p0, T ;H1pΩbqq. To obtain pointwise
estimates of this term that hold on the time interval r0, T s, where T is independent of δ, we
need to use a bootstrap argument to get from the local pointwise estimates on r0, Tδs, where
Tδ depends on δ, to the global, uniform estimates on r0, T s. This is addressed in Section 10.4
below.

10.3 Gronwall’s Inequality

We show that the following Gronwall’s inequality holds for almost all t P r0, Tδs, where Tδ depends
on δ. Later on we will use a bootstrap argument to show that the weak-classical consistency holds
uniformly, on the entire interval r0, T s on which the classical solution exists.

Lemma 10.1. Gronwall’s estimate. Let (131), (132), and (133) hold for almost all t P r0, Tδs.
Furthermore, let η and ηδ denote the smooth solution and its regularization, defined on r0, T s, and
Eδ be the energy norm difference (105). Then the following inequality hold:

Eδptq ¤ C

�» t
0
||∇η �∇ηδ||2L2pΩbq

ds�
» t

0
Eδptqds



, (107)

where Eδptq is defined by (105). Furthermore,

Eδptq ¤ Cδ3eCt.

To prove Gronwall’s inequality, we want to test the non-regularized weak formulation formally
with the difference between pu, Btη, p, Btωq and puδ, Btηδ, pδ, Btωδq. However, there are two reasons
why this is not rigorously justified. First, Btη�Btηδ is not a continuously differentiable function in
time as is required for the test functions, and hence, we will use a convolution in time and pass to
the limit as the convolution parameter goes to zero. Second, the fluid velocities give an additional
difficulty, as the fluid velocities are defined on time-dependent moving domains. Thus, we must
transfer the fluid velocities between different time-dependent domains in order to make sense of
the “difference” between u and uδ as a test function. Furthermore, the way in which we do this
transformation and the way in which we perform the convolution in time must both respect the
divergence-free nature of the fluid velocity on the time-dependent domain. We will address both of
these difficulties as follows.

Construction of appropriate test functions pu, Btη, p, Btωq � puδ, Btηδ, pδ, Btωδq:
Difficulty 1: Lack of regularity in time. We address the first difficulty by defining a

convolution in time. This will allow us to regularize Btpη � ηδq � ξ � ξδ, p� pδ, and Btpω � ωδq �
ζ � ζδ so that these functions are continuously differentiable in time. Since the classical solution
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is already continuously differentiable in time, we only need to regularize the weak solutions to
the regularized problem. Because these differences are all defined on fixed domains, we can use a
standard convolution in time.

Convolution in time. Let jp�q : R Ñ R be a compactly supported even function with

supppjq � r�1, 1s and

»
R
j � 1, and we define jνptq � ν�1jpν�1tq, where ν ¡ 0 is the convolution

parameter in time.
Consider ν ¡ 0. Extend ξδ, pδ, and ζδ to the larger interval r�ν, T � νs by reflecting across

t � 0 and t � T . For example, define:

ξδptq � ξδp�tq, for t P r�ν, 0s,
ξδptq � ξδp2T � tq, for t P rT, T � νs.

Convolution in time is then defined by:

pξδqνptq � ξδpt, �q � jν �
»
R
ξδpsqjνpt� sqds, for t P r0, T s.

The convolutions ppδqν and pζδqν are defined similarly. With these definitions we can now test with
ξ � pξδqν , p� ppδqν , and ζ � pζδqν .

Difficulty 2: Velocities are defined on moving domains. Because the fluid velocities are
defined on moving time-dependent domains, we cannot directly apply a convolution in time. We
must first be able to transform fluid velocities from one domain to another, while preserving the
divergence-free condition, and then convolve in time. The transformation of fluid velocities from
one domain to another, while preserving the divergence-free condition, will be performed using the
following matrix:

Kps, t, x, yq �
�� R�ωps,xq

R�ωpt,xq 0

�pR� yqBx
�
R�ωps,xq
R�ωpt,xq

	
1

�
. (108)

This matrix has the following essential property: if upx, yq is a divergence-free function on the
domain Ωf psq defined by the structure displacement ωps, xq, then the function

Kps, t, x, yqu
�
x,
R� ωps, xq
R� ωpt, xq pR� yq �R



is a divergence-free vector field on the domain Ωf ptq defined by the structure displacement ωpt, xq.

Combined transformation of fluid velocities and convolution in time: We can now use
this transformation to convolve in time, as follows. We extend uδ to r�ν, T � νs by reflection, as
above, and define, for t P r0, T s,

puδqνptq �
»
R
K2,δps, t, x, yquδ

�
s, x,

R� ωδps, xq
R� ωδpt, xq pR� yq �R



jνpt� sqds. (109)

For a divergence-free function v, extended as above in time to r�ν, T � νs, we can define vν on
Ωf ptq analogously by

vνptq �
»
R
K1ps, t, x, yqv

�
s, x,

R� ωps, xq
R� ωpt, xq pR� yq �R



jνpt� sqds.

Here, K1ps, t, x, yq and K2,δps, t, x, yq are defined as Kps, t, x, yq with the choices of ω � ω and
ω � ωδ respectively. An example of such a function v which will be convenient to consider on Ωf ptq
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is the function quδ defined on Ωf ptq, which is the function uδ defined on Ωf,δptq transferred in a
divergence-free manner, as described above, onto the domain Ωf ptq. Specifically,

quδpt, x, yq �
�� R�ωδpt,xq

R�ωpt,xq 0

�pR� yqBx
�
R�ωδpt,xq
R�ωpt,xq

	
1

�
� u�x, R� ωδpt, xq
R� ωpt, xq pR� yq �R



.

We present the main properties of puδqν in the proposition below, which are a specific case of
Lemma 2.6 in [57].

Proposition 10.1. Fix an arbitrary δ ¡ 0. Given uδ P L2p0, T ;H1pΩbptqq and ω, ωδ P H2
0 pΓq, the

following properties hold:

� Divergence-free condition: div rpuδqνs � 0 and divrpquδqνs � 0, @ν ¡ 0 and @t P r0, T s;

� Convergence properties:

puδqν Ñ uδ strongly in Lpp0, T ;LqpΩf,δptqqq, for all p P r1,8q, q P r1, 2q,
pquδqν Ñ quδ strongly in Lpp0, T ;LqpΩf,1ptqqq, for all p P r1,8q, q P r1, 2q,
puδqν á uδ weakly in L2p0, T ;W 1,ppΩf,δptqqq, for all p P r1, 2q,
pquδqν á quδ weakly in L2p0, T ;W 1,ppΩf,1ptqqq, for all p P r1, 2q.

Proof. (Proof of Gronwall’s estimate.)
We begin by testing the weak formulation (97) for the classical solution pu,η, p, ωq to the original

non-regularized problem with

v � u� pquδqν , ϕ � ζ � pζδqν , ψ � ξ � pξδqν , r � p� ppδqν , (110)

and then test the regularized weak formulations (98) for the weak solutions puδ,ηδ, pδ, ωδq with

v � pu, ϕ � ζ, ψ � ξ, r � p. (111)

Next, we rewrite the energy estimate in Proposition 9.3, which holds for the function uδ, in a more
convenient form by adding extra terms that will cancel out, in order to have the energy inequality
parallel the weak formulation term by term. In particular, we have that for almost every t P r0, Tδs,

1

2

»
Ωf,δptq

|uδ|2 � 1

2

» t
0

»
Ωf psq

rppuδ �∇quδq � uδ � ppuδ �∇quδs � 1

2

» t
0

»
Γδpsq

puδ � n� 2ξδ � nquδ � uδ

� 2ν

» t
0

»
Ωf,δpsq

|Dpuδq|2 �
» t

0

»
Γδpsq

�
1

2
|uδ|2 � pδ



pξδ � uδq � n� β

» t
0

»
Γδpsq

|pξδ � uδq � tq|2

� 1

2
ρp

»
Γ
|ξδ|2 �

1

2

»
Γ
|∆ωδ|2 � 1

2
ρb

»
Ωb

|ξδ|2 � µe

» t
0

»
Ωb

|Dpηδqpsq|2

� 1

2
λe

»
Ωb

|∇ � ηδpsq|2 � 2µv

» t
0

»
Ωb

|Dpξδq|2 � λv

» t
0

»
Ωb

|∇ � ξδ|2

� α

» t
0

»
Ωδb,δpsq

pδ∇ � ξδ �
1

2
c0

» t
0

»
Ωb

|pδpsq|2 � α

» t
0

»
Ωδb,δpsq

Dδ

Dt
ηδ �∇pδ � α

» t
0

»
Γδδpsq

pξδ � nqpδ

� κ

» t
0

»
Ωδb,δpsq

|∇pδ|2 �
» t

0

»
Γδpsq

ppuδ � ξδq � nqpδ ¤
1

2

»
Ωf p0q

|u0|2 � 1

2
ρp

»
Γ
|ξ0|2

� 1

2

»
Γ
|∆ω0|2 � 1

2
ρb

»
Ωb

|ξ0|2 � µe

»
Ωb

|Dpη0q|2 �
1

2
λe

»
Ωb

|∇ � η0|2 �
1

2
c0

»
Ωb

|p0|2. (112)
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Finally, we combine the weak formulation for u tested with (110), subtract the regularized weak
formulation for uδ tested with (111), and add the energy estimate (112) for uδ to obtain an
expression of the form

18̧

i�1

Ti ¤ 0, (113)

where the terms Ti are given below. We have to estimate each term, and the combined estimate
will give the Gronwall’s inequality (107). To make this section more concise, we summarize the
final estimates here, and present details of the derivation of these terms and the estimates in
Appendix 12.2.

Term T1. Term T1 is defined as follows:

T1 ��
» t

0

»
Ωf ptq

u � Bt ru� pquδqνs � 1

2

» t
0

»
Γptq

pξ � nqu � ru� pquδqνs � »
Ωf ptq

upsq � ru� pquδqνspsq
(114)

�
»

Ωf p0q
up0q � ru� pquδqνsp0q � » t

0

»
Ωf,δptq

uδ � Btpu� 1

2

» t
0

»
Γδptq

pξδ � nδquδ � pu
�
»

Ωf,δptq
uδpsq � pupsq � »

Ωf p0q
uδp0q � pup0q � 1

2

»
Ωf,δptq

|uδpsq|2 � 1

2

»
Ωf,δp0q

|u0|2. (115)

This term is estimated so that after taking the limit as ν Ñ 0, the contribution of this term becomes

T1 � 1

2

»
Ωf,δptq

|ppu� uδqptq|2 �R1,

where

|R1| ¤ε
» T

0
||pu� uδ||2H1pΩf,δptqq

� Cpεq
�» T

0
||ω � ωδ||2H2pΓq �

» T
0
||Btω � Btωδ||2L2pΓq �

» T
0
||pu� uδ||2L2pΩf,δptqq



.

Term T2. Term T2 is defined as follows:

T2 �1

2

» t
0

»
Ωf ptq

ppu �∇quq � ru� pquδqνs � 1

2

» t
0

»
Ωf ptq

pu �∇qru� pquδqνs � u
� 1

2

» t
0

»
Ωf,δptq

ppuδ �∇quδq � ppu� uδq � 1

2

» t
0

»
Ωf,δptq

ppuδ �∇qppu� uδqq � uδ. (116)

After taking the limit ν Ñ 0, term T2 can be estimated as follows:

|T2| ¤ ε

» t
0
||∇ppu� uδq||2L2pΩf,δptqq

� Cpεq
�» t

0
||ω � ωδ||2H2pΓq �

» t
0
||pu� uδ||2L2pΩf,δptqq



.
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Term T3. Term T3 is defined as follows:

T3 �1

2

» t
0

»
Γptq

pu � n� ξ � nqu � ru� pquδqνs � 1

2

» t
0

»
Γδptq

puδ � nδ � ξδ � nδquδ � pu
� 1

2

» t
0

»
Γptq

|u|2pξ � n� u � nq � 1

2

» t
0

»
Γptq

|u|2rpξδqν � n� pquδqν � ns � 1

2

» t
0

»
Γδptq

|uδ|2pξ � nδ � pu � nδq
� 1

2

» t
0

»
Γδptq

puδ � n� ξδ � nq|uδ|2 �
1

2

» t
0

»
Γδptq

|uδ|2pξδ � n� uδ � nq. (117)

After taking the limit ν Ñ 0, term T3 can be estimated as follows:

|T3| ¤ε
» t

0
||pu� uδ||2H1pΩf,δptqq

� Cpεq
�» t

0
||ω � ωδ||2H2pΓq �

» t
0
||ξ � ξδ||2L2pΓq �

» t
0
||pu� uδ||2L2pΩf,δptqq



.

Term T4. Term T4 is defined as follows:

T4 �2ν

» t
0

»
Ωf ptq

Dpuq : Dpu� pquδqνq � 2ν

» t
0

»
Ωf,δptq

Dpuδq : Dppu� uδq. (118)

After taking the limit ν Ñ 0, term T4 can be estimated as follows:

T4 � 2ν

» t
0

»
Ωf,δptq

|Dppu� uδq|2 �R4,

where

|R4| ¤ ε

» t
0
||Dppu� uδq||2L2pΩf,δptqq

� Cpεq
�» t

0
||ω � ωδ||2H2pΓq �

» t
0
||pu� uδ||2L2pΩf,δptqq



.

