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Abstract 
 
Photon-photon collisions, as one of the fundamental processes in quantum physics, 
have attracted a lot of attention. However, most effort has been focused on photons 
energetic enough to create particle-antiparticle pairs. The low energy limit - e.g., 
optical photons - has attracted less attention because of their extremely low collision 
cross section. By optical photons we mean UV, visible and infrared, although the 
cutting edge of extreme lasers is in the near infrared. The Schwinger critical field 
for pair generation seems not possible, at least directly, with the current laser 
technology. This often is considered as a problem, but we view this as an asset; the 
near impossibility of pair production via photon-photon scattering in the infrared is 
a perfect scenario to study virtual pairs that characterize Dirac’s quantum vacuum. 
Moreover, it is remarkable that this scenario of photon-photon collisions was 
already studied in the 1930s by two of the fathers of Quantum Mechanics, among 
others, at the dawn of this theory. In their respective papers, however, Born and 
Heisenberg arrived to different conclusions regarding the birefringence of vacuum. 
This controversy is still an open question that will be solved soon, we hope, with 
upcoming experiments. Here, we discuss a possible photon-photon collision 
experiment with extreme lasers, and will show that it can provide measurable 
effects, allowing fundamental information about the essence of Quantum 
Electrodynamics and its Lagrangian to be extracted. A possible experimental 
scenario with two ultra-intense pulses for detecting photon-photon scattering is 
analyzed. This would need a high-precision measurement, with control of temporal 
and spatial jitter, and noise. We conclude that such an experiment is barely feasible 
at 1023 W/cm2 (today’s intensity record) and very promising at 1024 W/cm2. 
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1.- Introduction 
 
 
 There is no doubt that Quantum Electrodynamics (QED) is one of the most 
successful theories, if not the most successful theory developed so far in quantum 
physics. It predicts experimental measurements with extraordinary precision and is 
the paradigm of what a theory must be. However, in the logical evolution of science 
one must seek the limits of a theory and test it against new information and with 
new experimental tools when they become available. One of those extraordinary 
tools is the laser and particularly laser pulses focused to extreme intensities. It is 
well known that with the Chirped Pulse Amplification (CPA) technique discovered 
by Donna Strickland and Gerard Mourou [1, 2] and subsequently developed during 
the past four decades, it is possible to generate intensities of 1023 W/cm2 [3]; this 
record is likely to be broken in a near future due to the enormous effort being 
expended to develop multi-Petawatt lasers with a goal of reaching the 0.1 Exawatt 
frontier. The present availability and future expectations of such extreme lasers, 
working in the near-infrared range, allows the design of new experiments to explore 
QED predictions in a nonlinear region in the absence of pair creation with low-
energy photons. Getting information on the deep study of matter using just the 
vacuum might seem contradictory. However, we should consider that vacuum is 
not really empty but is full of virtual particle antiparticle pairs. It is of fundamental 
relevance to study such pairs while they are virtual, which is best done today with 
infrared lasers. The world’s laser community now has the “perfect tool” around 
which to design experiments at very low energies (compared with the electron rest 
energy), that will be complementary to the high-energy experimentation performed 
at big particle accelerators [4] and intermediate photon energies performed at Free-
Electron Lasers (FELs) [5].  
 
 A priori it might seem that all is understood in this low energy limit, however 
there are two surprises: 
• The first is the existence of two theories, one proposed by Born in 1934 and 
another proposed by Heisenberg in 1936, which give contradictory results. 
While the latter is now considered the lowest-order nonlinear term of the QED 
model, there are so far no experiments that support one or the other. Now, 
almost a century later since their presentation, this may be possible with 
ultraintense, infrared pulses. 

• The second is an exploration of the quantum vacuum, that might give 
information and/or set limits on certain types of theorized dark matter particles. 
This is possible because infrared photons explore a region of the quantum 
vacuum where such dark matter might produce a measurable effect that could 
modify the first nonlinear QED term. This can be a tool to study dark matter 
form an alternative point of view. 

 
 Unfortunately, experiments to probe the quantum vacuum are not at all easy. A 
possible scenario to analyze scattered photons from the collision of two ultra-
intense pulses is presented.  While our approach would employ two infrared lasers 
(of the same frequency) there is another, ongoing two-frequency approach [6]. This 
is an experiment, currently in progress in Hamburg’s European XFEL, where one 
of its X-ray beams, with an ultraprecise polarization [7], crosses the beam of a 
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focused petawatt-class laser [5]. The infrared laser produces a very small 
polarization rotation of the X-ray beam. The future success of this experiment 
requires an ultraprecise X-ray polarization rotation measurement. 
 
 
 
2.- The 1934-1936 unsolved controversy on Quantum Electro-
dynamics 
 
 
 The precision of QED is astonishing in all situations in which it has been tested 
that includes a large variety of experiments. However, there are gaps, -- specific 
experimental configurations where it has not been tested, like the one in the context 
of the present project. We refer to this as a regime of very low energy photon-
photon collisions, i.e., collisions between infrared photons. It is noteworthy that the 
very low energy photon-photon collision scenario was studied during the 1930s by 
two of the fathers of Quantum Mechanics, at the very dawn of this theory. 
 
 In 1936 Werner Heisenberg and Hans Euler [8] published in Zeitschrift für 
Physik a study based on the analysis of the Dirac equation, which had been 
published just a few years earlier. Two years prior to the Heisenberg-Euler paper, 
Max Born and Leopold Infeld [9] published a study based on the electron self-
energy in Proc. Royal Society London, which led to their Lagrangian governing 
photon-photon collisions [10]. This was a coincidence of historical relevance. The 
conflict arises at the moment one realizes that these two contributions to the study 
of photon-photon scattering reached contradictory conclusions. The difference is 
fundamental; while the Heisenberg-Euler (HE) result indicates the vacuum is 
birefringent, the Born-Infeld (BI) model suggests the vacuum acts as an isotropic 
medium. In spite of that, the physics community surprisingly never considered this 
controversy as relevant, at least up until now. Why is this controversy not widely 
known? Perhaps because of the hegemony of the Heisenberg-Euler model, which 
is often considered as the first-order correction QED model. It should be noted that 
the discrepancy appears only in the nonlinear terms, while most of the experimental 
measurements involving QED rarely, if ever, go beyond the linear situation where 
the two approaches agree. 
 
 It is widely accepted that the QED Lagrangian accounting for photon-photon 
coupling in the optical region has to be based on the only two possible covariant 
terms, ℱ = ε!(𝐄" − c"𝐁")/2 and 𝒢 = ε!	(𝐄 ∙ c𝐁). Thus, one can write it in a 
general way as, ℒ## = ℒ!+ℒ$%	where the photon-photon Lagrangian ℒ## has a 
linear term ℒ!= ℱ	that is very well known from Maxwell equations and Quantum 
Mechanics’ early times. This term by itself is not able to account for photon-photon 
scattering. We are interested in the optical region, so we can restrict ourselves to 
the limit where the photon energy is much smaller than the electron mass (ℏω ≪
m&c"), otherwise conventional mass terms must be added to the Lagrangian.  
 
 There are many possibilities for the nonlinear effective Lagrangian ℒ$%. The 
only restriction is to build combinations of the ℱ and 𝒢 terms, since they are the 



 4 

only possible covariant choices. Working at the first non-linear order (the order we 
are interested in), there are three possible combinations,  
 

ℒ## = ℱ + ξ∥	ℱ" + ξ(	𝒢" + ξ∗	ℱ𝒢																																										(1) 
 
The key point for the discussion we want to convey here is that the Lagrangian is 
based on three coupling parameters ξ∥, ξ(, and ξ∗ . The first non-vanishing order 
information on the photon-photon coupling is going to be found through these three 
parameters. The reason for using the subindex parallel in ξ∥ as well as the subindex 
perpendicular in ξ( will be apparent in a moment. The analysis of the third coupling 
parameter, ξ∗, will be neglected in this chapter because it breaks the invariance 
under spatial reflections or time reversal [11] and QED must be invariant under 
these transformations. Addition of this term might be relevant in the future, once 
the experiment defined here indicates the possibility of such extra QED terms. 
 
 As stated earlier, the lack of consensus on the value of the nonlinear coefficients 
is the motivation for this chapter. Heisenberg and Euler [8] showed the instability 
of the Dirac vacuum for high fields based on this Lagrangian with the coupling 
constants, 
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This value ξ∥*+ can be considered a reference of the coupling strength. Obviously 
ξ∗ = 0 in the Heisenberg-Euler formulation. The difference in the values of ξ∥*+ and 
ξ(*+ is the origin of vacuum birefringence, predicted by the Heisenberg-Euler (HE) 
model but not confirmed experimentally yet, although an experiment at European 
XFEL (X-Ray Free Electron Laser) in Hamburg is expected to answer this question 
soon using an X-ray probe of ultrahigh precision [7, 6]. 
 
