FLUID-POROVISCOELASTIC STRUCTURE INTERACTION
PROBLEM WITH NONLINEAR COUPLING

Jeffrey Kuan, Suncica Cani¢, Boris Muha

July 30, 2023

Abstract

We prove the existence of a weak solution to a fluid-structure interaction (FSI) problem
between the flow of an incompressible, viscous fluid modeled by the Navier-Stokes equations,
and a poroviscoelastic medium modeled by the Biot equations. The two are nonlinearly coupled
over an interface with mass and elastic energy, modeled by a reticular plate equation, which is
transparent to fluid flow. The existence proof is constructive, consisting of two steps. First, the
existence of a weak solution to a regularized problem is shown. Next, a weak-classical consistency
result is obtained, showing that the weak solution to the regularized problem converges, as the
regularization parameter approaches zero, to a classical solution to the original problem, when
such a classical solution exists. While the assumptions in the first step only require the Biot
medium to be poroelastic, the second step requires additional regularity, namely, that the Biot
medium is poroviscoelastic. This is the first weak solution existence result for an FSI problem
with nonlinear coupling involving a Biot model for poro(visco)elastic media.

1 Introduction and motivation

In this paper we study a time-dependent nonlinearly coupled fluid-structure interaction problem
between the flow of an incompressible, viscous fluid, modeled by the Navier-Stokes equations,
and bulk poroviscoelasticity modeled by the Biot equations. Bulk poroviscoelasticity means that
the dimensions of the “free fluid flow” domain and the poroviscoelastic medium domain are the
same. In particular, in this manuscript we consider the 2D case, see Fig. 1, which captures the
main mathematical difficulties of such coupling. The free fluid flow and the Biot poro(visco)elastic
medium are coupled across the current location of the interface, which has inertia and elastic energy,
modeled by the reticular plate equation. A reticular plate is a lattice-type structure characterized
by two properties: periodicity and small thickness, where periodicity refers to periodic cells (holes)
distributed in all directions [25]. The reticular plate interface is transparent to fluid flow. We are
interested in the existence of finite energy weak solutions (of the Leray-Hopf type).

The problem we study here arises in many applications. In particular, we mention encapsulation
of bioartificial organs [65] and blood flow in arteries which are modeled as poro(visco)elastic media
to study drug transport through the vascular walls [3,16,17]. The reticular plate can be used to
capture the elastodynamics behavior of the intima/elastic laminae layer of arterial walls which is in
direct contact with the blood flow on one side, and a poroelastic medium consisting of the arterial
media/adventitia complex on the other side.

From the mathematical point of view the primary difficulties in studying 2D or 3D Navier-Stokes
equations nonlinearly coupled to the 2D or 3D bulk poro(visco)elasticity arise from the fact that
the finite energy solutions do not posses sufficient regularity to (1) define the moving domain and
the corresponding traces, and (2) guarantee that all the integrals in the weak formulation of the
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Figure 1: A sketch of the fluid-poroelastic structure interaction domain.

problem are well-defined. The first issue is related to the difficulties associated with 3D-3D fluid-
structure coupling. The second issue is a consequence of the geometric nonlinearities associated
with moving domain problems. These are the main reasons why to this day there have been no
works on the existence of weak solutions for the Biot-Navier-Stokes coupled problems in which the
coupling is assumed over a moving interface.

To get around these difficulties, we take the following approaches. First, the reticular plate
at the interface associates mass and elastic energy to the interface, and regularizes the boundary
of the fluid domain. This is, however, not sufficient to deal with the fact that in the nonlinearly
coupled problem, the Biot domain is also moving, and as a result certain integrals in the weak
formulation over the moving Biot domain are not well defined. This is why we introduce a “consis-
tent regularized weak formulation” of the coupled problem by introducing a suitably constructed
convolution in spatial variables and regularizing only the problematic terms in the weak formula-
tion of the coupled problem. We then prove the existence of a weak solution to the regularized
problem and show that as the regularization parameter tends to zero, this solution converges to the
solution of the original nonregularized problem in the case when the original problem has a classi-
cal solution and the Biot poroelastic matrix is viscoelastic, where a classical solution is a solution
that is smooth both temporally and spatially that hence satisfies the original system of PDEs for
the original FPSI problem pointwise. We call this type of result a weak-classical consistency
result. Namely, we prove that if a classical solution for the fluid-poroviscoelastic structure interac-
tion (FPSI) problem without regularization exists on time-interval [0,T], then a sequence of weak
solutions to the regularized FPSI problem constructed here, converges to the classical solution on
[0, 7] as the regularization parameter converges to 0.

We mention that the existence of a weak solution to the regularized problem was considered
by the authors of this manuscript in [40], where only the main steps in the proof were outlined.
Here we present details of that proof, and show the weak-classical consistency result. Therefore, in
this manuscript we prove the existence of a weak solution to a nonlinearly coupled fluid-structure
interaction problem between the flow of an incompressible, viscous fluid modeled by the Navier-
Stokes equations, and a structure consisting of two solids — a thick poroviscoelastic medium modeled
by the Biot equations, and a thin interface with mass modeled by a reticular plate equation. We
mention that no viscoelasticity is needed for the proof of the existence of a weak solution to the
regularized problem. The existence of a weak solution to the regularized problem holds in the
purely poroelastic case (and in the viscoelstic case). Viscoelasticity of the Biot poroelastic matrix
is needed only in the proof of weak-classical consistency.

One of the interesting features of this work is that the proof of the existence of a weak solu-
tion is comstructive. The main steps of the proof can be used to construct a numerical scheme
to capture the physical solution to the problem [56]. The main idea of the proof is based on
semidiscretizing the regularized FPSI problem in time by subdividing the time interval into N



subintervals of width At. At each time step we split the reticular plate subproblem from the regu-
larized fluid-Biot subproblem using a Lie operator splitting strategy [31]. To deal with the moving
domains we use the Lagrangian map for the Biot domain, and an Arbitrary Lagrangian-Eulerian
mapping for the fluid domain, which maps a fixed, reference domain onto the current, physical do-
main. We switch between the reference domain formulation and moving domain formulation in the
proof as needed. For each At, approximate solutions are constructed by “solving” the sequence of
semidiscretized (linearized) problems defined on the current (approximate) moving domain for each
t, = nAt,n=1,...,N. For each fixed At, we obtain energy estimates uniform in At, which allow
us to deduce the existence of weakly and weakly* convergent subsequences. Since the problem is
highly nonlinear, these are not sufficient to pass to the limit in the weak formulations of the approx-
imate problems. Strong convergence of approximate sequences is then obtained by using several
compactness results: the classical Aubin-Lions compactness lemma [52] for the Biot displacement,
Arzela-Ascoli for the plate displacement, Dreher and Jingel’s compactness result [28] for the Biot
and plate velocity and pore pressure, and a recent generalized Aubin-Lions-Simon compactness
result by Muha and Cani¢ [47], to deal with the most involved part, which is the free fluid veloc-
ity defined on different time-dependent fluid domains. Once strongly convergent subsequences are
obtained from the compactness results, one would like to pass to the limit in the weak formulation
to show that the limits of the subsequences are weak solutions to the regularized fluid-poroelastic
structure interaction problem. However, this cannot be done yet, since the velocity test functions
are also defined on moving domains and we need to construct “appropriate” test functions which
can be compared for different domains, and for which we can show converge to a test function
of the limiting, continuous problem. Luckily, in contrast with the classical fluid-elastic structure
interaction problems, in our case the fluid test functions decouple from the structure problem, and
o it is a bit easier to construct appropriate test functions for which one can show uniform pointwise
convergence to a test function for the continuous problem. With this final step, we can pass to the
limit in the weak formulations of approximate problems and show that the limits of approximate
subsequences satisfy the continuous weak formulation of the regularized problem. This existence
result is local in time because we can guarantee the nondegeneracy of the fluid domains both for
the free fluid flow and the filtrating flow through the poroelastic medium only locally in time.
However, using the approaches presented in [20, Section 5] the time of existence can be extended
to the maximal time until either (1) the moving fluid domain or Biot domain degenerates (e.g., the
interface touches the bottom of the fluid domain or the top of the Biot domain), (2) the pores in
the poroelastic matrix denegerate in the sense that the Lagrangian mapping stops being injective,
or (3) T = 0.

We finish this manuscript by addressing the weak-classical consistency of the regularized prob-
lem, namely, we prove, using a Gronwall-type estimate, that the energy of the difference between
the weak solution of the regularized problem and the classical (temporally and spatially smooth)
solution to the original, nonregularized problem with viscoelastic Biot poroelastic matrix, converges
to zero as the regularization parameter tends to zero. While the main idea is simple, the estimates
are quite nontrivial due to the fact that we need to work with the integrals over regularized Biot
domains and compare them with the integrals over the nonregularized moving domains. Details
are presented in Section 10.

2 Literature review

There is extensive past work on fluid-structure interaction studying fully coupled systems involving
incompressible, Newtonian fluids interacting with elastic structures. In many fluid-structure inter-



action models considered in the literature, the solid structure, which is elastic or deformable, is mod-
eled by equations of elasticity. The models first considered in the literature are linearly coupled fluid-
structure interaction models [4,5,42], which pose the fluid equations on a fixed reference fluid do-
main, as a linearization that approximates real-life dynamics well when structure displacements and
deformations are small. In cases when displacements and deformations of the structure are large,
they can significantly affect the dynamics of the fluid in which case time-dependent moving fluid
domains that depend on the displacement itself must be taken into account. There has been exten-
sive work on studying such nonlinearly coupled models [8,20,22,23,26,27,32-36,41,43,44,47-51,55],
in which the time-dependent and a priori unknown fluid domain evolves according to the displace-
ment of the structure, giving rise to a fully coupled problem with two-way coupling between the
fluid and structure that has significant geometric nonlinearities arising from the moving boundary.
As a result of past work in fluid-structure interaction, significant progress has been made within
the past 20 years in the mathematical analysis of fluid-structure systems involving incompressible
fluids and elastic structures.

However, many elastic materials, such as biological tissues and sediments that interact with
fluids are not impermeable and can admit fluid flow through their pores, in which case poroelasticity
of the material needs to be taken into account. The study of poroelasticity was initiated in studies
by Biot modeling soil consolidation [9,10], but has since been extended to broader applications.
Such porous media and poroelastic materials are found in applications to geoscience, including
the study of fractures in porous and poroelastic materials [30,45] and more recently, applications
to biomedical science, including the study of the ocular poroelastic tissue known as the lamina
cribrosa, which is related to understanding the onset of glaucoma [18], and the modeling of intestinal
walls by equations of poroelasticity [66]. In addition to modeling, the mathematical study of
poroelastic materials and the Biot equations in terms of well-posedness has also been an active
area of research [6,7,11,13-15,54,59,60,63].

More recently, there has been a need in applications to understand not just poroelastic materials
by themselves, but the interaction between poroelastic materials and fluids. Mathematically, such
systems are described by coupling fluid equations (e.g. the Navier-Stokes or Stokes system) with
poroelasticity. These coupled problems are referred to as fluid-poroelastic structure interaction
(FPSI) problems, and have been analyzed, for instance, in [2,19,61], where linear coupling between
the free fluid equations and poroelastic medium was assumed. Recent progress in the design of
bioartificial organs, see e.g., [65], sparked the need to study FPSI problems in which the fluid-
structure interface has mass and elastic or poroelastic properties itself. Namely, in the recent work
on the design of a bioartificial pancreas [65], the bioartifical pancreas consists of an encapsulated
poroelastic agarose gel containing transplanted pancreatic cells, where the capsule containing the
poroelastic medium is itself poroelastic, and it is designed to protect the transplanted cells within
the poroelastic agarose gel from the patient’s own immune cells, while allowing the passage of oxygen
and nutrients to the cells for long time viability. This capsule is a thin poroelastic membrane/plate
which sits at the interface between the poroelastic gel containing the transplanted cells, and the
flow of blood carrying oxygen and nutrients to the bioartificial organ. The resulting mathematical
problem in [65] is a fluid-poroelastic structure interaction problem in which the structure consists
of two layers: a thin poroelastic plate located at the interface between the free fluid flow and a
thick poroelastic medium modeled by the linear and nonlinear Biot equations, coupled over a fixed
interface (linearized coupling). The well-posedness for this problem was studied in [12] for both
the linear and nonlinear Biot equations, where the nonlinearity refers to the dependence of the
permeability tensor in the Biot equations on the fluid content. In this work the fluid-structure
interface with mass serves as a regularizing mechanism and provides sufficient information about
the regularity of the interface and the free fluid domain to allow, for the first time, the proof of the



existence of a finite energy weak solution.

None of the works that address weak solutions to fluid-structure interaction problems between
the flow of an incompressible, viscous fluid and a poroelastic solid have taken into account non-
linear coupling over the moving interface. Such problems, however, are of importance in many
applications, including the flow of blood in coronary arteries sitting on the surface of the heart, and
contracting and relaxing with each heart beat [17,64]. To understand large displacements that occur
due to the contractions of the heart muscle, and capture the flow of drugs through the vascular wall,
nonlinear coupling between the blood flow and vascular walls, modeled as poro(visco)elastic media,
needs to be taken into account. The goal of the current manuscript is to develop a well-posedness
theory for a nonlinearly coupled (moving boundary) fluid-poroelastic structure interaction prob-
lem by constructing new tools for dealing with the equations of poroelasticity defined on a priori
unknown and time-dependent domains.

3 Description of the main problem

We study fluid-structure interaction between the flow of an incompressible, viscous fluid and a
multilayered poro(visco)elastic structure consisting of two layers: a thick poro(visco)elastic layer
modeled by the Biot equations, and a thin elastic layer modeled by the reticular plate equation. The
problem is set on a two dimensional domain, which embodies all the main mathematical difficulties
associated with the analysis of this problem. The entire two dimensional domain ) is a union of the
reference domain for the fluid subproblem Q f» the reference domain for the Biot poroviscoelastic
material ), and the reference domain I' of the elastic reticular plate which serves as the interface
separating the free fluid flow and the Biot medium:

Q=000 uT, where O = (0,L) x (0,R), T' = (0,L) x {0}, Q; = (0,L) x (—R,0).

These domains will evolve in time, giving rise to the time-dependent Q(t) = Qp(t) U Qs (t) U T'(t).
We will be using the hat notation to denote objects associated with the reference domain. On each
subdomain we will consider the following mathematical models.

3.1 The Biot equations on a moving domain

The Biot system consists of the elastodynamics equation, which in this work will be defined on the
Lagrangian domain O, and the fluid equation, which in this work will be defined on the Eulerian
domain Q4(t). Let 7 : [0, T] x Q — R? denote the displacement of the Biot poroviscoelastic matrix
from its reference configuration, and let p : (), — R denote the fluid pore pressure. To specify the
fluid equation given in terms of the fluid pore pressure in Eulerian formulation, we introduce the
Lagrangian map by R R

By (t,) =Id + (. ) : U — (1), (1)

with (®7)71(¢,-) : Q(t) — Q) denoting its inverse. The Biot equations are then given by:

pbatt,f’ = @ . S’b(ﬁ’fhﬁ) in Qba (2)
€o

D D
— ZptaV.-—n=V-(sV in (%), 3
[det(V®])] o (87)—1 Dt" D" (kVp) (1) (3)

where D% = % + ((ém(t,-) o (®@])71(¢,-)) - V) is the material derivative. The first equation de-

scribes the elastodynamics of the poroelastic solid matrix, while the second equation models the



conservation of mass principle of the filtrating fluid. See, e.g., [58,67]. To recover the filtration
fluid velocity q, Darcy’s law is used:

qg=—kVp on (1), (4)

where & is a positive permeability constant.
In this work, we will consider both the viscoelastic and the purely elastic consitutive models for
the Biot poroelastic matrix with the Piola-Kirchhoff stress tensor for the viscoelastic case given by

Sp(Vn,p) = 2ueD(R) + Xe(V - )T + 21, D () + Xo(V - )T — adet(VE))p(VE,) !, (5)

where superscript ¢ denotes matrix transposition and A~% = (A~!)!. The purely elastic case has
the coefficients A\, and pu, equal to zero. Here, D denotes the symmetrized gradient, p. and A,
are the Lamé parameters related to the elastic stress, u, and A\, are the corresponding parameters
related to the viscoelastic stress, and @Z is the Lagrangian map defined above. In equation (3) the
Biot material displacement 1 and the pore pressure p are defined on the physical domain Q(t) as

n(t,-) = At (@) 7 () pt,) = B (B]) 7 (E ), where Qu(t) = By (t, ).

We remark that in the last term of the Piola-Kirchhoff stress tensor (5), we have used the Piola
transform, which is a transformation that maps tensors in Lagrangian coordinates to corresponding
tensors in Eulerian coordinates in such a way that divergence-free tensors in Lagrangian coordinates
remain divergence free in Eulerian coordinates [24].

We note that a priori the notion of (t) is not entirely clear, unless 7 is sufﬁmently regular,
and furthermore, the formulation of this problem makes sense only if the map <I>b Id 4+ 7 is an
injective map from Qb to Qp(t). We address these important issues later.

3.2 The reticular plate equation

The elastodynamics of reticular plates, studied in [25] using homogenization, are governed by a
plate-type equation, defined on the equilibrium middle surface of the homogenized plate or shell I.
The homogenized equation is given in terms of transverse displacement w = we,, from the reference
configuration:

ppéttob + AQ(I) = Fp, on f, (6)

where p, is the plate density coefficient and Fp is the external forcing on the plate in y direction, to
be specified later in the coupling conditions. The constant p, is the “average” plate density, which
depends on the periodic structure. The in-plane bi-Laplacian A? (Laplace-Beltrami operator for
curved I” s) is associated with the elastic energy of the plate. Typically, there is a coefficient D
in front of the bi-Laplacian, which contains information about the periodicity of the structure and
its stiffness properties [25]. In the present work, we will assume that it is equal to 1. The source
term Fp corresponds to the loading of the poroelastic plate, which will come from the jump in the
normal stress (traction) between the free fluid on one side and the thick Biot poroelastic structure
on the other, see (7) below.

In our problem, the reticular plate separates the regions of free fluid flow and the Biot porovis-
coelastic medium, and is transparent to the flow between the two. The time-dependent configuration
of the plate

I't)={(z,y):0<x <L, y=w(t,x)},

forms the bottom boundary of the moving Biot domain €2(¢), and the remaining left, top, and
right boundaries of the moving Biot domain 4(t) are fixed in time. Hence, we impose n = 0 on



the left, top, and right boundaries of Q(t). See Fig. 1. Hence, we can describe the moving domain
Qp(t) as

(t) ={(z,y): 0<z < L, &(t,z) <y < R}.
3.3 The Navier-Stokes equations on a moving domain

The free flow of an incompressible, viscous fluid will be modeled by the Navier-Stokes equations

e e 2 FTen o, @)

where w is the fluid velocity and 7 is the fluid pressure. The Cauchy stress tensor is given by
o¢(Vu,m) =2vD(u) — nl,

where 7 is the fluid pressure and v is kinematic viscosity coefficient. Notice that the fluid problem
is defined on a moving domain, which is not known a priori. The moving fluid domain Q(t) is a
function of time and it is determined by the plate displacement @, as follows:

Q¢(t) ={(z,y):0<z < L,—R<y<w(tux)}

The fact that the free fluid domain depends on one of the unknowns in the problem presents a
geometric nonlinearity that is difficult to deal with. We will be using the following Arbitrary
Lagrangian Eulerian (ALE) mapping @;ﬁ : Q2 — Q¢(t) to map the fixed reference domain Qy
onto the current, physical domain 2 ¢(t):

& (i,9) = <xy+ <1+IZ) w) (#,9) € . (8)

In our analysis, we will use this ALE mapping to will switch between the fixed and moving boundary
formulations of the coupled problem as needed.

3.4 The coupling conditions

The Navier-Stokes equations (7), the Biot equations (2), (3), and the reticular plate equation (6)
are coupled across the moving reticular plate interface I'(¢) via two sets of coupling conditions: the
kinematic and dynamic coupling conditions. To state these conditions, we introduce the following
notation:

e The Biot Cauchy stress tensor, defined on the physical domain, is obtained by applying the
Piola transform to the Biot Cauchy stress tensor S,(Vn,p) on the reference domain:

Sy(Vn,p) = [det(VE;)) LS, (VA p) (V)] o (8])

|26 D) + AoV - ) + 2, D) + Ao(V )] (%Zﬁ) o (®))~" — apl.

9)

1
(det(@@Z)

e The Eulerian structure velocity of the Biot poroviscoelastic matrix is given at each point of
the physical domain 4(¢) by

&(t,) = aim (¢, (27) 7' (t, 1)) - (10)
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e The normal unit vector to the moving interface I'(¢) will be denoted by n(t), and the normal
unit vector to the reference configuration of the interface I' will be denoted by n. Note that
n = ey. The vectors n(t) and n point outward from Q¢(¢) and Qy, and inward towards $2p(t)
and €.

The following two sets of coupling conditions give rise to a well-defined bounded energy of the
coupled problem:

(I) Kinematic coupling conditions:
¢ Continuity of normal components of velocity (conservation of mass of the fluid):
u-n(t) =(g+§) - n(t), on (0,7) x I'(t). (11)
e Slip in the tangential component of free fluid velocity, known as the Beavers-Joseph-Saffman
condition [38,39]:
B —u)- T(t) =omn(t) 7(1), on (0,7) x I'(t), (12)
where 8 > 0 is a constant and 7(¢) is the rightward pointing unit tangent vector to I'(t).

e Continuity of displacements:

~
A

N = Wey, on (0,7) x T (13)

(IT) Dynamic coupling conditions:

e Balance of forces describing the body forcing on the plate as the difference between the normal
components of normal stress coming from the Biot medium on one side, and free fluid flow
on the other:

By = —det(V®})[op(Vu, 1) 0 B7)(VE}) 'n- 1 + Sy (Vi p)7a - 7, onl,  (14)

where @}J is the Arbitrary Lagrangian-Eulerian (ALE) mapping defined in (16).

e Balance of pressure at the interface:
1
—o¢(Vu,m)n(t) -n(t) + §|u|2 =p, on (0,T) x I'(¢). (15)

3.5 The initial and boundary conditions
For the fluid, we will assume rigid walls on 0€2(¢)\I'(f) and impose a no-slip condition
u =0, on 0Q(t)\I'(¢).

Similarly, we will assume that the boundaries of the Biot poroviscoelastic medium, excluding the
interface I'(¢), are rigid and impose

71=0 and p=0, on 6Qb\f‘.
Finally, we prescribe the following initial conditions:
u(0) = up in Q4(0),
n(0) = fo, 0:7(0) = éo in Qb:
w(0) = &g, w(0) =y inT,
p(0) = o in .



3.6 Preview of the main results

Our first main result is the existence of a weak solution to a regularized FPSI problem, introduced
in Sec. 5. The existence result holds for both elastic and viscoelastic Biot material. Here we state
the theorem informally and refer the reader to Theorem 5.1 for the precise statement.

Theorem 3.1 (Existence of a weak solution to the regularized problem). Let py, fte, Ae, @, pp, v > 0
and fiy, Ay = 0. Moreover, assume that initial data are in the finite energy class and that initially,
the interface does not touch the bottom boundary of the fluid domain and the top boundary of
the Biot domain, and assume that certain compatibility conditions are satisfied. Then for every
regularization parameter 6 > 0, there exists 7' > 0 (potentially depending on § > 0) such that
there is a weak solution on [0,7] to the regularized problem with regularization parameter d.
Furthermore, the weak solution to the regularized problem exists on a maximal time interval [0, 7],
where either (1) 7' = oo or (2) T is finite and is the time at which either:

e the fluid or Biot domain degenerates so that the moving interface collides with the bottom
boundary of €, or the top boundary of €2) or

)
e the (regularized) Lagrangian mapping <I>Z for the Biot domain is no longer injective.

Our second main result is a weak-classical consistency result. Namely, in order to justify
our regularization procedure and the corresponding definition of weak solutions to the regularized
problem, we prove that weak solutions to the regularized problem indeed converge to the solution
of the original (non-regularized) FPSI problem. More precisely, we prove the following result, made
precise in Theorem 10.1.

Theorem 3.2 (Weak-classical consistency). Assume that a classical (smooth) solution to the FPSI
problem with a Biot poroviscoelastic medium exists on time-interval [0,T] for the case for which
the viscoelasticity parameters p,, A, > 0. Then every sequence of weak solutions to the regularized
problem with regularization parameter § > 0 converges to the classical solution on [0,7] as the
regularization parameter § converges to 0. In particular, the time interval of existence for the weak
solutions to the regularized problem is uniform in regularization parameter and solutions to the
regularized problem exists on the same time interval where the classical solution exists.

The heart of the proof of this theorem is a bootstrap argument presented in Section 10.4.
Namely, the main issue is that geometric quantities, such as the determinant of the displacement,
cannot be estimated by the energy, and thus are not uniformly bounded in the regularization
parameter 0. We derive appropriate bounds by using a bootstrap argument in combination with
optimal convergence rate estimates for the convolution regularization. The main technical issue
in comparing the classical solution with weak solutions to the regularized problem is the fact that
they are defined on different domains. Therefore, we use a change of variables that transfers
fluid velocities as vector fields and preserves the divergence-free condition. This transformation
was introduced by [37] and was used in proving weak-strong type of results in the context of FSI
in [21,53,57]. The corresponding estimates are carried out in Section 10.3.

