
Stochastic Bandits with Non-stationary Rewards:
Reward Attack and Defense

Chenye Yang, Guanlin Liu and Lifeng Lai

Abstract—In this paper, we investigate rewards attacks on
stochastic multi-armed bandit algorithms with non-stationary
environment. The attacker’s goal is to force the victim algorithm
to choose a suboptimal arm most of the time while incurring
a small attack cost. We consider three increasingly general
attack scenarios, each of which has different assumptions about
the environment, victim algorithm and information available to
the attacker. We propose three attack strategies, one for each
considered scenario, and prove that they are successful in terms
of expected target arm selection and attack cost. We also propose
a defense non-stationary algorithm that is able to defend any
attacker whose attack cost is bounded by a budget, and prove
that it is robust to attacks. The simulation results validate our
theoretical analysis.

Index Terms—bandit, non-stationary reward, dynamic regret,
attack and defense

I. INTRODUCTION

Multi-armed bandit (MAB) problems is a class of sequential
decision-making problems that have wide range of appli-
cations. This class of problems model the scenario where
an agent algorithm must choose among multiple arms to
maximize its cumulative reward. They have been applied to
various fields, including online advertisement (optimizing ad
selection), healthcare (personalized treatment strategies), and
recommender systems (improving personalized recommenda-
tions). Existing works [?], [?], [?], [?] have identified potential
security issues of existing MAB algorithms. In particular,
these work show that an attacker can force the existing MAB
algorithms to take unwanted actions, e.g., choose a suboptimal
target arm, and may lead to severe real-world consequences
(unfair business competition, health threats etc.).

Prior works investigate two attack methods: manipulate
the reward signal [?], [?], [?] or manipulate the action
signal [?] [?]. Most of these existing work focused on the
traditional stationary random rewards setting, in which the
distribution of reward of each arm does not change over
time. Some [?] studied the adversarial setting, in which the
reward given by the environment can be arbitrarily chosen.
It is important to note that in many real-world applications,
the reward distribution may change over time, but with a
specific restriction on the extent of changes. For example,
the best product recommendation may vary when the user’s
interest slightly changes on an e-commerce platform. The

C. Yang, G. Liu and L. Lai are with the Department of Electrical and
Computer Engineering, University of California, Davis, CA. This work was
supported by the National Science Foundation under Grants ECCS-2000415
and CCF-2232907. This work was presented in part at the 2023 Asilomar
Conference on Signals, Systems, and Computers [?]. Email:{cyyyang, glnliu,
lflai}@ucdavis.edu.

subtle changes of preference could be seasonal in a year,
and could also be influenced by real world events like the
Christmas holiday. In this case, it is more appropriate to
model the problem as stochastic multi-armed bandit with non-
stationary rewards [?]. In this paper, we study the reward
attack on non-stationary MAB algorithms in the non-stationary
reward setting with restriction on the extent of changes.

The non-stationary reward structure will introduce addi-
tional challenges on both the algorithm side and the attacker
side. In addition to the exploitation and exploration trade-
off, the algorithm also needs to handle trade-off between ‘re-
membering’ and ‘forgetting’ since the estimation of expected
rewards is based on past rewards observations, and will have
larger overall regret since the best arm is always changing.
At the same time, this also creates additional challenges for
the attack design as well, as it costs more for the attacker
to perform a successful attack, since every time when the
victim algorithm ‘forgets’ history it tends to ‘explore’ all
possible arms instead of ‘exploit’ the target arm. To our
knowledge, this is the first work to successfully attack those
specifically designed non-stationary MAB algorithm with a
variation budget, which models the temporal uncertainty and
changes in the non-stationary reward environment.

In this paper, three attack scenarios targeting non-stationary
MAB algorithm are considered. The first scenario only has
very general assumption on the environment side, but assumes
that the attacker has detailed knowledge of the victim algo-
rithm’s behavior. The second scenario removes the assumption
on the attacker’s knowledge of the victim algorithm. The third
scenario then removes the restriction on the victim algorithm
side, covering more victim algorithms in practice. For each
scenario, we propose the corresponding attack strategy and
prove them to be successful.

Attack and defense always go hand in hand. With the
existence of the attack, it is important to design defense
strategies to protect the algorithm from taking unwanted
actions. Existing works focus on designing robust algorithms
for stochastic bandit algorithms [?], [?], [?], [?] and adversarial
bandit algorithms [?] under adversarial attacks. Some work
also studies stochastic linear contextual bandits [?], stochastic
bandits to strategic manipulations [?], and stochastic Lipschitz
bandits [?]. It is important to study the defense algorithm
in the non-stationary reward environment, which models the
extent of changes in rewards. This is not only because the non-
stationary environment is common in real-world applications,
but also because we have already designed successful attack
strategies against the current non-stationary MAB algorithms

in this paper. In this paper, we propose a defense algorithm that
is able to defend any attacker whose attack cost is bounded
by a budget.

Compared with our conference paper [?], this journal paper
has the following new contributions: 1) Besides the attack
scenarios in [?], we consider a more general one which
covers more victim algorithms and prove the attack strategy
to be successful; 2) We propose a defense algorithm, RexpRb,
and prove it to be robust to attacks; 3) We conduct more
comprehensive simulations to validate our theoretical analysis.

The remainder of the paper is organized as follows. In Sec-
tion II, we introduce the problem formulation. In Section III,
we focus on the attack strategy design. In Section IV, we
design the defense algorithm. In Section V, we provide simu-
lation results. Finally, we conclude the paper in Section VI.

II. PROBLEM FORMULATION

A. Multi-armed bandit problem

Let K = {1, 2, . . . ,K} be the set of arms to be pulled
(decisions to be made), T = {1, 2, . . . , T} be the sequence of
decision steps for the decision maker (agent). The agent pulls
an arm at ∈ K at step t ∈ T and receives a reward Xt(at)
which is generated by the environment. Xt(at) ∈ [0, 1] is a
random variable with expectation E [Xt(at)]. The goal of the
agent is to maximize the total expected reward over a long
time, while balancing exploration and exploitation.

B. Non-stationary environment

In many practical cases, the reward distributions of the
arms in an MAB problem may change over time. In the
existing works, there are two popular approaches to model the
changing reward: adversarial environments [?], [?] and non-
stationary environments [?], [?], [?], [?], [?]. The adversarial
environment allows the reward distribution to be arbitrarily
chosen by the environment. The downside of this model is
that it does not restrict the extent of changes and thus may
not capture the temporal uncertainty of the reward distribution.
Another popular approach is the non-stationary environment
which models the temporal uncertainty in the following two
ways: allow a finite number of changes in the expected
reward [?], [?], or allow a bounded total variation of expected
reward over the relevant time [?], [?], [?]. In this paper, we
will perform attack within the non-stationary environment with
a bounded total variation of the expected rewards.

Denote µk
t = E[Xt(at = k)] and µ∗

t = maxk∈K{µk
t },

where E is taken with respect to reward Xt (at) at step t. In
this paper, we focus on the non-stationary environment with
a bounded total variation of the expected rewards E [Xt(at)]:

T−1∑
t=1

sup
k∈K

∣∣µk
t − µk

t+1

∣∣ ≤ VT ,

where VT is the variation budget for the entire horizon T
of the problem. We define the temporal uncertainty set as
the set of reward sequences that are subject to the variation
budget VT over the set of step epochs {1, . . . , T}: V =

{
µ ∈ [0, 1]

K×T
:
∑T−1

t=1 supk
∣∣µk

t − µk
t+1

∣∣ ≤ VT

}
. Note that

VT = 0 corresponds to the stationary environment while
VT = O(T) corresponds to the adversarial environment [?].

C. MAB algorithm performance metrics

The performance of a multi-armed bandit algorithm is
measured by its regret. For the adversarial bandit problems [?],
[?], the regret RT is defined against the static oracle, which
is the best arm in hindsight over the whole horizon.

RT = max
a

T∑
t=1

Xt(a)− Eπ

[
T∑

t=1

Xt (at)

]
.

One may use adaptive algorithms such as Exp3 to handle
adversarial environments, of which the static oracle regret is
O(

√
KT logK) [?].

In the non-stationary setting, the regret of the algorithm
over the entire horizon is defined as the worst case difference
between the expected performance of pulling the arm which
has the highest expected reward at each epoch t and the
expected performance under policy π, which is also known
as the regret measured against the dynamic oracle [?], [?]:

Rπ (V, T) = sup
µ∈V

{
T∑

t=1

µ∗
t − Eπ

[
T∑

t=1

µπ
t

]}
,

where Eπ is taken with respect to the noisy rewards and
policy’s actions, and µπ

t means pulling arm according to π.