 Similar nonlinear effects should also occur with super-strong magnetic fields 
[12, 13, 14]. Perhaps the most sensitive and precision lab-based polarimetry 
measurements have been done in the optical region by the PVLAS collaboration 
[15] although they are not yet able to either confirm or rule out the birefringence 
that the Heisenberg-Euler model predicts. 
 
 The Heisenberg-Euler model coupling constants of Eq. (2) are the values 
considered in most of the literature, sometimes as the only ones compatible with 
QED. However, they are not the only ones possible. Born-Infeld, on the contrary, 
did not calculate a value for the coupling constants but rather proposed a linear 
relation between these coefficients, ξ(/0 = ξ∥/0 [11]. Considering the whole line 
suggested by Born and Infeld (BI), what is more remarkable is that if this model is 
correct, the vacuum will not be birefringent, at least not birefringent by the 
couplings possible inside the particle physics Standard Model.  
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3.- Beyond the Standard Model 
 
 
 It is well accepted that the Standard Model is incomplete. There are indications 
of physics Beyond the Standard Model (BSM) in the form of new interactions and 
new particles. Some of the latter could be thought of as “dark matter” [16], that is, 
massive stable particles that interact gravitationally in the usual way, but do not 
interact - or do so in a very feeble way - with photons. We will assume as a working 
hypothesis they do interact, as suggested by existing models. The study of dark 
matter is of utmost importance as it seems to constitute 85% of the total matter in 
the universe. The evidence for dark matter is only indirect, through the observation 
of galaxy rotation curves that cannot be explained with the observed visible matter. 
Since dark-matter particles interact so weakly, finding them is challenging and so 
far they have escaped direct detection. Not having appropriate detectors, one can 
make advantage of the quantum paradigm and gather indirect evidence of their 
existence as virtual states (that is, propagating modes within Feynman diagrams). 
This is a usual strategy in particle physics, although it is normally applied in 
searches of particles too heavy to be produced. In our case, box-diagrams for 
photon-photon scattering in which charged dark-matter particles circulate, interfere 
coherently with the electron-loop contribution, thus affecting the numerical value 
of the effective Lagrangian (assuming their mass is higher than the energies 
involved in the experiment), or simply changing the cross section (if the mass is 
comparable or smaller than the energy). Other diagrams can be also present that 
will modify the effective Lagrangian too. This affects not only to dark-matter, but 
to any other particle that is hard to detect, for instance (but not limited to) axion-
like particles (ALP) [15, 17]. Therefore, an experimental study of photon-photon 
scattering in the infrared domain can yield a lot of valuable information not only on 
which model is correct (HE or BI) but also on whether or not some kinds of dark 
matter indeed exist. 
 
 The BI versus HE historical controversy is based uniquely on the effect of the 
electron-positron pairs. Since the electrons (and its antiparticle, the positron) are 
the charged particles with the smallest mass they are expected to be the responsible 
for vacuum polarization. Heavier particles, as muons or pions (let alone protons), 
will have a negligible effect as the effect scales inversely as the fourth power of the 
mass [18]. The lightest known particle of all, the neutrino (conjectured by Wolfgang 
Pauli in 1930), does not interact with electromagnetic fields. For these reasons the 
study has to be reduced to electron-positron pairs. The controversy was triggered 
by the interpretation of the electrons and positrons on the grounds of the Dirac 
equation. The discrepancy between the Heisenberg-Euler Lagrangian, and other 
Lagrangians, such as the Born-Infeld, is a basic fundamental problem that has not 
been properly considered for many decades. Better knowledge could be key to a 
better understanding of some of the present-day questions that the Standard Model 
cannot address. A direct optical measurement of these coefficients would be of 
great interest. Moreover, the coupling is going to be different for pseudoscalar ALP 
(coupling with two photons through 𝐄 ∙ c𝐁), scalar ALP (coupling through E2-
c2B2), as well as for other hypothetical BSM particles. A clean and precise 
determination of the coupling terms is of paramount importance, and would provide 
valuable data.  
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 Using a phenomenological nonlinear Lagrangian, it is possible to write it in a 
form similar to Eq. (1),  
 

ℒ## = ℱ + (ξ∥ + ∆ξ∥)	ℱ" + (ξ( + ∆ξ()	𝒢"                                   (3) 
 
where ∆ξ∥ and ∆ξ( are the possible corrections due to dark matter. Fortunately, 
different kinds of dark particles can result in different variations of these coupling 
coefficients. For example, scalar axions would result in a nonzero ∆ξ∥ and ∆ξ( =
0, while pseudoscalar axions would give nonzero ∆ξ( and ∆ξ∥ = 0. Other possible 
conjectured mini or millicharged particles would result in different ratios ∆ξ(/∆ξ∥ 
of these two dark-matter correction effective coefficients. The dimensionless 
coefficient multiplying the (charge/mass)-	scale factor of the Lagrangian term in 
∆ξ∥ or in ∆ξ( depends on the spin of the hypothetical particle. For this reason it is 
important to design experiments that can clearly differentiate between parallel and 
perpendicular components. More information on this can be found in a previous 
book of this series [19]. 
 

 
Figure 1. Configuration space of these two coupling coefficients appearing in the nonlinear 
Lagrangian ℒ!!. For simplicity we used the axes ξ∥/ξ∥#$ and ξ%/ξ%#$, referring to the HE values. 
BI model predicts a line not intersecting the HE point, illustrating the discrepancy between the 
two theories. The addition of BSM particles could change the effective Lagrangian coupling 
parameters. While the QED point is the one predicted by HE, and the BI line is the bisector 
(representing no birefringence), the segments ∆ξ∥/ξ∥#$ and ∆ξ%/ξ%#$ have been depicted 
arbitrarily. Other sorts of millicharged hypothetical particles would result in corrections in 
different directions depending of their spin.  
 
 Fig. 1 shows this effective Lagrangian configuration space. For simplicity, the 
figure axes indicate the relative couplings, ξ∥/ξ∥*+ (parallel) and ξ(/
ξ(*+	(perpendicular). The big dot at (1,1) indicates the HE point, and the thick line 
the BI line. Observe that the HE dot does not lie on the BI line, evidencing the 
discrepancy between both models. Addition of BSM particles can add extra terms 
to the effective Lagrangian coupling coefficients, ∆ξ∥ and ∆ξ(, causing a deviation 
in the configuration space from the HE model. Their values are not yet known, but 
the direction of deviation can be understood on the basis of the kind of particles we 
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are looking for. For example, pseudoscalar ALP would correspond only to ∆ξ( (and 
∆ξ∥=0), while scalar ALP would correspond only to ∆ξ∥ (and ∆ξ( = 0). The arrows 
for the two kinds of ALP are shown in Fig. 1, although the length of the arrows has 
been arbitrarily selected. The length of these arrows, if nonzero, would be a clear 
evidence of such particles and of their properties, in a future laser-laser collision 
experiment. Other kinds of dark matter candidates will generate a correction in a 
different direction. For example, hypothetical spin 1/2 millicharged particles will 
have a correction along a line of slope 1 (similarly to the BI model, due to the spin 
1/2 electron).  
 
 
 
4.- Photon-photon scattering 
 
 
 Scattering of light by light [20] or, in other words, photon-photon collision, has 
received a lot of interest in the past as well at present. However, most of the physics 
seems to be related to photon-photon collisions at center-of-mass energies close to 
the the electron-positron pair mass to study such pair generation [21] or at even 
higher center of mass energies to produce muon-antimuon pairs [22] or to explore 
new unexplored high energy resonances [23] at the high energy frontier allowed at 
CERN LHC or other big particle accelerator systems available. The differential 
cross section for scattering of light by light has been studied in detail [24] for many 
decades and for many photon-energy ranges.  
 