Term T5. Term T5 is defined as follows:

T5 �β
» t

0

»
Γptq

pξ � uqtrpξ � pξδqνqt � pu� pquδqνqts � β

» t
0

»
Γδptq

pξδ � uδqtrpξ � ξδqt � ppu� uδqts
After taking the limit ν Ñ 0, term T5 can be estimated as follows:

T5 � β

» t
0

»
Γδptq

|pξ � ξδqt � ppu� uδqt|2 �R5,

where

|R5| ¤ ε

» t
0
||Dppu� uδq||L2pΩf,δptqq � Cpεq

�» t
0
||ω � ωδ||2H2pΓq �

» t
0
||ξ � ξδ||2L2pΓq



.
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Terms T6-T8. Terms T6-T8 are defined as follows:

T6 �� ρp

» t
0

»
Γ
ζ � Bt rζ � pζδqνs � ρp

»
Γ
ζpsq � rζpsq � pζδqνpsqs � ρp

»
Γ
ζp0q � rζp0q � pζδqνp0qs

� ρp

» t
0

»
Γ
ζδ � Btζ � ρp

»
Γ
ζδpsq � ζpsq � ρp

»
Γ
ζδp0q � ζp0q � 1

2
ρp

»
Γ
|ζδpsq|2 � 1

2
ρp

»
Γ
|ζ0|2.

(119)

T7 �
» t

0

»
Γ

∆ω �∆ rζ � pζδqνs �
» t

0

»
Γ

∆ωδ �∆ζ � 1

2

»
Γ
|∆ωδpsq|2 � 1

2

»
Γ
|∆ω0|2. (120)

T8 �� ρb

» t
0

»
Ωb

Btη � Bt rξ � pξδqνs � ρb

»
Ωb

ξpsq � rξpsq � pξδqνpsqs � ρb

»
Ωb

ξp0q � rξp0q � pξδqνp0qs

� ρb

» t
0

»
Ωb

Btηδ � Btξ � ρb

»
Ωb

ξδpsq � ξpsq � ρb

»
Ωb

ξδp0q � ξp0q �
1

2
ρb

»
Ωb

|ξδpsq|2 �
1

2
ρb

»
Ωb

|ξ0|2.
(121)

After taking the limit ν Ñ 0, the terms T6-T8 become:

T6 � 1

2
ρp

»
Γ
|pζ � ζ2qptq|2, T7 � 1

2

»
Γ
|∆pω � ω2qptq|2, T8 � 1

2
ρb

»
Ωb

|pξ � ξ2qptq|2.

Terms T9-T12. Terms T9-T12 are defined as follows:

T9 �2µe

» t
0

»
Ωb

Dpηq : D rξ � pξδqνs � 2µe

» t
0

»
Ωb

Dpηδq : Dpξq � µe

»
Ωb

|Dpηδqpsq|2 � µe

»
Ωb

|Dpη0q|2.

T10 �λe
» t

0

»
Ωb

p∇ � ηq p∇ � rξ � pξδqνsq � λe

» t
0

»
Ωb

p∇ � ηδqp∇ � ξq � 1

2
λe

»
Ωb

|∇ � ηδpsq|2 �
1

2
λe

»
Ωb

|∇ � η0|2.

T11 �2µv

» t
0

»
Ωb

Dpξq : D rξ � pξδqνs � 2µv

» t
0

»
Ωb

Dpξδq : Dpξq � 2µv

» t
0

»
Ωb

|Dpξδq|2.

T12 �λv
» t

0

»
Ωb

p∇ � ξq p∇ � rξ � pξδqνsq � λv

» t
0

»
Ωb

p∇ � ξδqp∇ � ξq � λv

» t
0

»
Ωb

|∇ � ξδ|2. (122)

Because ξδ P L2p0, T ;H1pΩbqq where Ωb is a fixed domain, we have that pξδqν Ñ ξδ strongly in
L2p0, T ;H1pΩbqq. Hence, as ν Ñ 0, we have that Terms 9-12 converge to the following:

T9 � µe

»
Ωb

|Dpη � ηδqptq|2, T10 � 1

2
λe

»
Ωb

|∇ � pη � ηδqptq|2,

T11 � 2µv

» t
0

»
Ωb

|Dpξ � ξδq|2, T12 � λv

» t
0

»
Ωb

|∇ � pξ � ξδq|2.

Term T13. Term T13 is defined as follows:

T13 �� α

» t
0

»
Ωbptq

p p∇ � rξ � pξδqνsq � α

» t
0

»
Ωδb,δptq

pδ p∇ � pξ � ξδqq .
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After taking the limit ν Ñ 0, term T13 can be estimated as follows:

|T13| ¤Cpεq
» t

0
||∇η �∇ηδ||2L2pΩbq

� ε

» t
0
||∇pξ � ξδq||2L2pΩbq

� Cpεq
�» t

0
||∇η �∇ηδ||2L2pΩbq

�
» t

0
||ω � ωδ||2H2pΓq �

» t
0
||p� pδ||2L2pΩbq



.

Term T14. Term T14 is defined as follows:

T14 �� c0

» t
0

»
Ωb

p � Bt rp� ppδqνs � c0

»
Ωb

ppsq � rppsq � ppδqνpsqs � c0

»
Ωb

p0 � rpp0q � ppδqνp0qs

� c0

» t
0

»
Ωb

pδ � Btp� c0

»
Ωb

pδpsq � ppsq � c0

»
Ωb

|p0|2 � 1

2
c0

»
Ωb

|pδpsq|2 � 1

2
c0

»
Ωb

|p0|2. (123)

This term can be handled in the same way as Terms 6-8. In the limit as ν Ñ 0, the contribution
from this term is

T14 � 1

2
c0

»
Ωb

|pp� pδqpτq|2.

Term T15. Term T15 is defined as follows:

T15 �� α

» t
0

»
Ωbptq

ξ �∇ rp� ppδqνs � α

» t
0

»
Ωδb,δptq

ξδ �∇pp� pδq. (124)

After taking the limit ν Ñ 0, term T15 can be estimated as follows:

|T15| ¤ε
» t

0
||∇pp� pδq||2L2pΩ̃b,2,δptqq

� Cpεq
» t

0
||∇η �∇ηδ||2L2pΩbq

� Cpεq
�» t

0
||∇η �∇ηδ||2L2pΩbq

�
» t

0
||ω � ωδ||2H2pΓq �

» t
0
||Btη � Btηδ||2L2pΩbq



.

Term T16. Term T16 is defined as follows:

T16 �� α

» t
0

»
Γptq

pξ � nq rp� ppδqνs � α

» t
0

»
Γδδptq

pξδ � nqpp� pδq. (125)

After passing to the limit as ν Ñ 0, this term can be estimated as follows:

|T16| ¤ ε

�» t
0
||∇ξ �∇ξδ||2L2pΩbq

�
» t

0
||∇p�∇pδ||2L2pΩ̃b,2,δptqq



� Cpεq

�» t
0
||p� pδ||2L2pΩbq

�
» t

0
||∇η �∇η̃1||2L2pΩbq

�
» t

0
||∇η �∇ηδ||2L2pΩbq

�
» t

0
||ω � ωδ||2H2pΓq �

» t
0
||ξ � ξδ||2L2pΩbq



.

Term T17. Term T17 is defined as follows:

T17 �κ
» t

0

»
Ωbptq

∇p �∇ rp� ppδqνs � κ

» t
0

»
Ωδb,δptq

∇pδ �∇pp� pδq. (126)

56



This term can be estimated as follows:

T17 ¤ κ

» t
0

»
Ωδb,δptq

|∇pp� pδq|2 �R17,

where the remainder is bounded by

|R17| ¤ε
» t

0
||∇pp� pδq||2L2pΩδb,δptqq

� Cpεq
�» t

0
||∇η �∇ηδ||2L2pΩbq

�
» t

0
||∇η �∇ηδ||2L2pΩbq

�
» t

0
||ω � ωδ||2H2pΓq



.

Term T18. Term T18 is defined as follows:

T18 �
» t

0

»
Γptq

ppu� ξq � n�
» t

0

»
Γptq

prpuδqν � pξδqνs � n�
» t

0

»
Γδptq

pδpu� ξq � n

�
» t

0

»
Γδptq

pδpuδ � ξδq � n�
» t

0

»
Γptq

ppu� ξq � nqrp� ppδqνs �
» t

0

»
Γδptq

ppuδ � ξδq � nqpp� pδq.

This term can be estimated as follows:

|T18| ¤ε
�» t

0
||Dppu� uδq||2L2pΩf,δptqq

�
» t

0
||∇pξ � ξδq||L2pΩbq �

» t
0
||∇pp� pδq||2L2pΩδb,δptqq



� Cpεq

» t
0
||ω � ωδ||2H2pΓq.

The combined estimates for the terms T1-T18 give the estimate (107). This finishes the proof of
the Gronwall’s estimate presented in Lemma 10.1.

All that is left to show to complete the proof of weak-classical consistency stated in Theo-
rem 10.1, is to argue that Gronwall’s inequality (107) holds for all t P r0, T s where T is independent
of δ. This will also imply the first statement in the theorem, which states that pηδ, ωδ, pδ,uδq is
uniformly defined on the time interval r0, T s for all δ ¡ 0. In order to do this we use a bootstrap
argument presented in the next subsection.

10.4 Bootstrap argument

To obtain the desired Gronwall estimate, we need the following uniform bounds on the factor
detpI�∇ηδδq, which appears in the regularized weak formulation (40) defined on the fixed reference
domain Ωb:

detpI �∇ηδδq ¥ c, (127)

0   c ¤ |I �∇ηδδ| ¤ C, pointwise in Ωb, (128)

|∇ηδδ| ¤ C, pointwise in Ωb, (129)

which need to hold for all t P r0, T s where T ¡ 0 is independent of δ. Notice that we only have
uniform boundedness of ηδ with respect to δ in L8p0, T ;H1pΩbqq, which implies that detpI�∇ηδδq
is uniformly bounded with respect to δ only in L8p0, T ;L1pΩbqq, which is insufficient for estimating
any integrands with this factor.
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To get around this difficulty we use the following strategy. Recall that by the way the weak
solution to the regularized problem was constructed using the splitting scheme, we have that there
exists a sufficiently small constant c (uniform in δ) such that

detpI �∇ηδδq ¥ c ¡ 0, (130)

for all t P r0, Tδs where Tδ ¡ 0 may depend on δ. This estimate holds at least locally, although not
locally uniformly, for each δ ¡ 0. In fact, similarly, the following three estimates hold locally, for
t P r0, Tδs, where Tδ may depend on δ, with positive constants c and C that are independent of δ:

detpI �∇ηδδq ¥ c, (131)

0   c ¤|I �∇ηδδ| ¤ C, pointwise in Ωb, (132)

|∇ηδδ| ¤ C, pointwise in Ωb. (133)

These estimates imply that for sufficiently small c ¡ 0, the following inequality also holds locally,
for all t P r0, Tδs:

0   C�1 ¤ |pI �∇ηδδq�1| ¤ c�1. (134)

Let r0, T s denote the time interval on which the classical solution η exists. Then, we can choose
c ¡ 0 and C ¡ 0 so that the inequalities (130)-(134) also hold for the classical solution for all
t P r0, T s.

We will now show how to use a bootstrap argument to deduce that the time interval on which
estimates (130)-(134) hold for the regularized weak solution of the regularized problem ηδδ can, in
fact, be extended to the entire interval r0, T s, namely, that estimates (130)-(134) hold globally,
uniformly in δ, where T is independent of δ.

This will follow if we can show that ∇η and ∇ηδδ are pointwise uniformly “close”, i.e.,

|p∇η �∇ηδδqpt, xq| Ñ 0 pointwise uniformly in r0, T s � Ωb as δ Ñ 0. (135)

To obtain this estimate we start with the main proof of Gronwall’s inequality under the as-
sumptions that (131), (132), and (133) are locally valid for t P r0, Tδs:

Eδptq ¤ C1

» t
0
||pηδ � ηqpsq||2H1pΩbq

ds� C2

» t
0
Eδpsqds, (136)

where the constants C1 and C2 are independent of δ. Then, by Lemma 10.2 below, we obtain that
the first term on the right hand-side above can be estimated as follows:

||ηδ � η||H1pΩbq ¤ Cδ3{2, for all t P r0, T s,

since the classical solution η is spatially smooth, and ηδ is the convolution of η with the smooth δ
kernel, defined in (95). With this essential observation, the Gronwall estimate based on (136) gives

Eδptq ¤ C1

�» t
0
||pηδ � ηqpsq||2H1pΩbq

ds



eC2t ¤ C1

�» T
0
||pηδ � ηqpsq||2H1pΩbq

ds



eC2t ¤ Cδ3eC2t.

By the definition of Eδptq and an application of Poincare’s and Korn’s inequalities on Ωb, see
Proposition 6.1, this implies that the following terms in the definition of Eδptq

||pη � ηδqptq||H1pΩbq ¤ Cδ3{2, and ||pω � ωδqptq||H2pΓq ¤ Cδ3{2 Ñ 0 as δ Ñ 0
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converge to zero as δ Ñ 0 at a rate of δ3{2, as long as the assumptions (131), (132), and (133)
hold. Therefore, by Hölder’s inequality, for sufficiently small δ ¡ 0, we can prove that the following
estimate holds:

|p∇ηδ �∇ηδδqpt, xq| �
����»

Ω̃b

p∇η �∇ηδqpt, yqσδpx� yqdy
���� ¤ Cδ3{2 � δ�1 Ñ 0, (137)

pointwise uniformly in r0, T s � Ωb as δ Ñ 0,

where C is independent of δ. More precisely, notice that the convolution integral in (137) is defined
on the domain Ω̃b, which is triple the size of the domain Ωb. Furthermore, we recall that the
convolution is defined using odd extensions as in Definition 8.2. Thus, by the definition of the odd
extensions of η and ηδ to the larger domain Ω̃b, we get

||η � ηδ||H1pΩ̃bq
¤ C

�||η � ηδ||H1pΩbq � ||ω � ωδ||H1pΓq

�
.