D. Reward attack

In this paper, as shown in Figure 1, we consider a setup
where there is an attacker that can intercept the reward signal
Xt(at) from the environment and manipulate it to X̃t (at).
The attacker’s goal is to force the agent to choose a suboptimal
target arm a† 1 as often as possible while inducing an attack
cost as low as possible. For example, in the e-commerce
platform, the target arm a† could be a specific product that
one merchant wants to promote, and the attack cost could be
the computational cost of hacking the system, manipulating
the rewards from the user and injecting them to the system,
as well as the potential legal risk and the loss of trust. All of
these costs will increase with the extent of performing reward
manipulation.

There are two metrics to measure the performance of the
attacker: the expected attack cost Eπ[CT], and the expected
number of target arm selection Eπ[NT (a

†)]:

Eπ[CT] = Eπ

[
T∑

t=1

∣∣∣X̃t (at)−Xt (at)
∣∣∣] ,

Eπ[NT (a
†)] = Eπ

[
T∑

t=1

1
[
at = a†

]]
.

1In this paper, we assume that the target arm a† is a specifically chosen arm
and will not change, even though the reward distribution of a† may change
due to the non-stationarity. It is also possible to extend the problem to the
case where a† changes over time. Then, the entire horizon can be divided
into several stages at the time points when a† changes.

Fig. 1: Reward Attack

The goal of the attacker is to maximize the Eπ[NT (a
†)]

while incurring a small Eπ[CT].

III. ATTACK

In this section, we consider three increasingly complex
attack scenarios and propose three attack strategies, one for
each scenario. Here, we assume that the non-stationary victim
algorithm is unaware of the existence of the attacker.

A. Non-stationary Victim Algorithm

If there is no attacker, a widely used strategy for stochastic
non-stationary MAB problem is Rexp3, proposed in [?], which
is able to handle the temporal uncertainty by variation budget
VT . [?] proves that Rexp3 is nearly minimax optimal with
dynamic oracle regret of order VT

1/3T 2/3. For completeness,
this algorithm is listed in Algorithm 1.

Algorithm 1 Rexp3 [?]

1: Parameters: A learning rate η, and a batch size ∆T .
2: for Batch j = 1, 2, . . . ,m = ⌈ T

∆T
⌉ do

3: Initialization: wt,a = 1, ∀a ∈ K.
4: for t = (j − 1)∆T + 1 ≤ t ≤ min {j∆T , T} do
5: Define πt,a = (1− η)

wt,a∑
a wt,a

+ η
K

6: Draw at ∼ {πt,a}, and observe reward Xt (at)
7: for a = 1, 2, . . . ,K do
8:

wt+1,a =

{
wt,a , a ̸= at

wt,a exp
(

η
K

Xt(at)
πt,a

)
, a = at

9: end for
10: end for
11: end for

Figure 2 illustrates the Rexp3 algorithm. In Rexp3, to handle
the non-stationary environment, the total horizon T is split into
many batches (T1, . . . , Tm) with fixed size ∆T each (except,
possibly the last batch):

Tj = {t : (j − 1)∆T + 1 ≤ t ≤ min {j∆T , T}} , (1)

∀j = 1, . . . ,m, where m = ⌈ T
∆T

⌉ is the number of batches.
In each batch, one runs the Exp3 algorithm. Furthermore, the
Exp3 algorithm restarts itself at the beginning of each batch,
to forget all its memory and handle the changing environment.

Fig. 2: Timeline of Rexp3

With the assumption that VT is known to algorithm, Rexp3
chooses the batch size ∆T =

⌈
(K logK)

1/3
(T/VT)

2/3
⌉

, and
achieves the dynamic oracle regret mentioned above.

Note that in the j-th batch Tj , dynamic regret Rπ
(
V,∆Tj

)
is defined as Eπ

[∑
t∈Tj

(µ∗
t − E [Xt (a

π
t)])

]
, and static regret

R∆Tj
is defined as maxa

∑
t∈Tj

Xt(a)−Eπ
[∑

t∈Tj
Xt (at)

]
.

We assume the MAB algorithm running and restarting in each
batch has static oracle regret R∆Tj

= O
(
∆Tj

α
)

for some
α ∈ [12 , 1) in each batch Tj , which holds for commonly used
MAB algorithms such as Exp3 with α = 1

2 [?].
Specifically, we will attack this Rexp3 algorithm in the non-

stationary reward setting with a variation budget VT under
three increasingly relaxed assumptions.

B. Attack Scenario I

In this scenario, there’s no constraint on the environment
side, which means that sometimes Xt(a

†) = 0. We assume the
attacker has information of when the victim algorithm restarts,
i.e., the batch size ∆T .

We present our attack scheme in Algorithm 2. The scheme
keeps a diminish function t̃α+ϵ−1 as the lower-bound of ma-
nipulated reward for the target arm, where t̃ is the relative step
in each batch and ϵ < 1−α. Within each batch, if the victim
algorithm chooses a non-target arm, the attacker will reduce
the reward to 0. However, if the victim algorithm chooses
the target arm, the attacker will manipulate the reward to the
maximal value between the original reward and t̃α+ϵ−1. The
relative step t̃ will increase along with the absolute step t ∈ T ,
but will be reset to 1 at the beginning of a new batch. The
attacker is able to restart the diminish function simultaneously
with the algorithm by the assumption of knowing ∆T . In other
words, the manipulated reward X̃t (at) will be:

X̃t (at) =

{
max

{
t̃α+ϵ−1, Xt(at)

}
at = a†

0 at ̸= a†
. (2)

The purpose of using a diminishing function as the mini-
mum for the manipulated reward X̃t

(
a†
)

of the target arm a†

is to: 1) give more reward to a† for the first several times it
is selected, which can make the victim algorithm more likely
to exploit a† in the future, instead of exploring other arms;
2) reduce the minimum of X̃t

(
a†
)

gradually, which helps to
reduce the manipulations to reward when more and more times
a† is selected in the future; 3) make the attack successful even
when the reward of target arm a† is always 0, i.e., Xt(a

†) = 0.
Otherwise, the victim algorithm can not distinguish all the
arms after attack and will explore them equally.

Algorithm 2 Attack Scenario I

1: Initialize total horizon T
2: Let absolute step t = 1, let relative step t̃ = 1
3: while t ≤ T do
4: Victim algorithm, e.g., Rexp3, chooses arm at
5: Environment gives the reward Xt(at)
6: Attacker manipulates the reward:
7: if at = a† then
8: X̃t(at) = max{t̃α+ϵ−1, Xt(at)}
9: else

10: X̃t(at) = 0
11: end if
12: if t̃ < ∆T then ▷ t̃ < T − (m− 1)∆T for last batch
13: t̃ = t̃+ 1 ▷ continue the diminish function
14: else
15: reset t̃ = 1 ▷ restart the diminish function
16: end if
17: Victim updates itself based on X̃t(at)
18: t = t+ 1
19: end while

This following theorem provides performance bounds of the
proposed attack strategy for scenario I, with known fixed ∆T .

Theorem III.1. Suppose the victim algorithm has static oracle
regret R∆T

= O (∆T
α) for some α ∈ [12 , 1) in each batch

and follows the fixed batch strategy to handle non-stationary
reward. Then the expected number of target arm selection and
the expected attack cost of the attack scheme in Algorithm 2
satisfy:

Eπ
[
NT

(
a†
)]

≥ T −
(
2MT∆T

−ϵ +
2

α+ ϵ
T∆T

−α−ϵ

)
,

Eπ [CT]

≤ 2MT∆T
−ϵ +

2

α+ ϵ
T∆T

−α−ϵ +
2

α+ ϵ
T∆T

α+ϵ−1,

(3)

where M is a constant, and ϵ < 1− α.

Theorem III.1 reveals that if the victim algorithm sets batch

size as ∆T = B
(

T
VT

)β
, where β ∈ [0, 1], and B is a constant,

the expected attack cost Eπ [CT] will be:

Eπ [CT] = O
(
VT

ϵβT 1−ϵβ + VT
β(1−α−ϵ)T 1−β(1−α−ϵ)

)
.

When the variation budget VT is sublinear in T , i.e., VT =
O(T ξ) where ξ ∈ (0, 1), the expected attack cost Eπ[CT] will
be:

Eπ [CT] = O
(
T 1−(1−ξ)ϵβ + T 1−(1−ξ)β(1−α−ϵ)

)
,

which is sublinear in T . Meanwhile, the target arm selection
Eπ
[
NT

(
a†
)]

will increase almost linear in T . This means
that the attack is successful. Without knowing the existence
of the attacker, the victim algorithm will pick the target arm
most of the time. Meanwhile, the attack cost remains small.
For example, when α = 1

2 , ϵ = 1
5 , β = 2

3 , and ξ = 1
10 , which

are the same as those in experiments, the expected attack cost
Eπ [CT] = O(T 0.88).