 Besides this high energy scenario there is also the opposite one, the very low 
energy frontier. In the limit ℏω ≪ 	mc", i.e., photon energies (ℏω) much smaller 
than the electron mass (mc"). The photon-photon cross section decays abruptly as 
ω1. In this limit, the total photon-photon scattering cross section (integrated over 
all the sphere) and averaged for unpolarized photons is given by [25] 
 

σ##→## =
973

10125	π	
α-ℏ"

m"c" N
ℏω
mc"O

1

																																													(4) 
 
where α is the fine structure constant. The laser photon energy ℏω has to be 
considered in the center of momentum frame (i.e., a frame in which both colliding 
photons have the same energy). This expression can be rewritten in more practical 
units, σ##3##[cm"] = 0.73	1031.	(ℏω	[eV])1, considering the cross section in cm" 
and the photon energy in eV. This means that for one of the most widely used type 
of CPA laser, the Titanium:Sapphire laser, which has photons with energies around 
1.55 eV (we say around because of the large bandwidth of these lasers), the cross 
section may drop to values of 10-64 cm2 (see Fig. 2). For this reason, the collision 
of optical photons has been disregarded for many decades. Now, with the 
availability of ultrahigh intensities [3], it seems to be the right time to reconsider 
this experimental situation.  
 
 Although it may seem that the most interesting scenario is the creation of new 
particles, basically electron-positron pairs, the situation of very small photon 
energies is very attractive because it interrogates the “true” vacuum. By true 



 8 

vacuum we mean the vacuum far from the appearance of real pairs. After the 
introduction of Dirac’s equation to describe the relativistic electron, it is clear that 
the vacuum is full of virtual particle-antiparticle pairs. The analysis of these virtual 
pairs can be done with lasers. This is relevant because it relates to one of the basic 
principles of quantum mechanics, but it is also interesting because it opens an 
alternative way to explore dark matter. From a more philosophical view point, it is 
curious that we seek getting information from nothing, from the vacuum. The 
quantum vacuum is a fabulous tool that does not require real particles to get new 
information (a very attractive feature for studying dark matter).  
 

 

 
 
Figure 2. Schematic plot of the 
photon-photon head-on collision 
cross section. This value is 
approximate for non polarized 
photons. For parallel polarizations 
the cross section is slightly higher 
and for perpendicular polarizations 
is a bit smaller. This difference is 
due to the different coupling 
mechanisms that will be apparent 
later on this chapter. 

 
 The controversy between Heisenberg and Born as well as the study of different 
kinds of dark matter can now (or in a near future) be solved by conducting a specific 
experiment using ultraintense lasers. Extreme lasers are needed due to the 
extremely low cross-sectional area at infrared wavelengths. Let us analyze how to 
perform a realistic experiment, but before that, we need to stablish a QED-optics 
connection via the vacuum refractive index.  
 
 
 
5.- Quantum Optical Kerr effect in the optical region 
 
 
 As indicated before, we are going to work well below the pair formation limit 
because on the one hand the laser frequency is much smaller than the electron mass 
(ℏω ≪ m&	c") and on the other hand the field amplitude is well below the 
Schwinger critical field (E ≪	E4567 ~ 1.32 × 1016 V/cm) [20]. Therefore, real pair 
creation is avoided, in principle. Later we will comment on certain side effects that 
could induce real pair creation. Thus, the entire discussion is related to virtual pairs. 
Just to give a naïve but intuitive interpretation of the physics to be considered, we 
may say that ordinary vacuum is not completely empty, but full of virtual electron-
positron pairs. It is not a contradiction to quantum mechanics to consider that these 
pairs exist, provided that they exist just for a short time. The incertitude of the 
energy is twice the electron mass and the corresponding implication of the 
Heisenberg uncertainty principle, ∆ℇ	∆t	 ≥ 	ℏ/2, ∆ℇ = 2	m&	c"~1	MeV being the 
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excess of energy needed to generate the pair, and ∆t the time allowed for this energy 
mismatch according to the Heisenberg uncertainty principle. This time happens to 
be very small, as expected, with ∆t~ 10-22 seconds. However, with a conveniently 
large electric field these virtual pairs can live a bit longer because the field moves 
the electron and the positron in opposite directions. The fact that this ∆t grows a 
little bit indicates a polarization in the quantum vacuum that translates in a small 
but nonzero nonlinear refractive index. This is just a simplified explanation. The 
correct way to link this with the refractive index has been described in several 
papers for different situations. One of the most clear and convincing has been 
presented by [11] considering this effect as a nonlinear refractive index. The 
consideration of vacuum as a material with an intensity-dependent refractive index 
is the link between QED and optics and will be very useful.  
 
 It is well known that, in most optical materials, as soon as the intensity increases, 
the refractive index is affected by a nonlinear term that changes with the intensity 
of the radiation that passes through it. For the quantum vacuum we can do the same 
and write the vacuum refractive index as n(I) = n8 + n"I, where n8 indicates the 
linear part of the refractive index (obviously n8 = 1 for the vacuum) and n" 
indicates the nonlinear term. In this chapter we will measure n" in units of cm2/W 
and the intensity in W/cm2, and the product will be dimensionless, as it should be. 
As the intensity increases, higher order nonlinearities appear for all materials and 
will appear for vacuum, too. For our purpose, and due to the available laser 
intensities currently or in the foreseeable future in operation or in construction, the 
approximation of considering just the first term, n"I , is clearly sufficient.  
 
 We can consider the nonlinear refractive index for the probe pulse at each point 
in space and time as proportional to the pump intensity at the same point and time. 
The nonlinear index is essentially instantaneous, at least compared to the time 
scales considered here (optical laser period, few femtoseconds), because the 
characteristic time corresponding to 1 MeV (the electron-positron pair mass) is of 
the order of 103""	seconds. It has been shown that this coupling results in a change 
of the vacuum refractive index [11]. This is the key point of this work: a signature 
of the quantum vacuum that can be observed as a simple change in the refractive 
index and thus optical techniques can be applied. Obviously, this change is very 
small and such experiments have to be planned with great accuracy to be prepared 
to measure a very small (but observable) signal in a very noisy environment. It is 
relevant to observe that a convenient choice of the fields will result in the 
predominance of the ℱ" term, when the fields are parallel, or of the 𝒢" term when 
the fields are perpendicular. Therefore, the coupling due to one or the other 
Lagrangian terms is distinguishable, provided that the fields have a well-defined 
geometry.  
 
 The nonlinear index is in fact a tensor as in any anisotropic optical material, thus 
depending on the polarization. In the BI model it reduces to a number, again as in 
isotropic optical materials. However, what is more important is that the refractive 
index n is directly linked to the coupling coefficients of the nonlinear effective 
Lagrangian.  
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 It is well known that a plane wave (monochromatic or broadband) can’t generate 
such nonlinear effects. Without entering in the complete discussion given by [4] it 
is possible to give an intuitive idea to study the meaning of these couplings by 
analyzing the nonlinear terms in the Lagrangian. In the case of a linearly polarized 
plane travelling wave, as schematically indicated in Fig. 3, the two covariant terms 
ℱ, and 𝒢 are going to be 𝐄"−𝐁" = E9" − B9" = 0, and 𝐄 ∙ c𝐁 =
0	(where	we	have	used	the	relation	E9 = cB9 for the electric and magnetic field 
amplitudes). The same result would be obtained for circular or elliptical 
polarization, assuming that it is a purely traveling wave. 
 

 

Figure 3.- In the case of a pure plane 
travelling wave, we have ℱ = 0 , and 
𝒢 = 0. We label these fields with the 
subindex A, indicating the pump beam, 
because in the next sections we will 
introduce a probe beam. The present x, 
y, z axis notation is going to be the same 
for all this Chapter.  

 
 In the case of a tightly focused beam, the convergence can make these terms 
nonzero, albeit weak. The convergence is going to create a longitudinal electric and 
magnetic field, E% and B%, both propagating along the propagation direction z. The 
paraxial expression for these fields can be seen in [26]. Then we have 𝐄 =
(E9, 0, E%) and 𝐁 = (0, B9, B%), resulting in 𝐄"−c"𝐁" = E9" + E%" −
c"B9"−c"B%" = 0 (where we have used that	E% = c	B% ), and 𝐄 ∙ c𝐁 = 	E%	cB%. 
Therefore, at focus, a single laser may create a nonzero quantum vacuum effect. 
This effect is associated with the longitudinal components existing at focus to 
preserve the 𝛁 ∙ 𝐄 = 0 and 𝛁 ∙ 𝐁 = 0 constrains. Obviously the effect is relatively 
small. It is well known that for a Gaussian pulse (TEM00), the longitudinal field is 
zero on-axis and has its maximum at a distance from the axis of about 70 percent 
of the waist, therefore its contribution will not be too relevant.  
 
 Adding a second laser not as intense as the first one, it is possible to work in a 
pump-probe configuration. Having this in mind, we identify two completely 
different pump-probe configurations that represent two limiting situations. In 
Section 6, we will analyze the case of counterpropagating waves and in Section 7 
the case of beams crossing at a right angle.  
 