In addition, since we have extended the functions η and ηδ to the larger domain Ω̃b, the estimate
(137) holds for all δ such that tpx, yq P R2 : distppx, yq,Ωbq ¤ δu � Ω̃b. Thus, |p∇ηδ�∇ηδδqpt, xq| Ñ 0
pointwise uniformly in r0, T s as δ Ñ 0.

To obtain (135) it suffices to show that |p∇η�∇ηδqpt, xq| Ñ 0 pointwise uniformly in r0, T s as
δ Ñ 0. This follows from Lemma 10.2. Namely, Lemma 10.2 implies

|p∇η �∇ηδqpt, xq| ¤ Cδ Ñ 0 pointwise uniformly in r0, T s � Ωb as δ Ñ 0. (138)

So combining (138) with (137), we get (135).
Now we use a bootstrap argument on detpI �∇ηδδq by continuity, since we have that detpI �

∇ηq ¥ c ¡ 0 up to a final time T ¡ 0. Similarly, for all sufficiently small δ, the assumptions (132)
and (133) will also hold up to the final time T ¡ 0, as we can also bootstrap these two conditions
(132) and (133) similarly. This closes the bootstrap argument, and so we obtain that the estimate
(131), and similarly the estimates (132) and (133), hold uniformly up to the final time T ¡ 0
uniformly in δ.

We end this section by proving the following lemma, which establishes convergence of the spatial
convolution of the classical solution η in H1pΩbq, which is needed for the bootstrap argument
described above.

Lemma 10.2. Let η P L8p0, T ;Vdq be an arbitrary but fixed smooth function in time and space
on r0, T s � Ωb, where Vd is defined in (31). Then, there exists a constant C independent of δ ¡ 0,
depending only on η, such that

max
tPr0,T s

||ηδ � η||H1pΩbq ¤ Cδ3{2, and |∇ηδ �∇η| ¤ Cδ @x P Ωb and @t P r0, T s.

Remark 10.2. More generally, if f is a smooth function on R2 with sufficient decay at infinity,
such as a Schwartz function, then the argument below shows that the function f̃ defined by

f̃ � f � σδ on R2

would satisfy ||f̃ � f ||H1pΩbq ¤ Cδ2 for a constant C. However, because we are working on a
bounded domain Ωb, we must use an odd extension to define the spatial convolution of η. Since
the odd extension of η to the larger domain Ω̃b is not necessarily smooth on Ω̃b even if η is a
smooth function on Ωb, we incur a loss in our estimate due to potential irregularities of the odd
extension due to the behavior of the initial function η near the boundary BΩb, which gives rise to
the convergence rate δ3{2 instead of the optimal rate of convergence δ2.
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Proof. Separate the domain Ωb � p0, Lq � p0, Rq into two parts:

Ωb,1 � pδ, L� δq � pδ,R� δq, Ωb,2 � ΩbzΩb,1.

For x P Ωb,1, we note that because the convolution kernel σδ is radially symmetric,

pηδ � ηqpxq �
»

Ωb

�
1

2
ηpx� x1q � ηpxq � 1

2
ηpx� x1q



σδpx1qdx1,

p∇ηδ �∇ηqpxq �
»

Ωb

�
1

2
∇ηpx� x1q �∇ηpxq � 1

2
∇ηpx� x1q



σδpx1qdx1.

For x P Ωb,1, these points are at least δ away from the boundary. Therefore, we have the following
estimate for the discretized second derivative:����12ηpx� x1q � ηpxq � 1

2
ηpx� x1q

���� ¤ Cδ2 for |x1| ¤ δ,

and similarly for ∇η, by using the fact that η is spatially smooth in Ωb. Therefore,

|pηδ � ηqpxq| ¤ Cδ2, |p∇ηδ �∇ηqpxq| ¤ Cδ2, for x P Ωb,1, (139)

for a constant C depending only on η.
For x P Ωb,2 we cannot use the same estimate, since after extending η to the larger domain Ω̃b,

the extended function on Ω̃b does not necessarily have a continuous second derivative, as a result of
the properties of odd extension, and in fact, there may be discontinuities of the second derivative
along the boundary BΩb. However, ∇η on the larger domain Ω̃b is still Lipschitz continuous. Thus,
we instead use the equations:

pηδ � ηqpxq �
»

Ωb

pηpx� x1q � ηpxqqσδpx1qdx1,

p∇ηδ �∇ηqpxq �
»

Ωb

p∇ηpx� x1q �∇ηpxqqσδpx1qdx1.

Since x P Ωb,2, even if |x1| ¤ δ, we may have that x � x1 is outside of Ωb. However, due to the
Lipschitz continuity of ∇η on the larger domain Ω̃b, we still have the estimates

|ηpx� x1q � ηpxq| ¤ Cδ, |∇ηpx� x1q �∇ηpxq| ¤ Cδ, for x P Ωb,2, |x1| ¤ δ,

which give
|pηδ � ηqpxq| ¤ Cδ, |p∇ηδ �∇ηqpxq| ¤ Cδ, for x P Ωb,2. (140)

The area of Ωb,2 is bounded by p2R� 2Lqδ, so by (139) and (140), we have ||ηδ�η||H1pΩbq ¤ Cδ3{2

for a spatially smooth function η on Ωb, where C depends only on the norms of up to the second
spatial derivative of η on Ωb. The generalization of this result to a function η that also depends
on time and is spatially smooth in both space and time follows analogously.

This completes the proof of the weak-classical consistency results. This proof effectively shows
that the weak solutions that we have constructed to the regularized FPSI problem converge (in
the energy norm on a uniform time interval) as the regularization parameter goes to zero to a
classical solution of the original (non-regularized) FPSI problem when such a classical solution to
the original FPSI problem exists.
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11 Conclusions

In this manuscript we proved the existence of a weak solution to a fluid-structure interaction prob-
lem between the flow of an incompressible, viscous fluid and a multi-layered poroelastic/poroviscoelastic
structure consisting of the Biot equations of poro(visco)elasticity and a thin, reticular interface with
mass and elastic energy, which is transparent to fluid flow. The fluid and multilayered structure are
nonlinearly coupled, giving rise to significant difficulties in the existence proof, associated with the
geometric nonlinearity of the coupled problem. The existence proof is constructive, and it consists
of two major steps. In the fist step we proved the existence of a weak solution to a regularized
problem in the class of finite energy solutions. In the second step we showed that the solution of
this regularized problem converges to a classical solution to the original, nonregularized probroblem
as the regularization parameter tends to zero, as long as the original problem possesses a classical
solution. While the proof of the existence of a weak solution to the regularized problem only re-
quires that the Biot structure is poroelastic, additional regularity of the Biot poroelatic medium is
required to prove the weak-classical consistency-the Biot structure is assumed to be poroviscoelas-
tic. This weak-classical consistency result also shows that the solution we constructed is unique in
the sense of weak-classical uniqueness.

An interesting extension of this work is to consider the singular limit as the thin interface
thickness converges to zero, and investigate the existence of a weak solution to the FSI problem
between the Navier-Stokes equations for an incompressible, viscous fluid and the Biot equations
of poroviscoelasticity, nonlinearly coupled over the moving interface. Preliminary results indicate
that this will be possible under certain assumptions.

12 Appendix

12.1 Weak continuity of solutions to the regularized PFSI problem

In this appendix, we show a result related to weak continuity of solutions to the regularized FPSI
problem, namely, we will show that as ν Ñ 0:»

Ωf,δp0q
pup0q � puδqνp0q Ñ »

Ωf,δp0q
|u0|2, and

»
Ωf,δptq

puptq � puδqνptq Ñ »
Ωf,δptq

puptq � uδptq,
for almost all points 0   t ¤ T .

This result will be used in Section 12.2 to estimate the first term T1 in (113) in the Gronwall’s
estimate. We will show weak continuity through the following series of lemmas.

Lemma 12.1. Let ω P L8p0, T ;H2
0 pΓqq XW 1,8p0, T ;L2pΓqq with

min
tPr0,T s,xPr0,Ls

R� ωpt, xq ¡ 0,

define the moving fluid domain Ωω
f ptq. Then, given u P L2p0, T ;H1pΩω

f ptqqq X L8p0, T ;L2pΩω
f ptqqq

where Ωω
f ptq � tpx, yq P R2 : 0 ¤ x ¤ L,�R ¤ y ¤ ωpt, xqu, we have that

||uνpt, x, yq � upt, x, yq||L2pΩωf ptqq
Ñ 0 as ν Ñ 0,

for almost all t P r0, T s.
Proof. Recall that in the case of real-valued functions, one shows convergence of the convolution to
the function itself almost everywhere by using the Lebesgue differentiation theorem [29]. To apply

61



the theorem in this context, we need to apply it to a function taking values in a fixed Banach space
rather than a time-dependent Banach space.

As a result, we consider the following function,

vpt, x, yq � Kpt, 0, x, yqu
�
t, x,

R� ωpt, xq
R� ωp0, xqpR� yq �R



,

where we have pulled the fluid velocity back to the fixed initial domain Ωω
f p0q. We recall the

definition of Kps, t, z, rq from (108) and its inverse:

Kps, t, x, yq �
�� R�ωps,xq

R�ωpt,xq 0

�pR� yqBx
�
R�ωps,xq
R�ωpt,xq

	
1

�
, K�1ps, t, x, yq �
�� R�ωpt,xq

R�ωps,xq 0

pR� yqR�ωpt,xqR�ωps,xqBx
�
R�ωps,xq
R�ωpt,xq

	
1

�
.
By the uniform boundedness of R� ωpt, xq and |Bxωpt, xq|, and mintPr0,T s,xPr0,LsR� ωpt, xq ¡ 0, it
is immediate to see that vpt, z, rq is in L8p0, T ;L2pΩω

f p0qqq, where we emphasize that L2pΩω
f p0qq is

a fixed function space that no longer depends on time.
By Lebesgue’s differentiation theorem, almost every t P r0, T s is a Lebesgue point satisfying

lim
νÑ0

1

2ν

» t�ν
t�ν

||vpt, �q � vps, �q||L2pΩωf p0qq
dsÑ 0. (141)

Recall that by definition (109),

uνpt, x, yq �
»
R
Kps, t, x, yqu

�
s, x,

R� ωps, xq
R� ωpt, xq pR� yq �R



jνpt� sqds.

Thus, we compute

uνpt, x, yq � upt, x, yq �
»
R

�
Kps, t, x, yqu

�
s, x,

R� ωps, xq
R� ωpt, xq pR� yq �R



� upt, x, yq



� jνpt� sqds

:�I1 � I2,

where

I1 �
»
R
K�1

�
t, 0, x,

R� ωp0, xq
R� ωpt, xq pR� yq �R



��

v

�
s, x,

R� ωp0, xq
R� ωpt, xq pR� yq �R



� v

�
t, x,

R� ωp0, xq
R� ωpt, xq pR� yq �R




jνpt� sqds,

I2 �
»
R

�
Kps, t, x, yqK�1

�
s, 0, x,

R� ωp0, xq
R� ωpt, xq pR� yq �R



�K�1

�
t, 0, x,

R� ωp0, xq
R� ωpt, xq pR� yq �R




�

v

�
s, x,

R� ωp0, xq
R� ωpt, xq pR� yq �R



jνpt� sqds.

We estimate each of these terms as follows. For I1, we compute that

K�1

�
t, 0, x,

R� ωp0, xq
R� ωpt, xq pR� yq �R



�
�� R�ωp0,xq

R�ωpt,xq 0

pR� yq
�
R�ωp0,xq
R�ωpt,xq

	2
Bx
�
R�ωpt,xq
R�ωp0,xq

	
1

�
,
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which we note is uniformly bounded on r0, T s. Hence, using the fact that |jνpt� sq| ¤ 1
ν , we get

||I1||L2pΩωf ptqq
¤ C � 1

ν

» t�ν
t�ν

��������v�s, x, R� ωp0, xq
R� ωpt, xq pR� yq �R



� v

�
t, x,

R� ωp0, xq
R� ωpt, xq pR� yq �R


��������
L2pΩωf ptqq

ds

¤ C � 1

ν

» t�ν
t�ν

�
R� ωpt, xq
R� ωp0, xq


1{2

||vps, x, yq � vpt, x, yq||L2pΩωf p0qq
dsÑ 0,

as ν Ñ 0 if t is a Lebesgue point, by (141) and the uniform boundedness of R�ωpt,xq
R�ωp0,xq on r0, T s.