Note that in Theorem III.1, Eπ
[
NT

(
a†
)]

and Eπ [CT]
depend only on the batch size ∆T and the order of static oracle
regret α of the victim algorithm, rather than other properties
on the algorithm side. This makes Theorem III.1 a general
result for attacking any non-stationary MAB algorithm with
α ∈ [12 , 1) and fixed batch size ∆T strategy. It will cover
more victim algorithms than Rexp3 in Section III-A.

C. Attack Scenario II

In this section, we relax the assumption on the attacker’s
knowledge about ∆T , and assume that the attacker does NOT
know when the algorithm restarts, i.e., the attacker does not
know the batch size ∆T .

In this scenario, the attacker follows the scheme in Al-
gorithm 3. It also keeps a diminish function t̃α+ϵ−1. If the
victim algorithm chooses a non-target arm, the attacker will
reduce the reward to 0, and reset the relative step t̃ to 1
(including for this step although t̃ not used). However, when
the target arm is chosen, the attacker will manipulate the
reward to the maximal value between the original reward and
t̃α+ϵ−1, and then increase the relative step t̃ by 1. Similarly,
the manipulated reward X̃t (at) will be as (2).

The main difference of the attacker’s behavior is the reset
timing of the diminishing function. In scenario I, the attacker is
able to reset the diminishing function at the beginning of each
batch simultaneously with the victim algorithm. However, in
scenario II, the attacker does not know ∆T , and thus will reset
the diminishing function anytime when a non-target arm is
pulled. Figure 3 illustrates how the diminish functions behave
in the two scenarios.

(a) Attack Scenario I (b) Attack Scenario II

Fig. 3: Comparisons of the diminishing functions

When the diminishing function is reset, the manip-
ulated reward of the next target arm pull will be
max

{
t̃α+ϵ−1, Xt(at)

}
= 1. Consider that Xt(at) ≤ 1 ∀a, t,

the above strategy helps to give more reward to the target
arm when it is selected after any non-target arm pull. There’s
always a possibility for any arm been selected because of
the ‘exploration’ of bandit algorithm. Thus, the diminishing
function will be reset more frequently, instead of resetting only
at the beginning of each batch. This attack strategy ensures
that the victim algorithm receives larger target arm rewards
and thus tends to choose a† to minimize its regret, especially

for those whose probability of choosing an arm is weighted by
its reward, e.g., Rexp3. This will make the victim algorithm
choose the target arm with higher probability compared with
that in scenario I in Section III-B.

Algorithm 3 Attack Scenario II & III

1: Initialize total horizon T
2: Let absolute step t = 1, let relative step t̃ = 1
3: while t ≤ T do
4: Victim algorithm, e.g., Rexp3, chooses arm at
5: Environment gives the reward Xt(at)
6: Attacker manipulates the reward X̃t(at):
7: if the chosen arm is the target arm: at = a† then
8: X̃t(at) = max{t̃α+ϵ−1, Xt(at)}
9: t̃ = t̃+ 1 ▷ continue the diminish function

10: else if at ̸= a† then
11: X̃t(at) = 0
12: reset t̃ = 1 ▷ restart the diminish function
13: end if
14: Victim updates itself based on X̃t(at)
15: t = t+ 1
16: end while

The following theorem illustrates the performance of the
proposed attack strategy for scenario II, with unknown fixed
∆T to the attacker.

Theorem III.2. Under the same assumption as in Theo-
rem III.1, the expected number of target arm selection and
the expected attack cost of the attack scheme in Algorithm 3
satisfy

Eπ
[
NT

(
a†
)]

≥ T − 2MT∆T
α−1,

Eπ [CT] ≤ 2MT∆T
α−1 +

(2M)1−α−ϵ

α+ ϵ
T∆T

(1−α)(α+ϵ−1),

where M is a constant, and ϵ < 1− α.

With the same setting for ∆T and VT as in Section III-B,
Theorem III.2 reveals that the expected attack cost:

Eπ [CT] = O
(
T 1−(1−ξ)β(1−α) + T 1−(1−ξ)β(1−α)(1−α−ϵ)

)
,

which is sublinear in T . Meanwhile, the target arm selection
Eπ
[
NT

(
a†
)]

will increase almost linear in T , meaning that
the attack is successful. For example, when the parameters
are the same as those in experiments, the expected attack cost
Eπ [CT] = O(T 0.91).

Theorem III.2 also covers a wide range of non-stationary
victim algorithms, similar to Theorem III.1.

Note that one can not conclude that the attack cost in
scenario II is larger than that in scenario I for arbitrary
parameters. The reason is that, for the big-O expression, in
scenario II, the first term has a smaller order, while the second
term has a larger order, compared with the corresponding terms
in scenario I. The relation between these two terms depends
on the choice of β, ξ, and ϵ. Moreover, these theorems provide
only bounds rather than exact function forms of the expected
attack cost, and the constant factors are also different.

D. Attack Scenario III
In this section, we further relax the restriction on the algo-

rithm side and assume that the batch size ∆Tj
s are no longer

the same, making the problem more general and closer to the
real-world scenarios, in which the non-stationary algorithm
may restart at any specific time to learn the changing environ-
ment. In particular, we assume the victim algorithm like Rexp3
can restart at any time, as illustrated in Figure 4. Moreover,
the attacker does not know when the algorithm restarts, i.e.,
the batch sizes ∆Tj

. In this scenario, the attacker follows
the same scheme in Algorithm 3. Similarly, the manipulated
reward X̃t (at) will be as (2).

Fig. 4: Timeline of Rexp3 with non-fixed batch size

The following theorem provides performance bounds of the
proposed attack strategy for scenario III, with unknown non-
fixed ∆Tj to the attacker. Although the attack strategy is the
same as in previous cases, the analysis of the attack cost and
the target arm selection is different and more challenging.

Theorem III.3. Assume the victim algorithm has static oracle
regret R∆Tj

= O
(
∆Tj

α
)

for some α ∈ [12 , 1) in each
batch and follows the non-fixed batch strategy to handle
non-stationary reward. The expected number of target arm
selection and the expected attack cost of the attack scheme
specified in Algorithm 3 satisfies:

Eπ
[
NT

(
a†
)]

≥ T −MTδT
α−1,

Eπ [CT] ≤ MTδT
α−1 +

M1−α−ϵ

α+ ϵ
TδT

(1−α)(α+ϵ−1),

where M is a constant, ϵ < 1− α, and δT = minj
{
∆Tj

}
is

the minimal batch size.

With δT = B
(

T
VT

)β
where β ∈ [0, 1] and B is a constant,

and the same setting for VT as in Section III-B, Theorem III.3
reveals that the expected attack cost:

Eπ [CT] = O
(
T 1−(1−ξ)β(1−α) + T 1−(1−ξ)β(1−α)(1−α−ϵ)

)
,

which is sublinear in T . Meanwhile, the target arm selection
Eπ
[
NT

(
a†
)]

will increase almost linear in T , meaning that
the attack is successful. For example, when the parameters
are the same as those in experiments, the expected attack cost
Eπ [CT] = O(T 0.91).

In scenario III, we relax the restriction on the algorithm
side, and no longer require the batch size to be fixed. Thus,
the results in Theorem III.3 are more general and similar to
real-world applications, and can be applied to a larger class of
non-stationary victim algorithms than those in Theorem III.2.

In the special non-stationary case when all the m batches
have the same size ∆T , i.e., ∆T1 = ∆T2 = . . . = ∆Tm = ∆T ,

Theorem III.2 and Theorem III.3 are identical. This can be
seen by using m = T

∆T
in the proof of Theorem III.2 and

using δT = ∆T in the proof of Theorem III.3.

E. Lower-bound of the Expected Attack Cost for Fixed ∆T

We have shown the upper-bound of the expected attack cost
and lower-bound of the expected target arm selection of our
attack strategies in Theorem III.1 and III.2, proving that our
attackers can successfully control the victim’s behavior and
induce a small cost. In this section, we show that our attack
strategies are near optimal. In particular, we show that if an
attacker achieves T − o(T) expected target arm selection, and
it is also victim-agnostic to non-stationary bandit algorithm,
then the attacker must induce at least expected attack cost
Ω
(
T∆T

α−1
)
. Here, victim-agnostic means that the attacker

does not know what is exactly the victim algorithm, but only
knows that the non-stationary algorithm has sublinear static
oracle regret in each batch and follows the batch strategy.

Since we are looking for the victim-agnostic lower-bound,
it is sufficient to pick a particular victim non-stationary al-
gorithm that guarantees O(∆T

α) static regret in each batch,
under one bandit environment. Then we need to show that
any victim-agnostic attacker must induce at least some attack
cost to achieve T −o(T) expected target arm selection on this
particular victim algorithm. The main result for lower-bound
of the expected attack cost is provided in Theorem III.4.