 
 
6.- Counterpropagating beams 
 
 
 Let’s consider first the case of two counterpropagating lasers [27] (see Fig. 4). 
It can be shown that that in such a pump-probe configuration the n" nonlinear 
refractive index in the HE model is given by [11]   
 

n"	∥*+ = 0.888	 ×	103,,	cm"/W																																																										(5a) 
n"	(*+ = 1.555	 ×	103,,	cm"/W																																																										(5b) 
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Figure 4. In Section 6 we study the case 
where the two propagation vectors are 
along the z-axis and counterpropagating. 
The pump will move as z-ct while the 
probe will move as z+ct. There are two 
cases of possible polarizations that have 
to be described.  

 
 In terms of the pump and probe configuration we are interested in, this means 
that the pump modifies the vacuum so that the probe, depending on its polarization, 
sees the n"	∥ nonlinearity if pump and probe electric fields are parallel and sees the 
n"	( nonlinearity if pump and probe electric fields are perpendicular. In a general 
polarization case, the index will be in between these two values according to the 
projections in perpendicular and parallel components. We are interested in the 
design of an experiment that maximizes the difference between these two 
components, and ideally measures n"	∥ and n"	( separately. The nonlinear 
coefficients scale as ξ∥ and ξ(. The nonlinear refractive index assuming the HE 
theory can be used as a well-stablished reference, thus in the general case n"	∥ = 
	n"	∥*+ ξ∥ /ξ∥*+, and n"	( = 	n"	(*+  ξ( /ξ(*+. In fact, we can refer to any effective model 
using these two ratios ξ∥ /ξ∥*+ and ξ( /ξ(*+. The nonlinear refractive index is 
therefore proportional to these coupling coefficients. This makes  the 
n"	nonlinearity a perfect link between QED and optics.  
 
 We consider a pump-probe beam configuration. The suffix A will refer to the 
pump pulse and the suffix B to the probe. The probe has to be intense in order to 
have a high number of scattered photons, although it is always much weaker that 
the pump. All relevant quantum vacuum effects will be caused by the pump. To 
keep a constant notation of axes, the pump will move in the positive z direction, 
i.e., as z-ct. Because the signal we are looking for is the scattering of the probe 
photons, we have to minimize other sources of scattering/diffraction of the probe. 
Therefore, as indicated in [27], we choose a probe with a relatively wide waist, and 
a very good TEM00 structure. The shape of the pump pulse is not so relevant, 
provided it arrives to an extreme intensity. 
 
 For counterpropagating beams with parallel polarizations, Fig. 5a, 𝐄"−	c"	𝐁" =
(E9 + E/)"−	c"	(B9 + B/)" = 4	E9E/ because both the electric and the magnetic 
fields contribute to	ℱ". E9 and B9 (= c	E9)	indicate positively defined electric and 
magnetic field amplitudes the pump beam, moving with z-ct. E/ and B/ 
(= c	E/)	indicate the probe beam positively defined amplitudes, moving as z+ct. 
Obviously, c 𝐄 ∙ 𝐁 = 0, and there is no contribution to the 𝒢" term of the 
Lagrangian. The parallelism occurs between 𝐄9 and 𝐄/ and between 𝐁9 and 𝐁/ at 
the same time. This is why we refer this case as parallel.  
 
 Analogously, for counterpropagating beams with perpendicular polarizations, 
Fig. 5b, one has 𝐄"−c"	𝐁" = 0, and c 𝐄 ∙ 𝐁 = 2E9E/  because both the electric and 
magnetic fields contribute to 𝒢. The perpendicularity occurs between 𝐄9 and 𝐄/ 
and between 𝐁9 and 𝐁/ at the same time (this is relevant to remember when 



 12 

comparing with tilted beams). Intermediate polarizations will couple via a 
combination of these two limiting cases. Therefore, for counterpropagating beams, 
all the possible information comes from the study of the two combinations of pump 
and probe polarizations.  
 

  
Figure 5.- Nonlinearity contributions for the two possible field polarization configurations in the 
case of counterpropagating pulses: a) corresponds to pump-probe parallel polarization, giving 
𝐄&−	c&	𝐁& = 4	E'	E( and 𝐄 ∙ c𝐁 = 0,	 and therefore the with these polarizations the fields couple 
only via the ξ∥ term; b) corresponds to pump-probe perpendicular polarization 𝐄&−	c&	𝐁& = 0 , 
and 𝐄 ∙ c	𝐁 = 2E'	E(, and therefore these fields couple only via the ξ% term of the Lagrangian. 
E' and E( indicate the positively defined electric field amplitudes of the pump and the probe 
beam respectively. B' and B( indicate the respective magnetic field amplitudes. They are all 
positively defined, with the sign explicitly indicated. The ordered vectors. E, B, and z form in all 
cases a right-handed orthogonal set.  
 
 Using counterpropagating fields is the best scenario to maximize the ℱ" and 𝒢" 
Lagrangian terms. However, it has some technical difficulties because one laser can 
enter the amplifiers of the other if the alignment is too good. The experimental 
difficulties can be reduced with a configuration with the pump and probe beams at 
an angle. Therefore we will discuss later also the case of beams crossing 
perpendicularly.  
 

 
Figure 6.- Schematic representation of the head on collision. The probe has to cover the entirety 
of the focused pump to sample the phase change when the field has its maximum intensity. 
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 The interaction between probe and pump pulses is indicated schematically in 
Fig. 6. The probe has a well-defined phase wavefront, planar near its waist. When 
the pulses cross each other, the quantum vacuum coupling introduces a phase shift. 
After the interaction, this phase shift will generate a diffraction of the probe beam, 
and this diffraction is what we are going to measure. This diffraction is caused by 
photon-photon collisions. In order to keep momentum conservation, a photon of the 
pump has to be scattered also. However this second photon is not observable due 
to the extreme and tightly focused pump. 
 
 Because we are interested in a configuration where the probe waist is relatively 
large, its Rayleigh length will be very long and, along the interaction region, it will 
have almost planar phase surfaces. It is reasonable therefore to consider just ray 
propagation for the probe, and calculate the phase shift due to the nonlinear term 
induced by the pump. As discussed in our previous paper [27], we recommend for 
such kind of experiments a tight pump focus and a wide waist probe with a very 
high optical quality. Although the probe peak intensity is not required to be so 
extreme, the needed optical quality and wide waist makes it challenging to prepare 
such probe pulses. The advantage of a wide waist is that all the quantum 
nonlinearities happen inside a region that is much smaller than the probe Rayleigh 
length. In this case we can consider (just very close to the probe waist) the probe 
wavefronts and calculate locally their phase considering probe rays.  
 
 

 

 
Figure 7. Ray modelling for the counterpropagating case. The phase shift calculation procedure 
considers individual probe rays in a region between two values of z (zin, z initial, and zfi, z final) 
that lie inside the probe Rayleigh length. Numerical integration to see quantum vacuum effects 
can be restricted to the dashed cube depicted.  
 
 For an accurate description of the pump interaction (see Fig. 7) it is enough to 
consider the probe propagation inside a medium with a refractive index given by 
n"I9, where n" is a constant parameter depending of the laser configuration and 
I9(x, y, z, t)	is the time-dependent pump intensity. This can be time consuming and 
will give no information on the contributions relevant for the quantum vacuum 
nonlinearities. Such a computation has to be done before doing such a demanding 
experiment for a fine determination of the nonlinearities that will imply a fine 
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determination of the Lagrangian coupling parameters. However, the experimental 
scenario allows multiple choices of pump and probe laser geometries, detector 
positioning, light scattering, and many more effects. In order to optimize this, a 
simplified model, such as the one to be described, can be of interest to allow a 
realistic first approximation of the experimental scenario.  
 
 We are going to consider probe waists of 16 µm or more (20 wavelengths or 
more). When the probe waist is so large, we can describe it near the focus as a plane 
wavefront. We know from the beginning that the influence of the quantum vacuum 
is going to be very small and can be accounted for as a minor phase shift. Therefore, 
it is enough to consider probe rays. In this situation the probe Rayleigh length is 
very large and there is the possibility to consider such a pulse as rays moving 
exactly along the z-axis. The general equation for each one of these probe rays is, 
z + ct = ct!, x=constant, y=constant, where t!	indicates the time where this 
element of the ray crosses the z=0 plane (the waist). We calculate the phase gained 
by each of the probe rays (at each time) due to the pump beam modification of the 
vacuum, 
 

ϕ(x, y, t!) = k/j n(x, y, z, t! − z/c	)	dz =.																																																							
;*+,

;+,
		

= k/(z<6= − z6=) + k/	∆ϕ(y, z, t!)																																																					(6) 
 
where the first term is k/(z<6= − z6=) the optical (linear) path between the two 
points. The second term, ∆ϕ(x, y, t!), is the one accounting for the vacuum 
nonlinearities and can be expressed as, 
 

∆ϕ(x, y, t!) = k/j n"	I9(x, y, z, t! − z/c	)	dz																																(7)
;*+,

;+,
 

 
I9(x, y, z, t! − z/c)		indicates the pump laser intensity along the probe ray 
(x	constant, y	constant, and	z − ct = ct!) being x and y the transverse coordinates 
for the probe ray considered and t! the time when the probe ray is at z=0, i.e., at the 
waist. Here we consider n" in general, depending of the field polarizations it can be 
n"∥, n"(, or a combination of them.  
 