4 Definition of a weak solution

Because the problem under consideration is nonlinearly coupled, the fluid domain ¢(t) and the
Biot poroviscoelastic domain € (t) in physical space are time-dependent and not known apriori. To
handle the moving domains, it is useful to introduce the mappings that map the reference domains
Qb, f, and ¢ onto the moving domains that depend on time and on the solution itself.



4.1 Mappings between reference and physical domains

Let

~ N AW A A N

‘I’Z(tv ) 1y — Qb(t)v ¢)F(ta ) I - F(t)7 (I,U;(ta ) : Qf - Qf(t)’
be such that

&, = 1d +7(,9), (&,9) €
Pr(2,0) = (&,0(2)), iel (16)
$7(@,9) = (0,9 + (1+5) 0@), (@,9) €y,

with the inverse

(@“j)*l(x, y) = (x, —-R+ (R+ y)) i (17)

We are using (Z,y) to denote the coordinates on the reference domain and (z,y) the coordinates
on the physical domain. Note that these mapings are time-dependent, even though in the rest of
this manuscript we will not explicitly notate this time dependence for ease of notation.

The Jacobians of the transformations are given by:

j}‘) =14+ %7 jbn = det(I + ?’f’)a jf‘u = W? (18)

R+w

where jff measures the arc length difference of between the reference and deformed configuration
of the plate. Notice that in the Jacobian J ]%" we dropped the absolute value sign since our results
will hold up until the time of domain degeneracy when |&| > R.

Under these mappings the functions are transformed as follows.

Tranformations under ®7. The fluid velocity u defined on Q¢(t) is transferred to the fixed

reference domain € ¢ by
a(t,7,9) = uwo &y, for (2,7) € Q.

Recall that on the moving domain Q(t), the fluid velocity w is divergence free, i.e., V- u =
0. However, when we pull the fluid velocity back to the reference domain, @ is not necessarily
divergence free on ¢- Hence, we want to reformulate the divergence free condition on the fixed
reference domain.

The divergence free condition. Let g be a function defined on Q(t), then

Vg =V (30(@H)7") = (Vig) o (@),
where @‘]‘Z is the transformed gradient operator:
N 0z —(R+ aj@#aﬂ 1
Y= ( ( Zg(} (R+w)? y) where y =g+ (1 + ]%) w. (19)
R+w ™Y

Therefore, the divergence free condition and the symmetrized gradient on the fixed reference domain
Q § are:

- ~ 1 /a0 A
gou=0, D@ = (Via+(viw)').
Time derivatives. The time derivative transforms under the map i)c; as follows:

R+yg

du = 0y — (- V)& where 1w = drve,. (20)
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Tranformations under ®7. Given a scalar function g defined on §2;(¢) the pull back of g to
the reference domain 23, is given by
. <17
g=9go®,.

We claim that for some differential operator @Z, which we will determine below,
Vg=V(go(2)) ") = (Vig) o (@),

where V is a gradient on the physical domain, Visa gradient on the reference domain, and ﬁg is
a differential operator (different from V) on the reference domain. For any function g defined on
the physical domain, we have that

V(g0 ®}) =[(Vg) o &}]- (I +Vi).

Hence, for
. =7
vzg = (V.g) © (I)ba

we get the following explicit formula for the transformed gradient operator @Z on :

- ~ ag ag = A\ —
Vig=|== (I +Va)~L 21
b9 (63@’ 63)) ( ) (21)

Notice that the invertibility of the matrix I + V# will be related to whether the map (z,9) —
(z,9) + n(z,9) is a bijection between €, and ().

4.2 Weak solution

We now derive the definition of a weak solution to the given FPSI problem, by means of the
following formal calculation. We start with the fluid equations and multiply by a test function
v. Recall the definition of the Eulerian structure velocity & from (10). For the inertia term of
the Navier-Stokes equations, using the Reynold’s transport theorem and integration by parts, we
obtain:

d
0 -V U= — Lo — O — . .
JQf(t)( u+ (u-V)u)) v o o0 u-v JQf(t) U - 01v Jr(t)(g n)u - v
1 1
i) fﬂ (t)[((u V)u) v —(u-V)v) - u] + 2 fr(t)(u ‘n)u - v
s
d 1 1
i Qs (1) e fﬂf(t) wow 2 fo(t)[((u.V)u) o= (V) -ul+ 2 L(t)(U-n—QE-n)u-v.

For the diffusive term of the Navier Stokes equations, we integrate by parts to obtain

—f (V-os(Vu,n)) v =2v D(u) : D(v) —f o¢(Vu,m)n - v,
Qy(t)

Q1) (1)

where we used the fact that the test function v is divergence free to eliminate the pressure, and we
use that the test function satisfies v = 0 on 092¢(¢)\I'(¢) due to the boundary conditions for w.
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Next, we multiply the structure equation by a test function @Ab to obtain
. (Pp0un) — V - Sp(VN), D)) - b = py 5t77 Y — 0T - O
a, dt o,

+ | Sy (VA p) w+fsb fvﬁ)ey-@b:pb<d oM - — am-atiﬂ)

Q, dt Jo, o
+ fQ 2ueD(R) : D() + Ae(V - )(V - ) + 20, D(0477) : D) + N\o(V - 0)(V - 1))

“a mep(v )+ ff (Vi e - .

Except on I, there are no boundary terms, because 17 = 0 on the left, top, and right boundaries
of €, and hence the same condltlon holds for the corresponding test function 1/1 Note that in the
integral over Q(t), @ := Po (G

Finally, we test the second equation corresponding to the evolution of the pore pressure for the
Biot poroviscoelastic medium with a test function r, and recall the definition of the Darcy velocity
q from (4), keeping in mind that n is the inward normal vector to (t):

Co D D
g —p+aV:-—n—-V-(kV
Lb(t) ([det(V@Z)] o (®])1 Di? TV D" (k P)) r

D
zf co(?tﬁ-f—i-f a(V-n)T—l—J HVP'VT—J (g-n)r
, (1) Dt (1) I (1)
d o . R D
= — cop-r—f cop-atr—j an-Vr—af (g-n)r—i-f /ﬁVp-V'r—J (g-n)r.
dt Ja, o8 o) Dt I (1) (1) r(t)

There are no boundary terms except on I'(t) from the integration by parts in the integral involving
a and in the integral involving x because of the Dirichlet boundary condition r = 0 (since p = 0)
on the left, top, and right boundaries of Q.

After adding the two stress terms, and recalling the definition of ®} in (16) and J¥ in (18) we
obtain:

~

— J of(Vu,m)n v+ J S’b(@ﬁ,ﬁ)ey -
() P
= J of(Vu,m)n - (¢ —v) + J (S’b(@f;,ﬁ)ey — jf" (o (Vu, m)n|py) o ®F) {b
() P

Since the displacement of the plate is only in the y direction so that 1) = we, on I, the test function
4 points in the y direction on I" as well. We will denote by ¢ the magnitude of 't,b|F so that 9 = ey,

12



on I By the dynamic coupling condition (14), we have that the previous expression is equal to

= J or(Vu,m)n- (¢ —v) + J Fp Sp = J o¢r(Vu,m)n - (¢ —v) + JA(ppﬁttd) + AZ(IJ)@
I'(t) I(t) r

r

= L(t) of(Vu,m)n - n(n —vn) + f

or(Vu,m)n - 7(Yr —vs) + ﬁ(pp(?ttd) + AQQJ)@
(t) r

[ o Vumnnn =)+ [ BE—w T~ ) + [ (0ui+ B2
I'(t) I'(t) i

[ (5P —p) G [ pe=w s = e
r() r()
L d o
dt (J PpOL - cp) J PpOtlo - Opp + LA(IJ AP,

where we used the coupling conditions (12) and (15) in the last step.
The weak formulation then follows by summing everything together.

Definition 4.1. The ordered four-tuple (u,w, N, p) satisfies the weak formulation to the nonlinearly
coupled FPSI problem if for every test function (v, ¢, a, r) that is C! in time on [0, T'] taking values
in the test space, satisfying 1 = pe, on I, we have that

By N, f e

—ppf f&tw 8&0—%—[ JAw Aso ijo Qbaﬂl at"/"“QMef 5 Df?) A("Z’)

+)\J f ) (V - 1) +2“vf X D7) : D(¥) + Ay f (V- o) (V - )
Qb Qb

—ozf f pV-@b—cof j ﬁ-atf—ozf J n-Vr—ozf J (Cey -m)r
0 Jay) 0 Jo, 0 Ja, Dt 0 Jre
T T
—i—mJ Vp-VT—J J ((u—Cey) -n)r
() 0 Jre

| w00+ [ 0600+ | 2a0)-B0) 4 [ 9070 @2
Q4(0) Qb Qp

Remark 4.1. It is immediate to see that a classical (temporally and spatially smooth) solution
to the FPSI problem satisfies the weak formulation stated above. However, when considering less
regular solutions (in particular, weak solutions in the class of finite-energy solutions), the above
weak formulation is is inadequate for the regularity of finite-energy solutions for the following
reason. By the energy estimates (see Section 5.2), the regularity of the structure displacement 7
on Q is L®(0,T, H'(€)), which is not enough regularity to interpret the term

Q(t)

since the test function has regularity ’I,Z’ e H 1(Qb) on the fized reference domain, due to the corre-
sponding finite energy regularity of 7). Hence, after changing variables, which adds an extra factor
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of det(I+ V) arising from the Jacobian, which is only in L% (0, T; L' (%)) in two dimensions, there
is not enough regularity to guarantee that this integral is finite. Therefore, we cannot interpret the
above notion of weak solution properly in the space of finite energy solutions, as the finite energy
space does not have enough regularity to make sense of certain integrals in the weak formulation,
involving the deformed domain ().

This is why we introduce a regularized problem, which is consistent with the original problem in
the sense that weak solutions to the regularized problem converge, as the regularization parameter
tends to zero, to a smooth solution of the original, nonregularized problem, when a smooth solution
exists. This weak-classical consistency result will be shown in Sec. 10.

5 Regularized weak solution and statement of existence result

Since all the mathematical challenges related to the inability to properly interpret all of the terms
in the weak solution arise fundamentally from the lack of regularity of 7) on Qp, we will regularize
7] via a convolution with a smooth, compactly supported kernel, and introduce an appropriate
reqularized weak formulation of the original FPSI problem. Because we are working on a bounded
domain Qb, we must be careful to introduce the convolution in a way that preserves the Dirichlet
condition on the left, top, and right boundaries of Q) = (0,L) x (0, R).

This is why we define an extended domain Q:

O = [-L,2L] x [-R,2R],

so that for § < min(L, R) the convolution of a function on € with a smooth function of compact
support in the closed ball of radius § gives a function defined on £2;. We then introduce an odd
extension along the lines £ =0, 2 = L, § = 0 and § = R as follows.

Definition 5.1. Given 7} defined on O satistying ) =0on 2 =0, 2 = L, and y = R and 1) = wey
on §j = 0, define the odd extension of 7) to Q; by keeping 7 the same on {, = [0, L] x [0, R] and
defining 7} outside of the closure of Qy as follows:

1. On [0, L] x [=R,0], set N(z,7) = &(z)e, + (©(Z)e, — N(T, —7)).
2. On [0,L] x [R,2R], set n(z,9) = —N(Z,2R — 7).

3. On [-L,0] x [-R,2R], set 7)(Z, ) = —A(—Z, 7).

4. On [L,2L] x [-R,2R], set n(z,9) = —m(2L — &, 7).

Let o be a radially symmetric function on R? with compact support in the closed ball of radius

one such that o =1, and define
R2

o5 = 6 20(0" ), on R?.

Definition 5.2. We define the following regularized functions which are spatially smooth on
Qp:

e The regularized Biot displacement obtained by extending 7) to € by odd extension and

defining:
0

n° = 1 * o, on Qb, (23)
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e The regularized Lagrangian mapping;:
e The regularized moving Biot domain:

QB (t) = ] (1,4). (25)

Note that even though the kinematic coupling condition holds for 7 in the sense that 7| =
wey, it is not necessarily true that f75|f = wey. Therefore, we will also define:

e The regularized moving interface:
P I
ro(t) = &, (t,1).

Alternatively, Y is the plate interface if it were displaced from the reference configuration I
in the direction f75|1q, which is a purely transverse y displacement, as one can verify.

Note that by the way we extended 7) to the larger domain €2, we have that
7°=0 on oY\L.

With these regularized versions of the Biot structure displacement and velocity, we can now
define the notion of a weak solution to the regularized weak FPSI problem with the regularization
parameter §. We start by defining the solution and test space, which are motivated by the energy
estimates in Section 5.2, and then we state the regularized weak formulation in the moving domain
framework and in the fixed reference domain framework.

5.1 Functional spaces and definition of weak solutions
Definition 5.3. (Solution and test spaces for the regularized problem)
e Fluid function space (moving domain/FEulerian formulation).
Vi(t) = {u = (uz,uy) € Hl(Qf(t)) :Vu =0, and u =0 when z = 0,2 = L,y = —R}, (26)
Vi = L%(0,T; L*(Q4 (1)) 0 L*(0, T; Vi (1)). (27)
o Fluid function space (fixred domain/Lagrangian formulation).
VE = {i = (g, 0ty) € H'(Qy) : V-4 =0, and & =0 when & = 0,2 = L,jj = —R}, (28)
V§ = L2(0,T; L*(Qy)) n L*(0,T; V). (29)
e Plate function space.
Vo = Wh2(0,T; LA()) n L*(0,T; H3(D)). (30)
e Biot displacement function space.
Vy={f) = (i, My) € H' () : ) = 0 for & = 0, =R, and il =0on T},  (31)

i=1L
Vs = WHP(0,T; L2 (%)) n L®(0,T; Vy) n HY(0,T; Vy). (32)
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e Biot pore pressure function space.
—{pe H () :p=0for &# =0, = L,j = R}, (33)
Qp = L?(0,T; L2(w)) 0 L*(0, T V). (34)

Weak solution space (moving domain).

Viol = {(u,&,1,P) € V§ x V,y x Vy x Qp : ) = De, on T'}. (35)

Weak solution space (fixred domain).

V;‘(})lz{(a7dj7ﬁvﬁ)evtfu Xvw XVb X Qb:'f]:(i)ey on f} (36)

Test space (moving domain,).

Viest = {(v, @, b, 7) € CL([0,T); Vi(t) x HZ(D) x Vg x V) : 9 = pe, on T'}. (37)

Test space (fized domain).
Viess = {(0,0,,7) € CL[0,T); Vi’ x H{(D) x Vy x Vp) - b = gey on T} (38)

Remark 5.1. Because I is one dimensional, for plate displacements @ € V,,, we have that @ €
C(0,T;CH(T)) and hence, there is a one-to-one correspondence between functions in Vs and V¥,
and functions in Viest and Vi, given by composition with the ALE mapping (16).

Before we state the definition of a weak solution to the regularized problem, we introduce the
following notation. Define the transverse velocity of the plate by the variable (, so that

atdj = év (39)
and let ¢ = C o (&%)~

Definition 5.4. (Weak solution to the regularized problem, moving fluid domain formulation)
An ordered four-tuple (w,w,7),p) € Vs is a weak solution to the reqularized nonlinearly coupled
FPSI problem with regularization parameter § if for every test function (v, @, 9, 7) € Viest,

Jjgf(tu ity Jfaf(t Joo = ((w-V)o)-ult 3 JL@ u-n—20e, nju-v
+21/J o, D(u th)< |u|2—p> n — Un +,BJ Jt) Cey—u)-T(¢p —v)-T

_ppf J(’?tw at<p+f jAw Ap — pr Qbam 6t¢+2uef ADf?) D(3p)

+AJ L )V - ) +2““f . D(3i7) : D(¥) + Ay J (V- o) (V- 9)

b Q
P e A
+ HJ L& “ Vp-Vr —J L(t u —Cey) - n)r

=f u(0) v wfatw - 3(0) + py am<>{p<>+coj p(0) - #(0), (40)
Q2(0) Qp

O
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8
where %i = % + (&2 -V) with £(t,-) = a7 (¢, (@] )7(¢,-)) is the material derivative with respect
to the regularized displacement, m denotes the upward pointing normal vector to I'(t), and n’

denotes the upward pointing normal vector to T'(t).

Notice that only four terms contain regularization via convolution with parameter §. While there
are many different ways to write the regularized weak formulation, the regularization presented
above is a regularization that deviates from the original, nonregularized problem, in the smallest
possible number of terms, and is still consistent with the original, nonregularized problem, as we
show later.

Remark 5.2. While the solution to the regularized problem above depends on the regularization
parameter § implicitly, to simplify notation we will drop the § notation whenever it is clear from
the context that we are working with the solution to the regularized problem.

Remark 5.3. We simplify notation by omitting the explicit compositions with the maps ‘if;, i'(;,

N Ao
@Z, and ‘I’Z , and their inverses. The necessary compositions with such mappings will be clear from
the context. For example,

T T 5 X 5
—af J pV -1 means —ozj f (ﬁo(@Z )*1)V- (1/)0(@2 )71> ,
0 Jaiw 0 Joj)

and
_LT L(t)((u_gey) ‘m)r means — JOT fr(t) ((uw—(Co(®F) Ney) -n) (Fo (@) 1).

Next, we reformulate the definition of a regularized weak solution on the fixed reference
domain. Recall that the Jacobians J ]‘c" , jb", and jf" in (18) will appear upon using a change of
variables to map the problem onto the reference domain. To transform the first term in the weak
formulation (40) above, we use (20) to transform the time derivatives and assume that |&] < R so
that there is no domain degeneracy. After using (20) and (19) we get

fwu =], (1 * 2) waw | (1 + 2) a-[(@- $4)0]

_ Lf (1 4 ;‘;) &80 — % o, (R D20

_ Lf (1 ; 2) a-ap - o o (R0t + 5 JQ ()i - o

o Jy 100+ 0020500 0 = | (@092

_ Lf (1 v ;) @00 — % Lf (1 + ;) [((@ - V¥)8) - & — (@ - V4)a) - 9]

+om NCOLRE s ff(a . 9)0u, (41)

where we integrated by parts in the g direction. Note that the final term in (41) will combine with

the following term in (40):
T T
f f (Cey m)u-v = J J(ﬁ - D)0y, (42)
0 Jr) o Jr
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where we used n = (—0;,1)/J¥¢ for the normal vector to the interface and Ceylrpy = awey,.

Because the transformation from I'(t) to I cancels out the factor of jli" in the unit normal vector,
it is useful to define the following renormalized normal and tangent vectors:

A = (—030,1), 7= (1,0:0). (43)

We similarly define

1

R = (=0:(7°|p), 1). (44)

We are now ready to state the definition of a weak solution to the regularized problem on the fixed
reference domain.

Definition 5.5. (Weak solution to the regularized problem, fixed fluid domain formulation) An
ordered four-tuple (u,®,7,p) € V¥, is a weak solution to the regulamzed nonlinearly coupled FPSI

problem with regularization parameter § if for all test functions (v ,gp,'l/), 7) € Vi, the following
equality holds:

Jfgf<1+ )“ 0+ 5 fo(H ) (& — ) - V¥a) - o — (@ — W) - VD) - 4
f ij (W) -0+ f f — ey -n)a - i}+2uJTfQ (1—%—2)15('&);15({;)
JJ(; )W—f’ ffCey—u “(p — ) -
"’pf Joow a“”f [RCRCE beo N MHM _ D(#): D)

mf A(Vﬁ)(V{bHZMUJ Ai><am>:b<«2)>+xvj N-amxvzm
0 JQy Q Qp

T T
—aJ jb AV" : —C()J J p- 6tr—af ) 6t77 V"
a, 0o Ja,

—af J (D A’ r+mLT ijb VZP VUT—J f (@ = (ey) - 07

= L,-m) u(0) - v(0) + ppf 0:w(0 )+ pbf 0:1(0) - 1(0) + co fﬂbﬁ(o) -7(0), (49)

where jb’76 and J¢ are defined in (18), @ is defined in (20), @‘J‘J in (19), @ZSQ in (21), and ¢ in (50).

5.2 Formal energy inequality

Here we show that the regularized problem is defined in a way that preserves the variational
structure of the problem. More precisely, we formally prove that a weak solution to the regularized
problem satisfies the following energy equality.

Lemma 5.1. Assuming that a weak solution exists, the following energy equality holds:

EX(T) + E¥(T) + fT (DY (t) + Dy (t) + D}, (t) + Dy (1)) dt = EX(0) + E¥(0) (46)
0
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where
K 1 9 1 INCENE o2 L NN
EX0 =5 [ P+ oo | 0P + e | BOP + 5 | l0c)
Qr(t) 98 QO r

is the sum of the kinetic energy of the fluid, the kinetic energy of the Biot poroviscoelastic matrix
motion, the kinetic energy of the filtrating fluid flow in the Biot medium, and the kinetic energy of
the plate motion, E¥(t) is defined by

E(\ _ (5 2 PYAND! AL (D)2
EE(t) = 2p1, L D) + 22 JQ VA + jfm P,

which corresponds to the elastic energy of the Biot poroviscoelastic matrix and the elastic energy
of the plate, and

Dy (t) = 2uf

D), DY (t) = 2, j |f7<am>|2+xvf - o,
Qg (t) Q

Qp

D,Yb(t>=mj IVp|®, Dy (t) 6J (€ —u)-7)?
Q8 (t) I'(t)

correspond to dissipation due to fluid viscosity, viscosity of the Biot poroviscoelastic matrix, dis-
sipation due to permeability effects, and dissipation due to friction in the Beavers-Joseph-Saffman
slip condition.

Proof. To derive this energy equality we start by substituting (v, ¢, 12),?) = (u, ¢, oM, p) into the
regularized weak formulation (45) defined on the fixed reference domain and calculate

1 .2 R 1. R . .2 A
5 | @=eatal + | (Glal ~5) ey = @) - | (e ap =0,
2 Jp P \2 P

Furthermore, using integration by parts one obtains

o ( jb pV77 - O¢M) +J Jb 5t77 Vb P+ f(éey : ﬁwé)ﬁ)
QO r

—al [ wvees| eV ey i) -0,
Qo(t) Q9(t) 9 (t)

where n? is the upward pointing unit normal vector to I'’(¢). Finally, by the Reynold’s transport

theorem
T L7 2 1 2 1 2
Pl wawss [ wepmmuP=3 ] juP-g [ b
0 Jo, @) 2Jo Jra 2 Jay(r) 2 Jas(0)

By combining these calculations one obtains the final energy estimate:

1
f |2+21/fj |2+BJJ |(& —u) ‘r|2+ ppj@w |2 J|Aw
2 Qs (T) Qy(t) T'(t)

+§pb J,, e 2 | DGO 42 f G J,, 1@

1 1
[ e aal e [ e [ i [ o g [ eor
9N Q3 (t) "~ 2 Q4(0) 277 e
. 1 ) ) - 1 A
+ j|Aw<o>|2+pb f 2RO + 2, j D@O + 27 [ V- 70)2 + 2o j B(0)
I 2 Qy Qp Qb 2 Qp
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5.3 Statement of the main existence result for the regularized problem
We now state the main result on the existence of a weak solution to the regularized problem.

Theorem 5.1. Let py, fte, Ae, @, pp, v > 0 and i, A, = 0. Consider initial data for the plate
displacement o € H2(T'), plate velocity ¢y € L2(I'), Biot displacement 7, € H'(€2), Biot velocity
£, € H'(Q) in the case of a viscoelastic Biot medium fu,, A, > 0 and &, € L2({) otherwise
for the case of a purely elastic Biot medium, Biot pore pressure pg € L2(Qb), and fluid velocity
ug € H'(Qf(0)) which is divergence-free. Suppose further that |g| < Ry < R for some Ry,
Nolr = woey, and é’o|p = foey, and for some arbitrary but fixed regularization parameter § > 0,
suppose that Id +ﬁ8 is an invertible map with det(I + Vﬁg) > 0. Then, there exists a weak solution
(u,@,1,p) to the regularized FPSI problem with regularization parameter 6 on some time interval
[0, 71, for some T" > 0.

While T in general depends on §, we will show that if there exists a smooth solution to the
nonregularized FPSI problem, then this time T for the regularized problem is independent of 9.
This will allow us to pass to the limit as 6 — 0 and show that weak solutions to the regularized
FPSI problems constructed in this manuscript, converge to a smooth solution of the original,
nonregularized problem, when a smooth solution to the nonregularized problem exists.

Remark 5.4. The result above is a local result, since it holds up to some time 7" > 0, which needs
to be sufficiently small. However, it is easy to show that this 7" > 0 can be made maximal, in the
sense that it holds until the time for which Id + #° fails to be invertible or |&(-,z)| = R for some
z € I when the reticular plate collides with the boundary. This can be shown using a standard
method, see e.g., pg. 397-398 of [20], or the proof of Theorem 7.1 in [47].