Theorem III.4. Assume some victim-agnostic attack algo-
rithm achieves Eπ

[
NT (a

†)
]
= T − o(T) on all victim bandit

algorithms that has static oracle regret O (∆T
α) in each batch

and follows the fixed batch strategy to handle non-stationary
reward, where α ∈

[
1
2 , 1
)
. Then there exists a bandit task

such that the attacker must induce at least expected attack cost
Eπ [CT] = Ω

(
T∆T

α−1
)

on some victim algorithm, where ∆T

is the fixed batch size.

Theorem III.4 reveals that the best achievable performance
of attacker is Ω

(
T∆T

α−1
)

in fixed batch size cases. Thus,
for scenarios considered in Section III-B and Section III-C,
our methods are near optimal except with a small additional
cost depending on the choice of parameters β and ϵ.

IV. DEFENSE

In this section, we first summarize different types of regret,
which are used as the performance metric of robust MAB
algorithms under reward attack, and propose a new one: the
dynamic oracle regret with original rewards. Then, we propose
a defense non-stationary MAB algorithm which is robust to
attackers with bounded attack cost. We assume that the defense
algorithm is aware of the existence of the attacker. However,
it does not know the attacker’s attack strategy.

Even with attack, the regret of the defense algorithm should
still be evaluated against the original rewards µt, instead of the
manipulated rewards µ̃t, to minimize the difference between
the original best action’s reward and the original reward of the
chosen action (based on the manipulated policy π̃ after attack).
In this way, a small regret represents that the defense algorithm

is less affected by the attack, and robust to the attack. Thus,
the dynamic oracle regret under attack becomes:

Rπ̃ (V, T) = sup
µ∈V

{
T∑

t=1

µ∗
t − Eπ

[
T∑

t=1

µπ̃
t

]}
.

Here’s the explanation: As we assume the agent is aware of
the existence of the attack, the MAB algorithm will have a
different policy π̃. However, we are anticipating that there’s a
defense algorithm that can still take the original best actions as
much as possible, leading to larger cumulative original reward
sent out by the environment (not exactly the reward received
by the defense algorithm due to attack). For example, in the
medical recommender system, it is vital to base decisions
on real feedback from the patient, not on the manipulated
feedback. The recommender wants to take the action that is
best for the patient and has the largest real feedback, instead
of the action with largest manipulated feedback since it may
actually be dangerous to the patient.

The goal of defense algorithm is to minimize the dynamic
oracle regret with original rewards Rπ̃ (V, T).

Note that this regret is different from R̃T defined in [?],
which should be named as the static oracle regret evaluated
with the manipulated rewards X̃t and against the original
rewards Xt, with our notation: R̃T = maxa

∑T
t=1 Xt(a) −

Eπ
[∑T

t=1 X̃t (at)
]
. The results in [?] are not applicable to

our defense algorithm, due to the different regret definitions
and [?]’s adversarial bandit settings.

To make the notations clear, we summarize all the com-
monly used regrets in Table I. The dynamic oracle regret
with original rewards 1 is the performance metric of the
defense algorithm under attack considered in this paper. The
dynamic oracle regret with manipulated rewards 2 represents
that the victim algorithm is not aware of the existence of the
attacker, and thus trying to behave the best as it can under
the manipulated reward environment. This regret is indirectly
used in the design of the attacker for victim algorithms in
Section III, and can be found in the corresponding proofs. The
static oracle regret with original rewards 3 is the performance
metric of adversarial algorithms. The static oracle regret with
the manipulated rewards X̃t and against the original rewards
Xt

4 is that considered when designing the defense adversarial
algorithm in the existing work [?].

In practical applications, the attacker may have a budget
on the attack cost. Denote Φ(T) as the maximum attack
cost allowed by the attacker over the entire horizon T of
the problem. We have that Eπ[CT] ≤ Φ(T). These attackers
with bounded attack cost could be defended by particularly
designed defense algorithms. On the contrary, if an attacker
has unbounded attack cost, there’s no algorithm can defend it,
since the reward can always be arbitrarily changed.

Here, we propose a defense bandit algorithm, RexpRb, in the
non-stationary reward environment, which is robust to reward
attacks. The RexpRb algorithm is described in Algorithm 4.

In RexpRb, to handle the non-stationary environment, the
total horizon T is split into m = ⌈ T

∆T
⌉ batches (T1, . . . , Tm)

TABLE I: Regrets under attack, with the manipulated policy π̃ (W/ means With, A/ means Against)

Dynamic Oracle Static Oracle

W/ & A/ Original Rewards supµ∈V

{∑T
t=1 µ

∗
t − Eπ

[∑T
t=1 µ

π̃
t

]}
1 maxa

∑T
t=1 Xt(a)− Eπ

[∑T
t=1 Xt (at)

]
3

W/ Manipulated & A/ Original Rewards maxa
∑T

t=1 Xt(a)− Eπ
[∑T

t=1 X̃t (at)
]

4

W/ & A/ Manipulated Rewards supµ∈V

{∑T
t=1 µ̃

∗
t − Eπ

[∑T
t=1 µ̃

π̃
t

]}
2

Algorithm 4 RexpRb

1: Parameters: Learning rate η, robustness parameter γ, and
batch size ∆T .

2: for Batch j = 1, 2, . . . ,m = ⌈ T
∆T

⌉ do
3: Initialization: w0,a = 1, q0,a = 1, ∀a ∈ K.
4: for t = (j − 1)∆T + 1 ≤ t ≤ min {j∆T , T} do
5: Define πt,a = (1− η)

wt,a∑
a wt,a

+ η
K

6: Draw at ∼ {πt,a}, and observe reward Xt (at)
7: Set δt = 0
8: if πt,at

< qt−1,at
then

9: Set δt = min {γ(1− πt,at
/qt−1,at

), 1}
10: Update qt,a for a = 1, 2, . . . ,K:

qt,a =

{
max {πt,a, (1− 1/γ)qt−1,a} , a = at

qt−1,a , a ̸= at

11: end if
12: Update wt,a for a = 1, 2, . . . ,K:

wt,a =

{
wt−1,a , a ̸= at

wt−1,a exp
(

η
K

Xt(at)+δt
πt,a

)
, a = at

13: end for
14: end for

with fixed size ∆T each, similar to (1). The ExpRb algo-
rithm [?] will restart itself at the beginning of each batch, as
illustrated in Figure 5. This batched behavior helps to forget
the memory of past and adapt to the changing environment.
Note that the variation budget VT of the environment can be
utilized to determine the batch size.

Fig. 5: Timeline of RexpRb

To defend the attacker, similar to ExpRb [?] but unlike
Rexp3 [?], the variable δ(t) is introduced to augment the
reward estimation, and a robustness parameter γ is used to
connect δ(t) and the attack cost budget Φ(T). The design of
δ(t) is motivated by the following intuitions: 1) encourage
RexpRb to explore more when the reward estimation is not

accurate; 2) use the history of reward estimation to handle the
potential corrupted rewards in the future; 3) when there’s no
attacker, RexpRb will behave like Rexp3 by setting robustness
parameter γ = 0.

We now analyze the performance of the defense non-
stationary MAB algorithm RexpRb.

Theorem IV.1. Assume that the attacker has attack cost
budget Φ(T), i.e., Eπ [CT] ≤ Φ(T). The dynamic oracle
regret with original rewards Rπ̃ (V, T) of RexpRb, Algo-
rithm 4, when it is run with parameters γ = Φ(T) and
η = O

(√
K logK/∆T

)
, is bounded as:

Rπ̃ (V, T) = O

(
VT∆T + T∆

− 1
2

T +Φ(T)
T

∆T
log(∆T) + Φ(T)

)
.

With the same setting for ∆T and VT as in Section III-B,
Theorem IV.1 reveals that the dynamic oracle regret will be:

Rπ̃ (V, T) = O
(
T ξ−ξβ+β + T 1− 1

2β+
1
2βξ

+Φ(T)T 1−β+ξβ log(T) + Φ(T)
)
.

It is worth noting that once the ξ in variation budget and
Φ(T) of attack cost budget are given, the defense algorithm
RexpRb can achieve sublinear dynamic oracle regret Rπ̃ (V, T)
with a specific choice of β in batch size. For example, when
ξ = 0.001 and Φ(T) = O(T 0.861), which are the same as
those in experiments, the parameter β can be chosen as β =
0.931. Then, the regret Rπ̃ (V, T) = O

(
T 0.931 log(T)

)
.

V. EXPERIMENTAL DATA AND RESULTS

A. Attack

We first present experimental results for the attack cases.
We consider a bandit problem environment with K = 5 arms.
The target arm a† = 1. The initial expected reward is:

E [Xt(a)] =


0.1, a = 1

0.5, a = 2, 3, 4

0.8, a = 5

.