 The integration region[z6=, z<6] has to be smaller than the probe Rayleigh length 
in order to allow this ray approach. To continue with the development of the 
expression for the nonlinear phase shift is is necessary to guess the form of the 
pump beam near the focus.  
 

I9(x, y, z, t) = 	 I!	9	2	
λ9	N
π	ρ 	J> N

π	ρ
λ9	N

O	exp o−2
(z − c(t + Δt))"

c"	τ9"
r															(8) 

 
Obviously ρ" = x" + y". With N=f/D being the focal number (D is the focusing 
parabola diameter and f its effective focal length). Δt	indicates the pump-probe 
jitter. We assume that the probe is centered at the origin of coordinates at t=0 and 
that the pump will arrive to that focal point at a time Δt (a few periods at most).  
This expression describes the transverse dependence just at focus and is thus valid 
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only for very shot pulses. In any case a detailed description of the pump focus needs 
a numerical calculation that is beyond the scope of the present work. Including the 
explicit dependence of the pump intensity in the expression for the nonlinear phase 
shift, we get 
 
∆ϕ(x, y, t!) =																																																																																																																									

= k/j n"I!9	2	
λ/	N
π	ρ 	J> N

π	ρ
λ9	N

O	exp o−2
(2z − c(t! + Δt))"

c"	τ9"
r 	dz																(9)

;*+

;+,
 

 
The integration is over the ray z + ct = ct!, with y=constant and z=constant too (as 
we said, this is the equation of the ray, and t! indicates the time this phase plane 
crosses the x=0 plane). This is a useful expression to calculate the quantum vacuum 
phase shift, and generalization to other pump shape models is straightforward. The 
maximum shift is going to correspond to t! = 0. The integral for the phase shift 
can be extended to infinity if the pump focus is much tighter that the probe, as is 
the case we are considering. Eliminating the effect of Δt (no jitter), the shift will be  
 

∆?@Aϕ(x, y, 0) = k/n"I!9	2	
λ/	N
π	ρ 	J> N

π	ρ
λ9	N

Oj expo−2
(2z)"

c"	τ9"
r 	dz				(10)

BC

3C
 

 

∆?@Aϕ(0,0,0) = k/n"I!9 		
λ/
λ9
		s
π
8 	c	τD																																										(11) 

 
 For the case we are interested in, λ9 = λ/ = λ = 800	nm, k/ = 2π/λ/	and 
τD = 10 cycles, this phase change is ∆?@Aϕ ≈ 4	103," I!9	rad, with the pump 
intensity measured in W/cm2. Therefore, the phase change is very small. Once we 
have the phase shift for each one of these wave-fronts we can calculate the effect 
of the probe wave. Just before the overlapping of the two fields, the probe field 
amplitude is	E/(x, y, t) while after the interaction is E/(x, y, t) exp( i∆ϕ(x, y, t)). 
Because the phase shift is much less than 2π, this can be approximated to be 
E/(x, y, t)(1 + i∆ϕ(x, y, t)), and we can write the field just after the nonlinear 
coupling as E/(x, y, t) + EE(x, y, t) where EE(x, y, t) = i∆ϕ(x, y, t)	E/(x, y, t) 
indicates the scattered term, the one that we have to measure. The measurement has 
to be carried out at a point in space far from the waist. Thus, we can apply the well-
known Fraunhofer diffraction equations. In the far field, the unperturbed probe 
(without pump) will be 
 

F/(ζ) = −
i
λ/
	j 2

C

!
πρ	E/(ρ)	J!(k/	ρ	ζ)dρ																											(12) 

 
 We label the fields at the observation plane by F and the fields near the focus by 
E, just for clarity of the notation. Both correspond to electric fields. Therefore, F"  
will indicate the intensity at the observation plane. ζ indicates the polar angle (we 
assume cylindrical symmetry). The quantum vacuum signal will be given by 
 

FE(ζ) = −
i
λ/
	j 2

C

!
πρ	E/(ρ)	i	∆?@Aϕ(ρ)	J!(k/	ρ	ζ)dρ																		(13) 
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where ∆?@Aϕ(ρ)	indicates the maximum dephasing given by the ∆?@Aϕ(x, y, 0), 
for ρ" = x" + y". This is a reasonably simple expression to calculate the scattered 
light. The scattered intensity at a scattering angle ζ will be proportional to	|FE(ζ)|". 
 
 While it is clear that the nonlinear effect is due to the pump and it is necessary 
to have a very intense pump, the influence of the probe is rarely considered although 
it is fundamental for a successful experiment. F/ indicates the probe beam 
propagation at large distances. Its diffraction (linear diffraction) has to be confined 
within a narrow cone -as narrow as possible- in order to avoid overlapping with the 
quantum vacuum signal (nonlinear diffraction) out of this cone. The lowest linear 
diffraction occurs with a perfect Gaussian, thus we impose having a probe with a 
good Gaussian shape, with very high optical quality and with a relatively large 
waist.  
 
 We assume a Gaussian probe beam B given by E/(ρ) = E!/	exp	(−ρ"/w/

"). 
Just to get a sense of how many photons per solid angle we have in the probe beam 
we can analytically calculate the propagation (nonperturbed propagation) of the 
probe beam close to the z-axis. We calculate the intensity on axis for a small solid 
angle, 1 deg", centered at the z-axis, we call this axial intensity along z, I@A6@8(z) 
and the solid angle dΩ. With w/ as the waist of beam B and I/ its the intensity at 
the waist, the probe intensity along the propagation axis will be expressed as, 
I@A6@8(z) = I/	(π	w/

" 	/	z	λ/)" and the surface corresponding to this solid angle is 
z"dΩ. Therefore, I@A6@8(z)	z"dΩ = I/	(π	w/

" 	/	λ/)"	dΩ. The fluence will be this 
expression multiplied by τ/. Each Joule corresponds to 4 1018 photons, at 800 nm. 
Thus, the number of probe photons will be nFG = 10>H	I/	τ/	k/" 	w/

-dΩ		photons per 
Joule per solid angle. In the case of IB=1020 W/cm2, this is a very challenging 
requirement to obtain a a good Gaussian shape and will require a lot of filtering. 
Observe that 0.000305 sr correspond to one deg". Therefore, for wB=20 
wavelengths=16 µm and for 30 fs pulse duration, this corresponds to nFG =
3.7 × 10>I photons. The number 3.7 1019 photons per shot, for IB=1020 W/cm2, 
arriving to the detector (on axis) for wB=16 µm (20 wavelengths), for 30 fs pulse 
duration and a detector on axis covering one deg" solid angle, is going to be 
considered as a realistic reference for the comparisons presented. For other 
intensities, because the number of photons scales as the intensity, the value 1020 
W/cm2 can be a reasonable reference. This is the background we have to avoid. 
 

 
Figure 8. A possible setup for the counterpropagating case is shown in this figure. Due to the 
geometry, we can place a ring of detectors covering one, or a few degrees radially and all the 
circle, as shown in this scheme. However those detectors must be placed at an angle larger than 
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the pump aperture cone (given by the pump f-number). Because the probe has a large waist, its 
diffraction cone will be smaller than the pump aperture cone. 
 