To estimate I2, we can use the continuity in time of ω and Bxω to calculate that����Kps, t, x, yqK�1

�
s, 0, x,

R� ωp0, xq
R� ωpt, xq pR� yq �R



�K�1

�
t, 0, x,

R� ωp0, xq
R� ωpt, xq pR� yq �R


����Ñ 0,

uniformly in px, yq as sÑ t. Now, we estimate

||I2||L2pΩωf ptqq
¤
»
R

max
x,yPΩωf ptq

����Kps, t, x, yqK�1

�
s, 0, x,

R� ωp0, xq
R� ωpt, xq pR� yq �R



�K�1

�
t, 0, x,

R� ωp0, xq
R� ωpt, xq pR� yq �R


����
�
��������v�s, x, R� ωp0, xq

R� ωpt, xq pR� yq �R


��������
L2pΩωf ptqq

� jνpt� sqds

¤
»
R

max
x,yPΩωf ptq

����Kps, t, x, yqK�1

�
s, 0, x,

R� ωp0, xq
R� ωpt, xq pR� yq �R



�K�1

�
t, 0, x,

R� ωp0, xq
R� ωpt, xq pR� yq �R


����
�
�
R� ωpt, xq
R� ωp0, xq


1{2

� ||v ps, x, yq||L2pΩωf p0qq
� jνpt� sqds

¤ C

»
R

max
x,yPΩωf ptq

����Kps, t, x, yqK�1

�
s, 0, x,

R� ωp0, xq
R� ωpt, xq pR� yq �R



�K�1

�
t, 0, x,

R� ωp0, xq
R� ωpt, xq pR� yq �R


���� � jνpt� sqds,

where we used the fact that v P L8p0, T ;L2pΩω
f p0qqq. Thus, we conclude that ||I2||L2pΩωf ptqq

Ñ 0 as

ν Ñ 0. This completes the proof.

We also have a weak continuity lemma, which states that the value of uδ tested against any
function in the fluid function space has a continuity property as tÑ 0.

Lemma 12.2. Consider an arbitrary q P C1p0, T ;Vf,δptqq and the weak solution uδ to the regular-
ized problem for arbitrary δ, where Vf,δptq is defined by the displacement ωδ and (26). There exists
a measure zero subset S of r0, T s (depending on δ) such that

lim
tÑ0,tPr0,T sXSc

»
Ωf,δptq

uδptq � qptq �
»

Ωf,δp0q
u0 � qp0q.

Proof. Consider the following function for each τ P r0, T s and α ¡ 0, given by

Jτ,νptq � 1�
» t

0
jνps� τqds, (142)
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and note that J 1τ,νptq � �jνpt� τq. We want to test the regularized weak formulation for uδ with
the test function Jτ,νptqq for certain admissible choices of τ . To see which τ we want to choose, we
define the function

wpt, x, yq � R� ωδptq
R� ωδp0q � uδ

�
t, x,

R� ωδptq
R� ωδp0qpR� yq �R



� q
�
t, x,

R� ωδptq
R� ωδp0qpR� yq �R



.

We claim that w P L8p0, T ;L1pΩf,δp0qqq. To see this, we compute by a change of variables that

||wpt, x, yq||L1pΩf,δp0qq �
»

Ωf,δptq
|uδpt, x, yq � qpt, x, yq|,

and we then use the fact that uδ, q P L8p0, T ;L2pΩf,δptqqq.
Hence, by the Lebesgue differentiation theorem, there exists a measurable subset S � r0, T s of

measure zero such that every point in r0, T s X Sc is a Lebesgue point of w, in the sense that

lim
νÑ0

1

2ν

» τ�ν
τ�ν

||wpτ, �q �wps, �q||L1pΩf,δp0qqdsÑ 0. (143)

for every τ P r0, T s X Sc. These are the τ for which we will consider the test function Jτ,νptqq. For
the test functions for the Biot medium and the plate, we will take these test functions to be zero.
Hence, in the regularized weak formulation (98), we will test with pv, ϕ,ψ, rq � pJτ,νptqq, 0, 0, 0q.

Hence, we obtain the following equality:

�
» T

0

»
Ωf,δptq

uδ � BtpJτ,νptqqq � 1

2

» T
0

»
Ωf,δptq

rppuδ �∇quδq � pJτ,νptqqq � ppuδ �∇qpJτ,νptqqqq � uδs

� 1

2

» T
0

»
Γδptq

puδ � n� 2ξδ � nquδ � pJτ,νptqqq � 2ν

» T
0

»
Ωf,δptq

Dpuδq : DpJτ,νptqqq

�
» T

0

»
Γδptq

�
1

2
|uδ|2 � pδ



Jτ,νptqqn � β

» T
0

»
Γδptq

rpξδqτ � puδqτ s � Jτ,νptqqτ �
»

Ωf,δp0q
u0 � Jτ,νp0qqp0q.

Consider τ P p0, T q X Sc. We want to pass to the limit as ν Ñ 0, and then pass to the limit as
τ Ñ 0, in order to obtain the desired result.

First, we pass to the limit as ν Ñ 0. We handle the convergences as follows.
First term: We will show that because τ is a Lebesgue point of w,

�
» T

0

»
Ωf,δptq

uδ � BtpJτ,νptqqq Ñ
»

Ωf,δpτq
uδpτqqpτq �

» t
0

»
Ωf,δptq

uδ � Btq, as ν Ñ 0.

We compute that

�
» T

0

»
Ωf,δptq

uδ � BtpJτ,νptqqq �
» T

0

»
Ωf,δptq

uδ � jνpt� τqq �
» T

0

»
Ωf,δptq

uδ � Jτ,νptqBtq.

It is easy to see that » T
0

»
Ωf,δptq

uδJτ,νptqBtq Ñ
» t

0

»
Ωf,δptq

uδBtq.

So it remains to show that» T
0

»
Ωf,δptq

uδ � jνpt� τqq Ñ
»

Ωf,δpτq
uδpτqqpτq, as ν Ñ 0.
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By a change of variables, we compute that» T
0

»
Ωf,δptq

uδ � jνpt� τqq

�
» T

0

»
Ωf,δpτq

R� ωδptq
R� ωδpτq �uδ

�
t, x,

R� ωδptq
R� ωδpτqpR� yq �R



�jνpt�τqq

�
t, x,

R� ωδptq
R� ωδpτqpR� yq �R



�
» T

0

»
Ωf,δpτq

R� ωδp0q
R� ωδpτqw

�
t, x,

R� ωδp0q
R� ωδpτqpR� yq �R



�jνpt�τq �

» T
0

»
Ωf,δp0q

wpt, x, yq�jνpt�τq.

By (143), we have that» T
0

»
Ωf,δp0q

wpt, x, yq � jνpt� τq Ñ
»

Ωf,δp0q
wpτ, x, yq �

»
Ωf,δpτq

uδpτq � qpτq,

which establishes the desired convergence.
Final term: It is immediate to see that for all sufficiently small ν ¡ 0,»

Ωf,δp0q
u0 � Jτ,νp0qqp0q �

»
Ωf,δp0q

u0 � qp0q.

We can now easily take ν Ñ 0 in the remaining terms to obtain that for any τ P p0, T q X Sc,»
Ωf,δpτq

uδpτq � qpτq �
» t

0

»
Ωf,δptq

uδ � Btq � 1

2

» t
0

»
Ωf,δptq

rppuδ �∇quδq � q � ppuδ �∇qqq � uδs

� 1

2

» t
0

»
Γδptq

puδ � n� 2ξδ � nquδ � q � 2ν

» t
0

»
Ωf,δptq

Dpuδq : Dpqq

�
» t

0

»
Γδptq

�
1

2
|uδ|2 � pδ



qn � β

» t
0

»
Γδptq

rpξδqτ � puδqτ s � qτ �
»

Ωf,δp0q
u0 � qp0q.

Passing to the limit as τ Ñ 0 with τ P p0, T q X Sc gives the desired result.

Lemma 12.3. Let u0 be divergence free and smooth on Ωf p0q. Define

q̃pt, x, yq � Kδp0, t, x, yqu0

�
x,
R� ωδp0, xq
R� ωδpt, xq pR� yq �R



, (144)

where Kδ is given by (108). Then, there exists a sequence of functions q̃m P C1
c p0, T ;Vf,δptqq, with

Vf,δptq determined by the plate displacement ωδ via the definition (26), such that

max
0¤t¤T

||q̃ � q̃m||L2pΩf,δptqq Ñ 0, as mÑ8.

Proof. There exists a rectangular two-dimensional maximal domain ΩM of the form r0, Ls�r�R,Rmaxs
for some positive constant Rmax that contains all of the domains Ωf,δptq for t P r0, T s. We will ex-
tend q̃ to the maximal spacetime domain r0, T s�ΩM by extending vertically in the radial direction
by the trace of q̃ along Γδptq. In particular, we define

q̃pt, x, yq � Kp0, t, x, ωδpt, xqqu0 px, ωδp0, xqq , for pt, x, yq P pr0, T s �ΩM q � pr0, T s �Ωf,δptqq. (145)
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Note that this extension preserves the divergence free property.
We have the following two claims about the extended function, considered as a function on the

fixed maximal domain ΩM . First, we claim that q̃ P L8p0, T ;H1pΩM qq. Second, we claim that
q̃ P Cp0, T ;L2pΩM qq. To see that q̃ P L8p0, T ;H1pΩM qq, we note that ωδ and Bxωδ are bounded
uniformly pointwise, and furthermore u0 and its first spatial derivatives are bounded by assumption.
In addition, B2

xωδ P L8p0, T ;L2pΓqq, which allows us to conclude that q̃ P L8p0, T ;H1pΩM qq.
Next, we want to verify that q̃ P Cp0, T ;L2pΩM qq. Consider any t P r0, T s and consider any

s P r0, T s with s � t. We define the following regions:

Aps, tq � ΩM
f X pΩf,δpsq Y Ωf,δptqqc, Bps, tq � rΩf,δpsq X pΩf,δptqqcs Y rpΩf,δpsqqc X Ωf,δptqs,

Cps, tq � Ωf,δpsq X Ωf,δptq.

Consider ε ¡ 0. We want to find h ¡ 0 such that

||q̃pt, �q � q̃ps, �q||2L2pΩM q ¤ ε, for all s P pt� h, t� hq X r0, T s. (146)

We compute that

||q̃pt, �q � q̃ps, �q||2L2pΩM q �
»
Aps,tq

|q̃pt, x, yq � q̃ps, x, yq|2 �
»
Bps,tq

|q̃pt, x, yq � q̃ps, x, yq|2

�
»
Cps,tq

|q̃pt, x, yq � q̃ps, x, yq|2 � IA � IB � IC . (147)

We estimate each of the terms IA, IB, and IC separately.
For IA, we recall that we are extending by the trace as in (145) on Aps, tq, so we have that

IA �
»
Aps,tq

|Kδp0, t, x, ωδpt, xqq �Kδp0, s, x, ωδps, xqq|2 � |u0px, ωδp0, xqq|2.

We have that |u0px, ωδp0, xqq| ¤ M1 for some constant M1 by the fact that u0 is continuous on
Ωf p0q. By continuity, we can choose h ¡ 0 sufficiently small so that

|Kδp0, t, x, ωδpt, xqq�Kδp0, s, x, ωδps, xqq|2   ε

3M2
1 pR�RmaxqL, for all s P pt�h, t�hqXr0, T s.

Thus, for all s P pt� h, t� hq X r0, T s,

IA ¤ |Aps, tq| � ε

3pR�RmaxqL ¤ ε

3
.

For IB, we will use the fact that ωδ does not change much in time over small time intervals, by
continuity. We note that there exists a uniform constant M2 such that |q̃| ¤ M2 on r0, T s � ΩM .
Hence,

IB �
»
Bps,tq

|q̃pt, z, rq � q̃ps, z, rq|2 ¤ |Bps, tq| � 4M2
2 � 4M2

2

» L
0
|ωδpt, xq � ωδps, xq|dx.

Because ωδ P L8p0, T ;H2
0 pΓqq XW 1,8p0, T ;L2pΓqq, there exists h ¡ 0 sufficiently small such that

|ωδpt, xq � ωδps, xq| ¤ ε

12M2
2L

, for all x P r0, Ls and s P pt� h, t� hq X r0, T s.
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This allows us to conclude that IB ¤ ε
3 , for all s P pt� h, t� hq X r0, T s.

For IC , we refer to the definition of q̃ in (144) and note that Kδp0, t, x, yq is continuous in time
uniformly in px, yq P r0, Ls � r�R,Rmaxs, u0 is uniformly continuous as a function on Ωf p0q, and
ωδpt, xq is continuous in time uniformly in x P r0, Ls. Hence, there exists h ¡ 0 sufficiently small
such that

|q̃pt, x, yq � q̃ps, x, yq|2 ¤ ε

3pR�RmaxqL, for all px, yq P Cps, tq and s P pt� h, t� hq X r0, T s,

which gives the desired result that IC ¤ ε
3 for all s P pt � h, t � hq X r0, T s. Thus, by using (147),

we have established (146).
Since q̃ P L8p0, T ;H1pΩM qq X Cp0, T ;L2pΩM qq, we can extend q̃ to a continuous function on

all of R as follows. We can find an increasing sequence Tm with Tm Ñ T as m Ñ 8, such that
q̃pTmq P H1pΩM q for all m. Define an extension q̂m for each m to all of R by q̂m � q̃ if t P r0, Tms,

q̂m � q̃p0q, if t   0, q̂m � q̃pTmq, if t ¡ Tm.

Define
q̃m � q̂m � j1{m,

where the convolution is a convolution in time with jν for α � 1{m. Because q̂m P L8p0, T ;H1pΩM qqX
Cp0, T ;L2pΩM qq with q̂m being divergence free for every t P r0, T s, we have that q̃m restricted to�
tPr0,T sttu�Ωf,δptq gives a function in C1pr0, T q;Vf,δptqq, where Vf,δptq is the space defined in (26)

with the plate displacement ωδ. The fact that

max
0¤t¤T

||q̃ � q̃m||L2pΩf,δptqq Ñ 0, as mÑ8,

follows from the uniform continuity of q̃ on r0, T s as a function taking values in L2pΩM q, convergence
properties of convolutions, and the fact that q̃ P Cp0, T ;L2pΩM qq which gives the convergence

max
tPrTm,T s

||q̃pT q � q̃ptq||L2pΩM q Ñ 0, as mÑ8.