The non-stationary reward structure is simulated by the
random walk, which changes the expected reward at each
step, and the total variation of expected reward is bounded
by VT = (T/K)

1/10. The reward signal in [0, 1] given by
environment at each step t is sampled from a Beta distribution.

We attack the popular strategy for stochastic non-stationary
MAB problem, Rexp3 as described in Section III-A. The

diminishing function parameters are α = 1
2 and ϵ = 1

5 .
Expectation is taken over 5 independent runs.

The scenario 1, 2 and 3 correspond to three attack scenarios:
Section III-B, Section III-C and Section III-D, respectively.
The batch sizes are set as ∆T =

⌈
5(T/VT)

2/3
⌉

(scenario 1

2) and δT =
⌈
5(T/VT)

2/3
⌉

(scenario 3) for different horizons.
The attack result is shown in Figure 6a and 6b. Figure 6a

shows that the number of target arm selection Eπ
[
NT

(
a†
)]

increases significantly with attack. For example, as shown in
Table II, the percentage of target arm selection increased from
0.483% to 89.5% in the scenario 1, from 0.485% to 97.9% in
the scenario 2, and from 0.160% to 99.4% in the scenario 3.
Note that, in the scenario 2, compared with the scenarios 1,
the victim algorithm tends to select a† more often since the
attacker gives more reward to the target arm every time after
a non-target arm is chosen. However, as shown in Figure 6b,
Algorithm 3 also has disadvantage of having a larger attack
cost. In particular, the expected attack cost for 107 steps are
6.14× 105, 2.60× 106 and 2.38× 106 for the scenario 1, 2,
and 3, respectively. In the scenario 3, even without attack, the
victim algorithm tends to select a† less often, since the batch
size is larger, and the algorithm ‘forgets’ the history less often.

TABLE II: Expected target arm pulls for 107 steps

With Attack Without Attack
Scenario Pulls % Pulls %
Scenario 1 8.95× 106 89.5 4.83× 104 0.483
Scenario 2 9.79× 106 97.9 4.85× 104 0.485
Scenario 3 9.94× 106 99.4 1.60× 104 0.160

The reason for more target arm selection while less attack
cost in the scenario 3, compared with the scenario 2, will be
discussed later as the influences of non-fixed batch size.

In general, our three attack strategies are successful: the
expected attack cost, shown in Figure 6b, is sublinear in T ,
when the victim algorithm is forced to select one suboptimal
arm mostly and the number of selection increases almost linear
in T , shown in Figure 6a.

For the influences of the fixed batch size, Figure 6c shows
the expected attack cost in the general attack scenario for dif-
ferent choice of parameter β for batch size ∆T =

⌈
5(T/VT)

β
⌉

(shown in Figure 6d). The results verify Theorem III.1 that if
the order of ∆T is larger, the attack cost will be smaller, since
the power of ∆T -s in (3) is negative.

Note that the attack cost in the scenario 3 with non-fixed
∆Tj

could be larger or smaller than that in the scenario 2
with fixed ∆T . Every time the victim algorithm restarts, it
has a much higher probability to choose a non-target arm. As
a result, the attacker will need to manipulate the reward to
0 more frequently. Meanwhile, the diminish function will be
reset more frequently, introducing more cost when a successive
target arm is pulled. Therefore, the attack cost and target arm
selection depend on how frequently victim algorithm restarts.

The influences of the non-fixed batch size in the scenario
3 can be seen from Figure 6e and 6f. The batch size in the

scenario 2 is fixed as ∆T =
⌈
5(T/VT)

2/3
⌉

. The scenario 3
is independently run for two rounds, with min∆Tj

= ∆T

and max∆Tj
= ∆T , respectively. As shown in Figure 6e, the

target arm selection of the scenario 3 with max∆Tj
= ∆T

is less than that of the scenario 2 and less than that of the
scenario 3 with min∆Tj = ∆T . As shown in Figure 6f, the
attack cost of the scenario 3 with max∆Tj

= ∆T is larger
than that of the scenario 2 and larger than that of the scenario
3 with min∆Tj

= ∆T . These results are consistent with the
discussion above.

B. Defense

We now present results for the defense case. The same
multiarmed bandit problem environment as in Section V-A
is considered in these experiments. We attack our defense
algorithm RexpRb with two different attack strategies:
1) Unbounded attackers: as Algorithm 2 and 3;
2) Bounded attackers: only perform Algorithm 2 and 3 attacks
when the cumulative attack cost is less than the budget Φ(T).

We set Φ(T) = T 0.861, ∆T =
⌈
(T/VT)

0.931
⌉

, VT =

(T/K)
0.001 for bounded attack. Other parameters and param-

eters in unbounded attack are the same as in Section V-A.
The results with unbounded attackers are shown in Figure

7a, 7b and 7c. If the attacker can perform attacks with no
budget on attack cost, the attacker will force both the Rexp3
and RexpRb algorithms to pull the target arm most of the
time, and the dynamic oracle regret is almost linear in T after
attack. However, when attacking the Rexp3, the attack cost is
sublinear in T , which is the same as the theoretical analysis in
Section III. When attacking RexpRb, the attack cost is larger
than that of Rexp3, and is almost linear in T . In other words,
RexpRb makes the attacker more expensive to attack, and the
attack can not be considered successful in terms of the attack
cost. This fact shows that RexpRb is robust to attackers, even
when the attacker has unbounded attack cost.

The results with bounded attackers are shown in Figure
7d, 7e and 7f. In this case, the attacker can only perform
attacks when the cumulative attack cost is less than the budget
Φ(T) = T 0.861. As shown in Figure 7d, the dynamic regret of
Rexp3 increases greatly after attack, and is almost linear in T .
However, as shown in Figure 7e, RexpRb has less regret, and
is also sublinear in T . Without attack, the regret of RexpRb is
same as that of Rexp3. The experiment results are consistent
with the theoretical analysis in Section IV. In other words,
RexpRb is robust to attackers, when the attack cost is bounded.

VI. CONCLUSION

In this paper, we have proposed three reward attacks sce-
narios and corresponding attack methods for the stochastic
non-stationary multi-armed bandit problem. We have proved
that our attack methods are successful. We have also proposed
a defense algorithm RexpRb that is able to defend against
any attacker whose attack cost is bounded. The experimental
results verify our theoretical analysis. Moreover, we have
derived a lower-bound of the expected attack cost when the

../Figure/All-Attack-Plus-Case4/VT-T0_1/t-diminish/target-selection-T.png

(a) Eπ[NT (a†)]

../Figure/All-Attack-Plus-Case4/VT-T0_1/t-diminish/attack-cost-T-log.png

(b) Eπ[CT]

../Figure/Attack-Cost-Diff-Delta/VT-T0_1/t-diminish/attack-cost-T-diff-delta-case2-log.png

(c) Eπ[CT], fixed batch

../Figure/Attack-Cost-Diff-Delta/VT-T0_1/t-diminish/batch-size-T.png

(d) ∆T , fixed batch

../Figure/Min-Max-Batch-Size/VT-T0_1/t-diminish/target-selection-T.png

(e) Eπ[NT (a†)], non-fixed batch

../Figure/Min-Max-Batch-Size/VT-T0_1/t-diminish/attack-cost-T.png

(f) Eπ[CT], non-fixed batch

Fig. 6: Attack: (a-b) target arm pulls and attack cost; (c-d) fixed batch size influences, attack cost and batch size in scenario
1 for different β; (e-f) non-fixed batch size influences, target arm pulls and attack cost for different non-fixed batch

attack is successful in fixed batch scenarios. This lower bound
shows that our attack methods are near optimal.

APPENDIX

A. Proof of Theorem III.1

Lower-bound the target arm selection Eπ[NT (a
†)].

In batch Tj , note that since the diminish function restarts at
the beginning of each batch, the relative step t̃ in one batch
which is used to calculate t̃α+ϵ−1 will be:

{
t̃ : 1, 2, . . . ,∆Tj

}
.