An important notational convention. For notational simplicity, we will no longer use the
“hat” notation to distinguish between functions and domains in the physical or reference config-
uration: for example, we will denote both the pore pressure p on Q4(t) and p on 4 by p, as the
distinction between these two will be clear from context. In addition, we will remove the “hat”
convention from the reference domains, and for example, we will denote the reference domain QO
for the Biot medium by €2;,. We will follow this notational convention for the rest of the manuscript.

The proof of Theorem 5.1 is constructive, and based on an operator splitting scheme. This is
an approach that has been used in constructive existence proofs of weak solutions for a variety of
FSI problems, see for example [47].

6 The splitting scheme

The splitting scheme is defined as follows. First, semidiscretize the problem in time by introducing
the time step At = T/N, and subdivide the time interval [0,7] into N subintervals, each of
width At. The approximations of the fluid velocity, plate displacement and velocity, and Biot
poroviscoelastic material displacement and pressure will be denoted by
(uzf+§,w;b,+§,(X,+§,nz+§,p?\,+§), forn=0,1,.....,.N and ¢ = 0, 1.

For the splitting scheme we will work on the fixed reference domain and hence, we will semi-
discretize the regularized weak formulation (45) on the fixed reference domain. Backwards Euler
discretization will be used to approximate time derivatives, with the following shorthand notation:
n+%fl

, n+i
mts _ v =
In"= At
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6.1 The plate subproblem

1 1
Only the plate displacement and velocity w]T\L,Jr? and C]T\L,+2 are updated in this subproblem, leaving
the remaining variables unchanged:

1 1 1
n+s n+s3 n+3

2 n 2 __ 2 _ N

Uy = = Uy, Ny ~ =NnN> Dy ° =DnN-

The new plate displacement and velocity are calculated from the following weak formulation of the
1 1
plate subproblems: find wz+2 € H3(T) and CJT\L,+2 € H3(T'), such that

’I’L“r%_ nfé 1
f ot ) .¢:J<]"V+2.¢, for all ¢ € L*(I), (47)
r At r
n+ n
S A AW Ap =0 for all ¢ € H2(D 48
Pr . At ot | Awy T Ap =0, forallpe Hy(I). (48)

1

When n = 0, we set wy? = w(0) and (¥, = ¢(0). In particular, w(0)e, = n(0)|r and ¢(0)e, = £(0).
) (

Lemma 6.1. Problem (47), (48) has a unique solution which satisfies the following energy equality:

1 +1 1 41 1 41 1 L1 1
3o | IGER o [ IGRTE =GP g [ 1A 4 [ IAGRTE —ah P
r r r r
1 1 1 _1
= 2pr v 2P+ QJ |Awy 2] (49)
T r

Proof. To prove this, we first notice that
1 w —w
C]’;‘;Lz _ N N (50)

1
so that wnN+2 € H3(T) above satisfies the following weak formulation:

el el nl
o | 6 A7 [ A g =g, | N (AOGR) o forall pe HYD).

The bilinear form
Blw, ¢] = ppf w-p+ (At)Qf Aw - Ap
r r

is coercive on H3(I'), and

© = pp L (Wﬁf_é + (At)C}%/> ¢

_1
is a continuous linear functional on HZ(T), since we will have wX, 2 € HZ(T) and (% € L*(T) by
the way our splitting scheme is defined. Thus, by the Lax-Milgram lemma, there exists a unique

1 1
solution wX,JrZ € HZ(T), from which we also recover CX,JFQ € H2(T) using (50) above.

n+% n—%

1 _
The energy equality above follows by substituting ¢ = C]T\L,JFQ = % € HZ(T) into the
weak formulation and using the identity

1
(a=b)-a=g(la]* +]a— b = [b]).
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6.2 The fluid and Biot subproblem
For the fluid and Biot subproblem, we update the quantities related to the fluid and the Biot

medium. Due to the kinematic coupling between the Biot medium displacement and the plate
displacement, we must also update the plate velocity, as the dynamics of the Biot medium affect
the kinematics of the plate. In this step, only the plate displacement remains unchanged:
Wl wn""%
WN N
To state the weak formulation of the fluid and Biot subproblem, we define the solution and test
spaces, respectively:

Vi = {(u,¢mp) € Vi x HR(D) x Vi x V), (51)
Qi = {(wp ) e VN < HY(D) x Va x V¢ = pe, on T}, (52)

where Vi’, Vy, and V,, are defined in (28), (31), and (33).

The weak formulation now reads: find (u "H, }{,H, 77”“, p’ﬁ’l) V}\‘,H defined on the reference

domain, such that for all test functions (v, p, ¥, r) € Q%H defined on the reference domain, the
following holds:

n

n wn w 1 n
J <1 + wN) it v+2yf <1 + wN) DfN(u’](,H) : DN (v) —i—j ( ultt ol —p?vﬂ) (Y —v)-n*N
. R . R 2

1 wn n n-&-lR‘i‘y w n n n+lR+y Wl
+2f <1—|— R)[((uN— N QRey)-VfNuNH)-v—((uN— N 2R6y>-VfN'v)-

1 n
2RJ n+1 Cv+ 5 J‘F(u%-i-l 777]?_1) neN (u% . U)

1 .
/8 n+l o n+l W _ wh ’771? B 777](7
T (My unN") TN (P —v) - TN £y |-

n+1
e [ (S5 o [ DOy D) 0 (0 a9

Qp

D n+1 D )\ n+1 . _ (77]?])5 n+1 (T]%)a i
+ 24y ( ) : D(9) + Ay (V- 77 WV 1) -« VA PNV, P
Qp Qy Q
n+l _  n

n \o n
n Cof Pn_ TPNn._ j(nN WL Vz(;nN) r_ af G ‘n(wN)a)T
Q At Q r

4 ’%J‘ %(U%)évl()ﬂﬁr)épyv—i-l . Vl(:?}if)ér _ f [(u%—i-l n?jzv—i-l) . ’n“’%]r —0,
Q r
' (53)

n+l
) (nN A nN) 6= [ Gites o forall pe 1) 6

and

Lemma 6.2. Problem (53), (54) has a unique solution provided that the following assumptions
hold:
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1. ASSUMPTION 1A: Boundedness of the plate displacement away from R. There exists a positive
constant R,,.; such that

|W§€\f+%| < Rmam < R7 for all k = 0’ 17 SR and 1 = 07 L. (55)

2. ASSUMPTION 2A: Invertibility of the map from fixed to moving Biot domain. The map
Id+ (n5%)° : ) — (Qb);i;(S is invertible, (56)

where we define (Qb)%(S to be the image of €, under the map Id + (n%)°.

Additionally, the weak solution satisfies the following energy equality:

1 WK/H ni12 , L nlp2 1 n+1)2 nt1y(2 n+1)2
o U L e e T I S L G G N
Qf Qp Qp Qp

+ ppf |C"+12+2,uv(At) J;) |D(,'7nN+1)| +)\U(At) J;] |v nn+1|2+l€ At J (77N |vb77N) pvjl\[+1|2
b b

1 . 1
i =) TSP S [ AR e | R e | DG
Q o/ Q

1 1 wh 1 . 1
Y f vy -l = | (1 " N) i+ o [P+ oo [ A +ae [ DR
2 Qp 2 Qy R 2 Qp 2 Qp Qp
1 np2 1 n+32
+ 5)\6 |V -y + 59}7 Iy 217
Q, r

The proof is based on using the Lax-Milgram Lemma. However, in this case the proof is more
involved for two reasons. First, the bilinear form associated with problem (53) and (54) is not
coercive on the Hilbert space V;j% x Vg x V,, because of a mismatch between the hyperbolic and
parabolic scaling in the problem. The second reason is that it is not a priori clear that Korn’s
inequality, which is needed in the proof of the existence, holds for the Biot domain. To deal with the
first difficulty and recover the coercive structure of the problem, the test functions can be rescaled
so that

— (At)v, r— (At)r. (57)

This scaling of the test functions is valid because if (v, ¢, 1,v) € Q”N“, then the rescaled test
function satisfies ((At)~'w, p, 4, (At)~!r) € Q%! also. To deal with the second difficulty, one can
show by explicit calculation that the following Korn’s inequality holds for this problem:

Proposition 6.1. KORN’S INEQUALITY FOR THE BIOT POROVISCOELASTIC DOMAIN. For all

n € Va,
1
(RGN
o Q

Proof. By a standard approximation argument, it suffices to assume that 7 is smooth. Because
1. = 0 on I' and because 17 = 0 on the left, top, and right boundaries of {2, we have from integration
by parts, that

%%:_J Py _ (O Oy
o, 0y Oz 0$8y Q, 0T Oy
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Therefore, by using the inequality a? 4 2ab + b? > 0, we obtain
on 2 on 21 on on 2
D2 = i3 My o
Lb| ()l Lb(5$> +<5?J> 2\ dy - ox
- ne\* L (om L () (7| O Oy
o, \ 0T oy 2 oy ox 0y Ox
2 2 2
:J (5771’> L OOy (y) - (3%) n (077?/> > lf V2.
Q, \ O or dy 0 oy ox 2 Ja,
O

Proof. Proof of Lemma 6.2. Rewrite the weak formulation (53) and (54) so that all of the
functions at the (n + 1)st time step are on the left hand side while all other quantities are on the
right hand side. In addition, we rewrite C"H in terms of n’y, and 17 ! by using (54):

n+1 n
Cn+1 _nNny —Nn

At r

After using the rescaling (57) of the test functions, the weak formulation involves the following
coercive and continuous bilinear form:

Blu,v,n,¢,p, 7] := (At)Qf (1 + Cjév) u-v
Qy

o () (-2 o) ()

A0 g [ G e 507 [ @0 e g o

+ 2V(At)3f

Q
SO0 10—l 7w = @00) 7 [ mepy [

+ (21e(A8) + 2410 (A1) 0 D(n) : D(3) + (Ae(A1)? + Ay (A1)) fﬂ (V-m)(V-9)

f (1 n “g) D D (o) + (80 [ (;u ” _p> b — (AdJo)

—a(@0? | g alar? |

or— a(At)ZJ j(n}b)‘sn Ly’
o o Q" b

n n \o n \o n\d&
_a(At)2L(n.nmN)«s)HH(At)g ) R GRG0’
b

~ (A fr[w (A 1) - ntR

With this notation, the weak formulation reads: find (u "H, 77%“, p"NH) € V;JN x Vg x V}, such that

for all test functions (v,,r) € V}UK’ X Vg x Vp,
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n 1 n
Bl vy o) = (07 [ (14 ) a0 - (802 [ o n (o)
Q; R 2 r
6 n wh wh n n— n n %
b (00 [ i T 07 | n =i | ke (A0G ey
T b

#20,(80) | D) D) + A L (V-1 (V - p)

reo(at? [ pr—aan? | g v rmaae? [ mgen ) 802 [ et
Qb Qb T T
(58)

We now show that the bilinear form B[u,v,n, ¥, p, 7] is coercive and continuous as a bilinear
form on the Hilbert space V?N x Vg x V,, with the inner product given by

<(uvnap)7(va¢’r)> = (’U,"U +Vu : V’U) +J (7771[’ +Vn: Vw) +f (pr—i—VpVT)
Qf (o) (o)

We focus on establishing coercivity, since continuity follows by standard arguments. To show

coercivity we calculate Blu,u,n,n,p,p]. In this calculation we note that after integration by

parts, the sum of the following terms becomes zero:

n \6 n \é n \o n \é n
—a(At)2 ) %(WN) pvl(;”hv) n— Oz(At)2 J;Z :7{;(771\/) n- vl()nN) p— Oé(At)ZL (77 . n(wN)6)p —0.
b b

Indeed, to see this, we bring the integrals back to the time-dependent physical domain, which we
can do as long as (n%,)° is a bijection from Q, to (Qb)y\;é, which is provided by Assumption
2A (56), and perform the following computation:

a(At) J FIR oo R (At) f Y -Vé”%)ép—a(At)Qf(n-n(w?v)&)p
Q, r

——a(At)QU pV-nJrJ n-Vp+J (n-n)p>=0,
(w)y° ()" N’

where we used integration by parts, the fact that n points outwards from {1y and hence inwards

towards €2, and also use that n = 0 on the left, right, and top boundaries of €2;. Combining this

1 1 _1
with the fact that (At)(;;rQ = w;?? - wﬁ, 2 = Wittt — Wk, we obtain

2 Wi + Wy 2 3 Wi “R( 2
Blu,u,n,n,p,p] := (At) 1+ ———— | |ul]* + 2v(At) 14+ X ‘D )‘
Q, 2R Q, R

)L (0 — (Atyu) -7 + p, jQ nf? + ppfr 0% + (e (A + 20, (A1) f D)2

Qp

+ O(AD2 + Ay (A1)) J

o ol o

Coercivity of this form follows from the fact that |wN+2| < R, see Assumption 1A in (55), and
Korn inequality, see Proposition 6.1, once we handle the last term and show that

n \o n \é
K(At)g %(WN) |vl()nN) p|2 > CJ |Vp|2,
Qb Qb
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for some positive constant ¢ > 0. To show this, we first recall the definitions

n \é
T Zdet(T +V(m)®), VN p = Wp (I + V)Yl

Then, letting | - | denote the matrix norm, we have

n \o
w(an? | T g IR b2 > oAy ) TN+ 9 () 2|V . (59)
b

Assumption 2A (56) implies that I + (1) is an invertible map from € to (Qb)N , and we
further note that |I + V(n%)°| is continuous on € and hence is bounded from above. Thus,
I+ V(0%)?|72 = ¢o > 0 for some positive constant cg. The assumption that I + (n%)°
invertible implies that det(I + V(n%)°) > 0. However, since this determinant is a continuous
function on the compact set €, we conclude that there exists a positive constant ¢; > 0 such that
det(I + V(n%)?) = c1 > 0. This establishes coercivity.

Existence of a unique weak solution (u ”H, 77?,“, p’ﬁ’l) € V}U?V x Vg x V,, now follows from the
Lax-Milgram lemma. From here, we recover CK,H by using Q"H e, = W . Note that
W points in the y direction because the trace of any function n € V; on I' points in the
y direction lgy definition, see (31).

Energy equality: We substitute v = u™, ¢ = (I o = 9™, and r = p™ into (53), and

use the identity

1
(a=b)-a=g(la]* +]a— b = [b]).

: n+l _ 3 nty _ ntr o : : o
Since wi' " =wy * and (At)(y * = wy W}, we obtain the following energy equality:

1 WK/H ni12 , 1 nl2 1 n+1)2 nt+1y(2 n+1)2
5 1+ [uy " oo | IR+ se0 | PR e | 1Dy )T+ >\ IV ny |
2 Jo, R 2" Jo, 27 ], 0 2

b b

n ppf P 4 20 (A) fQ DI + Au(A) fQ VA (A | J“N m’“” P
b b

1 . 1
i =) TR S [ R e |- i | Dt =
Q o/ Q

1 1 wh 1 . 1
Y f vy -l = | (1 " N) i+ o [ AP+ oo [ 0RE +ae [ DR
2 Qp 2 Qy R 2 Qp 2 Qp Qp
1 np2 1 n+32
+ 5)‘6 |V -y + 59}7 ISy 215,
Q, r

where the terms containing parameter « cancel out after bringing the integrals back to the time-

dependent domain, integrating by parts, and recalling that the normal vector points inward towards
the Biot domain:

— . jb(ﬁ}{r n+1v(7iz\r> ,rln+1 f jbnN n+1 v(nN) n+1 f(nK;rl (wf{,)‘g)pv]z\;rl
b

:_af s 7]1\[+1(v nn—H) af 777]?_1 Vpn+1 af (?,]Rf—i-l )p7jzv+1 0.
()N )y N

N N

This completes the proof of the Lemma. O
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6.3 The coupled semi-discrete problem: weak formulation and energy

To obtain uniform energy estimates for approximate solutions of our semidiscretized scheme it is
useful to present the scheme in monolithic form:

n n n ]_ n
J (1 + wN) aitt v+ QVJ (1 + wN) Df (un) : DU;N (v) + J ( ulitt o ul — p?VH) (Y —v)-n*N
Q; R Q, R r\2

1 w” n+1R+y wh n n+ R+y wh n
+2f (“M(( ~G e ) v ) o (-G ) v

1 ) n
fc W | = R (o) +
r

n+1 : n+1
NN — NN — (N
N N ) 2lte
+beﬂb< Az ) ¢+ppJF< AL ><p+ iz
n+l

+ 2/1/1; D( n+1) . D(’lﬂ) + A,Uf (v nn+1)(v . ,(p) _ af jb(ﬂ;\br)(;pv&-i-lvl()ﬁ%)é . 'l,b + C()f MT
2 Qp Qp Qp At

n \o n \& n n \o n \o n \o
—a j(nN) et VI()nN) r_ af (L "I’L(wN)é)'r Iy jb(nN) VIEWN) Pl Vl()"”) ,
r Qp

E” J (n?\;rl u%‘l’l) . Tw}{, (,(p _ ’U) . Tw;{,
N

DY) - D) + Ao j (V- (- )

Qp Qp

1
J[ ) n wE“v]wLAw;“ Ap =0, Y(v, 0,9, 7) € QR

(60)
+ n+1
Wy T Wy © 2 Ny _"IN nil, 5
L ch ¢ L( ) JC* ey-b. V6, € L*(). (61)

This formulation implies uniform energy estimates for the following discrete energy and discrete
dissipation:

+i 1 w 1 1 +i
E]’z]2:2f <1+ ]J%V>| N2|2+20bf |77N | +200f |pN | +Hef |D(777]1V 2)|27'
Q 2 2
1
+/\CJ |V - n+ |2+ ppj |C J|A n+% |2 i =
2 IoN

DYt = 2u(At) L <1 + éV) ‘D‘;N 7#)‘ + ZM(At)J
;

DG P + A (a0 [ (9
Qb Qb

n \é n \8 n /8 At .n n o 2
(@) [ e A et - ) e
Q jFN r

(62)

Lemma 6.3. The following discrete energy equalities hold for the semi-discretized formulation

(60), (61):
1 1 n—L1
E]T\L/+2+2PPJ H (' ® —wy )
r

1 w 1 . 1
E]r\zfﬂ_i_D]nVH_i_QL (1+ év) ‘Un+1—u?v‘2+2pbj ‘77”+1—?7M2+260J ‘pn-i-l p?vf
f

D(n —pn 2 1)\ V. n+1 n+1 nt3 2 _ E”"'% 64
+ Ue o | (TTN N)| +2 e 0 | | + pp |C —Cy |© = N - (64)
b b

1
n+yz

= FEYy (63)
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We remark that the terms not included in the definition of EX,JF% and D%H, appearing in (63)
and (64), are numerical dissipation terms.

These energy identities immediately imply that E;L,Jr§ and ZnN:1 D7 are uniformly bounded
by a constant C' independent of n and N.

The semidiscretized splitting scheme defines semidiscretized approximations of the solution to
the regularized problem at discrete time points. To work with approximate functions and show that
they converge to the solution of the continuous problem, we need to extend the semidiscrete ap-
proximations to the entire time interval and investigate uniform boundedness of those approximate

solution functions. This is done next.

7 Approximate solutions

Now that we have defined the numerical solutions at each time step, we collect the solutions into
approximate solutions defined on the whole time interval [0,T], for which we will obtain uniform
estimates from our previous energy estimates.

We define the following two extensions of the approximate functions to the entire interval [0, T]:

e Piecewise constant approximate solutions, for (n — 1)At <t < nAt:

n_1 n_1
e Linear interpolations:

n

_1
ﬁN(nAt) =1nN T)N(nAt) = prﬂ EN(nAt) = wz % forn=0,1,..., N,

where we formally set w;, = wy.
Note that by construction, we have that
otwN = (N, omnIr = Cney.
From the preceding energy estimates, we have the following lemma on uniform boundedness.

Lemma 7.1. UNIFORM BOUNDEDNESS OF APPROXIMATE SOLUTIONS. Assume:

1. AssuMPTION 1B: UNIFORM BOUNDEDNESS OF PLATE DISPLACEMENTS. There exists a pos-
itive constant R,,q. such that for all IV,

1
IwZ | € Riaz < R, foralln=0,1,...,N, (65)
‘(n%)ah“‘ < Riaz < R, for all n = 0,1,..., N. (66)

2. AssuMPTION 2B: UNIFORM INVERTIBILITY OF THE ALE MAPPING (JACOBIAN). There
exists a positive constant ¢y such that for all IV,

det(I + V(n%)°) = o > 0, for all n = 0,1,..., N. (67)
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3. AssuMPTION 2C: UNIFORM BOUNDEDNESS OF THE ALE MAPPING (MATRIX NORM). There
exists positive constants ¢; and co such that for all V,

(I +V (%)) < e, I+ V(%) < e, for all n =0,1,...,N. (68)

Then for all N
e wy is uniformly bounded in L®(0,T; L%(2f)) and L?(0,T; H(y)).
e 1), is uniformly bounded in L®(0,T; H(£)).
e py is uniformly bounded in L®(0,T; L?(Q)) and L2(0,T; H*(%)).
e wy is uniformly bounded in L*(0,T; H3(T)).

In addition, we have the following estimates on the linear interpolations.
e 7 is uniformly bounded in W1 (0, T; L?(£2)).
e Wy is uniformly bounded in W1 (0, T; L?(T)).

Remark 7.1. A CRUCIAL REMARK ABOUT INVERTIBILITY. At first, it would appear that to
show the uniform boundedness results above, we also need to have a fourth assumption, which is
Assumption 2A (56) from before, that the map Id + (%)% : @, — R? is injective (and is hence
a bijection onto its image), for each n = 0,1,..., N and for all N. However, this is implied by an
injectivity theorem, see Ciarlet [24] Theorem 5-5-2. Note also that Assumption 1A (55) from before
is automatically satisfied once we verify Assumption 1B (65), (66). In particular, this injectivity
theorem is as follows. Since det(I + V(n%)°) > 0 by Assumption 2B (67), it suffices to show
that Id + (%)% = ¢, on 0, for some injective mapping ¢, : @, — R2, for example a standard
ALE mapplng polz,y) = (a:, Y+ (1 — %) w) can be used. This implies the very useful fact that
(Id + (n%)°) () = ¢o(), which means that the deformed configuration is fully determined by the
behavior on the boundary.

Proof. The uniform boundedness of approximate solutions follows from the uniform energy esti-
mates. More precisely, the uniform boundedness of uy in L*(0,7; L*(€2y)) follows from Assump-
tion 1B (65). The uniform boundedness of uy in L?(0,T; H*(Qy)) follows from Korn’s inequality
on the fluid domain. The uniform boundedness of 5, in L® (0, T; H*(£))) follows from combining
the uniform energy estimates with Korn’s inequality, stated in Proposition 6.1. To establish the
uniform boundedness of py in L?(0,T; H'()), we recall that by the uniform dissipation estimate,

N n \o n \o
Y w(an) | g™ <
n=1 D

n \o n \o
for some constant C' uniform in N, where jb(nN) = det(I + V(n%)%), and VénN) r=Vr-(I+
V(n%)°)~' on . By Assumption 2B (67), we conclude that

At EJ |V(WN) n+1|2 C.
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Since on Q, we have that Vpy'' = VI(;?K;) Pt (I +V(n%)?), we use Assumption 2C (68), which
implies [T + V(n%)°| < c2, and obtain the estimate

N
n \é
(8) 2 |, oS v a0 X [ e e <o
—1J0
for a constant C' independent of N. Thus, py is uniformly bounded in L2(0,T; H()).

The above uniform boundedness result implies the following weak convergence results.

Proposition 7.1. Assume that the three assumptions listed in Lemma 7.1 hold. Then, there exists
a subsequence such that the following weak convergence results hold:

o uy — u weakly™ in L®(0,T; L?(2y)), uy — u weakly in L*(0,T; H*(Qy)),
e 1y — 1 weakly* in L°(0,T; H'(£)), Ny — 1 weakly™ in WH®(0,T; L2()),
e pn — p weakly™ in L®(0,T; L*(Q)), pN — p weakly in L2(0,T; H* (%)),

)
e wy — w weakly* in L®(0,T; H3(T)), Wy — w weakly* in WH°(0, T; L*(T)).
Furthermore, n =7 and w = w.

To use these results and to be able to construct approximate solutions, it is essential to show
that the assumptions from Lemma 7.1 hold. This is given by the following lemma.

Lemma 7.2. Suppose that the initial data satisfies |wy| < Ry < R for some Ry, and suppose that
7, has the property that Id + (n,)° is invertible with det(I + V(n,)°) = co > 0 on €, for some
positive constant cg. Then, there exists a sufficiently small time T > 0 such that for all NV,
all three assumptions in Lemma 7.1 hold and the splitting scheme is well defined until time 7'

Proof. First, notice that the assumptions on the initial data immediately imply that the three
assumptions from Lemma 7.1 hold for the initial data, i.e., for n = 0. In particular, there exist
constants ag, a1, and as such that

det(I + V(n,)°) = ap > 0, (69)

1T+ V(ny)°| = o1 >0, (I +V(ny)°)7Y = ag > 0. (70)

This is because det(I+V(1,)°%), |[I+V(n,)?], and |(I+V(n,)°)~!| are positive continuous functions
on the compact set Q.