Lemma 12.4. For the function q̃ defined in (144), there exists a measure zero subset S of r0, T s
such that

lim
tÑ0,tPr0,T sXSc

»
Ωf,δptq

uδptq � q̃ptq �
»

Ωf,δp0q
u0 � q̃p0q.

Proof. Note that because Btq̃ is not necessarily in H1pΩf,δptqq, q̃ is not a valid test function. Thus,
we use the sequence q̃m P C1p0, T ;Vf,δptqq from Lemma 12.3, which satisfies

max
0¤t¤T

||q̃ � q̃m||L2pΩf,δptqq Ñ 0, as mÑ8.

We can then apply Lemma 12.2 to each of the test functions q̃m, to deduce that there exists a
measure zero subset Sm of r0, T s such that

lim
tÑ0,tPr0,T sXScm

»
Ωf,δptq

uδptq � q̃mptq �
»

Ωf,δp0q
u0 � q̃mp0q.
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In addition, by uniform boundedness, uδ P L8p0, T ;L2pΩf,δptqqq, and hence, there exists a measure
zero subset S0 of r0, T s, and a positive constant C such that ||u0||L2pΩf,δp0qq ¤ C, and

||uδptq||L2pΩf,δptqq ¤ C, for all t P Sc0. (148)

Define S � S0 Y
�
m¥1 Sm, which is also a measure zero subset of r0, T s. Then, for each m,

lim
tÑ0,tPr0,T sXSc

»
Ωf,δptq

uδptq � q̃mptq �
»

Ωf,δp0q
u0 � q̃mp0q. (149)

By passing to the limit in m, we claim that in addition,

lim
tÑ0,tPr0,T sXSc

»
Ωf,δptq

uδptq � q̃ptq �
»

Ωf,δp0q
u0 � q̃p0q.

To see this, consider ε ¡ 0. We claim that there exists h ¡ 0 sufficiently small such that for all
t P p0, hq X Sc, �����

»
Ωf,δptq

uδptq � q̃ptq �
»

Ωf,δp0q
u0 � q̃p0q

�����   ε.

We can choose M sufficiently large such that max
0¤t¤T

||q̃ � q̃M ||L2pΩf,δptqq  
ε

3C
, where C is defined

by (148). Therefore, for all t P r0, T s X Sc,�����
»

Ωf,δptq
uδptq � q̃ptq �

»
Ωf,δptq

uδptq � q̃M ptq
�����   ε

3
.

In addition, �����
»

Ωf,δp0q
u0 � q̃p0q �

»
Ωf,δp0q

u0 � q̃M p0q
�����   ε

3
.

By applying (149) with m �M , we can choose h ¡ 0 sufficiently small such that for all t P p0, hqXSc,�����
»

Ωf,δptq
uδptq � q̃M ptq �

»
Ωf,δp0q

u0 � q̃M p0q
�����   ε

3
.

Thus, by applying the triangle inequality, we have that for all t P p0, hq X Sc,�����
»

Ωf,δptq
uδptq � q̃ptq �

»
Ωf,δp0q

u0 � q̃p0q
�����   ε,

which establishes the desired result.

We can now prove the final result of this appendix. We recall the definition of pu from (103).

Lemma 12.5. In the limit as ν Ñ 0 we have the following convergence results:»
Ωf,δp0q

pup0q � puδqνp0q Ñ »
Ωf,δp0q

|u0|2, and

»
Ωf,δptq

puptq � puδqνptq Ñ »
Ωf,δptq

puptq � uδptq,
for almost all points t P p0, T s.
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Proof. The second convergence for almost all points t P p0, T s follows directly from Lemma 12.1
and the fact that pu P L8p0, T ;L2pΩf,δptqqq.

So we just need to verify the convergence at t � 0. To do this, we note that pup0q � u0. Hence,»
Ωf,δp0q

pup0q � puδqνp0q
�
»

Ωω0

�»
R
Kδps, 0, x, yquδ

�
s, x,

R� ωδps, xq
R� ωδp0, xqpR� yq �R



jδpt� sqds



u0px, yqdxdy

�
»
R

�»
Ωω0

Kδps, 0, x, yquδ
�
s, x,

R� ωδps, xq
R� ωδp0, xqpR� yq �R



� u0px, yqdxdy



jνpt� sqds

�
»
R

�»
Ωf,δpsq

uδps, x, yq � R� ωδp0, xq
R� ωδps, xqK

t
δ

�
s, 0, x,

R� ωδp0, xq
R� ωδps, xq pR� yq �R



�u0

�
x,
R� ωδp0, xq
R� ωδps, xq pR� yq �R



dxdy



jνpt� sqds.

We compute

R� ωδp0, xq
R� ωδps, xq �K

t
δ

�
s, 0, x,

R� ωδp0, xq
R� ωδps, xq pR� yq �R



�
��1 pR� yq∇

�
R�ωδp0,xq
R�ωδps,xq

	
0 R�ωδp0,xq

R�ωδps,xq

�

�
�� R�ωδp0,xq

R�ωδps,xq
0

�pR� yq∇
�
R�ωδp0,xq
R�ωδps,xq

	
1

�
�
�� 1� R�ωδp0,xq

R�ωδps,xq
pR� yq∇

�
R�ωδp0,xq
R�ωδps,xq

	
pR� yq∇

�
R�ωδp0,xq
R�ωδps,xq

	
R�ωδp0,xq
R�ωδps,xq

� 1

�

:� Kδp0, s, x, yq �Rδp0, s, x, yq.

Hence,»
Ωf,δp0q

pup0q � puδqνp0q
�
»
R

�»
Ωf,δpsq

uδps, x, yq �Kδp0, s, x, yqu0

�
x,
R� ωδp0, xq
R� ωδps, xq pR� yq �R



dxdy

�
jνpt� sqds

�
»
R

�»
Ωf,δpsq

uδps, x, yq �Rδp0, s, x, yqu0

�
x,
R� ωδp0, xq
R� ωδps, xq pR� yq �R



dxdy

�
jνpt� sqds � IK,δ � IR,δ.

Note that

IK,δ �
»
R

�»
Ωf,δpsq

uδps, x, yq � q̃ps, x, yqdxdy
�
jνpt� sqds

where q̃ is defined by (144). Since uδpsq � uδp�sq so that ωδpsq � ωδp�sq for s ¤ 0 (see the
extension procedure), we conclude by Lemma 12.4 that

IK,δ Ñ
»

Ωf,δp0q
u0 � q̃p0q �

»
Ωf,δp0q

|u0|2, as ν Ñ 0.

So it suffices to show that IR,δ Ñ 0 as ν Ñ 0. This follows from the fact that |Rδ| Ñ 0 uniformly
as sÑ 0. In particular,»

Ωf,δpsq

����uδps, x, yq � u0

�
x,
R� ωδp0, xq
R� ωδps, xq pR� yq �R


���� dxdy ¤ C, for almost all s P r0, T s,
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by the boundedness of uδ P L8p0, T ;L2pΩf,δptqq and the fact that u0 is uniformly bounded. In
addition, by the continuity properties of ωδ in time, we have that

max
px,yqPΩf,δpsq

|Rδp0, s, x, yq| Ñ 0, as sÑ 0,

which implies that IR,δ Ñ 0 as ν Ñ 0. This completes the proof.
We will use this result in the next section to estimate the first term T1, see (113) in the Gronwall’s

estimate.

12.2 Gronwall’s terms estimates

In this appendix we provide details of the derivation of the terms appearing in (113) and the
calculations providing the desired estimates of the terms in (113) used to prove Gronwall’s estimate
in Section 10.3.

Term T1. To derive term T1, defined in (115), we first multiply the weak formulation (97) for u
with the test function v � u� pquδqν to obtain the terms:

T1,1 � �
» t

0

»
Ωf ptq

u � Bt ru� pquδqνs � 1

2

» t
0

»
Γptq

pξ � nqu � ru� pquδqνs
�
»

Ωf ptq
uptq � ru� pquδqνsptq � »

Ωf p0q
up0q � ru� pquδqνsp0q,

where Ωf p0q is the fluid domain corresponding to the initial structure displacement ω0. We note
that u is smooth in time and pquδqν is differentiable in time as a result of the time convolution.
Thus, by the Reynold’s transport theorem,

T1,1 �
» t

0

»
Ωf ptq

Btu � ru� pquδqνs � 1

2

» t
0

»
Γptq

pξ � nqu � ru� pquδqνs.
Because u is smooth and by the weak convergence properties of pquδqν in Proposition 10.1,

T1,1 �
» t

0

»
Ωf ptq

Btu � ru� quδs � 1

2

» t
0

»
Γptq

pξ � nqu � ru� quδs �K1,1,ν ,

where K1,1,ν Ñ 0 as ν Ñ 0. Using estimates as found in [57], we can transfer the first integral from
Ω1ptq to Ωf,δptq at the cost of an additional term, so that

T1,1 �
» t

0

»
Ωf,δptq

Btpu � ppu� uδq � 1

2

» t
0

»
Γptq

pξ � nqu � pu� quδq � R̃1 �K1,1,ν ,

where

|R̃1| ¤ ε

» t
0
||pu� uδ||2H1pΩf,δptqq

� Cpεq
�» t

0
||ω � ωδ||2H2pΓq �

» t
0
||Btω � Btωδ||2L2pΓq �

» t
0
||pu� uδ||2L2pΩf,δptqq



.

Thus, by using Proposition 10.1 again,

T1,1 �
» t

0

»
Ωf,δptq

Btpu � ppu� puδqνq � 1

2

» t
0

»
Γptq

pξ � nqu � pu� pquδqνq � R̃1 �K1,1,ν , (150)
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where K1,1,ν Ñ 0 as ν Ñ 0.
Next, we test the regularized weak formulation for uδ with pu and obtain the following terms:

T1,2 � �
» t

0

»
Ωf,δptq

uδ � Btpu� 1

2

» t
0

»
Γδptq

pξδ � nδquδ � pu� »
Ωf,δptq

uδptq � puptq � »
Ωf p0q

uδp0q � pup0q.
We want to integrate by parts in time, but uδ is not necessarily smooth in time. Thus, we replace
uδ by its time regularization puδqν at the cost of a term K1,2,ν which goes to zero as ν Ñ 0 by
Proposition 10.1. Combining this with the Reynold’s transport theorem, we get:

T1,2 �
» t

0

»
Ωf,δptq

Bt rpuδqνs � pu� 1

2

» t
0

»
Γδptq

pξδ � nδqpuδqν � pu�K1,2,ν , (151)

where K1,2,ν Ñ 0 as ν Ñ 0.
Now, from the energy inequality, we obtain the terms

T1,3 � 1

2

»
Ωf,δptq

|uδptq|2 � 1

2

»
Ωf,δp0q

|uδp0q|2. (152)

Using the Reynold’s transport theorem, the total contribution T1 � T1,1 � T1,2 � T1,3 is

T1 � 1

2

»
Ωf,δptq

|puptq|2 � 1

2

»
Ωf,δp0q

|pup0q|2 � »
Ωf,δptq

ppu � puδqνqptq � »
Ωf,δp0q

ppu � puδqνqp0q
� 1

2

»
Ωf,δptq

|uδptq|2 � 1

2

»
Ωf,δp0q

|uδp0q|2 � 1

2

» t
0

»
Γδptq

pξδ � nδqpu � ppu� puδqνq

� 1

2

» t
0

»
Γptq

pξ � nqu � pu� pquδqνq � R̃1 �K1,1,ν �K1,2,ν .

By Proposition 10.1, puδqν and pquδqν converge weakly to uδ and quδ respectively, weakly in
L2p0, T,W 1,ppΩf,δptqqq and L2p0, T,W 1,ppΩf,1ptqqq for all p P r1, 2q. Furthermore, by Lemma 12.5
proved in the appendix above, we have that»

Ωf,δp0q
ppu � puδqνqp0q Ñ »

Ωf,δp0q
ppu � uδqp0q, »

Ωf,δptq
ppu � puδqνqptq Ñ »

Ωf,δptq
ppu � uδqptq. (153)

Thus, taking the limit as ν Ñ 0, the contribution of this term is now

T1 � 1

2

»
Ωf,δptq

|ppu� uδqptq|2 � 1

2

»
Ωf,δp0q

|ppu� uδqp0q|2
� 1

2

» t
0

»
Γδptq

pξδ � nδqpu � ppu� uδq � 1

2

» t
0

»
Γptq

pξ � nqu � pu� quδq � R̃1.

Since pup0q � uδp0q � u0, we obtain after some standard estimates that

T1 � 1

2

»
Ωf,δptq

|ppu� uδqptq|2 �R1,

where

|R1| ¤ ε

» T
0
||pu� u2.δ||2H1pΩf,δptqq

� Cpεq
�» T

0
||ω � ωδ||2H2pΓq �

» T
0
||Btω � Btωδ||2L2pΓq �

» T
0
||pu� uδ||2L2pΩf,δptqq



.
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This completes the calculations associated with term T1.