From the way batches are split, we have ∆Tj ≤ ∆T . In batch

../Figure/All-Attack-Defence/Batch/Asilomar-Attack/regret-T-Exp3-log.png

(a) Rexp3, unbounded attack

../Figure/All-Attack-Defence/Batch/Asilomar-Attack/regret-T-ExpRb-log.png

(b) RexpRb, unbounded attack

../Figure/All-Attack-Defence/Batch/Asilomar-Attack/attack-cost-T-log.png

(c) Unbounded attack cost

../Figure/All-Attack-Defence/Batch/Bounded-Attack/regret-T-Exp3-log.png

(d) Rexp3, bounded attack

../Figure/All-Attack-Defence/Batch/Bounded-Attack/regret-T-ExpRb-log.png

(e) RexpRb, bounded attack

../Figure/All-Attack-Defence/Batch/Bounded-Attack/attack-cost-T-log.png

(f) Bounded attack cost

Fig. 7: Defense: (a-c) dynamic regret of Rexp3 and RexpRb facing unbounded attackers, alongside the corresponding attack
cost; (d-f) dynamic regret of Rexp3 and RexpRb facing bounded attackers, alongside the corresponding attack cost

Tj , consider the dynamic oracle regret after attack:

Eπ

∑
t∈Tj

(µ̃∗
t − µ̃π

t)


= Eπ

∑
t∈Tj

(
max
at

{
E
[
X̃t(at)

]}
− E

[
X̃t(a

π
t)
])

(i)
= Eπ

∑
t∈Tj

(
E
[
max

{
t̃α+ϵ−1, Xt(a

†)
}]

− E
[
X̃t (a

π
t)
])

(ii)
= Eπ

∑
t∈Tj

1
[
aπt ̸= a†

]
· E
[
max

{
t̃α+ϵ−1, Xt(a

†)
}]

≥ Eπ

∑
t∈Tj

1
[
aπt ̸= a†

]
· t̃α+ϵ−1

 .

(4)
(i) and (ii) are from manipulated rewards as in (2).
Note that ϵ < 1 − α, t̃α+ϵ−1 is monotonically decreasing

as t̃ increases, then we have:

∑
t∈Tj

1
[
aπt ̸= a†

]
· t̃α+ϵ−1 =

∆Tj∑
t̃=1

1
[
aπt ̸= a†

]
· t̃α+ϵ−1

(i)
≥

∆Tj∑
t̃=NTj

(a†)+1

t̃α+ϵ−1 (ii)
=

∆Tj∑
t̃=1

t̃α+ϵ−1 −
NTj (a

†)∑
t̃=1

t̃α+ϵ−1.

Here (i) means that the inside of the summation is non-zero
only for ∆Tj −NTj (a

†) steps in Tj . The minimal value of the
summation occurs if all the aπt ̸= a† concentrate in the tail
of Tj , since t̃α+ϵ−1 is decreasing. (ii) means that the whole
batch (Tj) is split into tail (aπt ̸= a†) and head (aπt = a†).

Since t̃α+ϵ−1 is a monotonically decreasing non-negative

function, we have the integral and summation relations:
∆Tj∑
t̃=1

t̃α+ϵ−1 ≥
∫ ∆Tj

1

t̃α+ϵ−1dt̃ =
∆Tj

α+ϵ − 1

α+ ϵ
,

NTj (a
†)∑

t̃=1

t̃α+ϵ−1 ≤
∫ NTj (a

†)

0

t̃α+ϵ−1 =

(
NTj

(
a†
))α+ϵ

α+ ϵ
.

Therefore, we have:∑
t∈Tj

1
[
aπt ̸= a†

]
· t̃α+ϵ−1

≥ 1

α+ ϵ

(
∆Tj

α+ϵ −NTj

(
a†
)α+ϵ

)
− 1

α+ ϵ

=
∆Tj

α+ϵ

α+ ϵ

1−

(
1−

∆Tj −NTj

(
a†
)

∆Tj

)α+ϵ
− 1

α+ ϵ

(i)
≥

∆Tj

α+ϵ

α+ ϵ

∆Tj
−NTj

(
a†
)

∆Tj

(α+ ϵ)− 1

α+ ϵ

= ∆Tj

α+ϵ −∆Tj

α+ϵ−1NTj

(
a†
)
− 1

α+ ϵ
.

(5)
(i) comes from that (1− x)

c ≤ 1− cx for x, c ∈ (0, 1).
Combine (4) and (5), we have

Eπ

∑
t∈Tj

(µ̃∗
t − µ̃π

t)


≥ ∆Tj

α+ϵ −∆Tj

α+ϵ−1Eπ
[
NTj

(
a†
)]

− 1

α+ ϵ
.

Next we find the upper-bound of the regret. From the
Section 5 of [?], we have:

Eπ

∑
t∈Tj

(µ̃∗
t − µ̃π

t)

 =
∑
t∈Tj

µ̃∗
t − E

max
k∈K

∑
t∈Tj

X̃k
t




︸ ︷︷ ︸
J1,j

+E

max
k∈K

∑
t∈Tj

X̃k
t


− Eπ

∑
t∈Tj

µ̃π
t


︸ ︷︷ ︸

J2,j

,

where the first component, J1,j , is the expected loss associated
with using a single action over batch Tj , under the manipulated
environment. The second component, J2,j , is the expected
regret relative to the best static action in batch Tj , which is
also known as the static oracle regret.

Note that the first component J1,j = 0, since after at-
tack, only the target arm has non-zero rewards for all steps.
Therefore, from the assumption that static oracle regret RT =
O (∆T

α) for some α ∈ [12 , 1) in each batch, we have:

Eπ

∑
t∈Tj

(µ̃∗
t − µ̃π

t)

 = J2,j ≤ M∆Tj

α, (6)

where M is a constant, and ∆Tj is the batch size of Tj .

Then, combine the upper-bound and lower-bound, we have:

Eπ
[
NTj

(
a†
)]

≥ ∆Tj −
M

∆Tj

ϵ−1 − 1

(α+ ϵ)∆Tj

α+ϵ−1 .

With the bounded NTj

(
a†
)
, next is to bound NT

(
a†
)
:

Eπ
[
NT

(
a†
)]

= Eπ

 m∑
j=1

NTj

(
a†
)

≥
m∑
j=1

∆Tj −
m∑
j=1

(
M

∆Tj

ϵ−1 +
1

(α+ ϵ)∆Tj

α+ϵ−1

)

= T −
m∑
j=1

1

∆Tj

α+ϵ−1

(
M∆Tj

α +
1

α+ ϵ

)

≥ T − 1

∆T
α+ϵ−1

m∑
j=1

(
M∆Tj

α +
1

α+ ϵ

)
.

Since m = ⌈ T
∆T

⌉ ≤ 2T
∆T

with T ≥ ∆T ≥ 1, we have:

m∑
j=1

M∆Tj

α ≤
m∑
j=1

M∆T
α ≤ 2TM∆T

α−1. (7)

Thus, with m ≤ 2T
∆T

, we have:

Eπ
[
NT

(
a†
)]

≥ T −
(
2TM∆T

−ϵ +
2T∆T

−α−ϵ

α+ ϵ

)
. (8)

Upper-bound the attack cost Eπ[CT].
By the attack design, when at ̸= a†, the attack cost of

this step is
∣∣∣X̃t (at)−Xt (at)

∣∣∣ ≤ 1. On the other hand, when

at = a†, the attack cost of this step is
∣∣∣X̃t (at)−Xt (at)

∣∣∣ ≤
t̃α+ϵ−1. Therefore, the expected attack cost is:

Eπ [CT] = Eπ

[
T∑

t=1

∣∣∣X̃t (at)−Xt (at)
∣∣∣]

(i)
≤ Eπ

[
T∑

t=1

1
[
at ̸= a†

]
· 1

]
︸ ︷︷ ︸

(a)

+Eπ

[
T∑

t=1

1
[
at = a†

]
· t̃α+ϵ−1

]
︸ ︷︷ ︸

(b)

(ii)
≤ T − Eπ

[
NT

(
a†
)]︸ ︷︷ ︸

(a)

+Eπ

m ∆T∑
t̃=1

t̃α+ϵ−1


︸ ︷︷ ︸

(b)

(iii)
≤ 2TM∆T

−ϵ +
2T∆T

−α−ϵ

α+ ϵ
+m

∆T∑
t̃=1

t̃α+ϵ−1.

(9)
In (i), the entire horizon of the problem is split into two

parts: at ̸= a† and at = a†, and the inequality follows from
the attack design stated above.

Part (a) of (ii) comes from the fact that:
∑T

t=1 1
[
at ̸= a†

]
means the number count of steps when at ̸= a† in the entire
horizon of the problem, and NT

(
a†
)

is the number count of
steps when at = a† in the entire horizon of the problem.

For the part (b) of (ii), because the m-th batch Tm might
be shorter than ∆T , and not all steps in a batch is at = a†,
and t̃α+ϵ−1 > 0, then this part comes from the fact that:
T∑

t=1

1
[
at = a†

]
· t̃α+ϵ−1

= (m− 1)

∆T∑
t̃=1

1
[
a†
]
· t̃α+ϵ−1 +

T−(m−1)∆T∑
t̃=1

1
[
a†
]
· t̃α+ϵ−1

≤ (m− 1)

∆T∑
t̃=1

t̃α+ϵ−1 +

T−(m−1)∆T∑
t̃=1

t̃α+ϵ−1 ≤ m

∆T∑
t̃=1

t̃α+ϵ−1.