Next, we want to define an appropriate time 7" > 0 such that the three assumptions hold
uniformly for all N and nAt up to time T. To do this, we use the energy estimates. Define the
initial energy determined by the initial data by Ey. Then, by the uniform energy estimates, we
have that

1
EN'?<E, EY'<E, forallk=0,1,..,N—1

Therefore, after completing both subproblems of the scheme on the time step [kAt, (k + 1)At], we
obtain that
NIz, < C, forn=0,1,...k + 1, (71)

1
||W17i7+2 ||Hg(p) <C, forn=0,1,...,k, (72)
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I ey <€ foro<ntgshelandi= 01, i

for a constant C depending only on the initial energy Ej.
Step 1. We first find a condition on 7" such that Assumption 1B (65) is satisfied. Suppose that
the linear interpolation wy is defined up to time (k + 1)At¢. Then, by (72) and (73), we have

[Nl o,k e1)a6020)) < C, N o, yas 20y < C, (74)

where C' depends only on Ej and is independent of N. Thus, following the method in [47], we
obtain by an interpolation inequality that for all ¢,¢ + 7 € [0, (k + 1)At] with 7 > 0,

@ (t+7) = D@y < Clan(t+7) =@y Ol o lon @+ 1) Ol (75)

Here, we used a Sobolev interpolation inequality, see for example Theorem 4.17 (pg. 79) of [1]. B
the Lipschitz continuity of @y taking values in L?(T') and by the boundedness of @y in HZ(T),

N (t+7) —@n )|l < C- 72 (76)

for a constant C' depending only on Fy (and in particular, not depending on k or N). Therefore,
setting t = 0 and 7 = (k + 1)At and using the continuous embedding of H!(T') into C(T'),

||k = wolloary < C - [(k + D2 < C -T2, (77)
where C' depends only Ey. Because |wy| < R, we can choose T' > 0 sufficiently small so that
C -T2 < R — |lwollo(ry.- (78)

This will give the first part of Assumption 1B, which is (65).
Step 2. Next, we find a condition on 7" so that the remaining assumptions (66), (67), and (68)
are satisfied. We do this by controlling the behavior of the structure displacement 7. First note

that
k+1

—1ollz20,) < (A1) D 1k lr20,) < Ok +1)(At) < CT,

n=1

||,r’k+1

for C depending only on Ey. By the odd extension defined in Definition 8.2,
I = moll gy < © (I = molloegay) + 1™ — wol o)) < CT.

for a constant C' depending only on Fy, where the estimate |jwh'™ — wol| r2) < CT follows from
the bound (74). By regularization, we then have that for a constant depending only on ¢ and Ej,

) = (10)° ||,y < C(6, Eo) - T

By using the trace theorem and the continuous embedding of H?(I') into C(T), we thus conclude
that

(%0 = (00)Irlleqy < C(5, Eo) - T (79)
Since H?(£%) embeds continuously into C(£2;), we also have that

IV (052 = V(10)°lege,) < C(0,Eo) - T. (80)

Note that det(I + A) is a continuous function of the entries of A. Also note that the matrix
norms | I+ A| and |(I+A)~!| are continuous functions of the matrix A. Furthermore, we emphasize
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that the constant C(6, Ey) depends only on ¢ and Ej and hence is independent of & and N. This
dependence on ¢ is allowable, since for this existence proof, § is an arbitrary but fixed regularization
parameter.

Thus, there exists T" sufficiently small so that by (79) and (80), the remaining assumptions (66),
(67), and (68) are satisfied, since these assumptions are all satisfied for the initial displacement 7).
Furthermore, we can choose the constants cg, c1, c2, and Ry, (defined in the statement of those
assumptions) independently of N and n = 0,1, ..., N, because of the fact that the constant C(d, Ey)
in our estimates does not depend on k (satisfying (k + 1)At < T') or N. O

8 Compactness arguments

We next want to pass to the limit in the semidiscrete formulation for the approximate solutions,
stated in (60) and (61). Because this is a nonlinear problem with geometric nonlinearities, we must
obtain stronger convergence than just weak and weak* convergence in Proposition 7.1, in order to
pass to the limit. To do this, we will use compactness arguments of two types: the classical Aubin-
Lions compactness theorem for functions defined on fixed domains, and generalized Aubin-Lions
compactness arguments introduced in [52] for functions defined on moving domains, see also [47].
We will first deal with compactness arguments for the plate displacement and the Biot domain
displacement. Then, we will deal with compactness arguments for the fluid velocity defined on
moving domains.

8.1 Compactness for Biot poroelastic medium displacement

We show strong convergence of the Biot structure displacements 7y by using a standard Aubin-
Lions compactness argument. In particular, we have the following strong convergence result for the
Biot medium displacement:

Lemma 8.1. The following compact embedding holds true W (0, T; L?(2))nL® (0, T; H' (%)) cc
C(0,T; L?(£%)), which implies the existence of a subsequence such that

My — 1 strongly in C(0,T; L*(%)).

Proof. The compact embedding above is a direct consequence of the standard Aubin-Lions compact-
ness lemma in the case of p = oo, which gives a stronger compact embedding into C(0,T; L?(£))
rather than just L®(0,T; L?(€%)). The fact that we can find a strongly convergent subsequence
follows from this compact embedding, once we recall that {7, }%_; are uniformly bounded in the
Banach space W1 (0, T; L?(%)) n L®(0,T; H' (%)) by the uniform energy estimates. O

8.2 Compactness for the plate displacement

The uniform boundedness of the linear interpolation of the plate displacement wy in W1®(0, T; L*(T"))
and L*(0,T; H2(T)) implies the following strong convergence result:

Proposition 8.1. Given arbitrary 0 < s < 2, there exists a subsequence such that the following
strong convergences hold:
WN — w, in C(0,T; H*(I")),

WwN — W, in L®(0,T; H*(T)).
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Proof. Using the same argument as in Step 1 of the proof of Lemma 7.2, one can show the following
uniform estimate for the linear interpolations Wy and 7 > 0, ¢,¢t + 7 € [0, T:

||@N(t+T)—wN(t)||H2a(p) <CT1_Q, for0 < a <1,

where the constant C' is independent of N, but can depend on the choice of . Because C is
independent of N, the estimate implies that for a given arbitrary « € (0,1), the functions wy
are uniformly bounded as functions in C%'~%(0, T; H?**(I")). Hence, the strong convergence of wy
follows directly from the Arzela-Ascoli theorem and the fact that H?® embeds compactly into any
H?2¢ for ¢ > 0, once we choose o € (0,1) and ¢ > 0 appropriately so that 2a — ¢ = s for a
given arbitrary 0 < s < 2. Hence, we obtain the desired strong convergence, as the equicontinuity
condition for the Arzela-Ascoli theorem follows from the above estimate.
To show a similar strong convergence result for wy, we must show that

llwn (t) —ON (|~ 0,115y = 0,

for arbitrary 0 < s < 2. Once we observe that wy(nAt) = wy(t) for nAt <t < (n + 1)At, this
follows immediately from the above Holder continuity estimate, as

lwn () — @n ()| L= 0,115 ()) < C(At)' 2 -0, as N — 0.

Thus, wy and Wy have the same limit in L*(0,7T; H*(T")) for 0 < s < 2.
O

Next, we will obtain compactness for the Biot velocity, plate velocity, pore pressure, and fluid
velocity. Because the test space (52) has the pore pressure and fluid velocity decoupled from the
Biot/plate velocity, we can handle the compactness argument for each of these quantities separately.
In particular, we recall the definition of the discrete test space from (52) and note that we can
decouple this test space into three smaller test spaces, one for the Biot/plate displacement /velocity,
one for the pore pressure, and one for the fluid velocity. In the next section we show compactness
results for the Biot velocity and plate velocity, which must be treated together since they are
coupled by a kinematic coupling condition at the plate interface I'.

8.3 Compactness for the Biot velocity and plate velocity

Theorem 8.1. For —1/2 < s < 0, there exists a subsequence such that
(€ Cv) = (€,€) strongly in L*(0, 5 H*(p) x H™*(I)).

Proof. We will establish this result by using a compactness criterion for piecewise constant functions
due to Dreher and Jiingel [28]. To simplify arguments, we define a slightly more regular Biot/plate
velocity test space:

Qv = {(v,p) € (Varn H?*()) x Hi(T) : 9 = pe, on I'}. (81)
We will use the following chain of embeddings
L) x L*(T) cc H5(Qy) x H*(T) < @,

where the first embedding is compact, as required for the Dreher-Jiingel compactness criterion [28].
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Let 7a; denote the time shift Ta.f(t,-) = f(t — At,-) for a function f defined on [0,7]. As
required by the Dreher-Jiingel compactness criterion [28], to obtain compactness we must verify
that the following inequality is satisfied for a uniform constant C' and for all At = T/N:

Tat(En, (V) — (€, CN)
At

+ [1(€ns SV ox (0,702 () x 22(m)) < C- (82)
LY(7,T5Q)

The second term in this inequality is uniformly bounded by Lemma 7.1, which gives exactly
the uniform boundednenss of (&, (y) in L®(0,T; L(Q) x L*(T)).

To deal with the first term in (82) we use the coupled semidiscrete formulation (60), (61) and
set the test functions v and r for the fluid velocity and Biot pore pressure to be zero because we
are considering only the Biot and plate velocities. We obtain that for all test functions (1, ¢) € Q,,
where Q, is defined in (81), the following holds:

n+1 n+1
— &N — (N
begb< A7 >-¢+ppJF< AL )-so

1 ) )
B _L <2UT]<[+1 U% n+1) (".b " ) r jﬁ" (CJT\LT+16y - unN+1) - TYN (’lﬁ . T“JN)

-2 D "“)-Dw)—xefg (V- n3 )V 6) =2 | DIER) : D)

_)\Uf (V- €n+1)(v V) +aJ ‘_71)7]1\7) n+1v(771v ap — JAw”+2
Qp

The estimate for the first term in (82) will follow if we can estimate the right-hand side in terms of
the @, norm. For this purpose consider an arbitrary [|(, ¢)|lg, < 1, so that |[1)|[g2(q,) < 1 and
|l m2(ry < 1. By the uniform estimates in Lemma 7.1 and the regularity of the test functions in
(81), it is clear that the terms on the right hand side are all uniformly bounded by a constant C,
independent of ||(¥, ¢)||o, < 1, except possibly the term

n \é
o j(nN ?’L+1vl()77N) . ,¢
Qp

To estimate this term we recall the definitions
n \o n
F = det(T+V(mE)), VORI = [V (T V)%

By assumption 2C (68) and the fact that ||)||g1(q,) < 1, we have that ||V(’7Rf)§ “P||12(q,) 1s uniformly

n \o
bounded, while by the boundedness of n% in H(£);), we have that |jb(77N ) | < C. Therefore, using
the fact that py is uniformly bounded in L*(0,T; L?(£)), we obtain the desired estimate

J (77N n+lv (n3)° w‘
Qp
Finally, we conclude that

H( L) — (€%, CY)

AL < C, for a constant C that is independent of n and N,

Q,
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and since
1

N— n+l n+l
) ) (€N7 CN)
INE A

n=1

N—1
<(At) Y C<CT
o n=1

we conclude that (82) holds for a uniform constant C. This establishes the desired result.

8.4 Compactness for the pore pressure
Theorem 8.2. There exists a subsequence such that
pNn — p strongly in L(0,T; L?()).

Proof. The proof is based on a similar application of the Dreher-Jiingel compactness criterion for
piecewise constant functions [28] as in the previous compactness result. We first observe that
we have the following chain of embeddings H'(Q) cc L*(Q) < (V, n H2())’, and so by the
Dreher-Jiingel compactness criterion [28] it suffices to show that the following inequality holds for
a constant C' independent of N:

TAtPN — PN

A7 + lpn L2 (0,m 51 (0y)) < C- (83)

LY(AT;(Vpn H2(Qp)))

To obtain this estimate, we observe that the approximate solutions for the pore pressure satisfy
the following weak formulation for all test functions r € V},, where V,, is defined by (33):

n+1 o NS "
COJ PN PN r—a jbﬂN n+1 vl(:hv) r_ af (hnNJrl "I’L(wN)é)r
Q At Q r

Fr | g QU et G OR° J[ nl ) R — o,
Qp

We use more regularity for the test space V,, n H2(£);) to make the following estimates simpler. We
compute that for any r € Vj, n H2() we have

n+1 n S S "
COJ (pN ~ pN> o O‘J T gt (iR) ”O‘J (e, - n));
Qp Qp T
n \é n \é n
— jb(mv) VI(;nN) pnN+1 V(WN) r+ J;_\[( n+1 <n+1 y) wN]T.

We estimate the right hand side for ||7|[y, np2(q,) < 1. Recall that jbnN = det(I + V(n%)?),

n+1 n+1

(> _ (Or or\ n\8\—1 %) n+1 _ [ OPN - 0PN\ n\O\—1
V= () )t o (T vy

We have by Assumption 2C (68) that |(I + V(n%)?)~!| is uniformly bounded, and furthermore,

8
J, (i) is positive and bounded above. By combining these facts with standard estimates we obtain
that

n+1 n
l% < C for a constant C that is independent of n and .
(Von H? ()’
Combining this with the fact that py is uniformly bounded in L?(0,T; H'(£)) gives the desired
estimate (83). O
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8.5 Compactness for the fluid velocity

We will obtain convergence of the fluid velocity along a subsequence by using a generalized Aubin-
Lions compactness theorem for functions defined on moving domains [52]. The reason we must use
a generalized Aubin-Lions compactness theorem is that the approximate fluid velocities are defined
on different time-dependent fluid domains. To prepare for an application of the generalized Aubin-
Lions compactness argument we will map our approrimate fluid problem back onto the physical
domain

Oy ={(z,y)eR*:0<z <L, -R<y <wi(@)},
where we redefine the fluid velocity solution and test spaces as follows:

Vit ={ue H (U} y) : V-u=0o0n Qf y,u=00n 00} \\['N}, Q% = VI nH3(Q} ). (84)

The approximate fluid velocity u”+l € V”Jrl on the physical domain satisfies the following semidis-
crete formulation:

n+1 ~n
J %-sz D(u) : D(v)
n QTL

1 n+3 R+y n 3 R+y n
iy [5G ) v) om (86750 0) )]

: ! 1 1 1 _
" 2n )y, Rt U+2Jn(“7v+ i) (o)
1 _
_Jn(fﬁl' : pﬁl)( n) =6 ("77VH up) - T(v-T) =0, Ywe QY (85)
N
where

n—1 n
Wy = o @V o (@4R) 1,

u’y is originally defined on Q?f]\,l, and the ALE map @?% : Qp — Qf y is defined by (16).

To be able to compare functions on different physical domains we introduce a maximal domain
Q?/[ which contains all the physical domains. The existence of such a domain, and the extensions
of the velocity functions onto the maximal domain are discussed next.

8.5.1 Extension to maximal domain

We consider the following maximal fluid domain which contains all the physical fluid domains:
O ={(z,y) eR*:0<z<L,—R<y< M)},

where the function M (z) is obtained from the following proposition, established in Lemma 2.5
in [62] and Lemma 4.5 in [52] in the context of fluid-structure interaction between an incompressible
viscous Newtonian fluid and an elastic Koiter shell:

Proposition 8.2. There exists smooth functions m(z) and M (z) defined on I' = [0, L], satisfying
m(0) = m(L) = M(0) = M (L) = 0, such that

m(z) < wy(x) < M(z), for all x € [0,L], N, and n = 0,1, ..., N.

Furthermore, there exist smooth functions m},l(ac) and M]T\L[l(a:) defined for positive integers N,
n=0,1,...,.N—1land ! =0,1,..., N —n, such that
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L. m%l(fﬂ) <wit(z) < M}fx’l(m), for all x € [0, L] and i = 0,1, ..., 1.
2. My (z) —my(z) < CVIAL, for all z € [0, L].
3. [|My! (x) — miy' (@)]| 2y < CIA),

where C is independent of n, I, and N. Finally, the functions M]T\L,l(:v) and m?\,l(:v) for all n, I, and
N, are Lipschitz continuous with a Lipschitz constant that is uniformly bounded above by some
constant L > 0 independent of n, [, and N.

Once the maximal fluid domain is defined, we can extend the fluid velocities u’y, from Q’} N
to this common maximal domain Qy , using extensions by zero in Qy N (% y)° Notice that
since wi(x) are all uniformly Lipschitz, the extensions by zero of the H I functions u’y, defined
on Lipschitz domains to Q?/[ are uniformly bounded in H*® (Q?/[ ) for all s such that 0 < s < 1/2.
Indeed, we have the following lemma, which follows from Theorem 2.7 in [46].

Lemma 8.2. The approximate fluid velocities {un}%_; defined on the maximal fluid domain Qj‘?
by extension by zero are uniformly bounded in L?(0,T; HS(Q}/[)) for s € (0,1/2).

8.5.2 Velocity convergence via a generalized Aubin-Lions compactness argument

We now show strong convergence as N — oo along a subsequence of the approximate fluid velocities
uy, which are now functions in time defined on the fixed maximal domain Q?/[ .

Proposition 8.3. The sequence uy is relatively compact in L?(0, T} L2(Q§‘04))

Proof. The proof is based on using the generalized Aubin-Lions compactness theorem, Theorem
3.1 in [52], for problems on moving domains. For this purpose we define the Hilbert spaces V and
H from the statement of the theorem to be

H = L*(Q}), vV =H*(Q}), for 0 < s < 1/2,

where we note that indeed V' cc H as required by Theorem 3.1 in [52]. Additionally, the spaces
(VX,, QA,) from the statement of the theorem correspond to our spaces (V}, Q') defined by (84).
Notice that V3} x @'y embeds continuously into V' x V' as required by the statement of Theorem
3.1 in [52], where the embedding can be achieved by the extension by zero operator to the maximal
domain Qy , uniformly in n and N.

To obtain compactness of the sequence uy in L?(0, T, H), by Theorem 3.1 in [52], seven proper-
ties need to be satisfied by the sequence ux and the spaces Vi and QR;. They are called Properties
A1-3, B, and C1-3.

The proof that approximate solutions uy satisfy Properties A1-3 and C1-3 is analogous to the
corresponding proof in [52] (Section 4.2). The main difficulty is to verify Property B, which is a
condition on equicontinuity of wy, stated as follows:

Property B, [52]. There exists a constant C' > 0 independent of N such that
P}\l] u%-&-l . u%

At

<C(1+][uyllygn),  foralln=0,1,..,N-1  (36)
(QyY
The sequence uy constructed in this manuscript, however, does not satisfy this property. Never

the less, uy satisfy the following generalized Property B which implies the desired equicontinuity
under which the generalized Aubin-Lions theorem from [52] still holds:
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Generalized Property B. There exist a constant C' independent of n and N, an expo-
nent p, 1 < p < 2, and a sequence of nonnegative numbers {a?{,}ﬁ’:—ol for each N, satisfying
(At) 27127:—01 la%|> < C uniformly in N, such that

+1
At

u

p
PN <C (aN + v + ||u”+1||vﬁ+1> . foralln=0,1,.,N—1, (87)

(@)

where Py denotes the orthogonal projection onto the closed subspace @H of the Hilbert space H.

Indeed, with this Generalized Property B the compactness theorem, Theorem 3.1 in [52] still
holds, as we still obtain the essential equicontinuity estimate needed in the proof. In particular, for
the original form of Property B in (86), one has from Lemma 3.1 in [52] the following equicontinuity
estimate for a constant C' > 0 that is independent of N:

< CVIAL.

With the generalized form of Property B that we use above in (87), the same arguments as in the
proof of Lemma 3.1 in [52] will still give rise to the following equicontinuity estimate for a constant
C > 0 that is independent of V:

PR (™ = uR)l g c@an'=

l l
||P£t( 7]1V+ - uRf)H(Q'K;Z)/

M\‘d

where the generalized Aubin-Lions compactness theorem on moving domains still holds with this
new equicontinuity estimate. This is because 1 < p < 2 and hence, C(IAt)! —5 still converges to
zero as At — 0.

We can now complete the proof of Proposition 8.3 by verifying that our sequence u’y indeed
satisfies the Generalized Property B.

Verification that uR; satisfies the Generalized Property B. First, recall that by definition,

n+1

u T —ul wbt — uh
pr—N N = max NN yde 88
NTUAL ]|, <1 f n At (88)
(@Y N fN
To estimate the right hand-side, we use

un+1 u™ J< unJrl a? a — uh

N N N N N
J 4 . vdx| < -vdw—i—f —— -vdzx|. (89)

. At n At . At

To estimate the first term on the right hand-side we use the semidiscrete formulation for the fluid
velocity on the physical domain given by (85) to obtain

n+1 an
j YN TUN  pde <2v D(u%t) : D(v)
N £N
1 n-‘r R+y n ~n n+3z R+y n
(GRS =S R S R (G - RO R
Q% v
1 R TL-‘:—l n 1 n n ~n
+ R jQ?N mCN 2uNJr1 "U|+ 3 jn (UJ\;rl 77N+1) n(uy - v)

+ + B (90)

1
N

f (n?\;’l u?{fl) T(v-1)|.

N
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We can bound the terms on the right hand-side uniformly in n, N, and [[v||gy, < 1 as follows. By

n+1

the boundedness of u},"" in the uniform energy estimates we immediately have

2v D(uy") : D(v)| < C||u7]1\/+1||H1(Q?7N)-

2fn

The second term on the right hand-side of the above inequality is bounded as follows. First notice
that because [|v||gr < 1, and by the definition of Q% in (84), we have that v is bounded in
H 3(9}‘ ~), and hence, v and Vv are bounded pointwise. Furthermore, by the boundedness of the
fluid velocity u’; on the reference domain due to the uniform energy estimate, and by the uniform

boundedness of the Jacobian of the ALE map CIJMK’, we obtain the following bound:

TL+* R+y . n+1 . _ ’n+* R+y . n+1
Jo (= 5 -9 o= (- i) - 0) o
N

<C (||"17]€f||L2(Q;}7N) + ||Cn+§||L2(F ) ||un+1||H1(Q?,N) Aol o) < Clluy” ||H1(Q V)

1

2

Similarly, the next term in (90) is bounded as follows:

f R CnJr%,un-H
n SN N
7y R+ N

S
2R

1 1
< OGN ey e oy - ol ) < Cllu Lz ).
To bound the next term we observe that ||| r2(r) is bounded uniformly and furthermore, the
arc length element on I'}; is uniformly bounded pointwise since 7}, is uniformly bounded in H0 ().
Therefore, by using the trace inequality on €2y we have the following estimate:

3 ) 7R o)
< C (I 2y - Il acey - 1ol zaey + I ey - laellagey - ollzsr)
C (I Narvagry - e arncey - ol + I Meeqry - ekl vy - 1ol vages
< C (1 gy - ek llmorncayy + 105 oy - e llaayy) - 1ol
0(|| e[y £ N 9 PR [ PR [ [y S A
< C (I iyt q,, - 15,y + g, < c[1+(||uN||vn+||u““|| Okl

The second to last term in (90) is estimated as follows:

\j( WAy o) )

<C

~

n+1||L4

[u NI ||UR7||L4 ||U||L2(r) + ||10n+1||L2 (r) ||'U||L2(F))
un  gagy - 1wl gy - 10l ,) + 108 o) - ||v||H1(Qf))
I

gy - Ik llngay) + 195 o, )

C (]
<c(
sc(
<c(

|1+

14 3/4 1/4 3/4

L Y [ [ SN[ [ PERE)
n+1 n+1 3/2

L (1 ey + ekllvg + 1y e ) |-
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Finally, we estimate the last term

BL(T/}?I uy™) ()| < O (1N ey - Hollezey + i ey - [[oller)

<C (14 b ey ) -

Therefore, we obtain the final estimate of the first term in (89) which implies the existence of a
constant C independent of n and NNV, such that

n+1 3/2
< C (af + llutellvg + e )

n+1 ~n
u m
f Uy —UN o
n

At

max
<1
ollr,

N—
for a := 1+ ||p" ||H1 (), Where ( Z < [ (At)N + ||pn||32 OTHl(Qb)):l C. (91)

To complete the estimate (89), it remains to show that the second term Al

is uniformly bounded. This follows from the same estimates as those presented in [52] which show
that there exists a constant C independent of n and NV, such that

a —ul
J %.wm

~nNn n
u — U
J Uy Uy o
n

<C. (92)

max
<
l[ollgn <1

Combining (91) and (92) with (88) and (89) establishes Generalized Property B and completes the
proof of Proposition 8.3. ]

9 Passing to the limit in the regularized weak formulation

We have so far established the following strong convergence results:

ny —n, in C(0,T;L*()),

wy = w, in L%(0,T; H*(T)) for 0 < s < 2,

Cy — ¢, in L*(0,T; H5(I)), for —1/2 <5 <0,

(v = ¢, in L*0,T; H*(I)), for —1/2 <5 <0,

&y — €& in L2(0,T; H 5()), for —1/2 < s <0,

uy > u, in L0, T;L%(Q})),  py—p, in L*(0,T; L% (),

where (% and (y converge to the same limit in L?(0,T; H=*(T)) for —1/2 < s < 0 due to the numer-

ical dissipation estimates 22;1 1§ —CZ_EH%?(F < C, which imply that |[(x — (¥l r2(0,7;22(r)) — 0

These strong convergence results will be used to pass to the limit in the semidiscrete formulation
of the coupled problem (60) and show that the limit satisfies the weak formulation of the regularized
problem. Before we can do this, there are two more convergence results that need to be established.
One is a strong convergence result for the traces for the fluid velocity on the boundary of the
fluid domain, and the other is a convergence result for the test functions, which are defined on
approximate moving domains.