Term T2. To estimate term T2, defined in (116) above, we notice that since pquδqν converges
weakly to quδ in L2p0, T ;W 1,ppΩf,δptqqq for p P r1, 2q by Proposition 10.1, and because u is smooth,
as ν Ñ 0, we have that T2 converges to

T2 :� 1

2

» t
0

»
Ωf ptq

ppu �∇quq � pu� quδq � 1

2

» t
0

»
Ωf ptq

ppu �∇qpu� quδqq � u
� 1

2

» t
0

»
Ωf,δptq

ppuδ �∇quδq � ppu� uδq � 1

2

» t
0

»
Ωf,δptq

ppuδ �∇qppu� uδqq � uδ.
We note that the quantity

1

2

» t
0

»
Ωf,δptq

ppuδ�∇quδq�uδ, is well-defined because uδ P L8p0, T ;L2pΩf,δptqqqX

L2p0, T ;H1pΩf,δptqqq, which by interpolation is in L4p0, T ;H1{2pΩf,δptqqq, and hence by Sobolev in-
equalities embeds into L4p0, T ;L4pΩf,δptqqq.

We want to transfer the integrals» t
0

»
Ωf ptq

ppu �∇quq � pu� quδq, » t
0

»
Ωf ptq

ppu �∇qpu� quδqq � u, (154)

to integrals on Ωf,δptq by using the map ψδ : Ωf,δptq Ñ Ωf ptq defined by (99). We use

pu � γδJ
�1
δ � pu � ψδq, pu� uδ � γδJ

�1
δ � ppu� quδq � ψδq,

where we recall the definitions of the appropriate terms from (99), (101), (103), and (104).
Following arguments found in [57], we obtain the following estimates. We have, using (100),

that » t
0

»
Ωf ptq

ppu �∇quq � pu� quδq � » t
0

»
Ωf,δptq

γδrp∇pu � ψδqqJ�1
δ pu � ψδqs � pu� quδq � ψδ

�
» t

0

»
Ωf,δptq

rp∇pu � ψδqqpus � rγ�1
δ Jδppu� uδqs

�
» t

0

»
Ωf,δptq

rp∇pu � ψδqqpus � ppu� uδq � » t
0

»
Ωf,δptq

rp∇pu � ψδqqpus � rpI � γ�1
δ Jδqppu� uδqs

�
» t

0

»
Ωf,δptq

pp∇puqpuq � ppu� uδq � » t
0

»
Ωf,δptq

p∇ppI � γδJ
�1
δ qpu � ψδqqpuq � ppu� uδq

�
» t

0

»
Ωf,δptq

rp∇pu � ψδqqpus � rpI � γ�1
δ Jδqppu� uδqs

�
» t

0

»
Ωf,δptq

rppu �∇qpus � ppu� uδq �R2,1, (155)

where

R2,1 �
» t

0

»
Ωf,δptq

p∇ppI � γδJ
�1
δ qpu � ψδqqpuq � ppu� uδq � » t

0

»
Ωf,δptq

rp∇pu � ψδqqpus � rpI � γ�1
δ Jδqppu� uδqs.

In the following estimates, we will repeatedly use the following inequalities, which hold for a constant
C that is independent of δ:

|γ�1
δ Jδ � I| ¤ Cp|γ�1

δ � 1| � |∇γδ|q ¤ C||ω � ωδ||H2pΓq,
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|γδJ�1
δ � I| ¤ Cp|γδ � 1| � |∇γδ|q ¤ C||ω � ωδ||H2pΓq,

|∇pγδJ�1
δ q| ¤ Cp|Bxγδ| � |Bxxγδ|q ¤ Cp||ω � ωδ||H2pΓq � |Bxxpω � ωδq|q, (156)

so that
||∇pγδJ�1

δ q||L2pΩf,δptqq ¤ C||ω � ωδ||H2pΓq. (157)

To obtain (156), we estimate |Bxxγδ| by using the fact that ω is smooth so that |Bxxω| ¤ C and a
direct computation of Bxxγδ. Using these estimates, the Leibniz rule, and the smoothness of u, we
get �����

» t
0

»
Ωf,δptq

p∇ppI � γδJ
�1
δ qpu � ψδqqpuq � ppu� uδq

�����
¤ C

» t
0
||ω � ωδ||H2pΓq||pu� uδ||L2pΩf,δptqq ¤ C

�» t
0
||ω � ωδ||2H2pΓq �

» t
0
||pu� uδ||2L2pΩf,δptqq



.

By using (100), and the fact that |Jδ| ¤ C is uniformly bounded, due to the fact that |Jδ| ¤
Cp1� ||ω � ωδ||H2pΓqq ¤ C is uniformly bounded, we obtain a similar estimate:» t

0

»
Ωf,δptq

rp∇pu � ψδqqpus � rpI � γ�1
δ Jδqppu�uδqs ¤ C

�» t
0
||ω � ωδ||2H2pΓq �

» t
0
||pu� uδ||2L2pΩf,δptqq



.

Thus, we obtain

|R1| ¤ C

�» t
0
||ω � ωδ||2H2pΓq �

» t
0
||pu� uδ||2L2pΩf,δptqq



. (158)

We now focus on the second integral in (154). By using (100) we obtain» t
0

»
Ωf ptq

ppu �∇qpu� quδqq � u �
» t

0

»
Ωf,δptq

γδrp∇ppu� quδq � ψδqqJ�1
δ pu � ψδqs � pu � ψδq

�
» t

0

»
Ωf,δptq

rp∇ppu� quδq � ψδqqpus � pγ�1
δ Jδpuq

�
» t

0

»
Ωf,δptq

rp∇ppu� quδq � ψδqqpus � pu� » t
0

»
Ωf,δptq

rp∇ppu� quδq � ψδqqpus � rpI � γ�1
δ Jδqpus

�
» t

0

»
Ωf,δptq

p∇ppu� uδqpuq � pu� » t
0

»
Ωf,δptq

p∇rpI � γδJ
�1
δ qppu� quδq � ψδqspuq � pu

�
» t

0

»
Ωf,δptq

rp∇ppu� quδq � ψδqqpus � rpI � γ�1
δ Jδqpus

�
» t

0

»
Ωf,δptq

pppu �∇qppu� uδqq � pu�R2,2, (159)

where

R2,2 :�
» t

0

»
Ωf,δptq

p∇rpI�γδJ�1
δ qppu�quδq�ψδqspuq�pu�» t

0

»
Ωf,δptq

rp∇ppu�quδq�ψδqqpus�rpI�γ�1
δ Jδqpus.

To estimate R2,2, we will use the following inequalities:

|pu� quδq � ψ| � |γ�1
δ Jδ � ppu� uδq| ¤ C|pu� uδ|,

|∇ppu� quδq � ψδq| � |∇pγ�1
δ Jδ � ppu� uδqq| ¤ |∇pγ�1

δ Jδq| � |pu� uδ| � |γ�1
δ Jδ| � |∇ppu� uδq|

¤ Cp|∇pγ�1
δ Jδq| � |pu� uδ| � |∇ppu� uδq|q.
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From the fact that max
�|I � γ�1

δ Jδ|, |I � γδJ
�1
δ |� ¤ C min

�
1, ||ω � ωδ||H2pΓq

�
, we obtain:

|R2,2| ¤ C

�» t
0

»
Ωf,δptq

|∇pγδJ�1
δ q| � |pu� quδq � ψδ| � » t

0

»
Ωf,δptq

|I � γδJ
�1
δ | � |∇ppu� quδq � ψδq|

�
» t

0

»
Ωf,δptq

|I � γ�1
δ Jδ| � |∇ppu� quδq � ψδq|

�

¤ C

�» t
0

»
Ωf,δptq

�|∇pγδJ�1
δ q| � |∇pγ�1

δ Jδq|
� � |pu� uδ| � » t

0

»
Ωf,δptq

||ω � ωδ||H2pΓq � |∇ppu� uδq|
�

¤ ε

» t
0
||∇ppu� uδq||2L2pΩf,δptqq

� Cpεq
�» t

0
||ω � ωδ||2H2pΓq �

» t
0
||pu� uδ||2L2pΩf,δptqq



. (160)

In the last line, we use the following estimates, derived similarly as for (157),

|∇pγ�1
δ Jδq| ¤ Cp|Bxpγ�1

δ q| � |Bxγδ| � |Bxxγδ|q ¤ Cp||ω � ωδ||H2pΓq � |Bxxpω � ωδq|q,
||∇pγ�1

δ Jδq||L2pΩf,δptqq ¤ C||ω � ωδ||H2pΓq.

Therefore, for the expression in (116), after transferring the integrals (155) and (159) and
estimating R2,1 (158) and R2,2 (160), the remaining terms are:

1

2

» t
0

»
Ωf,δptq

rppu �∇qpus � ppu� uδq � rppu �∇qppu� uδqs � pu
� 1

2

» t
0

»
Ωf,δptqq

rpuδ �∇quδs � ppu� uδq � rpuδ �∇qppu� uδqs � uδ
� 1

2

» t
0

»
Ωf,δptq

rpppu� uδq �∇quδs � pu� 1

2

» t
0

»
Ωf,δptq

rpppu� uδq �∇qpus � uδ.
In absolute values, the right hand-side can be bounded as follows:

¤ ε

» t
0
||∇ppu� uδq||2L2pΩf,δptqq

� Cpεq
» t

0
||pu� uδ||2L2pΩf,δptqq

.

Combining this estimate with (158) and (160) we obtain

|T2| ¤ ε

» t
0
||∇ppu� uδq||2L2pΩf,δptqq

� Cpεq
�» t

0
||ω � ωδ||2H2pΓq �

» t
0
||pu� uδ||2L2pΩf,δptqq



.

Term T3. To estimate term T3 defined in (117), we start by noting that because u and ξ are
smooth, we can pass to the limit as ν Ñ 0 using Proposition 10.1 and the fact that pξδqν Ñ ξδ
strongly in L2p0, T ;H1pΩbqq, so that we can ultimately just test with v � u� quδ and ψ � ξ � ξδ.
In the regularized weak formulation for uδ, we test with u and ξ. Note that both test functions
u � quδ and pu � uδ have the same trace along Γptq and Γδptq respectively, which we will formally
denote by u � uδ along the reference configuration of the interface Γ. Combining the resulting
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expressions, we have the following contribution of T3 in the limit as ν Ñ 0:

T3 � 1

2

» t
0

»
Γptq

pu � n� ξ � nqu � pu� quδq � 1

2

» t
0

»
Γδptq

puδ � nδ � ξδ � nδquδ � pu
� 1

2

» t
0

»
Γptq

|u|2pξ � n� u � nq � 1

2

» t
0

»
Γptq

|u|2pξδ � n� quδ � nq
� 1

2

» t
0

»
Γδptq

|uδ|2pξ � nδ � pu � nδq � 1

2

» t
0

»
Γptq

pξ � n� u � nqu � quδ
� 1

2

» t
0

»
Γptq

pξδ � n� quδ � nq|u|2 � 1

2

» t
0

»
Γδptq

pξ � nδ � pu � nδq|uδ|2
� 1

2

» t
0

»
Γδptq

pξδ � nδ � uδ � nδquδ � pu � R3,1 �R3,2,

where

R3,1 � 1

2

» t
0

»
Γ
pξ � uqyuδ � pu� uδq � 1

2

» t
0

»
Γ
pξδ � uδqyu � pu� uδq,

R3,2 � 1

2

» t
0

»
Γ
Bxωpuqxu � uδ � 1

2

» t
0

»
Γ
Bxωpuδqx|u|2 � 1

2

» t
0

»
Γ
Bxωδpuqx|uδ|2 � 1

2

» t
0

»
Γ
Bxωδpuδqxu � uδ.

We estimate R3,1 as follows: decompose R3,1 as R3,1 � R3,1,1 �R3,1,2, where

R3,1,1 � �1

2

» t
0

»
Γ
pξqypu� uδq � pu� uδq � 1

2

» t
0

»
Γ
pξ � ξδqyu � pu� uδq,

R3,1,2 � 1

2

» t
0

»
Γ
puqypu� uδq � pu� uδq � 1

2

» t
0

»
Γ
pu� uδqyu � pu� uδq.

By interpolation,

|R3,1,1| ¤ C

�» t
0
||pu� uδ||1{2L2pΩf,δptqq

||pu� uδ||3{2H1pΩf,δptqq
�
» t

0
||ξ � ξδ||L2pΓq||pu� uδ||H1pΩf,δptqq



¤ ε

» t
0
||pu� uδ||2H1pΩf,δptqq

� Cpεq
�» t

0
||pu� uδ||2L2pΩf,δptqq

�
» t

0
||ξ � ξδ||2L2pΓq



.

By using the same interpolation inequality, we obtain the following estimate for R3,1,2.

|R3,1,2| ¤ ε

» t
0
||pu� uδ||2H1pΩf,δptqq

� Cpεq
» t

0
||pu� uδ||2L2pΩf,δptqq

.

We estimate R3,2 by first rewriting R3,2 as follows:

R3,2 � �1

2

» t
0

»
Γ
pBxω � Bxωδqpuqxu � pu� uδq � 1

2

» t
0

»
Γ
Bxωδpuqxpu� uδq � pu� uδq

� 1

2

» t
0

»
Γ
pBxω � Bxωδqpu� uδqx|u|2 � 1

2

» t
0

»
Γ
Bxωδpu� uδqxu � pu� uδq.