 Fig. 8 shows a possible experimental setup. The two beams, pump and probe, 
are counterpropagating. The tight pump focus imposes a wide aperture cone. The 
probe detection has to be just outside of this pump aperture cone, and can be on a 
circle (green detection circle in the figure). Fig. 9 shows the log10 of the number of 
scattered photons arriving to a detector covering a surface of one degree square 
versus the scattering angle. The figure corresponds to pump and probe of the same 
wavelength, 800 nm, and to a pump focus with f/3 focal number. Due to the pump 
aperture angle, the detection has to happen at angles greater than 0.17 rads. The 
angular region forbidden by this is shaded in blue in this figure. This is a problem 
for counterpropagating beams with a tight pump focus. Working at f/1.1 as in the 
world intensity record [3], the aperture of the pump would represent a fundamental 
difficulty to the placement of the scattered probe photons detectors. Because a short 
f-number corresponds to a wide focal cone. Observe that here the probe parameters 
are waist 16 µm and peak intensity 1020 W/cm2. For a detector placed at an angle 
of 0.2 rads out of the collinear axis (z-axis) Fig. 9 indicates that there are 0.01 
scattered photons expected per deg2 detection solid angle for a pump intensity of 
1023 W/cm2 per shot, and one scattered photon per shot for a 1024 W/cm2 pump. 
Observe the scaling with the intensity. As we said [3], the pump intensity 1023 
W/cm2 can be considered as today’s record; the intensity 1024 W/cm2 will be sooner 
or later a reality. These numbers are for a detector covering only one deg2. We can 
consider a ring-shaped detection, i.e., a detector that covers a ring of one degree 
width. For this ring-shaped detector a few scattered photons are expected per shot 
when using the probe we considered (waist 16 µm, peak probe Gaussian shape with 
a peak intensity 1020 W/cm2) for a pump intensity of 1023 W/cm2. Ramping up the 
simulations to intensities greater that 1024 W/cm2 can be questioned because other 
effects may be present, as radiation reaction or electron pair cascading, although for 
this kind of nonlinear vacuum experiments, an extremely high vacuum level is 
necessary.  
 
 The solid blue line in Fig. 9 indicates the probe beam linear diffraction cone 
(linear means without pump). It is a section of a parabola centered at angle zero (a 
Gaussian in log scale). The detection of the scattered photons inside the probe linear 
diffraction cone is impossible. Scattered photons out of this cone are represented 
by the red dashed lines in the figure. However, the pump focusing system also 
implies a forbidden cone (blue shadowed region) that is the space occupied by the 
pump focusing parabola (see Fig. 8). 
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Figure 9. Log10 of the number of scattered 
photons per degree squared versus the 
scattering angle ζ for the case of an f/3 for the 
pump and wB=16 µm for the probe, both at 
800 nm. The solid (blue) curve corresponds 
to the linear case, i.e. without pump. The 
probe intensity at the center of the focus is 
1020 W/cm2, the dashed (red) curves 
correspond to two different intensities of the 
pump. In this case, both fields overlap exactly 
at the focal spot. The number of photons has 
been calculated assuming a 1 deg2 detector 
area. The figure corresponds to the parallel 
polarization case calculated with n&	∥#$ , as a 
reference. Obviously, for the perpendicular 
case, n&	%#$ , simply multiply by the 7/4 factor. 
For other values of n&	, these numbers can be 
considered as a reference in order to depict 
the next figure. Observe the scaling of the 
number of scattered photons with the 
intensity squared.  

 
 With all these considerations we extract some conclusions on the possibility to 
detect the two coefficients of the effective Lagrangian introduced in Eq. (1). A 
complete analysis depends on many factors but it can be reasonable to consider that 
one photon per deg2 per shot can be a threshold for detection (always with the the 
standard Gaussian probe with waist 16 µm and peak intensity of 1020 W/cm2). If 
this is the case, for pump intensities of 1024 W/cm2 we must arrive to the 
Heisenberg-Euler point. This is indicated in Fig. 10, where the progressively darker 
blue regions indicate our estimation for the possibility to detect the Lagrangian 
coupling coefficients at this pump intensity level. We say that this is just an 
estimation because such an experiment would strongly depend on the noise sources. 
For the lack of space, we do not discuss here the noise sources that are very relevant 
for such a weak signal. A discussion can be found in [27]. Here we have considered 
the counterpropagating geometry and the refence number of one deg2 square 
detector. With a detection ring, the solid angle covered can be increased by a factor 
to 100 or even 1000, but not more because of the quick dropping of the number of 
scattered photons with the scattering angle that can be seen in Fig. 9. Also, we have 
considered a probe with a peak intensity of 1020 W/cm2 and with a good Gaussian 
shape. Although this probe intensity does not seem extreme at first sight, it is 
extreme too due to the large waist and the requirement of a good optical quality and 
a Gaussian shape.  
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Figure 10. Possibility to 
observe the effective 
Lagrangian coefficients for 
different intensities. This is 
just an indication assuming 
that clear conclusions may 
appear at the detection level 
of one photon per deg2 (for 
the standard Gaussian 
probe with waist 16 µm and 
peak intensity of 1020 
W/cm2).  

 
 Let’s comment briefly about the pump/probe jitter introduced in Eq. (9). For that 
it is better to move to a Gaussian description of the probe. Since the only relevant 
part of the nonlinear coupling happens close to the laser focus, it is a reasonable 
approach (open to improvement) to consider the pump as a Gaussian pulse with a 
waist w9 given by w9 = 0.87	λ9	N. Where λ9 is the pump central wavelength (800 
nm for Ti:Sapphire lasers) and N indicates the focal number. In that case the pump 
Rayleigh length is zJ9 = π	w9

"/λ9. A very loose focus results in a peak intensity 
too low for the effects we are looking for. On the contrary, a very tight focusing 
helps to increase the peak intensity at the price of a strongly convergent beam that 
mixes up the different components of the electric field. This complicates a clean 
measurement of the parallel and perpendicular coupling coefficients. Probably, a 
good compromise is around N=3. For that case w9 = 2.6	λ9 = 2.1	µm, the 
Rayleigh length will be zJ9 = 17	µm. These numbers are indicative of the size 
needed for the pump in order to cross the probe focus as a quasi-plane wave.  This 
is only an approximation for the central part of the Airy focus, to prepare convenient 
scaling laws. If we call I0A (z) the intensity of the central part (i.e., for ρ = 0) of the 
beam (axial) it is going to change with z as [27],  
 

I!9(z) =
π"	w9

-

π"w9	
- (z) + z"λ9	"

I!9(0) =
	5.65	N-	λ9"

5.65	N-	λ9" + z"
I!9(0)												(14) 

 
where we wrote the intensity in terms of the focal number. Expressing z in terms of 
the jitter time, 2z = c∆t (see Fig. 11), allows us to modify Eq. (10). Assuming that 
the relative jitter is smaller than the Rayleigh length of the probe, the nonlinear 
phase shift is going to be: 
 

∆?@Aϕ	(with	jitter	∆t) =																																																													

= k/n"
	5.65	N-	λ9"

5.65	N-	λ9" + 0.25	c"∆t"
I!9(0)		

λ/
λ9
		s
π
8 	c	τ9																													(15) 

 
This expression is of great experimental interest because it represents a 
characteristic Lorentzian shape of the dependence of the quantum vacuum signal 
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with the pulse delay time ∆t between pump and probe. In an experiment where we 
need to get rid of an enormous noise-background, the knowledge of the signal 
dependence with the pulse delay is fundamental because the rest of the noise 
sources are not affected by a small pulse delay. Scaling laws like this one, do not 
seem very relevant in principle but for future experiments can be of paramount 
relevance to train artificial intelligence systems to detect patterns due to signal to 
noise specific scalings. 
 

 

Figure 11. A jitter between 
pump and probe may result 
in an overlapping out of the 
waist. If ∆t is the pump jitter 
(assuming the probe 
perfectly synchronized, 
then the overlapping will 
occur at a distance z=c∆t/
2	from the waist. Therefore 
the overlap will occur at a 
lower pump intensity and at 
a wider pump waist, two 
factors that reduce the 
nonlinear scattering we are 
looking for. 

 
 
 
7.- Crossing beams 
 
 
 Up to now we have only considered counterpropagating lasers. To avoid some 
of the problems generated by counterpropagating beams it is also possible to work 
with beams crossing at an arbitrary angle. In that case the n" nonlinearities, parallel 
and perpendicular, have to be modified. Although it is possible to develop models 
for any arbitrary angle, we restrict ourselves here to the case that both lasers cross 
at a right angle, in other words to the case where pump and probe wavevectors are 
perpendicular. To avoid confusion with the word perpendicular, used for 
polarizations, we would refer here to beams crossing at a right angle (see Fig.12). 
 

 

 
Figure 12. In Section 7 we study 
the case where where the two 
propagation vectors are crossing 
perpendicularly. The pump will 
move as z-ct while the probe will 
move as x-ct. All four cases of 
possible polarizations have to be 
described.  