We start with the convergence result for the trace of the fluid velocity @y |r along T'.

40



9.1 Strong convergence of the fluid velocity traces on I

Proposition 9.1. The traces 4y|r of the approximate fluid velocities on I' converge to the trace
of the limiting fluid velocity on I' as N — oo:

ay|r — alr, in L2(0,T; H*"2 (L)), for s € (0,1),

where iy = uy o @;Ath

and @ = u o ®Y.
To prove Proposition 9.1, we will use the following elementary lemma.

Lemma 9.1. Suppose that the functions {f,}°_; and f are all uniformly bounded in L*(0,7; H'(2y))
and f, — f in L*(0,T;L%*(Qy)). Then, f, — f in L*(0,T;H*()) for s € (0,1) and hence
Falr = flp in L2(0,T; H* 2 (T)) for s € (1/2,1).

Proof of Lemma 9.1. For s € (0,1), we compute using Sobolev interpolation that
2 ’ 2
= S @ = | 10 = DOl
T
2(1—s s 2(1-s s
< fo 1(fa = HOIS @y 1= HOWFs 0,8t < I fa = A 0merzayy - 1n = FE0.m )
The result then follows from the fact that || fo — f|[r2(0,7;11(0,)) < C for a constant C' that does not

depend on N, the assumption that || fn — f||12(0,7:12(0,)) — 0 as N — o0, and the trace embedding
which gives that || f,|r — f|1"||i <||fn — f“%Q(O,T;HS(Qf)) for s e (1/2,1). O

2(0,7;H* 2 ()

We can use the elementary lemma above to show the desired strong convergence of the fluid
velocity traces.

Proof of Proposition 9.1. We would like to combine the fact that uy — w in L%(0,T; L2(Q§/[))
with the fact that uy and w are all uniformly bounded in L?*(0,T; H'(Q2(t))) for all N, to deduce
strong convergence of the traces of the fluid velocities using the previous elementary lemma. We
do this in the following steps.

Step 1. We show that @y — @ on L?(0,T; L*(2y)), for @y and @ defined on the reference fluid
domain.
To prove this, we compute |[ay — 11||%2(0 TiL2(0,)) WSINg the functions wy and w which are

defined on the maximal domain Qi\/[ :

1 2
N N Yy Yy
) &2 t’ ’ (1 > ) (t’ ’ <1 ) )‘
ey ||L2(o, ;L2(Q25)) fo ff‘ N( T,y R) TAtWN Y R w

< 2([1 + IQ),

T
I = f J ‘uN (t,a:,y—i— (1+£) TAth) —u(t,m,y—i— (1+£) TAth)
0 Jo, R R

4 y AVAYG
Ing f ‘u(t,x,y—#(1+—)7‘Ath>—u(t,:n,y—i—(l—k—)w)‘ .
0 Jo, R R

where
2

)
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We show that Iy — 0 as N — oo by using the fact that 1 + % is uniformly bounded from above
by a positive constant, and the fact that Qﬁ\/[ contains all of the domains Q? N> SO that we can
estimate:

N—-1 ~(n+1)At (n+1)At
I = Z J f (1 + ) |u"Jr1 ul? <C Z J J |u”Jrl ul?
n—0 JnAt }L’N R nAt
2
< CHUN - u||L2(O,T;L2(Q}W)) — 0.
For 15, we break up the integral into two parts:
Iy =11+ Iz,

where

I, = JT fL Jmin(O,y*(t,r)) ‘u (t,az,y + (1 + %) TAth) —u (t,x,y + (1 + %) w)
o= [ fmm@m u (e + (14 L) raon) [

)
* _ WTTAWN
for y*(t,2) = FALEN.

Now, note that

T L rmin(Oy*(ta)) [yt (144 )w 2
mi<| [ | oyult z.y)ldy
o Jo J-R y+(1+ %) rarwn
T L rmin(0,y*(t,z)) y+(1+ 4w
<[] | oty Py ) (14 ) o = sl
0o Jo J-R y+ (14 %) rarwn R

We note that Tajwy — w pointwise uniformly on [0,7] x I' as N — oo by Proposition 8.1, which
implies Wy — w in C(0,7; H*(I")) for 0 < s < 2, and by the estimate (76). Combining this with
the fact that ||vu||L2(O7T;L2(Q!}J(t))) is bounded, we have that Io; — 0 as N — oo.

We can interpret y*(t,z) as the y value for which y + (1 4+ %) Tawy = w.

Next, by Poincare’s inequality,

T L
A f f min(0,5*(h,2)) - max _fu(t,z,w)]
we[—R,w(t,z)]

w(t,r)
f f min0,°* (o) [ 0utt, /)Py

so we conclude that Iz 2 — 0 as N — oo by the fact that | min(0,y* (¢, z))| — 0 uniformly on [0, T"] x
I', and by the boundedness of ||Vu| |L2(07T;L2(Q<}{(t)). Thus, we have that ||@n —@||12(0,7;12(0,)) — 0-

Step 2. We claim that the functions @y for positive integers N and @ are all uniformly bounded
in L?(0,T; H'(2f)). Recall from Lemma 7.1 that the approximate solutions @y are uniformly
bounded in L?(0,T; H'(€2f)). Since @ is the strong limit of @ in L?(0,T; L%(€2f)) and @y converge
weakly in L%(0,T; H'(Qy)) along a subsequence to a weak limit which hence must also be @, we
conclude that @ is also in L?(0,T; H'(€f)), which establishes the desired result of this step.

Step 3. From Step 1, we have that @y — @ in L?(0,T; L?(€2f)) and from Step 2, the functions
@y and @ are bounded in L%(0,T; Hl(Qf)) independently of N, so we can conclude the proof of
Proposition 9.1 by using Lemma 9.1. O
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9.2 Convergence of the test functions on approximate fluid domains

The main difficulty in passing to the limit will be the test functions for the fluid velocity. In
particular, on the fixed reference domain €2y for the fluid, we note that the test functions for the
fluid velocity in (38) satisfy V‘}’ v = 0 on Qf, where w is the solution for the plate displacement.
However, the test functions for the fluid velocity in the semidiscrete formulation in the semidiscrete
test space QR,H, defined by (52), satisfy V¥~ -v = 0 on Q ¢- Hence, we need a way of comparing
test functions in Q”NJrl to test functions in the actual test space Vi .

To do this, recall that we have defined the maximal domain (29/[ that contains all of the numerical
fluid domains Q? ~- We then propose to work with the test functions that are defined on Qy , and
are constructed in such a way that the restrictions of those test functions to the domain defined by
the plate displacement w, and composed with the ALE mapping Y defined in (16), gives a space
of test functions X;J that is dense in the fluid velocity test space V;‘c’. The space of all such test
functions defined on Qﬁ/f is denoted by X and it is defined as follows.

The test space X': The test space X consists of functions v € CL([0,T); H 1(Q?/[ )) satisfying
the following properties for each ¢ € [0, 7T):

1. For each t € [0,T), v(t) is a smooth vector-valued function on Qy .
2. V-o(t) =0on Q) for all t € [0,T).

3. v(t) = 0 on dQY\I'y for all ¢ € [0,T), where T'yy = {(x, M(x)) : 0 < & < L} is the top
boundary of the maximal fluid domain Qj\/ .

Given v € X, define
v = ’U|QL}J o®} and vy = /U|Q‘}’N o YN (93)

The test functions © are dense in the fluid velocity test space V;’J associated with the fixed domain

formulation, and the test functions ¥y restricted to [nAt, (n + 1)At) are dense in V;J %, where Vfw &
is the velocity test space for the semidiscretized problem(s) given in (52). Therefore, for each fixed
N, we can consider the semidiscrete formulation with the test function vy, which we emphasize is
discontinuous in time, due to the jumps in wy at each nAt. To pass to the limit as N — oo we
can use the same approach as in Lemma 7.1 in [47] and Lemma 2.8 in [62], to obtain the following
strong convergence results of the velocity test functions vy and their gradients, which will allow
us to pass to the limit in the semidiscrete weak formulations:

Proposition 9.2. Consider v € X, and © and vy defined in (93). Then
’l~JN — U, VfJN g V’U,
pointwise, uniformly on [0,T"] x Qf, as N — .

Remark 9.1. We emphasize that we were able to construct such a test space X because in the
definition of the full test space Vi in (38), the only component of the test space whose definition
depends on the plate displacement is the fluid velocity, and fortunately, this fluid velocity component
of the test space is decoupled from the other components. This is a feature of fluid-poroelastic
structure interaction problems. In the purely elastic case of FSI, the fluid velocity test space is
coupled to that of the structure, and the construction of the test functions that converge on the
approximate fluid domains in more involving, see e.g., [20,47,49].
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9.3 Passing to the limit

We are now in a position to pass to the limit in the semidiscrete formulation. From (60) we obtain
that for all (Dn, ¢, 1, 7) in the test space with v € X, the following holds:

T T

1 R
J J (1 + TAth) Uy -ON + J J (1 + TAMN) ((TAtuN — (N s y€y> 'V}AWNUN> “UN
0 Qf R 2 0 Qf R

R
R+ o 1 (T 5
—<<TAtUN—CN Ryey) -V N’UN> ]+2RJ QCNUN'UN
f

J J un — (yey) - AN (Taun - O +21/j J TAth)D;Ath(uN) : D;Ath('DN)
Qf

+ JO L (2uN s TAtUN —PN) (¢ - ’TJN) . pTAWN TAtWN J J CNey TTALWN (d’ _ @N) . FTAIWN

+ P LT Lb <£N_ATtAt£N> “h+pp LTL@CN o+ QMeJO LbD(’UN) : D(v)

T T T
Y f (V- 1) (V - 9) + 2410 f D(Ex) : D(3) + A, f (V- €3)(V - 9)
0 Qp 0 Qp 0 Qy

T T

Oy - T — aJ jb(TAtWN)ééN ) vl()TAtUN)dr
0 Jo,

- OKJ J CNey TAth )r + HJ o j(TAtnN) V(TAtnN) pN . V{()TAtT]N)ér
b

—L L[(UN — Chey) - mAEN ]y +L LAwN Mg =0,

Using the strong convergence results established above, combined with the previously estab-
lished weak convergence results in Proposition 7.1, we can pass to the limit in all of the terms in
the semidiscrete weak formulation except those involving time derivatives. However, we can handle
these by a discrete integration by parts. For example, for the first integral, we can use a discrete
integration by parts to obtain:

TAth _ -
ofuN - N
Qf

- — 1+u(9'v—f (Orw)u - 'v—J 1—1—@1;0-60,
fofaf R ' th Qf< R)() ©

where vy = v o @;AWN and v = v o ®% for v € X'. See for example pg. 79-81 in [62].

The limiting weak formulation holds for all velocity test functions in the smooth test space,
which can be extended to the general test space Vi, defined in (38) by using a density argument.
Therefore, we have shown that the approximate weak solutions converge, up to a subsequence, to
a weak solution to the regularized problem, as stated in Theorem 5.1.

This completes the main result of this manuscript, stated in Theorem 5.1 providing existence of
a weak solution to the nonlinearly coupled, regularized fluid-poroviscoelastic structure interaction
problem, given in Definition 5.5.

We conclude this section by making the important observation that the weak solution that we
have constructed to the regularized FPSI problem satisfies the desired energy estimate. This will

. j T g s’ J

0 JOy
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be important for showing weak-classical consistency in the next section, and can be shown easily
by using the discrete energy estimate for the approximate solutions.

Proposition 9.3. (Energy estimate for the limiting solution to the regularized problem.)
The weak solution (u,n,p,w) constructed from the splitting scheme as the limit of approximate
solutions satisfies the following energy estimate for almost every t € [0, T]:

;jﬂf()|u|2+;pbf €2 + j ||+uef D(n)
[ e ppfm? s[aer e [ o
+2uvffm (OF + X ffgblv £|2+ffff S)valzwff” (Cey —u) - 7)|* < By,

where Fjy is the initial energy of the problem.

Proof. The approximate solutions (uy,ny,pn,wn) satisfy the following energy inequality:

1 1
)y g | et g | ol e | DG
Qy n(t) Q

T Af V-l + ppf el + jmwm?wu” uy)?
QfN

+2MUH D(€y) |2+A” v sNPm” |VpN|2+/3” ey — uy) - 72 < Fo.
Qp Qp N(S) I'(s)

By using the weak and weak-star convergences of the approximate solutions, stated in Proposition
7.1 and lower semicontinuity, we can pass to the limit in the energy inequality, one recovers the
energy inequality (94). O

10 Weak-classical consistency

We have now shown the existence of weak solutions to the regularized FPSI problem (40). How-
ever, it is not clear that the solutions to this regularized problem are physically relevant, since the
regularized weak formulation is not equivalent to the original weak formulation without the regu-
larization. However, we will demonstrate the following weak-classical consistency result: given a
spatially and temporally smooth solution (u,n, p,w) to the FPSI problem, then the weak solutions
to the regularized problem with regularization parameter ¢, which we will denote by (us, 15, s, ws),
converge to the smooth solution as § — 0.

10.1 Notation

Since we will have to use spatial convolution of the solution to the regularized problem (us, ns, ps, ws),
and spatial convolution of the smooth solution (u,n,p,w), we introduce the following notation to
avoid additional superscripts involving §.

1. Recall that (us, ns, ps,ws) denotes the weak solutions to the regularized problem (40);
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2. We will use (u,n,p,w) to denote a spatially and temporally smooth solution (u,n,p,w) to
the original FPSI problem (2), (3), (6), (7), (11)-(15);

3. We will use the superscript § notation

ny = (n;)° := 67°ng = o(x/9)

to denote the spatial convolution defined by (23) of the weak solution to the regularized
problem with the smooth convolution ¢ kernel;

4. Similarly, we will use
1’ = (n)’ = 5% » o(x/s) (95)

to denote the spatial convolution of the classical solution 1 with the convolution kernel;

5. We will use superscript d to denote the physical Biot domain under the regularized displace-
ment:

() = (I +n5(t))()- (96)

Weak formulations reformulated. We note that even though the weak formulation (22) and
the regularized weak formulation (40) are stated up until a fixed final time 7', we can reformulate
the weak formulation for almost every time ¢ € [0, 7] by using a cutoff function (see for example
the proof of Lemma 12.2 in the appendix where this is done explicitly).

Thus, the classical (temporally and spatially smooth) solution (u, 7, p,w) satisfies the fol-
lowing non-regularized weak formulation for almost all ¢ € [0, T], for all test functions (v, ,,r) €
Viest With the (moving domain) test space Viesy defined in (37):

g
+21/f Lf(s)Du D(v) —i—f Ll(s)< |u|2—p>( —vn)+ﬁf L(s)(g_u)'t%_”t)

—ppffatw awffm Ap— pbf - at¢+2uef D(n,) : D(¥)

mf <v-m><v-w>+2mf D(@m)zD(w)mj (V- am)(V - )
0Jo 0 Ja, 0

b Q
- afo be(s) Vv Cofo Lb povr = afo JQ,,(S) Dgtm Ve 0 L(S)(& T
e L fﬂb(s) VpVr f L gy
- LN) w(t) - vlt) = py | 000 =1 jﬂ £(t) p(t) — o Jﬂf’(” (1)

: jﬁf«n o w0t oy fr Jo b0 o fszb €0+ $(0) + o Lb po - 7(0). (97)

Similarly, the solution to the regularized FPSI problem (us,ns,ps,ws) satisfies the fol-
lowing regularized weak formulation for every test function (v, p, ¥, ) € Viest, and for almost every
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€ [0, T5] where the final time Ty potentially depends on d:

t 1 t
- Jo LM(S) us - 0o 2fo LM(S)[((W Vug) v — ((ug - V)v) - ug)
1 [t "
+ 5 L Jré(s)(ua ‘n—28 -n)us - v+ 2VJO JQf’(;(S) D(us) : D(v)
¢ 1 9 t
+Jo fn;(s) <2|u5| —p6> (Y, — vp) + BL La(s)(£5 — ) - #(bs — vg)

t t ¢
—ppJ J 6tw5-0t<p+f J Aw(s-Acp—pr ot - at¢+2ﬂej D(ns) : D(v)
0JT 0JT 0 JQ,

Y f (V- 15)(V ) + 2 j D(0ms) - D) + A, f f (V- m)(V - )

Q Qp
—affé psV - lb—cof Lb 55t7“—af L " Dtna VT—O‘J JF& (& -m)r
Y g
- me us(t) -0l = py | G0)- ()= o jﬂ £3(1) - (1) — o JQ ps(t) - 71

' jﬂf«n uo w(0) 4y fr Bo - (0) + oo fgb fo-9(0) + be po - 7(0), (98)

where %i is the material derivative with respect to the regularized Biot displacement. We remark

that while our existence proof in the previous sections holds for both a purely elastic and vis-
coelastic Biot medium, our weak-classical consistency result will hold in the specific case of a Biot
poroviscoelastic medium so that the viscoelasticity parameters p, and A, are strictly positive, and
hence, the plate velocity (se, in the weak formulation is equivalently the trace of the Biot medium
velocity &5 € L2(0,T; H*(Q)) along T.

10.2 Statement of the result

In the remainder of the manuscript, we will prove the weak-classical consistency result. Before
stating the result, we need to introduce some additional notation. Namely, to prove the weak-
classical consistency, we will subtract the weak formulations for the two solutions w and us and
test formally with the difference of the two solutions v = w — us. However, the functions u and wug
are defined on different domains, and hence, the difference u —ug is not well-defined. Therefore, we
will have to use a transformation to bring a divergence-free function defined on one fluid domain
to a divergence-free function on another fluid domain.
For this purpose consider the two fluid domains

Qf(t) = {(z,9) eR*: 0 <z < L, —R <y S w(t, x)},

Qps(t) = {(z,y) e R?: 0 <z < L, —R <y < wj(t, 7)),

that are associated to the plate displacements w and wy.
We define a map between Q¢(t) and ¢ 5(), and a transformation that sends functions on one
domain to functions on the other domain as follows. Let 15(t) : Q¢ 5(t) — f(t) be the mapping
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defined by

R
¢5(t7$7y) = (t,iB,’}/g(t,l‘)(R + y) - R)’ where 75(2&733) - Zm

This mapping, unfortunately, does not preserve the divergence free condition. However, if we
calculate the gradient of the composite mapped function we get

V(uos) = [(Vu) o ¢s]Js (100)

(99)

where

1 0
Jaltz,y) = (<R+y>aﬂ5<t,w> w(t,x))' (10)

Similarly, for the regularized problem we define
= 1 0
Js = Jso5t = ( _ > 102
s =I5y (R+y)v; ' 0uvs(t,2) s(t, ) (102)

These Jacobian matrices will now be used to define the transformations that map divergence free
functions to divergence free functions.

Definition 10.1. Part I: Given a divergence-free function w on §24(t), the following transformation
~:u+— u maps u to a divergence free function u on Qf s5(¢):

a = v5J5 " - (wohs). (103)

Part II: Given a divergence-free function us on Qy 5(t) the following transformation ™ : us — s
maps us to a divergence free function s on Qy(t):

s = ;" Js - (us o5 h). (104)

Remark 10.1. Both transformations preserve the trace of functions along I'.

Note that even though the definition of @ depends on ¢, we will not explicitly notate this
dependence, as § will be clear from the context. We now state the weak-classical consistency result.

Theorem 10.1. (Weak-classical consistency) Let (1, &, wo, (o, Po, o) be smooth initial data
for the nonlinearly coupled FPSI problem (2), (3), (6), (7), (11)-(15). Suppose (n,w,p,u) is a
classical (temporally and spatially smooth) solution to this FPSI problem on the time interval
[0,T]. Let (ns,ws,ps,us) denote the weak solution to the regularized FPSI problem (40) with
regularity parameter 6.

Then the following holds true:

1. (ns,ws, ps, us) is uniformly defined on the time interval [0,7] for all § > 0;

2. The energy norm of the difference between the two solutions Eg(t) converges to zero as § — 0,
for all t € [0, T], where

¢
Ex(t) = @1~ us) Ol a0+ [ 1D~ us) (0 o
+11(€ - 55)(75)”%2(1“) + [(w - Wé)(t)H%ﬂ(r) + 1€ - 55)(t)||%2(9b)

+|[D(n - "75)(75)”%2(%) + (V- (n—m6) )l z2¢0) + Jo |D(§ — 55)(5)||%2(Q,,)d5

t t
+ [ 19+ (€ = €0 lltany + 0= ) OlfEany + [ IV = 1O Eaag
(105)
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Preview of the main steps of the proof of weak-classical consistency. The proof is based on Gron-
wall’s inequality for Fs(t). However, there are several obstacles to applying Gronwall’s inequality
due to the fact that we are working on a moving domain problem. We summarize those main
obstacles, and the main ideas behind their resolution here.

The main idea is to estimate the energy difference between (uw,n,p,w) and (us,ns, ps,ws),
defined in (105) and obtain an estimate for Es(t) in terms of Es(0), the integral of Es(s) for times
s € [0,t], and other terms that have sufficiently strong convergence in ¢ as § — 0:

¢ t
Es(t)y<C <J ||V — V775||%2(Qb) + J E(s(t)ds) (106)
0 0
and then apply Gronwall’s inequality to obtain
Es(t) < C6%e“t,

where C' is independent of §, and conclude that E5(t) — 0 as 6 — 0. We remark that the factor
of 8% appearing in the Gronwall estimate comes from an estimate of the convergence rate of the
spatial convolution n° to n in H'(€), which we establish in the upcoming Lemma 10.2.

To do this, we will test the weak formulations for w and us with appropriate test functions and
use the energy inequality (9.3). More precisely, the main steps in the proof are:

1. Test the non-regularized weak formulation (97) for the classical solution (u,n,p,w) with
the “difference” of (w,dim,p, dw) and (us, 0in;, ps, Orws), where the notion of the difference
between these two solutions will be made precise in Section 10.3;

2. Test the regularized weak formulation (98) for (us, ns, ps,ws) with (u, 0yn, p, dw);

3. Rewrite the energy inequality (94) for (us, n;, ps,ws) so that it parallels the terms in the weak
formulation (98);

4. Combine the equations from Step 1, Step 2, and Step 3. This will give us an expression that
we can analyze term by term in order to obtain estimate (107) for the energy difference Es(t).
Details will be presented in Section 10.3;

5. Construct a bootstrap argument. Namely, at a first pass, Gronwall’s inequality is proven
locally in time, namely, on the interval [0, T;] along which the assumptions on the determinant
of the Jacobian of the transformation from the moving domain to the fixed domain is bounded
for the solution of the regularized problem. However, we need the Gronwall’s inequality to
hold along the entire time interval [0,7'], along which the classical solution is defined. This
will be done by a construction of a bootstrap argument, see Section 10.4.

6. Apply Gronwall’s inequality to (107) holding on [0, T'] to obtain the following bound for Ejs(t):
Es(t) < C8%e“,
where C' is independent of §, and conclude that Es(t) — 0 as 6 — 0.

Before we start with the proof of weak-classical consistency, we emphasize that there are two
main mathematical difficulties that need to be addressed in the proof:
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1. Instep 1 above, we want to test (97) with the difference of (u, 6:n, p, dyw) and (us, 0ings, Ps, Orws ).
This is formal because the test functions in Ve, defined in (37), must be continuously dif-
ferentiable in time, and furthermore, for the fluid velocities, the difference between u and ug
does not make sense, since these functions are defined on different fluid domains. Thus, we
must carefully define which test functions we will use. This is addressed at the beginning of
Section 10.3 below.

2. As mentioned in step 5 above, the regularized weak formulation involves integrals on the
physical time-dependent Biot domain Qg 5(t), which give an extra factor of det(I + VnJ) in
the integrand from the Jacobian, when the integrals are transferred to the fixed reference
Biot domain €2,. This factor cannot be estimated in the finite energy space where 7y is
only bounded uniformly in § in the function space L*(0,T; H!(£2)). To obtain pointwise
estimates of this term that hold on the time interval [0, T], where T is independent of ¢, we
need to use a bootstrap argument to get from the local pointwise estimates on [0, Ts], where
Ts depends on J, to the global, uniform estimates on [0,7]. This is addressed in Section 10.4
below.

10.3 Gronwall’s Inequality

We show that the following Gronwall’s inequality holds for almost all ¢ € [0, Ts], where T5 depends
on §. Later on we will use a bootstrap argument to show that the weak-classical consistency holds
uniformly, on the entire interval [0, 7] on which the classical solution exists.

Lemma 10.1. Gronwall’s estimate. Let (131), (132), and (133) hold for almost all ¢ € [0, T}].
Furthermore, let 17 and 1° denote the smooth solution and its regularization, defined on [0, T], and
Es be the energy norm difference (105). Then the following inequality hold:

t t
Bs(0) < 0 [ 190 = 90" a5 + [ Batoyas) (107)
0 0

where Ej(t) is defined by (105). Furthermore,
Es(t) < C5%e“t.