By interpolation, by the boundedness of |Bxω| and |Bxωδ|, and by the smoothness of u, we get:

|R3,2| ¤ ε

» t
0
||pu� uδ||2H1pΩf,δptqq

� Cpεq
�» t

0
||ω � ωδ||2H2pΓq �

» t
0
||pu� uδ||2L2pΩf,δptqq



.
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Hence, by combining the two estimates we get the final estimate for T3:

|T3| ¤ ε

» t
0
||pu� uδ||2H1pΩf,δptqq

� Cpεq
�» t

0
||ω � ωδ||2H2pΓq �

» t
0
||ξ � ξδ||2L2pΓq �

» t
0
||pu� uδ||2L2pΩf,δptqq



.

Term T4. To estimate term T4, defined in (118), we again use Proposition 10.1 to pass to the
limit as ν Ñ 0 so that the contribution from T4 is

T4 :� 2ν

» t
0

»
Ωf ptq

Dpuq : Dpu� quδq � 2ν

» t
0

»
Ωf,δptq

Dpuδq : Dppu� uδq. (161)

We want to transfer the integral on Ω1ptq to Ωf,δptq. Recalling (100), we have that» t
0

»
Ωf ptq

Dpuq : Dpu� quδq � » t
0

»
Ωf,δptq

γδr∇pu � ψδqJ�1
δ ss : r∇ppu� quδq � ψδqJ�1

δ ss,

where the superscript ‘s’ notation denotes a symmetrization. Following the procedure in [57], we
break up the integral as» t

0

»
Ωf ptq

Dpuq : Dpu � quδq � » t
0

»
Ωf,δptq

Dppuq : Dppu � uδq � R4,1 �R4,2 �R4,3 �R4,4, (162)

where

R4,1 �
» t

0

»
Ωf,δptq

p∇pu � ψδqJ�1
δ qs : r∇ppu� uδqpJ�1

δ � Iq � pJδ � Iq∇ppu� uδqJ�1
δ ss,

R4,2 �
» t

0

»
Ωf,δptq

rpI � γδJ
�1
δ q∇pu � ψδq �∇pu � ψδqpJ�1

δ � Iqss : Dppu� uδq,
R4,3 �

» t
0

»
Ωf,δptq

p∇pu � ψδqJ�1
δ qs : pγδ∇pγ�1

δ Jδqppu� uδqJ�1
δ qs,

R4,4 � �
» t

0

»
Ωf,δptq

rp∇pγδJ�1
δ qqu � ψδss : Dppu� uδq.

To verify this equality, one can use the Leibniz rule, the definition pu � γδJ
�1
δ � pu � ψδq, and the

identity pu� uδ � γδJ
�1
δ � ppu� quδq � ψδq.

We now estimate the terms R4,1-R4,4. For this purpose we will use the following inequalities:

|J�1
δ | ¤ Cp1� |Bxγδ|q, |J�1

δ � I| ¤ Cp|γ�1
δ � 1| � |Bxγδ|q,

|Jδ � I| ¤ Cp|γδ � 1| � |Bxγδ|q, |γδJ�1
δ � I| ¤ Cp|γδ � 1| � |Bxγδ|q.

and, recalling the definition of γδ in (99), we have the following inequalities:

|γδ � 1| ¤ C||ω � ωδ||H2pΓq, |γ�1
δ � 1| ¤ C||ω � ωδ||H2pΓq,

|Bxγδ| ¤ C||ω � ωδ||H2pΓq, |Bxpγ�1
δ q| ¤ C||ω � ωδ||H2pΓq.

Because |J�1
δ | ¤ Cp1� |Bxγδ|q ¤ C since |Bxγδ| is bounded, and because u is smooth,

|R4,1| ¤ C

» t
0
||∇ppu� uδq||L2pΩf,δptqqp||γ�1

δ � 1||L2pΩf,δptqq � ||γδ � 1||L2pΩf,δptqq � ||Bxγδ||L2pΩf,δptqqq

¤ ε

» t
0
||∇ppu� uδq||2L2pΩf,δptqq

� Cpεq
» t

0
||ω � ωδ||2H2pΓq.
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We also have that

|R4,2| ¤ ε

» t
0
||Dppu� uδq||2L2pΩf,δptqq

� Cpεq
» t

0
||ω � ωδ||2H2pΓq.

For R4,3 and R4,4, we compute that

∇pγ�1
δ Jδq � ∇

�
γ�1
δ 0

pR� yqγ�1
δ Bxγδ 1



, ∇pγδJ�1

δ q � ∇
�

γδ 0
�pR� yqBxγδ 1



.

Therefore,

|∇pγ�1
δ Jδq| ¤ Cp|Bxpγ�1

δ q| � |Bxγδ| � |Bxxγδ|q, |∇pγδJ�1
δ q| ¤ Cp|Bxγδ| � |Bxxγδ|q,

where we can estimate

|Bxxγδ| ¤ Cp||ω � ωδ||H2pΓq|Bxxω| � |Bxxpω � ωδq| � ||ω � ωδ||H2pΓqq.

So since ||Bxxω||L2pΩf,δptqq ¤ C since ω is uniformly bounded in H2pΓq, we have that

|R4,3| ¤ C

» t
0
||∇pγ�1

δ Jδq||L2pΩf,δptqq||pu� uδ||L2pΩf,δptqq ¤ C

» t
0
||ω � ωδ||H2pΓq||pu� uδ||L2pΩf,δptqq

¤ C

�» t
0
||ω � ωδ||2H2pΓq �

» t
0
||pu� uδ||2L2pΩf,δptqq



.

Similarly, using ||∇pγδJ�1
δ q||L2pΩf,δptqq ¤ C||ω � ωδ||H2pΓq, we have the following estimate for R4:

|R4,4| ¤ C

» t
0
||∇pγδJ�1

δ q||L2pΩf,δptqq||Dppu� uδq||L2pΩf,δptqq

¤ ε

» t
0
||Dppu� uδq||2L2pΩf,δptqq

� Cpεq
» t

0
||ω � ωδ||2H2pΓq.

We now have the final estimate of T4, obtained after using (161) and (162) as follows:

T4 � 2ν

» t
0

»
Ωf,δptq

|Dppu� uδq|2 �R4,

where

|R4| ¤ ε

» t
0
||Dppu� uδq||2L2pΩf,δptqq

� Cpεq
�» t

0
||ω � ωδ||2H2pΓq �

» t
0
||pu� uδ||2L2pΩf,δptqq



.

Term T5. Similarly as before, after passing to the limit as ν Ñ 0 in term T5, defined by (163),
the contribution of this term is

T5 � β

» t
0

»
Γptq

pξ�uqτ rpξ� ξδqτ �pu� quδqτ s�β » t
0

»
Γδptq

pξδ �uδqτ rpξ� ξδqτ �ppu�uδqτ s. (163)

We note that when we test the weak formulation for u with v � u � pquδqν and ψ � ξ � pξδqν ,
we can pass to the limit as ν Ñ 0 to obtain the first term in T5 above, by using similar arguments
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involving Proposition 10.1, as for the previously considered terms. This term can now be rewritten
as follows:

T5 � β

» t
0

»
Γδptq

|pξ � ξδqτ � ppu� uδqτ |2 �R5,

where

R5 � β

» t
0

»
Γptq

pξ � uqτ rpξ � ξδqτ � pu� quδqτ s � β

» t
0

»
Γδptq

pξ � puqτ rpξ � ξδqτ � ppu� uδqτ s.
Denote the arc length elements of Γtptq and Γδptq respectively by J ω

Γ �
a

1� |Bxω|2 and J ωδ
Γ �a

1� |Bxωδ|2, and we denote the tangent vectors to Γptq and Γδptq respectively by τ 1 � 1
J ω

Γ
p1, Bxωq

and τ δ � 1
J ωδ

Γ

p1, Bxωδq. We can now rewrite R5 by writing everything in terms of the x and

y components. For this purpose, recall that ξ and ξδ along the interface displace in only the
y direction. We formally express the common trace of u � quδ and pu � uδ along the reference
configuration of the interface Γ by u� uδ. Thus,

R5 � β

» t
0

»
Γ
pξ � uq � p1, Bxωqrpξ � ξδq � pu� uδqs � τ 1

� β

» t
0

»
Γ
pξ � uq � p1, Bxωδqrpξ � ξδq � pu� uδqs � τ δ.

In the previous step, we used the fact that when transferred back to the reference configuration
Ωf , pu� uδ and u� quδ have the same trace along Γ. Thus, R5 � R5,1 �R5,2, where

R5,1 � β

» t
0

»
Γ
pξ � uqypBxω � Bxωδqrpξ � ξδq � pu� uδqs � τ 1,

R5,2 � β

» t
0

»
Γ
pξ � uq � p1, Bxωδqrpξ � ξδq � pu� uδqs � pτ 1 � τ δq.

We can use the fact that |Bxω| and |Bxωδ| are uniformly bounded to obtain the following estimates:

|R5,1| ¤ ε

» t
0
||Dppu� uδq||L2pΩf,δptqq � Cpεq

�» t
0
||ω � ωδ||2H2pΓq �

» t
0
||ξ � ξδ||2L2pΓq



,

where we used the trace inequality, Poincare’s inequality, and Korn’s inequality for the fluid. For
the second term R6,2, we use the estimate |τω � τωδ | ¤ C|Bxω � Bxωδ| to obtain

|R5,2| ¤ ε

» t
0
||Dppu� uδq||L2pΩf,δptqq � Cpεq

�» t
0
||ω � ωδ||2H2pΓq �

» t
0
||ξ � ξδ||2L2pΓq



.

Hence,

T5 � β

» t
0

»
Γδptq

|pξ � ξδqτ � ppu� uδqτ |2 �R6,

where

|R5| ¤ ε

» t
0
||Dppu� uδq||L2pΩf,δptqq � Cpεq

�» t
0
||ω � ωδ||2H2pΓq �

» t
0
||ξ � ξδ||2L2pΓq



.
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Terms T6-T8. We will present estimates only for term T6, defined in (119), as the same procedure
will hold for T7 and T8. Since ζ and ζδ are weakly continuous in L2pΓq, by the weak formulation,
we get:» t

0

»
Γ
ζ � Bt rpζδqνs �

» t
0

»
Γ
ζδ � Btζ �

» t
0

»
Γ
ζ � Bt rpζδqνs �

» t
0

»
Γ
ζδ � Bt rpζqνs �

» t
0

»
Γ
ζδ � Bt rpζqν � ζs

Ñ
»

Γ
ζptq � ζδptq �

»
Γ
|ζ0|2.

This follows from Lemma 2.5 in [57], which implies:» t
0

»
Γ
ζ � Bt rpζδqνs �

» t
0

»
Γ
ζδ � Bt rpζqνs Ñ

»
Γ
ζptq � ζδptq �

»
Γ
|ζ0|2, as ν Ñ 0,

and from the fact that ζ is smooth in space and time, which implies» t
0

»
Γ
ζδ � Bt rpζqν � ζs Ñ 0, as ν Ñ 0.

Furthermore, because ζp0q � ζδp0q � ζ0 weak continuity of ζδ at t � 0 implies that

»
Γ
ζp0q � rζp0q �

pζδqνp0qs Ñ 0 as ν Ñ 0. Similarly,

»
Γ
ζpτq�rζpτq�pζδqνpτqs Ñ 0 as ν Ñ 0 for almost every t P r0, T s.

Hence, as ν Ñ 0, the contribution from T6 is

T6 � 1

2
ρp

»
Γ
|pζ � ζ2qpτq|2.

Similarly, the contributions from T7 and T8 as ν Ñ 0 are

T7 � 1

2

»
Γ
|∆pω � ω2qpτq|2, T8 � 1

2
ρb

»
Ωb

|pξ � ξ2qpτq|2.

Terms T9-T12. Since these calculations are straight forward, a discussion about the limiting
expressions as ν Ñ 0 for terms T9-T12 was presented earlier, just under (122).

Term T13. Similarly as before, by taking the limit as ν Ñ 0, we have that

T13 � �α
» t

0

»
Ωb,1ptq

p∇ � pξ � ξδq � α

» t
0

»
Ωδb,δptq

pδ∇ � pξ � ξδq.

To estimate this term we use (21) and the matrix identity B�1 � 1
detpBqB

C to obtain

|T13| � α

����» t
0

»
Ωb

J η
b p∇

η
b � pξ � ξδq �

» t
0

»
Ωb

J ηδδ
b pδ∇

ηδδ
b � pξ � ξδq

����
� α

����» t
0

»
Ωb

p � tr
�
∇pξ � ξδq � pI �∇ηqC�� » t

0

»
Ωb

pδ � tr
�
∇pξ � ξδq � pI �∇ηδδqC

	���� ¤ R13,1 �R13,2,

where the superscript “C” denotes the cofactor matrix. The integrals R13,1 and R13,2 are defined
as follows:

R13,1 � α

����» t
0

»
Ωb

p � tr
�
∇pξ � ξδq � p∇pη � ηδδqqC

	���� ,
R13,2 � α

����» t
0

»
Ωb

pp� pδq � tr
�
∇pξ � ξδq � pI �∇ηδδqC

	���� .
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In the previous calculations, we observe that the cofactor matrix operation is linear when the
matrices are two by two. Using the fact that p is smooth, the assumption (133), and the fact that

||∇ηδ �∇ηδδ||L2pΩbq ¤ C||∇η �∇η2||L2pΩ̃bq
¤ C

�||∇η �∇ηδ||L2pΩbq � ||ω � ωδ||H2pΓq

�
(164)

for a constant C independent of δ, by Young’s convolution inequality and the definition of odd
extension to the larger domain Ω̃b in Definition 8.2, we obtain the estimates on R13,1 and R13,2:

R13,1 ¤ ε

» t
0
||∇pξ � ξδq||2L2pΩbq

� Cpεq
�» t

0
||∇η �∇ηδδ||2L2pΩbq



¤ Cpεq

» t
0
||∇η �∇ηδ||2L2pΩbq

� ε

» t
0
||∇pξ � ξδq||2L2pΩbq

� Cpεq
�» t

0
||∇η �∇ηδ||2L2pΩbq

�
» t

0
||ω � ωδ||2H2pΓq



,

R13,2 ¤ ε

» t
0
||∇pξ � ξδq||2L2pΩbq

� Cpεq
�» t

0
||p� pδ||2L2pΩbq



.