 
 From this point on we will consider only a geometry where pump and probe 
propagate about different directions. In particular we will consider the pump 
moving towards the positive side of the the z-axis, with a wavevector 𝐤9 =
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(0,0, k9), k9 = 2π/λ9, being λ9 the pump pulse central wavelength. Therefore, the 
pump field propagation will be z-ct. And we will consider the probe moving 
towards the positive side of the the x-axis, with a wavevector 𝐤/ = (k/, 0,0), k/ =
2π/λ/, where λ/ is the probe pulse central wavelength. Therefore, the probe field 
propagation will be x-ct. We consider that both pulses are going to collide close the 
origin of coordinates (0,0,0).  
 
 Working with crossed beams, the problem of light from one beam entering the 
amplification chain of the other is totally avoided, and this is certainly beneficial 
from the experimental point of view, particularly if experiments with a high 
repetition rate have to designed due to the ultralow signal we expect to get. 
However, the quantum vacuum nonlinearity is reduced as the beams increase their 
relative angle. It can be shown [11] that the nonlinear terms change with the tilt 
angle between the pump and probe beams by a factor cos-	(θ/2) , where θ is the 
tilt angle between pump and probe, θ = 0	 for counterpropagating and θ = π/2  for 
the geometry to be described here. Therefore, at this θ = π/2 tilt angle the 
nonlinearities are going to be reduced by a factor 4. In spite of this reduction, there 
can be other causes that favor such experiments at these angles (or at intermediate 
tilts). We will keep the notation n"/4	in the following discussion and thus n" will 
indicate the nonlinearities for the counterpropagating case. Obviously there will be 
the two nonlinear indices n"	∥ and n"	( depending of the electric and magnetic fields 
polarizations.  
 

 
Figure 13. Schematic geometry of the pump-probe interaction described. We study the small 
phase shift that the quantum nonlinear effect introduces on the probe pulse after crossing a very 
intense pump pulse.   
 
 In this case the probe beam phase-shift is going to be produced in a collisional 
geometry as the one depicted in Fig. 13. We consider that the probe arrives with a 
flat optical phase (near its waists) and due to the interaction to the extreme field, it 
changes its phase by a small amount (much lower than one wavelength). This phase 
shifted wavefront will result in a diffracted probe beam.  
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Figure 14. In this case of crossing beams there are four polarization configurations. Two of them (a 
and b) can be considered as parallel, or better longitudinal, because they “explore” the 𝐄&−	c&𝐁& 
coupling, being 𝐄 ∙ c𝐁 = 0. The other two (c and d) can be considered as perpendicular, or better 
transverse, because they “explore” the 𝐄 ∙ c𝐁 coupling, being 𝐄&−	c&𝐁& = 0. 
 
 For the case of counterpropagating cases there were only two possibilities, 
perpendicular or parallel, as shown in Fig. 5. However, in the case of beams 
crossing at a right angle there are four basic configurations that are described in Fig. 
14. While in the counterpropagating case it was possible to have pump and probe 
electric fields parallel and at the same time that pump and probe magnetic fields 
parallel too, in this case this is not possible. Fig. 14a corresponds to parallel pump 
and probe magnetic fields. The electric fields are perpendicular. In this case, the 
two nonlinear couplings in the Lagrangian are 𝐄"−	c"𝐁" = −2E9E/	 (observe that 
E=cB) and 𝐄 ∙ c𝐁 = 0. Observe that in the case of parallel counterpropagating 
lasers shown in Fig. 5a the coupling is 𝐄"−	c"	𝐁" = 4E9E/. This is the reason why 
the coupling in this case is smaller than the coupling in the counterpropagating 
geometry. In the case of Fig. 14b the electric fields of pump and probe are parallel. 
The magnetic fields are perpendicular. Now the two nonlinear couplings in the 
Lagrangian are 𝐄"−c"𝐁" = 2E9E/	and 𝐄 ∙ c𝐁 = 0. Again, half of the value for 
counterpropagating parallel fields. Fig. 14c corresponds to one configuration where 
the pump and the probe electric fields are perpendicular and so are the magnetic 
fields. Therefore 𝐄"−c"𝐁" = 0, and c𝐄 ∙ 𝐁 = E9E/. Again, in the case of 
counterpropagating fields, shown in Fig. 5b, this contribution would have been 𝐄 ∙
c𝐁 = 2	E9E/. It is therefore clear that the coupling is half of the counterpropagating 
coupling for perpendicular polarizations. The last possibility is presented in Fig. 
14d, that corresponds to the perpendicular case too and where the couplings are 
𝐄"−	c"𝐁" = 0, and 𝐄 ∙ c𝐁 = E9E/. As we see, the terms ξ∥ and ξ( correspond to 
parallel and perpendicular polarizations but in the sense explained here. These 
examples of basic reasoning can be very useful when designing experimental 
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configurations for such kind of experiments. As indicated before we omitted the 
influence of the longitudinal fields. For the loose focus of the probe this can be 
reasonable, but for a tightly focused pump such longitudinal effects can be of 
certain relevance.  
 
 In the case of crossing beams, we can also use the ray description introduced 
previously. Since we are interested in a configuration where the probe waist is 
relatively large, its Rayleigh length will be very long and along the interaction 
region it will have almost plane phase surfaces. It is reasonable therefore to consider 
just ray propagation -probe ray propagation- and calculate the phase shift due to the 
nonlinear term induced by the pump. As discussed in our previous paper we 
recommend for such kind of experiments a tight focus pump and a wide waist probe 
with a very high optical quality. Although the probe peak intensity won’t be so 
extreme, the needed optical quality and wide waist makes it a challenge to prepare 
such probe pulses.  
 
 The advantage of a wide waist is that all the quantum nonlinearities happen 
inside a region that is much smaller that the probe Rayleigh length. In this case we 
can consider (just very close to the probe waist) probe wavefronts and calculate 
locally their phase considering probe rays.  
 
 

 
Figure 15. Outline of the phase shift calculation procedure, considering individual probe rays in a 
region between two values of x (xin, x initial, and xfi, x final) that lie inside the probe Rayleigh length. 
Numerical integration to see quantum vacuum effects can be restricted to the dashed cube depicted.  
 
 As indicated for the counterpropagating case, it is enough to consider the probe 
propagation inside a medium with a refractive index given by n"I9.  A ray 
description is also valid. Fig. 15 is the evolution of Fig. 7 with the only change 
being that now the probe moves along x as x-ct.  
 
 If the probe waist is large enough, we can describe it near the focus as a plane 
wavefront. We know from the beginning that the influence is going to be very small 
and can be accounted for as a phase shift. Therefore, it is enough to consider probe 
rays. These are geometrical lines x-ct= constant, y=constant and z=constant, in a 
way similar to our approach to study the counterpropagating case.   
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 The scheme of such interaction is given in Fig. 16. Because the probe waist is 
relatively wide in the interaction region, we describe it as a plane-wavefront. Before 
the collision the wavefront is a plane moving upwards in the figure. During the 
interaction with the pump, the quantum vacuum effect adds a phase in the regions 
where the pump intensity is high. After the collision this probe wavefront leaves 
the interaction region with a very small phase-shift according to the pump intensity 
it has passed through. All this happens inside the Rayleigh length of the probe. From 
this moment on, the quantum vacuum coupling is over and the wavefront 
propagates (diffracts) in the vacuum. This diffractive evolution can be accounted 
for using the well-know Fraunhofer diffraction model because the detectors are 
going to be placed at a distance from the collision point of the order of tens of 
centimeters or even meters (such long distance could also be useful for certain time 
gating techniques). In the case of positioning the detection devices close to the 
focus, the well-known Fresnel diffraction models have to be considered.  
 

 

 
Figure 16. Schematic 
representation of a probe 
wavefront phase plane change. 
Before crossing the focus 
(left) the wavefront (blue) is a 
plane. During the interaction 
with the pump pulse (center) it 
acquires a phase shift 
proportional to the intensity 
the probe has “seen”. After 
that we get a phase shifted 
wavefront (right).  

 As in the counterpropagating case, we are going to consider a probe waist of 16 
µm just to show the benefits for detection (this value can be considered a 
compromise between a very low diffraction probe and still possibility to arrive to 
relatively large probe intensities). In this situation the probe Rayleigh length is very 
big (~ 1 millimeter) and there is the possibility to consider such pulse as rays. Rays 
moving exactly along the x-axis. The general equation for each one of these rays is, 
x − ct = ct!, y= constant, z=constant. t!	indicates the time where this element of 
the ray crosses the x=0 plane. The analogous to Eq. (7) for the nonlinear phase shift 
in this case is 
 

∆ϕ(y, z, t!) = k/
n"
4 j 	I9(x, y, z, x/c	 − t!)	dz

A*+,

A+,
																																	(16) 

 
This expression represents the phase shift of the ray moving along a line parallel to 
the x-axis, in the integration region that has to be smaller than the probe Rayleigh 
length in order to allow this ray approach.  
 