To prove Gronwall’s inequality, we want to test the non-regularized weak formulation formally
with the difference between (u, dim, p, dw) and (us, 0in;s, ps, dwws). However, there are two reasons
why this is not rigorously justified. First, d;n — 0:n; is not a continuously differentiable function in
time as is required for the test functions, and hence, we will use a convolution in time and pass to
the limit as the convolution parameter goes to zero. Second, the fluid velocities give an additional
difficulty, as the fluid velocities are defined on time-dependent moving domains. Thus, we must
transfer the fluid velocities between different time-dependent domains in order to make sense of
the “difference” between w and wus as a test function. Furthermore, the way in which we do this
transformation and the way in which we perform the convolution in time must both respect the
divergence-free nature of the fluid velocity on the time-dependent domain. We will address both of
these difficulties as follows.

Construction of appropriate test functions (u, din, p, oiw) — (us, Oms, Ps, Orws):

Difficulty 1: Lack of regularity in time. We address the first difficulty by defining a
convolution in time. This will allow us to regularize 0:(n —ns) = & — s, p — s, and Or(w — ws) =
¢ — (s so that these functions are continuously differentiable in time. Since the classical solution
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is already continuously differentiable in time, we only need to regularize the weak solutions to
the regularized problem. Because these differences are all defined on fixed domains, we can use a
standard convolution in time.

Convolution in time. Let j(-) : R — R be a compactly supported even function with

supp(j) < [—1,1] and J j =1, and we define j,(t) = v 'j(v~'t), where v > 0 is the convolution
R

parameter in time.
Consider v > 0. Extend &;, ps, and (s to the larger interval [—v,T + v] by reflecting across
t=0and t =7T. For example, define:

&5(t) = &s5(—t), forte[-v,0]
&5(t) = &5(2T —t), forte [T, T + v].

Convolution in time is then defined by:
(&5)u(t) = &5(t, ) * ju = JR &5(s)Ju(t — s)ds, for t € [0,T].

The convolutions (ps), and ((s), are defined similarly. With these definitions we can now test with

§—(&5)v, P — (ps)v, and ¢ = (Cs)v-

Difficulty 2: Velocities are defined on moving domains. Because the fluid velocities are
defined on moving time-dependent domains, we cannot directly apply a convolution in time. We
must first be able to transform fluid velocities from one domain to another, while preserving the
divergence-free condition, and then convolve in time. The transformation of fluid velocities from
one domain to another, while preserving the divergence-free condition, will be performed using the
following matrix:

) N
Jtx,y) = Rles |
(s,t,x,y) —(R +v)0, (giwgt:wg) ! N

This matrix has the following essential property: if w(z,y) is a divergence-free function on the
domain Qy(s) defined by the structure displacement w(s, ), then the function

R+ w(s,x)

K(s,t —-—
(57 7x7y)u (zﬂ R—i—w(t?aj)

(R+y)—R>

is a divergence-free vector field on the domain Q¢(t) defined by the structure displacement w(¢, x).

Combined transformation of fluid velocities and convolution in time: We can now use
this transformation to convolve in time, as follows. We extend us to [—v,T + v] by reflection, as
above, and define, for ¢t € [0, 7],

R+ ws(s, x)
"R+ ws(t, x)

(us)u(t) = f Ky 5(s,t, x,y)us (s, x (R+y) — R) Ju(t — s)ds. (109)
R

For a divergence-free function v, extended as above in time to [—v,T + v], we can define v, on

Q¢(t) analogously by

R+ w(s, )

v = K y Uy by s by ST T N
v,(t) fR 1(stacy)v(sz+w(t,x)

(R+vy) — R) Ju(t — s)ds.

Here, Ki(s,t,z,y) and Ky s(s,t,x,y) are defined as K(s,t,z,y) with the choices of w = w and
w = ws respectively. An example of such a function v which will be convenient to consider on ¢(t)
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is the function @s defined on Qy(t), which is the function us defined on € s5(t) transferred in a
divergence-free manner, as described above, onto the domain ¢(t). Specifically,

R+ws(t,x) 0
g Rrwo(t,0) R+ ws(t, z) )
us(t,z,y) = wn (b ule, —(R+y)— R ).
5(t,y) (R +1)0, (%) 1 ( Rywits) BFY

We present the main properties of (us), in the proposition below, which are a specific case of
Lemma 2.6 in [57].

Proposition 10.1. Fix an arbitrary § > 0. Given us € L*(0,T; H'((t)) and w,ws € H3(T), the
following properties hold:

e Divergence-free condition: div[(us),] =0 and div[(t@s),] = 0, Vv > 0 and V¢ € [0,T7;

e Convergence properties:

(us)y — ug strongly in LP(0,7'; LY(Qy5(t))), for all pe [1,0),q € [1,2),
(s)y, — g strongly in LP(0,T'; LY (Q24,1(t))), for all p € [1,0),q € [1,2),
(us)y — us weakly in L2(0,T; W'P(Q;.5(1))), for all p e [1,2),
(Us)y — Us weakly in L?(0,T; WP (Q;1(t))), for all p € [1,2).

Proof. (Proof of Gronwall’s estimate.)
We begin by testing the weak formulation (97) for the classical solution (u, 7, p,w) to the original
non-regularized problem with

v=u— (), ¢=C—(G)y, ¥=E&=(&), r=p—(Ps) (110)
and then test the regularized weak formulations (98) for the weak solutions (us, ns, ps,ws) with
U:av @:Cu Y=& r=p. (111)

Next, we rewrite the energy estimate in Proposition 9.3, which holds for the function ug, in a more
convenient form by adding extra terms that will cancel out, in order to have the energy inequality
parallel the weak formulation term by term. In particular, we have that for almost every t € [0, T5],

1
QJ us|” + JJ ((us - V)us) - us — ((us - V)us| + JJ (us-m —2&5-n)us - us
Qy s(t) Ts(s

1
v [ [ |D<u5)|2+“ (3hust - ) (E(s—ué)'nJrﬁJJ (65— us) - 1)
0 JQy 5(s) 0 JTs(s) 0 JTs(s)
1 2 1 2 1 2 ¢
+5Pp |£5| +5 IAwal + 5P |€5| +ue
+>\f|v"75 |+2MU” sum”wsa?
t
—OZJJ psV - &5 + COJJ Ips(s) _QJJ 775 Vpa—aff
0 Jog 5(s) o Qf 5(s) Dt (s
e[ [ k[ gt [ ul+ a f &
0 JOp 5(s) 0 JTs(s) Q£(0) r

1 1 1 1
+f|Awo|2+pb j €[ + e f Do) + LA, j |v-no|2+cOf pol?. (112)
2 T 2 Q Qy 2 Qp 2 Qp
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Finally, we combine the weak formulation for u tested with (110), subtract the regularized weak
formulation for ugs tested with (111), and add the energy estimate (112) for us to obtain an
expression of the form

31 <, (113)
where the terms T; are given below. We have to estimate each term, and the combined estimate
will give the Gronwall’s inequality (107). To make this section more concise, we summarize the

final estimates here, and present details of the derivation of these terms and the estimates in
Appendix 12.2.

Term T1. Term 77 is defined as follows:

-] [PERIECIRES 3 Jo 6 mwe a— s + Lf(t)uw)-[u—(aa»](s)

(114)
B JQf(O) R J JQM e ot - J Lé(t (& majus

1 1
o )t - j us©) a0+ 5 | fus@P g | P (1
Qy,5(t) Q(0) Qp5(t) Qy,5(0)

This term is estimated so that after taking the limit as v — 0, the contribution of this term becomes

1

R RPRCER IO
Qf,5(t)

where
r 2
Ril <e [ 1@ —wilfinga,

T T T
o (j oo = sl aqry + f 10w — sl Zagry + f ||a—ua||%2<gf,5<t»)-

Term T2. Term T5 is defined as follows:

S f, et =5 [ ] el

_J L“(t us - Vus) - (u — uyp) JLH@ us - V)(u —ug)) - u (116)

After taking the limit v — 0, term T5 can be estimated as follows:

el < [ 19— us) o + €10 ([ llo =l + [ 18- wslia, oy )
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Term T3. Term 73 is defined as follows:

:1fj (u'n_g'n)u'[u_(ﬁ‘s)”]_1thr5(t(ué.n‘s_g&'n&)ua-ﬁ
ey [ wEen =g [ e el = [ [ e ms =)

2 2
+ QL Lé(t)(ug n—&;-n)lus|® + QJ() Jra(t) lus|*(§5 - — ug - m). (117)

After taking the limit v — 0, term T'3 can be estimated as follows:

t
-~ 2
T <e | 1= sl a0

t t t
+C(©) ( [, o= ol ey + [ 1€ = sty + | ||a—ua||%2mf,5<m).

Term T4. Term T} is defined as follows:

Ty —21/f J (u — (), —21/f j D(us) : D(u — us). (118)
Qg (t) Qys(t)

After taking the limit ¥ — 0, term 74 can be estimated as follows:

t
T = zyf f ID(@ — us)[2 + R,
0 Qf’(;(t)

where

t t t
Ral << | 1D(@ = w0 + O (J o =l ey + | N2 - u5||%2<9f,5<m) .
Term T5. Term T5 is defined as follows:

T =ﬂf0 L W~ €~ (w )] jo fr 65 w6~ 69— (@)

After taking the limit v — 0, term T5 can be estimated as follows:

t
Ty — BL Jw (€ — €5)0 — (@ — ug)l? + R,

where

t t t
Rs| < f 1D(@ — )2, 50 + C(€) ( f oo = s By +j0 e - 55||%2<r)) -
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Terms T6-T8. Terms Ts-1Ts are defined as follows:

T6=—pp£jr<-at[<—<<a>y]+ppfpc<s>- (5) = (] =y | CO)-EC0) = (G3)o(0)]
+%£LC&-@C-%LC5(S)-C(S)+ppLCa 0) - ¢(0) +2ppL|<5 s ppf [
(119)
n-”Aw ALC— (G) ffﬁwa AC+E jmwa —;L|Awo|- (120)
Ts=—py L 3l = (€l + Lbe )+ [€6) ~ €)(5)] ~ oo | €00)-1€0) ~ (€010
T oy jo fQ oms - 0k — py ijeg<s>-e<s>+pb fﬂbsg(m )+ 5o j &)~ oo f &l
121

After taking the limit v — 0, the terms Tg-Tg become:

T =500 [ 1= @OF o= [ 18@-w)OF, T=3m [ 1€-&)0P

Terms T9-T12. Terms Ty-T12 are defined as follows:

Ty =2p, j QD(W)iD[E—(Ea)u]—2Me j f D(ny) : D(E) + e f D) (9 e | 1D

Tw—)\JQV"n —(€5),] /\fﬂvn(sVﬁﬁL/\fIVm —AJWnOF-
b b

T =24, f D(€): D€ — (£5),] — 240 f _Di&) D +2uuf D(€5) 2.

0 JQy

T2 =\ f va ) ( )] —AUL mv-& (V- &) +Avﬂfgb|v-§5|2. (122)

Because &5 € L2(0,T; H(Q)) where , is a fixed domain, we have that (£;), — &5 strongly in
L?(0,T; H'())). Hence, as v — 0, we have that Terms 9-12 converge to the following:

To=pe | |Dm—ns)),  Tio= A IV - (n—mns5) ()%,
Qb Qb

t
m:mfo D) Tu:AUfO Ve

Term T13. Term Ti3 is defined as follows:

fia=—a [ Jop PV T~ €D va Jog g1 (V€= €0)-

b,
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After taking the limit v — 0, term T3 can be estimated as follows:
! 2 ' 2
Tis| <C(e) | IV = Vnslli2q,) +€ | [IVE—=E)li20,)

0 0

! 2 ’ 2 ! 2
+ C(e) [V — vn(SHL?(Qb) + | flw— w5||H2(F) + 1 llp —P6||L2(Qb) :
0 0 0
Term T14. Term T4 is defined as follows:

Tﬁ:—%LLﬁw@@—@m4+%Lf@-m@—@&@n—%wa@@—umxm

t 1 1
veo | | mram—a | pss)p e | nof o | O - o | mP (123)
0 JOQp Q Q Qp Qp

This term can be handled in the same way as Terms 6-8. In the limit as v — 0, the contribution
from this term is

T4 = %Co L [(p — ps) (7).

Term T15. Term 7115 is defined as follows:

Tﬁ——afﬁMt 15A+afjbwﬁa V(o - ps). (124)

After taking the limit ¥ — 0, term 715 can be estimated as follows:
! 2
Tisl <e [ 10— 190, 0y + €O [ 190~ Il

t t
+C(e) (L V0 = Vsl 720, + Jo lw — wsl 32y + fo |[0em — 5t775||%2(9b)> :

Term T16. Term T is defined as follows:

:—ajf n)[p — (ps l,]—l—aff (&5 -m)(p — ps)- (125)

After passing to the limit as v — 0, this term can be estimated as follows:

t t t
The| < € (L V€ - V&H%%Qb) +Jo IVp — vPéHi?(Qb,Qﬂ;(t))) +C(e) (jo Ip _p‘SH%?(Qb)

t t t t
+LHVn—VﬁM%mw+LHVn—VnM$m9+LHw—wwéms+LH£—%ﬁymO-
Term T17. Term 177 is defined as follows:

=k Lt Lb(t) Vp-Vp—(ps)] — & Lt Jm o Vps - V(p —ps)- (126)
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This term can be estimated as follows:

¢
Ti7 < HJ J IV(p—ps)|* + Rz,
0 ngé(t)

where the remainder is bounded by
' 2
|R17| <6J0 ||V(p - p‘S)HLZ(QS,(;(t))

t t t
+C@<LHVn—Vﬁmémw+LHVn—me%mw+LHw—wm%@J-

Term T18. Term T}y is defined as follows:

Ty = Lt L(t)p(u J J t)p[ Uus)y f Lé(t (u—¢&)-
+f0t Lé(t) (s = &) J L(t u=§): (pe)y] +f Lé ((us —&5) - n)(p — ps)-

This term can be estimated as follows:

t t t
Tisl <c ([ ID@ = wslio, o + [ 11966 = €9)llan + [ 196~ po) ey o

t
+ (7(6)[O llw = wsllFr2 -

The combined estimates for the terms T1-T'g give the estimate (107). This finishes the proof of
the Gronwall’s estimate presented in Lemma 10.1. 0

All that is left to show to complete the proof of weak-classical consistency stated in Theo-
rem 10.1, is to argue that Gronwall’s inequality (107) holds for all ¢ € [0, 7] where T is independent
of 0. This will also imply the first statement in the theorem, which states that (ns,ws, ps, us) is
uniformly defined on the time interval [0,7] for all § > 0. In order to do this we use a bootstrap
argument presented in the next subsection.

10.4 Bootstrap argument

To obtain the desired Gronwall estimate, we need the following uniform bounds on the factor
det(I+ Vng), which appears in the regularized weak formulation (40) defined on the fixed reference
domain p:

det(I + Vi) > ¢, (127)
0<ce<|T+Vn)<C, pointwise in €, (128)
IVns| < C, pointwise in €, (129)

which need to hold for all t € [0,T] where T > 0 is independent of §. Notice that we only have
uniform boundedness of 1; with respect to § in L°(0,7; H()), which implies that det(I + Vn3)
is uniformly bounded with respect to § only in L®(0, T’; L'(£2)), which is insufficient for estimating
any integrands with this factor.
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To get around this difficulty we use the following strategy. Recall that by the way the weak
solution to the regularized problem was constructed using the splitting scheme, we have that there
exists a sufficiently small constant ¢ (uniform in §) such that

det(I +Vnl) = ¢> 0, (130)

for all ¢ € [0, Ts] where Ts > 0 may depend on §. This estimate holds at least locally, although not
locally uniformly, for each § > 0. In fact, similarly, the following three estimates hold locally, for
t € [0, Ts], where Ts may depend on &, with positive constants ¢ and C' that are independent of §:

det(I +Vn3) > ¢, (131)
0<c<|I+Vny<C, pointwise in ), (132)
VR3] < C, pointwise in Q. (133)

These estimates imply that for sufficiently small ¢ > 0, the following inequality also holds locally,
for all t € [0, T5]:
O<Cl<|T+Vn)) Y<el (134)

Let [0,T] denote the time interval on which the classical solution 7 exists. Then, we can choose
¢ > 0 and C > 0 so that the inequalities (130)-(134) also hold for the classical solution for all
te[0,T].

We will now show how to use a bootstrap argument to deduce that the time interval on which
estimates (130)-(134) hold for the regularized weak solution of the regularized problem 3 can, in
fact, be extended to the entire interval [0,7], namely, that estimates (130)-(134) hold globally,
uniformly in §, where T is independent of 9.

This will follow if we can show that Vn and Vng are pointwise uniformly “close”, i.e.,

|(Vn — Vnd)(t, z)| — 0 pointwise uniformly in [0, 7] x Q as § — 0. (135)

To obtain this estimate we start with the main proof of Gronwall’s inequality under the as-
sumptions that (131), (132), and (133) are locally valid for t € [0, Ts]:

t t
Ex(0) < Cu [ 10" = m®) s + Ca [ Es(s)ds, (136)
0 0

where the constants C; and Cs are independent of . Then, by Lemma 10.2 below, we obtain that
the first term on the right hand-side above can be estimated as follows:

In° — N1, < C32, for all ¢ € [0,T],

since the classical solution 7 is spatially smooth, and n° is the convolution of i with the smooth §
kernel, defined in (95). With this essential observation, the Gronwall estimate based on (136) gives

t T
st < € ([ 108 =m0 s ) € < €1 (10" =m0 s ) < %

By the definition of Ejs(t) and an application of Poincare’s and Korn’s inequalities on 23, see
Proposition 6.1, this implies that the following terms in the definition of Ej(t)

1 = ms) Ol 0y < C82, and [[(w — ws) (Ol 2y < C6%2 — 0 as 6 — 0
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converge to zero as § — 0 at a rate of 6%2, as long as the assumptions (131), (132), and (133)
hold. Therefore, by Holder’s inequality, for sufficiently small § > 0, we can prove that the following
estimate holds:

|(Vn® — V) (t, )| =

| (wn=nptaste - pag] < o857t 0. s
Qp
pointwise uniformly in [0,7] x € as § — 0,

where C'is independent of 6. More precisely, notice that the convolution integral in (137) is defined
on the domain €, which is triple the size of the domain €. Furthermore, we recall that the
convolution is defined using odd extensions as in Definition 8.2. Thus, by the definition of the odd
extensions of 1 and 1 to the larger domain O, we get

|l — 775||H19 (||"7 N5l () + llw — W5||H1(F))
b

In addition, since we have extended the functions 1 and ns to the larger domain s, the estimate
(137) holds for all § such that {(z,y) € R? : dist((z,y), %) < §} = Q. Thus, |(Vn°—Vnl)(t,z)] — 0
pointwise uniformly in [0,7] as 6 — 0.

To obtain (135) it suffices to show that |(Vn — Vn°)(t, )| — 0 pointwise uniformly in [0, T] as
0 — 0. This follows from Lemma 10.2. Namely, Lemma 10.2 implies

(Vg — V1) (t,z)| < C§ — 0 pointwise uniformly in [0, 7] x Q, as § — 0. (138)

So combining (138) with (137), we get (135).

Now we use a bootstrap argument on det(I + Vn3) by continuity, since we have that det(I +
Vn) = ¢ > 0 up to a final time 7" > 0. Similarly, for all sufficiently small ¢, the assumptions (132)
and (133) will also hold up to the final time 7" > 0, as we can also bootstrap these two conditions
(132) and (133) similarly. This closes the bootstrap argument, and so we obtain that the estimate
(131), and similarly the estimates (132) and (133), hold uniformly up to the final time 7" > 0
uniformly in 9.

We end this section by proving the following lemma, which establishes convergence of the spatial
convolution of the classical solution 1 in H'(€), which is needed for the bootstrap argument
described above.

Lemma 10.2. Let g € L*(0,T; V) be an arbitrary but fixed smooth function in time and space
on [0,T] x €y, where Vj is defined in (31). Then, there exists a constant C' independent of § > 0,
depending only on n, such that

n[léi% ln° — a1, < < C6%% and |V’ — V| < C6  Vz ey and Vi e [0,T].
Remark 10.2. More generally, if f is a smooth function on R? with sufficient decay at infinity,
such as a Schwartz function, then the argument below shows that the function f defined by

f:f*oyg on R?

would satisfy ||f — f]| HI(Q) S < €62 for a constant C. However, because we are working on a
bounded domain €25, we must use an odd extension to define the spatial convolution of 1. Since
the odd extension of n to the larger domain € is not necessarily smooth on €, even if 7 is a
smooth function on €, we incur a loss in our estimate due to potential irregularities of the odd
extension due to the behavior of the initial function 1 near the boundary 0€),, which gives rise to
the convergence rate %2 instead of the optimal rate of convergence §2.
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Proof. Separate the domain Q, = (0, L) x (0, R) into two parts:
Q= (6,L—0)x(6,R=16), o=\,

For x € (), 1, we note that because the convolution kernel o5 is radially symmetric,

(0 = m)(a) = |

1 !/ 1 / / /
(Grte+a) —n@) + gute - =) ) e,

2

V' = Vi) - | (évmw +a)— V(@) + LVn(a - m'>) os(')da’.

For x € (), 1, these points are at least ¢ away from the boundary. Therefore, we have the following
estimate for the discretized second derivative:

]‘ ! 1 !/
0@+ @) — (@) + sn(@ - )

< 05? "<
5 5 < 0o for |2'| <6,

and similarly for V1, by using the fact that n is spatially smooth in Q. Therefore,
(n° = m)(@)| < C&%,  [(Vn® = Vn)(z)| < C5?, for @ € 1, (139)

for a constant C' depending only on 7.

For x € €1 » we cannot use the same estimate, since after extending n to the larger domain W,
the extended function on € does not necessarily have a continuous second derivative, as a result of
the properties of odd extension, and in fact, there may be discontinuities of the second derivative
along the boundary 0€2,. However, V1 on the larger domain €y, is still Lipschitz continuous. Thus,
we instead use the equations:

(n° —m)() = f (n(@ + 2') - n(@))os(a’)da,
Qp

(Vi — V) () = L (Vn(e + ') — Vn(a))os(a’)de'.

Since x € (9, even if |z'| < §, we may have that x + x’ is outside of Q. However, due to the
Lipschitz continuity of Vn on the larger domain €, we still have the estimates

(e +a') ~n@)| < C5, [Vn(e+a) - Vn(@)| <C5,  forae Yala/| <4,

which give

|(n° —m)(z)| < C6, |(Vn® — Vn)(z)| < CS, for € Qy». (140)

The area of {5 is bounded by (2R +2L)§, so by (139) and (140), we have ||n° — Nl a1, < 532
for a spatially smooth function 1 on Qp, where C' depends only on the norms of up to the second
spatial derivative of  on €. The generalization of this result to a function n that also depends

on time and is spatially smooth in both space and time follows analogously.
O

This completes the proof of the weak-classical consistency results. This proof effectively shows
that the weak solutions that we have constructed to the regularized FPSI problem converge (in
the energy norm on a uniform time interval) as the regularization parameter goes to zero to a
classical solution of the original (non-regularized) FPSI problem when such a classical solution to
the original FPSI problem exists.
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11 Conclusions

In this manuscript we proved the existence of a weak solution to a fluid-structure interaction prob-
lem between the flow of an incompressible, viscous fluid and a multi-layered poroelastic/poroviscoelastic
structure consisting of the Biot equations of poro(visco)elasticity and a thin, reticular interface with
mass and elastic energy, which is transparent to fluid flow. The fluid and multilayered structure are
nonlinearly coupled, giving rise to significant difficulties in the existence proof, associated with the
geometric nonlinearity of the coupled problem. The existence proof is constructive, and it consists
of two major steps. In the fist step we proved the existence of a weak solution to a regularized
problem in the class of finite energy solutions. In the second step we showed that the solution of
this regularized problem converges to a classical solution to the original, nonregularized probroblem
as the regularization parameter tends to zero, as long as the original problem possesses a classical
solution. While the proof of the existence of a weak solution to the regularized problem only re-
quires that the Biot structure is poroelastic, additional regularity of the Biot poroelatic medium is
required to prove the weak-classical consistency-the Biot structure is assumed to be poroviscoelas-
tic. This weak-classical consistency result also shows that the solution we constructed is unique in
the sense of weak-classical uniqueness.

An interesting extension of this work is to consider the singular limit as the thin interface
thickness converges to zero, and investigate the existence of a weak solution to the FSI problem
between the Navier-Stokes equations for an incompressible, viscous fluid and the Biot equations
of poroviscoelasticity, nonlinearly coupled over the moving interface. Preliminary results indicate
that this will be possible under certain assumptions.

12 Appendix

12.1 Weak continuity of solutions to the regularized PFSI problem

In this appendix, we show a result related to weak continuity of solutions to the regularized FPSI
problem, namely, we will show that as v — 0:

f 4(0) - (u5),(0) — lug>,  and J u(t) - (us)u(t) — u(t) - us(t),
Qf,5(0) Qy,5(0) Qys5(t) Qp 5(t)

for almost all points 0 <t < T.
This result will be used in Section 12.2 to estimate the first term 77 in (113) in the Gronwall’s
estimate. We will show weak continuity through the following series of lemmas.