Therefore, the final estimate for T13 is as follows:

|T13| ¤ Cpεq
» t

0
||∇η �∇ηδ||2L2pΩbq

� ε

» t
0
||∇pξ � ξδq||2L2pΩbq

� Cpεq
�» t

0
||∇η �∇ηδ||2L2pΩbq

�
» t

0
||ω � ωδ||2H2pΓq �

» t
0
||p� pδ||2L2pΩbq



.

Term T14. This term can be handled in the same way as terms T6-T8.

Term T15. We pass to the limit as ν Ñ 0 in (124) to obtain:

T15 � �α
» t

0

»
Ωb,1ptq

D

Dt
η �∇pp� pδq � α

» t
0

»
Ωδb,δptq

Dδ

Dt
ηδ �∇pp� pδq.

To estimate this term we pull back to the reference domain and use (21) and the cofactor formula
for the matrix inverse to obtain:

|T15| � α

����» t
0

»
Ωb

J η
b Btη �∇η

b pp� pδq �
» t

0

»
Ωb

J ηδδ
b Btηδ �∇ηδδ

b pp� pδq
����

� α

����» t
0

»
Ωb

Btη �
�
∇pp� pδq � pI �∇ηqC�� » t

0

»
Ωb

Btηδ �
�
∇pp� pδq � pI �∇ηδδqC

����� ¤ R15,1 �R15,2,

where

R15,1 � α

����» t
0

»
Ωb

Btη �
�
∇pp� pδq � p∇η �∇ηδδqC

����� ,
R15,2 � α

����» t
0

»
Ωb

pBtη � Btηδq �
�
∇pp� pδq � pI �∇ηδδqC

����� .
To estimate R15,1, we use (131), (132), and the convolution inequality (164) to obtain:

R15,1 ¤ ε

» t
0
||∇pp� pδq||2L2pΩδb,δptqq

� Cpεq
» t

0
||∇η �∇ηδ||2L2pΩbq

� Cpεq
�» t

0
||∇η �∇ηδ||2L2pΩbq

�
» t

0
||ω � ωδ||2H2pΓq



.
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Here, we also used the following estimate on the norm of the gradient of the pressure on the reference
domain and on the moving domain, which is obtained by using (131), (132), and (21):

||∇pp� pδqptq||2L2pΩbq
�
»

Ωb

|∇pp� pδq|2 �
»

Ωb

J ηδδ
b |∇ηδδ

b pp� pδq � pI �∇ηδδq|2 � pJ ηδδ
b q�1

¤ C

»
Ωb

J ηδδ
b |∇ηδδ

b pp� pδq|2 � C||∇pp� pδqptq||2L2pΩδb,δptqq
, (165)

where constant C is independent of δ and t P r0, Tδs.
The estimate of R15,2 is straight forward:

R15,2 ¤ ε

» t
0
||∇pp� pδq||2L2pΩδb,δptqq

� Cpεq
» t

0
||Btη � Btηδ||2L2pΩbq

.

From here we get the final estimate of T15:

|T15| ¤ ε

» t
0
||∇pp� pδq||2L2pΩδb,δptqq

� Cpεq
» t

0
||∇η �∇ηδ||2L2pΩbq

� Cpεq
�» t

0
||∇η �∇ηδ||2L2pΩbq

�
» t

0
||ω � ωδ||2H2pΓq �

» t
0
||Btη � Btηδ||2L2pΩbq



.

Term T16. To estimate T16 defined in (125) we start by passing to the limit as ν Ñ 0 to obtain

T16 � �α
» t

0

»
Γptq

pξ � nqpp� pδq � α

» t
0

»
Γδδptq

pξδ � nδδqpp� pδq,

where nδδ is the upward pointing normal vector to Γδδptq. We integrate by parts to obtain that
|T16| ¤ R16,1 �R16,2, where

R16,1 :� α

�����
» t

0

»
Ωb,1ptq

p∇ � ξqpp� pδq �
» t

0

»
Ωδb,δptq

p∇ � ξδqpp� pδq
����� ,

R16,2 :� α

�����
» t

0

»
Ωb,1ptq

ξ �∇pp� pδq �
» t

0

»
Ωδb,δptq

ξδ �∇pp� pδq
����� .

By using (21) and the bootstrap assumption (133), we have that

R16,1 � α

����» t
0

»
Ωb

J η
b ptrp∇η

bξqqpp� pδq �
» t

0

»
Ωb

J ηδδ
b ptrp∇ηδδ

b ξδqqpp� pδq
����

� α

����» t
0

»
Ωb

trp∇ξ � pI �∇ηqCqpp� pδq �
» t

0

»
Ωb

trp∇ξδ � pI �∇ηδδqCqpp� pδq
����

¤ α

����» t
0

»
Ωb

trp∇ξ � p∇η �∇ηδδqCqpp� pδq
����� α

����» t
0

»
Ωb

trp∇pξ � ξδq � pI �∇ηδδqCqpp� pδq
����

¤ C

» t
0
||∇η �∇ηδδ||L2pΩbq � ||p� pδ||L2pΩbq � C

» t
0
||∇ξ �∇ξδ||L2pΩbq � ||p� pδ||L2pΩbq.
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For R16,2, we compute

R16,2 � α

����» t
0

»
Ωb

ξ � �∇pp� pδq � pI �∇ηqC�� » t
0

»
Ωb

ξδ �
�
∇pp� pδq � pI �∇ηδδqC

�����
¤ α

����» t
0

»
Ωb

ξ �
�
∇pp� pδq � p∇η �∇ηδδqC

������ α

����» t
0

»
Ωb

pξ � ξδq �
�
∇pp� pδq � pI �∇ηδδqC

�����
¤ C

» t
0
||∇p�∇pδ||L2pΩbq � ||∇η �∇ηδδ||L2pΩbq � C

» t
0
||ξ � ξδ||L2pΩbq � ||∇p�∇pδ||L2pΩbq.

By the convolution inequality (164) and the previous estimate on the gradient of the pressure (165),
we conclude that

|T16| ¤ ε

�» t
0
||∇ξ �∇ξδ||2L2pΩbq

�
» t

0
||∇p�∇pδ||2L2pΩδb,δptqq



� Cpεq

�» t
0
||p� pδ||2L2pΩbq

�
» t

0
||∇η �∇ηδ||2L2pΩbq

�
» t

0
||∇η �∇ηδ||2L2pΩbq

�
» t

0
||ω � ωδ||2H2pΓq �

» t
0
||ξ � ξδ||2L2pΩbq



.

Term T17. To estimate term T17 defined in (126) we use (21) to compute

T17 � κ

» t
0

»
Ωb

J η
b ∇

η
bp �∇η

b pp� pδq � κ

» t
0

»
Ωb

J ηδδ
b ∇ηδδ

b pδ �∇
ηδδ
b pp� pδq

� κ

» t
0

»
Ωb

J ηδδ
b ∇ηδδ

b pp� pδq �∇ηδδ
b pp� pδq � I1 � I2 � κ

» t
0

»
Ωδb,δptq

|∇pp� pδq|2 �R17,1 �R17,2,

where

R17,1 � κ

» t
0

»
Ωb

J η
b ∇

η
bp �∇η

b pp� pδq � κ

» t
0

»
Ωb

J ηδδ
b ∇η

bp �∇
ηδδ
b pp� pδq,

R17,2 � κ

» t
0

»
Ωb

J ηδδ
b p∇η

bp�∇ηδδ
b pq �∇

ηδδ
b pp� pδq.

To estimate R17,1, we use (21) to obtain

R17,1 � κ

» t
0

»
Ωb

∇η
bp �

�
∇pp� pδq �

�
pI �∇ηqC � pI �∇ηδδqC

� 	
.

Because η is smooth, |∇η
bp| ¤ C uniformly in space and time. Therefore,

|R17,1| ¤ C

» t
0
||∇pp� pδq||L2pΩbq � ||p∇η �∇ηδδqC ||L2pΩbq.

Using the estimate in (165), we obtain the desired estimate that

|R17,1| ¤ ε

» t
0
||∇pp� pδq||2L2pΩδb,δptqq

� Cpεq
» t

0
||∇η �∇ηδδ||2L2pΩbq

.

To estimate R17,2, we use the bootstrap assumption (133) that there exists a constant C (inde-
pendent of δ) such that |∇ηδδ| ¤ C pointwise for t P r0, Tδs. Therefore, |pI �∇ηδqC | is pointwise
uniformly bounded in space and time on the time interval r0, Tδs. Thus, by (21),

R17,2 � κ

» t
0

»
Ωb

p∇η
bp�∇ηδδ

b pq �
�
∇pp� pδq � pI �∇ηδδqC

�
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and hence

|R17,2| ¤ C

» t
0
||∇η

bp�∇ηδδ
b p||L2pΩbq � ||∇pp� pδq||L2pΩbq.

We estimate the first pressure term by using (21) to obtain

||∇η
bp�∇ηδδ

b p||2L2pΩbq
�
»

Ωb

���∇p � �pI �∇ηq�1 � pI �∇ηδδq�1
����2

�
»

Ωb

���∇p � pI �∇ηδδq�1rpI �∇ηδδqpI �∇ηq�1 � Is
���2

�
»

Ωb

���∇p � pI �∇ηδδq�1rpI �∇ηδδq � pI �∇ηqspI �∇ηq�1
���2

�
»

Ωb

���∇p � pI �∇ηδδq�1p∇ηδδ �∇ηqpI �∇ηq�1
���2 .

Using the fact that p is smooth and the bootstrap assumption (132), we have that

||∇η
bp�∇ηδδ

b p||2L2pΩbq
¤ C||∇ηδδ �∇η||2L2pΩbq

.

Therefore, combining this with (165) we obtain

R17,2 ¤ ε

» t
0
||∇pp� pδq||2L2pΩδb,δptqq

� Cpεq
» t

0
||∇η �∇ηδδ||2L2pΩbq

.

The final estimate of T17 now follows after the application of the convolution inequality (164):

T17 ¤ κ

» t
0

»
Ωδb,δptq

|∇pp� pδq|2 �R17,

where the remainder is bounded by

|R17| ¤ ε

» t
0
||∇pp� pδq||2L2pΩδb,δptqq

� Cpεq
�» t

0
||∇η �∇ηδ||2L2pΩbq

�
» t

0
||∇η �∇ηδ||2L2pΩbq

�
» t

0
||ω � ωδ||2H2pΓq



.

Term 18. Here want to estimate

T18 �
» t

0

»
Γptq

ppu� ξq � n�
» t

0

»
Γptq

ppuδ � ξδq � n�
» t

0

»
Γδptq

pδpu� ξq � nδ �
» t

0

»
Γδptq

pδpuδ � ξδq � nδ

�
» t

0

»
Γptq

ppu� ξq � nqpp� pδq �
» t

0

»
Γδptq

ppuδ � ξδq � nδqpp� pδq

� �
» t

0

»
Γptq

ppuδ � ξδq � n�
» t

0

»
Γδptq

pδpu� ξq � nδ �
» t

0

»
Γptq

ppu� ξq � nqpδ �
» t

0

»
Γδptq

ppuδ � ξδq � nδqp.
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By mapping all of the integrals back to the reference domain Γ, we obtain

T18 � �
» t

0

»
Γ
ppuδ � ξδq � p�Bxω, 1q �

» t
0

»
Γ
pδpu� ξq � p�Bxωδ, 1q

�
» t

0

»
Γ
pδpu� ξq � p�Bxω, 1q �

» t
0

»
Γ
ppuδ � ξδq � p�Bxωδ, 1q

�
» t

0

»
Γ
ppuδ � ξδqx � pBxω � Bxωδq �

» t
0

»
Γ
pδpu� ξqx � pBxω � Bxωδq

� �
» t

0

»
Γ
prpu� ξqx � puδ � ξδqxs � pBxω � Bxωδq �

» t
0

»
Γ
pp� pδqpu� ξqx � pBxω � Bxωδq.

The absolute value is bounded as follows:����» t
0

»
Γ
prpu� ξqx � puδ � ξδqxs � pBxω � Bxωδq

����� ����» t
0

»
Γ
pp� pδqpu� ξqx � pBxω � Bxωδq

����
¤ C

�» t
0
||pu� ξqx � puδ � ξδqx||L2pΓq||Bxω � Bxωδ||L2pΓq �

» t
0
||p� pδ||L2pΓq||Bxω � Bxωδ||L2pΓq



.

After the application of the trace theorem, Poincare’s inequality, and Korn’s inequality we obtain
the final estimate:

|T18| ¤ ε

�» t
0
||Dppu� uδq||2L2pΩf,δptqq

�
» t

0
||∇pξ � ξδq||L2pΩbq �

» t
0
||∇pp� pδq||2L2pΩδb,δptqq



� Cpεq

» t
0
||ω � ωδ||2H2pΓq.
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