(iii) comes from (8).
For the decreasing non-negative function t̃α+ϵ−1, we have:

∆T∑
t̃=1

t̃α+ϵ−1 ≤
∫ ∆T

0

t̃α+ϵ−1dt̃ =
∆T

α+ϵ

α+ ϵ
.

Thus, with m ≤ 2T/∆T , the expected attack cost can be
upper bounded as:

Eπ [CT] ≤ 2TM∆T
−ϵ +

2T∆T
−α−ϵ

α+ ϵ
+

2T∆T
α+ϵ−1

α+ ϵ
. (10)

B. Proof of Theorem III.2
Lower-bound the target arm selection Eπ[NT (a

†)].
Similar as (4) in Section A but replacing Tj by T , the

dynamic regret after attack over entire horizon T is:

Eπ

[∑
t∈T

(µ̃∗
t − µ̃π

t)

]
≥ Eπ

[∑
t∈T

1
[
aπt ̸= a†

]
· t̃α+ϵ−1

]
.

Note that t̃ will be reset to 1 once any non-target arm is
pulled, according to Algorithm 3. As a result, the t̃α+ϵ−1

term will always be 1, controlled by the indicator function
1
[
aπt ̸= a†

]
. Then, the dynamic regret is lower-bounded as:

Eπ

[∑
t∈T

(µ̃∗
t − µ̃π

t)

]
≥ Eπ

[∑
t∈T

1
[
aπt ̸= a†

]]
= Eπ [NT (a

′)] ,

where a′ represents any non-target arm, and Eπ [NT (a
′)] is

the expected number of non-target arm selection.
Then, we find the upper-bound of the dynamic regret after

attack from the periodical behavior of the victim algorithm.
Similar to (6), in victim algorithm’s view, we have

Eπ
[∑

t∈Tj
(µ̃∗

t − µ̃π
t)
]
≤ M∆Tj

α.

Note that in this attack method, when the batch starts is not
necessarily the same as when the t̃ is reset to 1. There may be
multiple times of t̃ reset in one batch, but the victim algorithm
won’t know that. Also, the batch information is only available
to the victim algorithm.

Then by (7), we have the upper-bound for the dynamic
regret after attack over the entire horizon T as:

Eπ

[∑
t∈T

(µ̃∗
t − µ̃π

t)

]
= Eπ

 m∑
j=1

∑
t∈Tj

(µ̃∗
t − µ̃π

t)


≤

m∑
j=1

M∆Tj

α ≤ 2TM∆T
α−1.

Combining the lower-bound and upper-bound, we have:

Eπ [NT (a
′)] ≤ 2MT∆T

α−1. (11)

Thus, the expected number of target arm selection has:

Eπ
[
NT (a

†)
]
≥ T − 2MT∆T

α−1. (12)

Upper-bound the attack cost Eπ[CT].
Similar as (9) in Section A, by the attack design, the

expected attack cost is:

Eπ [CT] = Eπ

[
T∑

t=1

∣∣∣X̃t (at)−Xt (at)
∣∣∣]

≤ Eπ

[
T∑

t=1

1
[
at ̸= a†

]
· 1

]
︸ ︷︷ ︸

(a)

+Eπ

[
T∑

t=1

1
[
at = a†

]
· t̃α+ϵ−1

]
︸ ︷︷ ︸

(b)

(i)
≤ T − Eπ

[
NT

(
a†
)]︸ ︷︷ ︸

(a)

+Eπ [NT (a′)] ·
n∑

t̃=1

t̃α+ϵ−1

︸ ︷︷ ︸
(b)

(ii)
≤ 2MT∆T

α−1 + Eπ [NT (a′)] ·
n∑

t̃=1

t̃α+ϵ−1.

Part (a) of (i) comes from the fact that:
∑T

t=1 1
[
at ̸= a†

]
means the number count of steps when at ̸= a† in the entire
horizon of the problem, and NT

(
a†
)

is the number count of
steps when at = a† in the entire horizon of the problem.

For part (b) of (i), since t̃α+ϵ−1 is decreasing, and t̃
is reset to 1 whenever a non-target arm a′ is pulled, and
t̃α+ϵ−1 decreases from 1 for all the successive target arms
a†. Therefore, the upper-bound for (b) of (i) can be found
by evenly splitting the target arm pulls steps using non-target
arm pulls steps. In other words, one non-target arm pull
is followed by multiple target arm pulls. Here we assume
the target arm selections Eπ

[
NT

(
a†
)]

is greater than non-
target arm selections Eπ [NT (a′)], otherwise, the attack is not
successful. If the target arm pulls steps are not grouped in this
way, the summation will be smaller since t̃α+ϵ−1 decreases.

Thus, the target arm pulls steps in horizon are split
into Eπ [NT (a′)] groups, within each group there are

n =
Eπ[NT (a†)]
Eπ [NT (a′)] target arm pulls. Note that even though

Eπ
[
NT

(
a†
)]

may not be divisible by Eπ [NT (a′)], the n
can still be used here for the upper-bound. Because the
remainders will be placed to each group one by one and
ñα+ϵ−1 ≥ ˜⌈n⌉

α+ϵ−1
. In this case,

∑n
t̃=1 means that the

summation for t̃ = 1, 2, . . . , ⌊n⌋, n.
(ii) comes from (12).
For the decreasing non-negative function t̃α+ϵ−1, we have:
n∑

t̃=1

t̃α+ϵ−1 ≤
∫ n

0

t̃α+ϵ−1dt̃ =
1

α+ ϵ

(
Eπ
[
NT

(
a†
)]

Eπ [NT (a′)]

)α+ϵ

.

With (11) and Eπ
[
NT

(
a†
)]

≤ T , it follows that:

Eπ [NT (a′)] ·
n∑

t̃=1

t̃α+ϵ−1 ≤ (2M)
1−α−ϵ

α+ ϵ
T∆T

2α−α2−1+ϵ−αϵ.

Therefore, the expected attack cost is upper-bounded as:

Eπ [CT] ≤ 2MT∆T
α−1 +

(2M)
1−α−ϵ

α+ ϵ
T∆T

2α−α2−1+ϵ−αϵ.

C. Proof of Theorem III.3

Lower-bound the target arm selection Eπ[NT (a
†)].

Similar as the proof of Theorem III.2 in Appendix B,
the dynamic regret after attack is lower-bounded as:
Eπ
[∑

t∈T (µ̃∗
t − µ̃π

t)
]
≥ Eπ [NT (a

′)] .
The upper-bound for the dynamic regret after attack is:

Eπ
[∑

t∈T (µ̃∗
t − µ̃π

t)
]
≤
∑m

j=1 M∆Tj

α.

Since f(x) = xα is concave for α ∈ [12 , 1), by Jensen’s

Inequality, we have: M
∑m

j=1 ∆Tj

α ≤ Mm
(∑m

j=1 ∆Tj

m

)α
=

Mm1−αTα.
Since the number of batches m ≤ T

minj{∆Tj}
, denote δT =

minj
{
∆Tj

}
as the minimal batch size, we have:

Eπ

[∑
t∈T

(µ̃∗
t − µ̃π

t)

]
≤ M

(
T

δT

)1−α

Tα = MTδT
α−1.

Then, combine the lower-bound and upper-bound, we have:

Eπ [NT (a
′)] ≤ MTδT

α−1. (13)

Thus, for the expected number of target arm selection, we
have:

Eπ
[
NT (a

†)
]
≥ T −MTδT

α−1. (14)

Upper-bound the attack cost Eπ[CT].
Similar as the proof of Theorem III.2 in Appendix B, the

attack cost is upper-bounded as:

Eπ [CT] ≤ T − Eπ
[
NT

(
a†
)]︸ ︷︷ ︸

(a)

+Eπ [NT (a′)]
n∑

t̃=1

t̃α+ϵ−1

︸ ︷︷ ︸
(b)

≤ MTδT
α−1︸ ︷︷ ︸

(a)

+
M1−α−ϵ

α+ ϵ
TδT

2α−α2−1+ϵ−αϵ︸ ︷︷ ︸
(b)

.

Part (a) comes from (14).
Part (b) comes from the similar proof procedure that:

Eπ [NT (a′)]
n∑

t̃=1

t̃α+ϵ−1 ≤
Eπ [NT (a′)]

1−α−ϵEπ
[
NT

(
a†
)]α+ϵ

α+ ϵ

(i)
≤ M1−α−ϵ

α+ ϵ
TδT

2α−α2−1+ϵ−αϵ.

(i) comes from (13) and Eπ
[
NT

(
a†
)]

≤ T .

D. Proof of Theorem III.4

To show the lower-bound of attack cost for a victim-agnostic
attack algorithm, it is sufficient to find one specific victim
algorithm that has the regret as in Theorem III.4 and follows
the batch strategy, under one bandit environment.