Lemma 12.1. Let w € L®(0,T; H3(T')) n WH®(0,T; L?(T')) with

min R+ w(t,z) >0,
te[0,T],z€[0,L]

define the moving fluid domain Q%(¢). Then, given u € L?(0,T; Hl(Q;‘c’(t))) ~ L*(0,T; L2(Q°]‘K(t)))
where Q5(t) = {(z,y) € R2:0<z<L,—R<y<w(tz)}, we have that

||u,,(t,x,y) - u(taxay)HL?(Q?’(t)) —0 as v — 0,
for almost all ¢ € [0, 7.

Proof. Recall that in the case of real-valued functions, one shows convergence of the convolution to
the function itself almost everywhere by using the Lebesgue differentiation theorem [29]. To apply
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the theorem in this context, we need to apply it to a function taking values in a fized Banach space
rather than a time-dependent Banach space.
As a result, we consider the following function,

R+ w(t, z)

t = K(t,0 t,x, —————=
oltea9) = K00, (o6

(R+y)—R),

where we have pulled the fluid velocity back to the fixed initial domain Q7(0). We recall the
definition of K (s,t,z,r) from (108) and its inverse:

}R;ergi,xg 0 IR;erEt,z% 0
K(S,t,l‘,y)= Telhe wis.x ) K_l(sata:E?y): w—H;:} o w(s,r

By the uniform boundedness of R + w(t,z) and [0,w(t, )|, and mine(o 7] zeo,r] B + w(t, z) > 0, it
is immediate to see that v(¢, z,7) is in L*(0, T LQ(Q?(O))), where we emphasize that L2(Q°]i(0)) is
a fixed function space that no longer depends on time.

By Lebesgue’s differentiation theorem, almost every t € [0,7'] is a Lebesgue point satisfying

t+v
Jim f o(t,) = (s, )l 2 eaz(onds — 0. (141)

Recall that by definition (109),

R+ w(s,z)

Vtv ’ = K 7t7 ) Y My TS T N
u,(t,x,y) fR (s my)u<st+w(t,x)

(R+y) — R) Ju(t — s)ds.
Thus, we compute

u,(t, z,y) —u(t,z,y) = JR (K(s,t,:c, Y)u <s, z, W(R +y) — R) - u(t,x,y)) < Ju(t —s)ds

=11 + I,

_ R+ w(0,x)
L= | k(02 2700 ~R)-
1 JR (’0’$’R+W(t,$) (R+y) R>

(v <s,x,m(]%+y) - R> —v <t,x,m(R+y) - R)> it — s)ds,
I, = fR <K(s,t,x,y)K—1 (8,0,33, W(R+ y) — R> - Kt (t,O,az, m(z% + ) — R)) :
v (s,x, W(R+ y) — R) it — s)ds.

We estimate each of these terms as follows. For I, we compute that

P (O ) R+w((0,;t)) 0
K_l (t707x7w,x(R+y)_R> = o t% ’
Rt w(t. o) (R+y) (F04) o (23) 1
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which we note is uniformly bounded on [0,7]. Hence, using the fact that |j,(t — s)| < L, we get

v (s,x,m(}?+y) —R) v <t,x,m(}%+y) —R)

1 t+v
Ml 22y < € ft

VJt—v

ds
L2(Q% (1))

V Jt—v

1 (""" (R +w(t,x) 1/2
<C-- <W> ||v(s, z,y) — U(@%Z/)HL?(Q;(O))dS — 0,

as v — 0 if ¢ is a Lebesgue point, by (141) and the uniform boundedness of gi:’((é?) on [0,T].

To estimate Is, we can use the continuity in time of w and d,w to calculate that

- R+ w(0,2) . R+ w(0,x)
K K 1 R S — — K 1 - . 71 N\
(s, t,x,y) (S, 0,z, R+w(t ) (R+y) R) (t’ 0,, R+ w(t,z)

m+w—Rﬂam

uniformly in (z,y) as s — t. Now, we estimate

_ R+ w(0,x)
1 ) _
||I2||L2(Q‘J'§(t)) < Rm,yrgg“;((t) K(S,t,l‘,y)K <S,0,l‘, R+W(t,l‘) (R+y) R>
_ R+ w(0,x)
K1 i ek Rt —
(0 f sy e 0 - )
R+ w(0,x) .
v s,az,(R—i—y)—R) gyt —s)ds
( R+ w(t, z) L2(Q4(1))

< 2 el K(s,t,2,y) K™ (S,O,x,m(Rer) —R)
_K! (t,O,x,m(R+y)_R>‘
. (W)lﬂ v (s,m,y)||L2(Q7(0)) i (t — s)ds

<C Rx,;&?;’((t) K(s,t,x,y)K*1 <s,0,x,m(3+y) — R)
—K! (t,O,x, m(}% +y) — R)‘ Gt — s)ds,

where we used the fact that v € L*(0, T LZ(Q;‘}(O))) Thus, we conclude that ||I2||L2(Q?;(t)) — 0 as
v — 0. This completes the proof. O

We also have a weak continuity lemma, which states that the value of us tested against any
function in the fluid function space has a continuity property as t — 0.

Lemma 12.2. Consider an arbitrary g € C'(0,T; Vy5(t)) and the weak solution u; to the regular-
ized problem for arbitrary d, where V; 5(t) is defined by the displacement ws and (26). There exists
a measure zero subset S of [0,7] (depending on ¢) such that

lim mewmy«w=f wo - (0).

t—0,te[0,T]nS* Q;.5(0)

Proof. Consider the following function for each 7 € [0,7] and a > 0, given by

t

Jry(t) =1— L ju(s — 7)ds, (142)
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and note that J; ,(t) = —j,(t — 7). We want to test the regularized weak formulation for us with
the test function J; ,(t)q for certain admissible choices of 7. To see which 7 we want to choose, we
define the function

R+ ws(t) ( R+ ws(t) R+ ws(t)

(R+y)—R> -q(t,x,}mé(o)

w(t,z,y) = (R+y)—R>.

R+ws(0) “\"" Rt ws(0)
We claim that w € L®(0,T; L*(€,5(0))). To see this, we compute by a change of variables that
||w(t7 €L, y)”Ll(Qf,g(O)) = J |U5(t, €L, y) ’ Q(t, x, y)|7
Qf,5(t)
and we then use the fact that us, g € L*(0,T; L*(Q55(t))).

Hence, by the Lebesgue differentiation theorem, there exists a measurable subset S < [0, 7] of
measure zero such that every point in [0,7] n S¢ is a Lebesgue point of w, in the sense that

1 T+V
i oo () = (s o ds — 0 (143)
for every 7 € [0,T] n S¢. These are the 7 for which we will consider the test function J;,(t)q. For
the test functions for the Biot medium and the plate, we will take these test functions to be zero.

Hence, in the regularized weak formulation (98), we will test with (v, p,4,r) = (J;,(t)q,0,0,0).
Hence, we obtain the following equality:

f L us + 0l f fQ (s - V)ug) - (Jra()a) = (15 - V) (1)) - us]

+ 2f0 Lg(t) (us -m —2€5 - n)us - (Jr(t)q) + 21/[ jgfé D(us) : D(J-,(t)q)

[ . (31l =02 Jrotran =5 [ Jo J0 = el = [ 00000

Consider 7 € (0,T) n S¢. We want to pass to the limit as ¥ — 0, and then pass to the limit as
7 — 0, in order to obtain the desired result.

First, we pass to the limit as v — 0. We handle the convergences as follows.
First term: We will show that because 7 is a Lebesgue point of w,

T t
[ weatoo - [ wman - || wsae asvoo
0 Qf,g(t) nyg(T) 0 Qfﬁg(t)

We compute that

f f s - Op(Jru( J f us - ju(t —7)q J f us - Jr,(t)0rq.
Qf5 Qf5 0 Qﬁ(;(t)

It is easy to see that
T t
J J usJr,(1)0:q — J J u50:q.
0 ny(;(t) 0 ny(;(t)

J J us - Jy(t —7)g = us(7)q(7), as v — 0.
Qp,s(t) Qyp,5(7)

So it remains to show that
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By a change of variables, we compute that

T
f J ué'jl/(t_T)q
Qf 5(t

J JQN g:—_sj((?) “Us (t gi_:}s((?) (R+y)— R) Ju(t—7)q (t,x, M(R ty) - R)
J L” gi:ﬁg?;w (t “ M(R +y) - R) Ju(t—T7) = LT Lm(o) w(t, z,y) 5, (t—T).

By (143), we have that

T
j f w(t,z,y) - ot —7) - w(r,z,y) = f us(r) - q(r),
0 JQy 5(0) Qy,5(0) Q¢ 5(7)

which establishes the desired convergence.
Final term: It is immediate to see that for all sufficiently small v > 0,

| wg@a = | q0)
Qy,5(0) Qy,6(0)
We can now easily take v — 0 in the remaining terms to obtain that for any 7 € (0,7) n S¢,
t 1 t
| wsoam = [ [ wsaarg [ [ s Ve g (s Vi) w
Qy s(7) 0 JQs 5(t) 0 JQy 5(t)
1 t t
5, | (wsn=2mus-gs20 | | Dwy): Dla)
Ts(t) Qy,5(t)

J Jm ® < Jus|® —Pa) qn — /BJ Lé(t (&)r — (us)r] - qr = LM(O) uo - (0).

Passing to the limit as 7 — 0 with 7 € (0,7) n S gives the desired result.

O
Lemma 12.3. Let ug be divergence free and smooth on Q(0). Define
- R + ws(0, )
t = K5(0,t - - 144
a(t..9) = Ks(O.t,.9)uwa (1 1200 (R ) - ). (144

where K is given by (108). Then, there exists a sequence of functions q,,, € C}(0,T;Vys(t)), with
Vi5(t) determined by the plate displacement w; via the definition (26), such that

J0ax 11q = qullzz( ) = 0, as m — o.

Proof. There exists a rectangular two-dimensional maximal domain Qj; of the form [0, L] X [—R, Ryaz]
for some positive constant R, that contains all of the domains Q 5(t) for ¢ € [0,T]. We will ex-
tend @ to the maximal spacetime domain [0, 7] x Qs by extending vertically in the radial direction
by the trace of q along I's(¢). In particular, we define

q(t,z,y) = K(0,t,xz,ws(t,x))ug (z,ws(0,2)), for (t,z,y) € ([0,T] x Qar) — ([0, T] x Qf5(¢)). (145)
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Note that this extension preserves the divergence free property.

We have the following two claims about the extended function, considered as a function on the
fized maximal domain ;. First, we claim that ¢ € L®(0,T; H*(Q)). Second, we claim that
G e C(0,T;L*(Qy)). To see that g € L*(0,T; H* (1)), we note that ws and d,ws are bounded
uniformly pointwise, and furthermore wg and its first spatial derivatives are bounded by assumption.
In addition, d?ws € L®(0,T; L*(T')), which allows us to conclude that g € L®(0,T; H*(Q)).

Next, we want to verify that g € C(0,T;L?(2))). Consider any t € [0,T] and consider any
s € [0,T] with s # ¢t. We define the following regions:

A(s, 1) = QF n (Qr5(s) U Qrs(1)%, Bls,t) = [Qr5(s) 0 (2r5(8)T U [(216(5))° 0 Qps(B)],
C(s,t) = Qf.s(s) N Qs(1).

Consider € > 0. We want to find A > 0 such that
llat, ) — als, Mz, < & for all s € (t —h,t +h) n [0,T]. (146)

We compute that

1a(t,") = a(s, ) 32q,,) = f a(t,2,9) — (s, 2,9)[* + f (t,x,) — a(s,z,y)
A(st) B(s,t)

+J(Jﬂww%ﬁ@mwﬁ=u+@+k. (147)
C(s,t

We estimate each of the terms I4, I, and Io separately.
For 14, we recall that we are extending by the trace as in (145) on A(s,t), so we have that

Iy = JA( | |K5(0,t, 2, ws(t,x)) — Ks(0, s,x,w(;(s,:c))|2 . |u0(m,w5(0,aﬁ))|2.
s,t

We have that |ug(z,ws(0,x))| < M; for some constant M; by the fact that ug is continuous on
Q4(0). By continuity, we can choose h > 0 sufficiently small so that

€

<
3MZ(R + Rpaz) L’

|Ks(0,t, 2, ws(t, ©))—Ks(0, 5, 2, ws (s, x)) | for all s € (t—h,t+h)n[0,T].

Thus, for all s€ (¢t —h,t + h) n[0,T7],

€

IS SR R

Wl m

<

For Ig, we will use the fact that ws does not change much in time over small time intervals, by
continuity. We note that there exists a uniform constant My such that |g| < My on [0,T] x Q.
Hence,

L

IB = J |(~1(t,z,7") - (}(S,Z,T)|2 < |B(87t)| : 4M22 = 4M§J |W5(t,113) - W§(S,Jj)|dl‘.
B(s,t) 0

Because ws € L®(0,T; H3(T')) n Wh*(0,T; L*(T)), there exists h > 0 sufficiently small such that

€

Sm, for all x € [0, L] and s € (t — h,t + h) n [0,T].

lws(t, ) — ws(s,x)]
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This allows us to conclude that Ip < g, for all s€ (t — h,t +h) n[0,T].

For I¢, we refer to the definition of ¢ in (144) and note that K;(0,¢,x,y) is continuous in time
uniformly in (x,y) € [0, L] x [=R, Rpnaz], wo is uniformly continuous as a function on Q;(0), and
ws(t, z) is continuous in time uniformly in x € [0, L]. Hence, there exists h > 0 sufficiently small
such that

€

3R+ Roan) L for all (z,y) € C(s,t) and se€ (t —h,t+h) n[0,17],

|(~1(t7 T, y) - 6(57 Z, y)|2 <
which gives the desired result that Ic < § for all s € (t — h,t + h) n [0,T]. Thus, by using (147),
we have established (146).

Since g € L*(0,T; H () n C(0,T; L?(25)), we can extend @ to a continuous function on
all of R as follows. We can find an increasing sequence 1), with T,, — T as m — oo, such that
q(T,,) € H*(Qy) for all m. Define an extension g, for each m to all of R by §,, = q if t € [0, T},],

Define

qm = qm * jl/ma
where the convolution is a convolution in time with j, for & = 1/m. Because q,,, € L*(0,T; H* (1))
C(0,T; L*(2p)) with g, being divergence free for every t € [0, T], we have that q,, restricted to
Urepo,rp{t} x Q1,6(t) gives a function in CY([0,T); Vy,5(t)), where V4(t) is the space defined in (26)
with the plate displacement ws. The fact that

2% 11q = @]z = 0, as m — o,

follows from the uniform continuity of g on [0, 7] as a function taking values in L?(£25), convergence
properties of convolutions, and the fact that g € C(0,7T; L?(257)) which gives the convergence

ter[r%i)}] 1a(T) - é(t)HL?(QM) — 0, as m — 0.

O

Lemma 12.4. For the function g defined in (144), there exists a measure zero subset S of [0, 7]
such that

lim me us)-at)= [ w00

t—0,te[0,T]nS* Qs.5(0)

Proof. Note that because d;q is not necessarily in H'(2s,5(t)), g is not a valid test function. Thus,
we use the sequence @,, € C1(0,T;V;5(t)) from Lemma 12.3, which satisfies

Joax, g = aumllz2; 500) = 0 as m — o0.

We can then apply Lemma 12.2 to each of the test functions gq,,, to deduce that there exists a
measure zero subset Sy, of [0,7"] such that

lim Lm ust) @) = | o+, (0)

t—0,t€[0,T]nSS, Q;.5(0)
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In addition, by uniform boundedness, us € L®(0,T; L?(27,5(t))), and hence, there exists a measure
zero subset S of [0,77], and a positive constant C' such that ||uol|z2(q; ;) < C, and

||u5(t)||L2(Qf,5(t)) < C, for all ¢t € S(c) (148)

Define S = So U [J,,,~1 Sm, which is also a measure zero subset of [0,7]. Then, for each m,

lim J ut-~mt=f ug - q,,(0). 149
T R CR MORS MR U (149)

By passing to the limit in m, we claim that in addition,

lim Lm us(t) - 4(t) = j wo - 4(0).

t—0,te[0,T]nSe Q;.5(0)

To see this, consider € > 0. We claim that there exists h > 0 sufficiently small such that for all

te (0,h) N Se,
j us(t) - a(t) - f wo - 4(0)
Qyp 5(t) Qy 5(0)

We can choose M sufficiently large such that Juax g — anrllzzco; 50y <
by (148). Therefore, for all ¢t € [0,T] NS¢,

j us(t) - d(t) - f us(t) - (1)
Qr.s(t) Qy,5(t)

%, where C' is defined

<

wl o

In addition,

<

Wl m

f uo-a<0)—f wo - @3 (0)
Qs 5(0) Qs 5(0)

By applying (149) with m = M, we can choose h > 0 sufficiently small such that for all ¢ € (0, h)n.S¢,

<

Wl o

| w0 an® - way)
Qfs5(t)

Qy,5(0)

Thus, by applying the triangle inequality, we have that for all t € (0, h) n S¢,

j us(t) - (1) f uo - 4(0)
Qy,5(t) Qy.5(0)

which establishes the desired result.

<,

O
We can now prove the final result of this appendix. We recall the definition of @ from (103).

Lemma 12.5. In the limit as ¥ — 0 we have the following convergence results:

f @(0) - (ug)(0) — f ul?,  and f alt) - (ug), (1) — at) - us(t),
Qys,5(0) Q¢ 5(0) Q¢ ,5(t) Qy 5(t)

for almost all points t € (0,77].
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Proof. The second convergence for almost all points ¢ € (0,7 follows directly from Lemma 12.1
and the fact that @ e L®(0,T; L*(21,5(t))).
So we just need to verify the convergence at ¢ = 0. To do this, we note that u(0) = ug. Hence,

J a(0) - (us),(0)
Q,5(0)

Il
[ S

. (f Ks(s,0, 2, y)us ( @, R“%EW;(RW) - R) Jalt — s)ds> wo(x, y)ddy
:R ( gy 1L O ) (8 - JMEo,x;(R ) - R) -uo(wvy)dxdy> Jult = s)ds

:
(f ws(on ) . B0 (S’ij,fﬂww(my)_}g)
Qr.5(s)

|
[ S

Il
e
»

8

<

R

( R+ ws(0, z)
-uo x —

"Rt w(s,2) (R+y)— R) dxdy) Ju(t — s)ds.

We compute

R+ws(0,z)
R+ws(0,2) <5 o R+w5(o,x; (R+y)_R> . (1 (R+y)V (R+w6(57z)))

Rtws(s,z) ~°\7 77 R+ws(s,a 0 %
R+w R+ws(0,x R+ws(0,x
N R+w§§s x% 0 + 1= R+w§%s7azg (R + y)v <R+w§gs,x3)
- R+ws(0,x) Rtws(0,z R+ws(0,x
~Eeov (a6E) 1) \ eV (Ratg)  mstg o

= K5(0,s,2,y) + Rs(0, s, z,y).

Hence,

f a(0) - (us)u (0)
Qy,5(0)

B JR <Lf,a(s) (s 020) - a0, ) <x W(R v R) dwdy) A

R+ ws(s,x

R+ws(0,2)
" J <fo s ( )ua(s,x,y) B0, 2,2, 5)uy (:E’ R+ ws(s, ) (R +y) R) diﬁdl/) v(t —s)ds = Is + IR

Note that

Iis = f j ws(s,2,y) - 4(s, @, y)dady | ju(t — s)ds
R Qf,&(s)

where q is defined by (144). Since us(s) = us(—s) so that ws(s) = ws(—s) for s < 0 (see the
extension procedure), we conclude by Lemma 12.4 that

Ixs — ug - q(0) = J |u0|2, as v — 0.
Qy,5(0) Qy,5(0)

So it suffices to show that Ip s — 0 as v — 0. This follows from the fact that |R5| — 0 uniformly
as s — 0. In particular,

Jﬂf’g(s)

us(s,x,y) - ug (x, m(}% +y) — R)
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by the boundedness of us € L®(0,T; L*(2f,5(t)) and the fact that wg is uniformly bounded. In
addition, by the continuity properties of ws in time, we have that

max__ |Rs(0,s,z,y)| — 0, as s — 0,
(z,y)€Qy,5(s)

which implies that Iz s — 0 as v — 0. This completes the proof.
We will use this result in the next section to estimate the first term 77, see (113) in the Gronwall’s
estimate.

12.2 Gronwall’s terms estimates

In this appendix we provide details of the derivation of the terms appearing in (113) and the
calculations providing the desired estimates of the terms in (113) used to prove Gronwall’s estimate
in Section 10.3.

Term T1. To derive term T}, defined in (115), we first multiply the weak formulation (97) for u
with the test function v = w — (%s), to obtain the terms:

== fof(tu Ol _JJ ]
e @O [ ) fu - @).]0).
() (0

where ©£(0) is the fluid domain corresponding to the initial structure displacement wy. We note
that w is smooth in time and (@), is differentiable in time as a result of the time convolution.
Thus, by the Reynold’s transport theorem,

Because u is smooth and by the weak convergence properties of (@s), in Proposition 10.1,

t
Tleff 8tu-[u—u5 JJ ’LL U5]+K11V,
0 Jo, ) ()

where K1, — 0 as v — 0. Using estimates as found in [57], we can transfer the first integral from
Q1(t) to Qfs5(t) at the cost of an additional term, so that

t
T1’1=fj 6tﬁ-(ﬁ—u5 JJ u U5)+R1+K111,,
0 Qf,g(t)

where
Ri| < f 1= sl 0

t t
() ( fo o= sl + | 11000 = Ol ey + | N2 - u5||%2mf,5<t>>) -

Thus, by using Proposition 10.1 again,

Ty, = f J o - (u — (ug), J j — (us)y) + Ry + K11, (150)
Qf(S
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where K11, — 0asv — 0.
Next, we test the regularized weak formulation for us with 4 and obtain the following terms:

t R 1 t R R R
Ty — _f f ws - Oy — 2f J (€5 - mo)us - +f us(t) - at) —f us(0) - @(0).
0 Qf’(;(t) 0 F(;(t) Q.fﬂg(t) Qf(O)

We want to integrate by parts in time, but ug is not necessarily smooth in time. Thus, we replace
u; by its time regularization (us), at the cost of a term K2, which goes to zero as v — 0 by
Proposition 10.1. Combining this with the Reynold’s transport theorem, we get:

t L1t .
o= | [ alwhlasg [ [ @ nous @t K, (151)
0 JQy 5(t) 0 JTs(t)

where K19, — 0as v — 0.
Now, from the energy inequality, we obtain the terms

1 1
Ta=5 [ lw@P-5 ] usOF, (152)
Qf.5(t) Q7,5(0)
Using the Reynold’s transport theorem, the total contribution 71 =711 1 —T12 + T3 is
1 ~ 1 ~ ~ ~
fi-g | @oP- [ @OP- [ @ @) [ (@ )0
Qy,5(t) Qy,5(0) Qp5(t) Qy,6(0)
1 1
3] me—Qf wsOF =5 [ [ & moji @ wa)
Qy,5(t) Qy,5(0) Ls(t)
J J — (W5)y) + Ry + K11, + K19,

By Proposition 10.1, (ugs), and (), converge weakly to us and s respectively, weakly in
L0, T, WP (s 5(t))) and L*(0,T, W'P(Q(t))) for all p € [1,2). Furthermore, by Lemma 12.5
proved in the appendix above, we have that

f (@ (us)y)(0) — (@ - us)(0), f (- (us)y)(t) — (w-us)(t).  (153)
Qy,5(0) Qf,5(0) Qr.5() Qy.5(t)
Thus, taking the limit as v — 0, the contribution of this term is now

_1 u—u 2_1 u—u 2
ni=y), l@-wo) QLHmK )(0)

_JL(; (&5 - ms)u - (U — ug) JL(t (u — @s) + Ry.

Since 1u(0) = us(0) = ug, we obtain after some standard estimates that

1

O I AR R IO
Qf.5(t)

where

T
|Ry| < eJO |lu — U2~6||?{1<szf,5<t)>

T T T
+0@(an—wmmm+L|@w—@mﬁﬂm+L|m—umémmwﬂ-
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This completes the calculations associated with term 77.