Algorithm 5 Exp3

1: Parameters: w1 = (1, . . . , 1), total horizon T , and a
constant learning rate η.

2: for t = 1, 2, . . . , T do
3: Define πt =

wt

∥wt∥1

4: Draw at ∼ πt, and observe loss ℓt = Lt (at)
5: Update wt+1,a for each arm a = 1, 2, . . . ,K as:

wt+1,a =

{
wt,a exp

(
−η ℓt

πt,a

)
a = at

wt,a a ̸= at

6: end for

First we construct the special bandit environment, in which
there are two arms, a† and a′, and the reward of a† is always
0.5, while the reward of a′ is always 1:

Xt(a) =

{
0.5 a = a†

1 a = a′
∀t ∈ T .

The reward signal can also be expressed as loss signal
Lt(a) = 1 −Xt(a). Note that this is a special case for non-
stationary environment, and the original optimal arm is a′.

For the victim algorithm, we consider the case when Exp3
algorithm restarts every ∆T steps. The Exp3 algorithm is
defined with loss signal Lt(at) ∈ [0, 1] in Algorithm 5. The
static regret of Exp3 is O(∆T

α), α = 1
2 . There are m batches

in total, i.e., T = m∆T . Each batch has the same fixed size
∆T , also for the last batch.

By Lemma 5.1 in [?], within batch Tj , the expected number
of rounds where arm a is selected, Eπ

[
NTj (a)

]
, satisfies:

Eπ
[
NTj

(a)
]
≥ ∆Tπ1(a)− η∆T

∆T∑
t′=1

E [πt′(a)Lt′(a)] , (15)

where πt′(a) is the probability of selecting a at relative time
step t′ within this batch, and η is the learning rate. Note that:

• π1(a) is the initial probability at the beginning of each
batch. Since the Exp3 algorithm restarts periodically,
π1(a) =

1
K ∀a ∈ K is the same for all batches.

• η = β∆T
−α is chosen as the learning rate for Exp3

algorithm within each batch, where β is a constant.
Thus, the expected total number of arm selection

Eπ [NT (a)] in the entire horizon T satisfies:

Eπ [NT (a)] =
m∑
j=1

Eπ
[
NTj

(a)
]

(i)
≥

m∑
j=1

∆Tπ1(a)−
m∑
j=1

η∆T

∆T∑
t′=1

E [πt′(a)Lt′(a)]

(ii)
= π1(a)T − β

(
T

m

)1−α m∑
j=1

∆T∑
t′=1

E [πt′(a)Lt′(a)]

= π1(a)T − β

(
T

m

)1−α T∑
t=1

E [πt(a)Lt(a)] .

(16)

(i) comes from (15).
(ii) comes from the fact that π1(a) is the initial probability

at the beginning of each batch and the definition of η.
Now we introduce the attack. The attacker’s target arm is a†,

and the manipulated rewards are X̃t (at). Let the loss signal
manipulated by the attacker be L̃t = 1− X̃t, and the expected
total number of arm selection under attack be Eπ

[
ÑT (a)

]
.

Suppose the attack is successful, i.e., Eπ
[
ÑT (a

†)
]
= T −

o(T). Then, we must have Eπ
[
ÑT (a

′)
]
= o(T), i.e., for all

constant C > 0, limT→∞
Eπ[ÑT (a′)]

T ≤ C.
Then, by the lower-bound in (16), under attack, we

have that as T → ∞, for arm a′: CT ≥ π̃1(a
′)T −

β
(
T
m

)1−α∑T
t=1 E

[
π̃t(a

′)L̃t(a
′)
]
. It follows that:

T∑
t=1

E
[
π̃t(a

′)L̃t(a
′)
]
≥ π̃1(a

′)T

β
(
T
m

)1−α − CT

β
(
T
m

)1−α

=

[
π̃1(a

′)

β
− C

β

]
T∆T

α−1.

Note that the positive constant C can be arbitrarily small, we
can treat it as C < 1

2 . As a result, the constant π̃1(a
′)

β − C
β > 0,

since π̃1(a
′) = 1

2 in our bandit problem.
Now we prove the lower-bound of the expected attack cost

Eπ [CT], note that Lt(a
′) = 0:

Eπ [CT] = E

[
T∑

t=1

∑
a

π̃t(a)
∣∣∣L̃t(a)− Lt(a)

∣∣∣]

≥ E

[
T∑

t=1

π̃t(a
′)
∣∣∣L̃t(a

′)− Lt(a
′)
∣∣∣]

= E

[
T∑

t=1

π̃t(a
′)L̃t(a

′)

]
≥
[
π̃1(a

′)

β
− C

β

]
T∆T

α−1.

Therefore, the expected attack cost is:

Eπ [CT] = Ω
(
T∆T

α−1
)
.

E. Proof of Theorem IV.1

In batch Tj , decompose the dynamic oracle regret with
original reward as:

Eπ

∑
t∈Tj

(
µ∗
t − µπ̃

t

) =
∑
t∈Tj

µ∗
t − E

max
k∈K

∑
t∈Tj

Xk
t




︸ ︷︷ ︸
J1,j

+E

max
k∈K

∑
t∈Tj

Xk
t


− Eπ

∑
t∈Tj

X̃ π̃
t


︸ ︷︷ ︸

J2,j

+Eπ

∑
t∈Tj

X̃ π̃
t

− Eπ

∑
t∈Tj

µπ̃
t


︸ ︷︷ ︸

J3,j

,

where J1,j is the expected loss associated with using a single
action over batch Tj , under the original environment. J2,j is
the static oracle regret 4 with the manipulated rewards and
against the original rewards over batch Tj , as in Table I
and in the existing work [?]. J3,j represents the extent of
manipulations on rewards made by the attacker.

From the Equation (6) in Section 5 of [?], we have that
J1,j ≤ 2Vj∆Tj . From the Theorem 3 in Section 5 of [?], we
have that J2,j ≤ D1

√
∆Tj

+ D2Φ(T) log(∆Tj
), where D1

and D2 are constants.
For the third component J3,j , we have:

J3,j = Eπ

∑
t∈Tj

X̃ π̃
t

− Eπ

∑
t∈Tj

µπ̃
t


= Eπ

∑
t∈Tj

(
X̃ π̃

t −X π̃
t

) ≤ Eπ

∑
t∈Tj

∣∣∣X̃ π̃
t −X π̃

t

∣∣∣
 = CTj

,

where CTj
is the attack cost in batch Tj .

For the dynamic oracle regret with original reward in the
entire horizon T , we have:

Rπ̃ (V, T) = Eπ

[∑
t∈T

(
µ∗
t − µπ̃

t

)]
=

m∑
j=1

Eπ

∑
t∈Tj

(
µ∗
t − µπ̃

t

)
≤

m∑
j=1

(
2Vj∆Tj +D1

√
∆Tj +D2Φ(T) log(∆Tj) + CTj

)
(i)
≤ 2VT∆T +D1

m∑
j=1

√
∆Tj

+D2Φ(T)
m∑
j=1

log(∆Tj
) + Φ(T)

(ii)
≤ 2VT∆T +D′

1T∆
− 1

2

T +D′
2Φ(T)

T

∆T
log(∆T) + Φ(T),

where D′
1 and D′

2 are constants.
(i) comes from the Equation (4) in Section 5 of [?], and the

facts that ∆Tj
≤ ∆T and:

m∑
j=1

CTj
= Eπ

[
T∑

t=1

∣∣∣X̃t (at)−Xt (at)
∣∣∣]

= Eπ[CT] ≤ Φ(T)

Considering the fact that m ≤ 2T/∆T , (ii) is from that:
m∑
j=1

√
∆Tj

≤
m∑
j=1

√
∆T = m

√
∆T ≤ 2T

∆T

√
∆T = 2T∆

− 1
2

T

m∑
j=1

log(∆Tj
) ≤

m∑
j=1

log(∆T) = m log(∆T) ≤
2T

∆T
log(∆T).

Therefore, the dynamic oracle regret with original reward:

Rπ̃ (V, T)

= O

(
VT∆T + T∆

− 1
2

T +Φ(T)
T

∆T
log(∆T) + Φ(T)

)
.

This completes the proof.

	Introduction
	Problem Formulation
	Multi-armed bandit problem
	Non-stationary environment
	MAB algorithm performance metrics
	Reward attack

	Attack
	Non-stationary Victim Algorithm
	Attack Scenario I
	Attack Scenario II
	Attack Scenario III
	Lower-bound of the Expected Attack Cost for Fixed T

	Defense
	Experimental data and results
	Attack
	Defense

	Conclusion
	Appendix
	Proof of Theorem ??
	Proof of Theorem ??
	Proof of Theorem ??
	Proof of Theorem ??
	Proof of Theorem ??