Term T2. To estimate term T3, defined in (116) above, we notice that since (), converges
weakly to ws in L2(0,T; WHP(Q45(t))) for p € [1,2) by Proposition 10.1, and because w is smooth,
as v — 0, we have that T5 converges to

SNy mrvm»m—ﬁw—ffLN«uWMu—%»m
—f LH (us - V)us) - (U — us) JLH@) us - V) (U —us)) - u

1
We note that the quantity — J f ((us-V)us)-us, is well-defined because us € L (0, T; L*(Q.4(t))) N
Qf s(t

L%(0,T; H (Qf,4(t))), which by intﬁerpolation is in L4(0,T; HY2(4 5(t))), and hence by Sobolev in-
equalities embeds into L4(0, T; L*(Q,5(2))).
We want to transfer the integrals

t t
[ v w-a). [[ (@9@-@) (154)
0 Qf(t) 0 Qf(t)
to integrals on s 5(t) by using the map 15 : Qf5(t) — Qf(t) defined by (99). We use

a=5J5 " (woy), @ —us =75J5 " ((u— ) o Ys),

where we recall the definitions of the appropriate terms from (99), (101), (103), and (104).
Following arguments found in [57], we obtain the following estimates. We have, using (100),
that

fot JQf(t)((u.V) (u—15) f Jﬂf(;(t V(wos)) 5 H(wo )] - (u — Gs) o s
= f: Lf 5 t)[(V(u os))a] - [v5 ' Js(t — us)]

T T
[ [ i@eal@eu— | [ [(T@o )@l (=55 )@ - )
0 JQy 5 0 JQps(t)

[ @@ [ [0l Yo v - us)
0 JQy s(t) 0 JQy5(t)

-1 (Vo we)al [ =25 75) (@~ us)]
Qs 5(t)

ff )u] - (a0 —us) + Ra 1, (155)
Qf5

where

Rm=J;£M WWI—%%UWO%DQ-@—HJ—LﬁMNﬁVWOWDﬂ-W—Wﬁkﬂﬁ—WH

In the following estimates, we will repeatedly use the following inequalities, which hold for a constant
C that is independent of ¢:

5 ' Js — 11 < Cllvys " =1 +[Vs]) < Cllw — wsllzry,
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s dy ' =11 < Cllvs — 1] + [Vs]) < Cllw = wela2ry,
IV (3695 DI < C102%5] + 102075]) < Cllw — wsllmr2(ry + |0za(w — ws)]), (156)
so that
IV (55 DIz, 50 < Cllw — wsllg2(ry- (157)
To obtain (156), we estimate |0,57s| by using the fact that w is smooth so that |0z;w| < C and a

direct computation of d,,vs. Using these estimates, the Leibniz rule, and the smoothness of u, we
get

V(U = 5J5 ) (wo v5))@) - (@ — ug)

Qyp5(t)

cjnw wills 6 = sz < € ( [ o= walliry + [ 118 = sl ) -

By using (100), and the fact that |J5| < C is uniformly bounded, due to the fact that |J5| <
C(1+ ||lw — ws||g2(ry) < C is uniformly bounded, we obtain a similar estimate:

LtJQfﬁa(t)[(v(uo%)) Al - [(1 —~;5 " Ts) (@ — us)] (J [l — wsl[2 F)‘i‘f |lu — u5||L2(Qf5(t)))

Thus, we obtain

il <0 ([ o= sl + [ 18- wliaa, 0 ) (158)

We now focus on the second integral in (154). By using (100) we obtain

f j (V) (u — ) - = f j [V (s — i) 0 0)) T (0 455)] - (a0 35)
0 JOs(t) 0 JQy s(t)

[ =g e vl 6w
0 Qf75 )

_ f J [(V((w — Tig) o )] - & — f J [(V((u — Tig) o g))a] - [(T — ;' Jo)al
0 Qf’g(t) Qf5 t)

- Lt Lf’é(t)(V(ﬁ —ugs)u) - u + f L“ (= 5T (w — a5) o 5)]40) - @
- J | L [(V((w = it5) 0 s))@] - [(T — 75 " T5)@]

f JQM (@ - )@+ Raa, (159)

where

cm [ @l @-aevaaa- | [ (i) o)l [(T—; Js .
Qf 5(t) Qf5
To estimate Rj 2, we will use the following inequalities:
|(w =) 0 | = |y5 ' s - (U — ug)| < Ol — uy,

V(= is) o s)| = [V35 5 - (@ — us))] < IV (35 o) - 1 = ws| + o5 sl - [V (@ — ws)|
< C(VO; 5| - i — usl + V(@ — ug)]).
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From the fact that max (|1 —~; ' Js|,|I —vs5J5 '[) < Cmin (1, ||w — w5||H2(1“))7 we obtain:

t t
|R2,2| gC(J j |V(75J§1)|'|(u—ﬁ6)0w6|+f j 11— ~sJ5 - [V ((w — s) o )|
0 Qf’(;(t) 0 Qfﬂ;(t)

t
anl II—%_IJal-IV((u—ﬁa)ow5)|>
0 JQy 5(t)
4 1 1 4
<cl[ | v+ 190 ) - a =l + [ [ o= wsllie (96— us)
0 JQj 5(t) 0 JQj 5(t)

t t t
< [ 19 = w2y + € ([ lho = sl + [ 12 = wllta ). 160)
In the last line, we use the following estimates, derived similarly as for (157),

IV (751 T5)| < C(102 (75 M| + [0275] + 102275])

< O(|lw — wsl|m2(ry + 10z (w — ws)]),
IV (5 Io)ll 2, ) < Cllw — wslm2(ry.-

Therefore, for the expression in (116), after transferring the integrals (155) and (159) and
estimating Ry 1 (158) and Ry (160), the remaining terms are:

L[ o - )
5 J;) fo,(s(t) [(u . V)'U/] . (’LL — u5) — [(u . V)(u _ ué)] 4

I - -
1 N R RO R (PR R R

-5 [RICER R R t [RCETR L

In absolute values, the right hand-side can be bounded as follows:

t t
<] 9@ = wslfExn, )+ CO) | 1= sl -

Combining this estimate with (158) and (160) we obtain
! 2 ' 2 ' 2
T < | 19 = w9, 0 + 10 ( [, o= ol ey + | 1= ua||L2<ﬂf,5<t») -

Term T3. To estimate term T3 defined in (117), we start by noting that because u and & are
smooth, we can pass to the limit as ¥ — 0 using Proposition 10.1 and the fact that (£5), — &;
strongly in L2(0,T; H*(%)), so that we can ultimately just test with v = u — %s and ¥ = & — £;.
In the regularized weak formulation for ugs, we test with u and €. Note that both test functions
u — U5 and u — ug have the same trace along I'(t) and T's(t) respectively, which we will formally
denote by u — us along the reference configuration of the interface I'. Combining the resulting
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expressions, we have the following contribution of T3 in the limit as v — 0:

=;J:L(t)w-n—e-n)u-<u—as>—;f:fré(t)m-né—55-n5>u5-a
s L mreen—wm =g [ ] e n o

_JL(; lus|*(€ - s — G- ng) JL@ (- n—u-n)u-u;

AN R T e N B S

+2f f (&5 -ms —us -ns)us - u = R31 + Ry,
0 JIr's(t)

where

1 t 1 t

Ros = [ [€—whus )= [ [ (& —ushyu- tu—us)
2 Jo Jr 2 Jo Jr

R3,2 = f J 0xw(u)xuu5 - J f axw(uﬁ)x|u| - J J 6950.15(u)x|u5| +J f axwd(ué)xu.ué.
2 JoJr 2J)oJr 2 Jo Jr 2 Jo Jr

We estimate R3 1 as follows: decompose R31 as R31 = R31,1 + R3,1,2, where

R37171:—;£L(£)y(u—u5) (u — us) JJ& &s5)yu - (u — uy),

Rose = [ [ @) @=u =3 [ [ =gy )

By interpolation,

t t
Ry < C (j 18— wsll o, sy 18— wsllir, sy + f 1€ — &5l 2ryll — uanHlmm(t)))

t t t
] 1= sl a0y + 0@ ( [ 1= wslaa oy + | 6= 55||%2<F>) -

By using the same interpolation inequality, we obtain the following estimate for R3 12

t t
Rasal e [ la=uslipa, o + €O | 11— usla, 0

We estimate I3 2 by first rewriting R3 2 as follows:

R32——fjaw— pws) (uw)zu - (u — w—ffﬁmwé (u —us) - (u — ug)

+3 JO L(axw — Opws) (u — ug)o|ul® + QL Laxu&s(u — ug)pu - (u— ug).

By interpolation, by the boundedness of |0,w| and |0;w;s|, and by the smoothness of u, we get:

t t t
Raal < | 13— usllipa, ) + €O ( [, o= sl ey + | 1= ua||%sz,5<t») -
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Hence, by combining the two estimates we get the final estimate for T5:

t t t t
17 < € [ 1a = sl o + €O ( J, =l + | 1€ = sty + | ||a—ua||%sz,5<m)-

Term T4. To estimate term T}, defined in (118), we again use Proposition 10.1 to pass to the
limit as ¥ — 0 so that the contribution from T} is

Ty := 21/J f D(u —uy) — QI/J f D(us) : D(u — us). (161)
Qf Qfg(t
We want to transfer the integral on Qq(t) to Q¢ 5(t). Recalling (100), we have that
t
[ DD = [ [ salVlawo v 17 (9 a) 00515
Qf(t Qf 5(t

where the superscript ‘s’ notation denotes a symmetrization. Following the procedure in [57], we
break up the integral as

t t
f D(u) : D(u — 1a5) = J f D(u) : D(u — ug) + Ryt + Ryo + Ry3+ Ry, (162)
Qf Qf5

where

Ruy = f f (wows)J; 1) [V —ug)(Jy L = 1) + (Js — DV (@ — us)J; T,
Qf5

Ry = J J [(I —5J5 )V (woths) + V(wo vs)(Jy ' = 1)]° : D(t — uy),
Qf5

Ryz = f LM (wos)J; ") : (vsV vy Js) (@ — ug) J5)°,

Rua = - j LN 6o e vl D@~ )

To verify this equality, one can use the Leibniz rule, the definition u = ~5J5 L. (w0 1bs), and the
identity 4 — us = v5.J5 ' - ((w — s) 0 ¥5).
We now estimate the terms R4 1-R4 4. For this purpose we will use the following inequalities:

51 < CO+0sl), 5" =11 < Cllg ' = 1] + 12230),
[Js = I| < C(vs — 1 + 1027s]), 116 dy " — I < C(lvs — 1| + 1027s)-
and, recalling the definition of s in (99), we have the following inequalities:

176 — 1] < Cf|lw — ws|| 21y, v ' =1 < Cl|w — wsl | g2

10275] < Cllw — wsllg2ry,  102(35 )] < Cllw — wsl |2y

Because |J;| < O(1 + |d,7s]) < C since |0,7s| is bounded, and because u is smooth,
|Raal < CL IV (@ = us)l| 220, 500 (U115 = Ule2ge,s) + s = Ulz, s + 102761 20, 50)

t t
e 1@ = sy )+ €O | Nl = sl
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We also have that

| R4

t t
< GJO ||D(a — ué)H%Q(Qf’g(t)) + C(G) fo ||w — W§||12112(1_,),

For R43 and Ry 4, we compute that

-1
_1 _ Vs 0 —1y _ Y5 0
Vo=V ((R + )75 % 1) o Vel =Y <—(R +9) 0% 1> '

Therefore,

V(5 )| < U0 (vs D+ 1027%5] + 10wasl), V(T3] < C10075] + 0206,

where we can estimate

|0z275] < Clllw = wsll p2(r) | Ozew] + |02 (w = ws)| + [lw = wsl | g2 (r))-

So since ||0zawl|z2(0; 5(1)) < C since w is uniformly bounded in H?(T'), we have that

t t
Raal <€ [ IVOT Iz = wsllogoy 0y < € | o =wslleqolli = sz,
t t
<0 ([ b= waltie + [ 18- wslan o)
Similarly, using ||v(7§ng)||L2(Qf’6(t)) < Cllw — ws||g2(ry, we have the following estimate for Ry:
! 1
|Raa| < CL IV (vs 5 I L2 son 1P (@ — us)|[ 200, 50))
t ¢
<] D@ =ulan, oy + O | o= wellioqr.
We now have the final estimate of Ty, obtained after using (161) and (162) as follows:
¢
T, = 24 f D@ - us)? + Ry,
0 Qf,(g(t)
where

t t t
Ral < ¢ | 11D = us) g0, )+ € ( [, o= ol ey + | 13- ua||%2mf,5<m) .

Term T5. Similarly as before, after passing to the limit as v — 0 in term 75, defined by (163),
the contribution of this term is

Ty = p jo L e IE ) ()] 5 fo Lé(t)@a—ua»[(s—sa»—<a—ua>f]. (163)

We note that when we test the weak formulation for u with v = u — (%s), and ¥ = € — (&5)w,
we can pass to the limit as v — 0 to obtain the first term in 75 above, by using similar arguments
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involving Proposition 10.1, as for the previously considered terms. This term can now be rewritten
as follows:

t
_ _ (5 2
Ts = 5J0 Jré(t) |(& = &5)r — (U — us)-|” + Rs,

where
Ry = JO jm) (€ — w) (€ — £)r — (u—Tig),] — 8 JO fw (€ — @), [(€ — &5)r — (@ — ug)+].

Denote the arc length elements of T'y(t) and I's(t) respectively by J¥ = 4/1 + |0,w|? and J° =
\/1 4 |0zws|?, and we denote the tangent vectors to I'(t) and I's(t) respectively by 71 = %(1, Oxw)
T

and 75 = ﬁ(l,@ww(g). We can now rewrite Rs by writing everything in terms of the x and

y components. For this purpose, recall that £ and &; along the interface displace in only the
y direction. We formally express the common trace of u — @5 and u — us along the reference
configuration of the interface I' by w — ug. Thus,

R = 5[0 Jr<e—u> (1, 2,0)[(€ — &) — (u— ug)] - 71
8 j L(& ) (1, s [(€ — &) — (u — ug)] - 75,

In the previous step, we used the fact that when transferred back to the reference configuration
Qf, 4 — us and u — ;5 have the same trace along I'. Thus, R5 = Rs5 1 + Rs2, where

t
Ros =5 | | (€= w00 = n)l(€ - &) — (w=ug)] -7
t
Roo =5 | [ (€= (1 0mn)l(€~ &)~ (@] -(r1 = 7o)
We can use the fact that |d,w| and |0,ws| are uniformly bounded to obtain the following estimates:

t t t
Raal < ¢ [ ID@ = wsllao s + 0@ ( [ 1ho =l + [ 116~ ol ).

where we used the trace inequality, Poincare’s inequality, and Korn’s inequality for the fluid. For
the second term Rg o, we use the estimate |79 — 74| < C|0,w — d,ws| to obtain

t t t
[Raal < ¢ | 1D = us)l12(0,00 + €0 ( [, o= sl ey + | e - €5||%2(1“)) -

Hence,
t
n:ﬁ” (€ — €5)r — (@ — us)s|? + Ro.
0 Fg(t)

where

t t t
Rs| < fo 1D — us) |20, 500 + CL) ( fo oo = By +f0 e - €5||%2(r)> -
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Terms T6-T8. We will present estimates only for term 7§, defined in (119), as the same procedure
will hold for T7 and Tg. Since ¢ and (s are weakly continuous in L?(T'), by the weak formulation,
we get:

ffcatca ffcaatc ffcatca ffg:sat jfcm ]
= [ 060 -] 1k

This follows from Lemma 2.5 in [57], which implies:

ffcatc(s ffc(sat yafc Gs() flcol2 as v — 0,

and from the fact that ¢ is smooth in space and time, which implies
JJC(; o [(¢)y — (] — 0, as v — 0.

Furthermore, because (0) = (5(0) = {p weak continuity of (s at t = 0 implies that J ¢(0)-[¢(0) —
r

(¢5)v(0)] = 0 as v — 0. Similarly, f C(1)-[¢(T)—=(Cs)w(T)] = 0 as v — 0 for almost every ¢ € [0,T].

Hence, as v — 0, the contribution from Tj is

T = 300 | €= GO

Similarly, the contributions from 77 and T3 as v — 0 are

= ;L |A(w — wo)(T)?, Ty = %pb fgb (€= &)

Terms T9-T12. Since these calculations are straight forward, a discussion about the limiting
expressions as v — 0 for terms Ty-T12 was presented earlier, just under (122).

Term T13. Similarly as before, by taking the limit as v — 0, we have that

T13——04j bel(t (€—-&5) +Oéf Jbst)pév (€ —&5)

To estimate this term we use (21) and the matrix identity B~! = —3— B¢ to obtain

~ det(B)
fj TV - (€~ £5) ff ThpsviE (€~ &)

f J,per (v e e v f J, v (V€ -+ 9mi))

|T13| =

=« < Ri3q + Raspe,

where the superscript “C” denotes the cofactor matrix. The integrals Ri3; and Ri32 are defined
as follows:

Riz1 =«

9

[[] v (e 50 -ae)

Ri3p =«

t
JJ (p —ps) - tr (V(é—sé)-(IJrvng)C) .
0 JO,
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In the previous calculations, we observe that the cofactor matrix operation is linear when the
matrices are two by two. Using the fact that p is smooth, the assumption (133), and the fact that

V0’ — Vnill 12, < ClIVn - Vallp2a,) < € (IIVn = Vnslliz,) + llw — wsllazry) — (164)

for a constant C' independent of 9, by Young’s convolution inequality and the definition of odd
extension to the larger domain 2, in Definition 8.2, we obtain the estimates on Ry31 and Ri3p:

t t
Risa < [ V(€ - €)lua, + 000 ( [ 1vn- Vngnizmb))

t t
€) L ||V — V776||%2(Qb) + EL V(- 55)”%2(91,)

t t
£ 0 ( [ 195 = 9l + [ 11 w5||%pm) ,
t t
Ryz2 < 6L V(€ - 55)”%2(9,,) +C(e) (Jo |Ip —p6||2L2(Qb)> :

Therefore, the final estimate for T3 is as follows:

t t
T3] < Cle) L [Vn — VT](SH%?(QZ,) + €JO V(€ - 55)”%2(5%)

t t t
0o ( fo 199 — Vsl By + fo o — sl oy +f0 Ip —p5||%2(9b)) -

Term T14. This term can be handled in the same way as terms Tg-1§g.

Term T15. We pass to the limit as v — 0 in (124) to obtain:

5= — —n-V(p— pg—lr()sz D —Pps
fjﬁblt) Dt o (t Vi )

To estimate this term we pull back to the reference domain and use (21) and the cofactor formula
for the matrix inverse to obtain:

IT15] = « JJ T, om - V) (p — ps) JJ Jb‘*@mg Vb (p — ps)

=«

t
J 0 om - [V(p—ps)- (I +Vn)© J f 5t715 V(p—ps)- I+ Vng)c]‘ < Ris1 + Ras o,
0 Jy

where

Ri51 = «

Y

f om - [ V(o= ps) - (Vi = V)|
0 JQy

Ri50 = «

f (Orm — Oemy) - [V(p —ps) - (I+ Vng)c] .
0 Ja,

To estimate Ri51, we use (131), (132), and the convolution inequality (164) to obtain:
¢ t
Russ < ¢ [ IV0=9)lBa0g )+ 01O [ 1190 = Fnsliaa,

t t
£ ( [ 190 = Dl + [ e —wanipm) '
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Here, we also used the following estimate on the norm of the gradient of the pressure on the reference
domain and on the moving domain, which is obtained by using (131), (132), and (21):

é 5
IV (p = p5)(D)[72(0,) = L IV(p—ps)* = . TPV (0= ps) - (L + V)P - (775~
b b

8 9
< | FHE 0= 0s) = CIVG = 2Ol (165)
b |

where constant C' is independent of ¢ and ¢ € [0, T}].
The estimate of Ri5 2 is straight forward:

t t
Rise < ¢ | IV =00l 0+ OO | Nom = omsl o,

From here we get the final estimate of T75:
' 2 ! 2
Tisl < ¢ [ 11960 =) Exg 0y + €O [ 171~ Fnsliiaa,

t t t
£ 0 ( [ 190 =it + [l —slige, + [ N - 0mglli2(nb)> -

Term T16. To estimate T1¢ defined in (125) we start by passing to the limit as ¥ — 0 to obtain

T16——aff )(p — ps +aff &5 n3)(p — ps),
(L)

where n(S is the upward pointing normal vector to Fg(t). We integrate by parts to obtain that

|T16| < Ri6,1 + Rig,2, where
Jf (V- &) = ps) JJ (V-&s)(p—ps)]
Qp,1(t)

JLH V(p - ps) JL& V(p—ps)|-

By using (21) and the bootstrap assumption (133), we have that

Rig1 1= «

Rigp = «

Rig1 =« L o T, (tr(V])€)) (p — ps) — L Lb jbng (tr(Vzg£5))(p — ps)

—a f f tr(VE- (I +Vn))(p — ps) — j j tr(VEs - (T + V1)) (o — ps)
0 JO, 0 JQ,

+ o

<a f j tr(VE - (Vn — Vng)C)(p - ps)
0 Ja,

L L (V€ — &) - (T +Vn))(p— ps)

t t
<C fo 1V — Vdllzay - 1P - psllaay + cfo IVE = Ves |2y - 1o — psllzz(n)-
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For Ri62, we compute

Rig2 = «

ftf & [Vp—ps) - (I+Vn)© J 55 V(p - pzs)-(IJrVng)C]
0 JO, Qp

V(p—ps)- (Vn— Vn§>0 +a

[[ €& [vo—po -+ vmi)]
0 JO

Qp
t t
< CL IVp = Vpsllr2c0,) - 1IV0 = Vil r20,) + CJO 1€ = &sll2(y) - 1IVD = Vsl L2y

By the convolution inequality (164) and the previous estimate on the gradient of the pressure (165),
we conclude that

t t t
Tiol < ¢ ( [ 196 = Vsl + [ 190 - Vp(snizmgém)) +C(0) ( [ o= pilica
t t t t
[ 10— 90 By + [ 190 = Ol + [ o = lley + [ 1= €l )
Term T17. To estimate term 717 defined in (126) we use (21) to compute
! ! n3 N5 g
Tir = HJ;) X Ty Vyp - Vi(p —ps) — RL 0 Ty ° V' s -V’ (0 — ps)
b b
t 5 t
x| | A=) Vo hr = | | Vo= + Rira o+ Rize
0 J&

where
t

L 5 5
Ri71 = /ﬁf TN p- V] (p—ps) — HJ TV VP (p— ps),
0 JQp 0 JQ

' 13 (o 3 3
Ri72 ZKL o jb (pr—Vb P)'Vb (p — ps).
b

To estimate Ri7,1, we use (21) to obtain

Rz = | t Vi (Vo) [T V) (T T ).

Because 1 is smooth, |V{p| < C uniformly in space and time. Therefore,

t
[Ri7.1| < Cfo IV (0 = ps)llz2(y) - (V0 = V)2 (qy)-
Using the estimate in (165), we obtain the desired estimate that
’ 2 ‘ 5112
Rl < e [ 190 =20l ) + € [ 197 = Tndliaay
To estimate Ry7,2, we use the bootstrap assumption (133) that there exists a constant C' (inde-

pendent of &) such that |[Vn3| < C pointwise for ¢ € [0, Ts]. Therefore, |(I + Vn,)¢| is pointwise
uniformly bounded in space and time on the time interval [0, T5]. Thus, by (21),

L 5
Ria = | | (Vip=Vi') [T —ps) - (T + Tn)°]
b
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and hence
Rizal < C j 1V — VL2 - 1190 — p8) |22

We estimate the first pressure term by using (21) to obtain

1 2

1930 = Vi alltsay = | [V [+ V)t =+ V)]

b

5y—1 5 -1 2
S AR LR FH R |
b
2
= | [ @ ) V)~ (o T+ )|
b

g —1]?
= | [vpe @+ ) (Ind - V)T + 90|
b

Using the fact that p is smooth and the bootstrap assumption (132), we have that

Vi — VI pl200 < C||VnE — V|2
IVyp = V' pllze,) < CUVIS = Vil (q,)-

Therefore, combining this with (165) we obtain

t t
Riza < ¢ | 1190~ 03)lBagag )+ € | V0= Vil Eaca,

The final estimate of T17 now follows after the application of the convolution inequality (164):

t
Jhéﬁff V(p—ps)® + Rur,
0 Qg’a(t)

where the remainder is bounded by
' 2
Risl < | IV =00 0

4 t t
+C(e) (L 1V = V0|72, + JO V0 = Vnsl[720,) + JO [l = wall?pm) :

Term 18. Here want to estimate

T18=ftJ P(U—ﬁ)'n—ff plus — &) - ffpg n5+£fr6(t)p5(u6_£5).n
J f o (uw—§&)-n)(p—ps) f Lé(t us — &5) - m5)(p — ps)
_JO L(t) (us — &5) J Lé ps(u — &) n5+f f (u—§)- p5+f Lé(t (us — &5) - ng)p.
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By mapping all of the integrals back to the reference domain I', we obtain

Tig = — JJ (us — &5) - (—0xw, 1) — pr(su €) - (—0zws, 1)

pr(su € (0w, 1) + JJ (us — &) - (—0aws, 1)
JJ (us — &5)a * (Opw — Oyws) jfpéu €z (0w — Ozws)

[ [ =0~ (s = €90 (oo — \[fp 5) (1 = ).+ (s — Puis).

The absolute value is bounded as follows:

pl(u — &)z — (us — &5)z] - (Ozw — Ozws) p ps)(u — &)z - (0w — Ozs)

t
C(LHW‘S%—@%—QMMWﬂ@W—@%MﬂD+LHp—mMmﬂ@W—@WMHD)

After the application of the trace theorem, Poincare’s inequality, and Korn’s inequality we obtain
the final estimate:

t t t
IEQ<E<LHD@—uwﬁm%m»+LHV@—&Mpmw+LHV@—mm;m%@O

t
+aa£mwwm#m~
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