 To continue with the development of the expression for the nonlinear phase shift 
is is necessary to define the form of the pump beam near the focus. We introduce 
this analogously to what we did to arrive to Eq. (9). As defined previously, ρ" =
x" + y", N=f/D is the focal number (D is the focusing parabola diameter and f its 
effective focal length), and Δt	indicates the pump-probe jitter. We assume that the 
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probe is centered at the origin of coordinates at t=0 and thus the probe can arrive to 
be centered at that point at a time Δt (a few periods at most).  
 
∆ϕ(y, z, t) =

= k/
n"
4 j I!	9	2	

λ/	N
π	ρ 	J> N

π	ρ
λ9	N

O	exp o−2
(z − c(t + Δt))"

c"	τ9"
r 	dx

A*+

A+,
													(17) 

 
This expression is analogous to Eq. (9), with the obvious difference that now we 
have integrated over the ray x − ct = ct! constant, with y and z constant too (this 
is the equation of the ray, and t! indicates the time this phase plane crosses the x=0 
plane). A difficulty appears now, the integral over dx involves the ρ variable and 
therefore an expression as simple as the indicated in Eq. (11) can not be worked 
out.  
 
 Thus, to get an insight of the important features of this interaction it is better to 
use a Gaussian description of the pump intensity near its waist, as we also did for 
the derivation of Eq. (14). Working with a Gaussian pump pulse characterized by a 
waist w9 given by w9 = 0.87	λ9	N, the pump intensity near the focus will be  
 

I9(x, y, z, t) = I!9 expo−2
x" + y"

w9
" rexpo−2

(z − c(t + Δt))"

c"	τ9"
r											(18) 

 
we can obtain enlightening equations for the nonlinear phase shift. The phase shift 
acquired by this probe ray we are considering will be  
 
∆ϕ(x, y, t!) =																																																																																																																							

= k/
n"
4 	I!9j expo−2

x" + y"

w9
" r exp o−2

(z − c(t + Δt))"

c"	τ9"
r 	dx

A*+

A+,
																(19) 

 
Eq. (19) gives an analytical expression for the phase shift under these 
approximations. We can go one step further and considering that all the nonlinear 
interaction is between the x=x6= and the x=x<6 planes. Therefore, we can artificially 
extend the integral to ±∞ 
 

∆ϕ(t) ≈ k/
n"
4 	I!9j exp o−2

x" + y"

w9
" r exp o−2

(z − x + ct!)"

c"	τ9"
r 	dx

3C

BC
					(20) 

 
and therefore, 
 
∆ϕ(x, y, t!)

≈ k/
n"
4 	I!9 exp −2o

(w9
" + c"τ9")(c"τ9"y" +w9

"(z + ct!)") + w9
-(z + ct!)"

w9
" 	c"τ9"(w9

" + c"τ9" )
rÄ	 

Å
π	w9

"c"τ9"

2	(w9
" + c"τ9" )

																														(21) 

We neglected the jitter Δt for simplicity, adding it is straightforward. For t! = 0, 
we are considering the moment that the probe wavefront crosses the pump pulse 
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just at the waist. This will the case of maximum phase shift. Thus, the maximum 
shift for the ray x-ct, y, z is given by  
 
∆ϕ?@A(y, z, 0)

≈ k/
n"
4 	I!9 exp o−2

(w9
" + c"τ9" )(c"τ9"y" +w9

"z")+w9
-z"

w9
"c"τ9" 	(w9

" + c"τ9")
r	 Å

π	w9
" 	c"τ9"

2	(w9
" + c"τ9" )

					(23) 

 
This expression is important because indicates the dependence of the phase with 
the pump pulse shape. From approximate equations similar to this, a lot of 
information to design an optimized experiment can be obtained.  
 
 Among the results we can extract from this equation pertaining to the design of 
an experiment, we can study the optimized pump waist/length ratio. The equation 
for ∆ϕ?@A(y, z, 0) just obtained depends on two parameters that characterize the 
pump laser pulse, its waist w9 and its length c	τ9. The relation between these two 
parameters is of fundamental importance. Considering that the central part of the 
pulse has a Gaussian form close to the focus and that it has symmetry of revolution 
(w9 is equal for x and for y) we can have a spheroidal shape (ellipsoid of revolution 
along the z-axis). It is well known that there are three kinds of spheroids: oblate (or 
disk shape), when c	τ9 < w9; true spherical, when c	τ9 = w9; and prolate (or cigar 
shape), when c	τ9 > w9. Because the minimum, Fourier-transform limited, value 
of τ9 is determined by the laser bandwidth, it is possible to leave a residual chirp 
when compressing the pulse to produce a value of τ9 to be slightly bigger. Although 
this is seldom considered in the context of extreme fields, it would be also 
interesting to consider pulses without revolution symmetry, i.e. pulses where the 
waist w9 is different for the two transverse directions, w9A ≠ w9K	[28]. These 
anisotropic Gaussian pulses could optimize the pump-probe overlapping in certain 
situations, although we are not going to consider them now.  
  
 Coming back to isotropic/spheroidal pulses, it is normal to refer the ratio of these 
two parameters as the eccentricity of the spheroid. The eccentricity ε is defined by 
ε = c	τ9/w9. Considering the ray crossing for the line z=0, y=0 and introducing 
the eccentricity parameter, Eq. (23) becomes  
 

∆ϕ?@A(0,0,0) = k/
n"
4 I!9

Å
π	w9

"c"τ9"

2	(w9
" + c"τ9" )

= k/	I!9Å
π	ε"

4	(1 + ε") 	cτ9					(24) 

 
 Obviously, the maximum phase shift occurs when cτ9 goes to infinity, keeping 
the waist w9 constant, but this is artificial because the energy inside the pump pulse 
is going to be proportional to w9

" 	c	τ9 (i.e. proportional to the volume of the 
spheroid) and increasing c	τ9 while keeping I!9 constant would require more and 
more energy. It is more interesting to consider that experimentally adding a residual 
chirp to the pulse just distributes the energy. Thus, we can maximize the expression 
for ∆ϕ?@A(0,0,0) with the constrain that w9

" 	c	τ9	is kept constant. It is not difficult 
to see that the max dephasing ∆ϕ?@A(0,0,0)	happens for an eccentricity equal to 
ε = √2, i.e. cτ9=1.41 w9. In this case Eq.(24) becomes 
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∆ϕ?@A ≃ 0.72	k/	n"/4	I!9	cτ9																																												(25) 

 
That gives the maximum value of the phase shift for a given pulse energy when the 
two lasers, of the same wavelength, cross at at π/2 angle. It is worth comparing 
this expression with Eq. (11) for counterpropagating lasers that can be simplified 
to ∆?@Aϕ = 0.63	k/n"I!9	cτ9. As indicated before, n" corresponds to the 
counterpropagating case and may have two values according to the field’s 
polarizations (parallel, n"	∥, or perpendicular, n"	(). We have explicitly written the 
n"/4 factor in Eq. (25) to remind us of the π/2 angle of the two propagation vectors.  
 
 
 
8.- Comparison between the two situations 
 
 
 We have analyzed the case of counterpropagating beams and the case where the 
two beams cross at a right angle. These can be considered as the two limiting cases. 
Obviously the copropagating case is not of interest. Besides a coefficient close to 
one, depending on the pulse configuration, there are two main differences that can 
be of fundamental relevance for the design of a quantum vacuum experiment. These 
differences are: the coupling factor, and the observation angle. 
 

 
Figure 17. One relevant advantage of working with beams crossing is that the observation can be 
done at a small angle (a). However in the case of counter-propagating beams (b) the pump cone 
angle is a region avoided for detection because of the pump off-axis-paraboloidal (OAP) mirror used 
for the tight focusing of the pump. The tighter the focus, the bigger the pump cone angle, and this 
can be a major difficulty to work with focal numbers smaller than three. The scattered photon 
detection zone (or detection ring) is indicated in green in the figure. 
 
 By the coupling factor we refer to the cos-	(θ/2) factor described in the previous 
Section, where θ is the tilt angle between the pump and the probe propagation 
directions. For beams crossing at a right angle (θ = π/2) this factor is 1/4  while 
for counterpropagating beams (θ = 0) this factor is one. Therefore any possible 
quantum vacuum signal is going to be four times bigger in the case of 
counterpropagating than in the case of crossing at a right angle. This seems a strong 



 28 

argument in favor of working with counterpropagating beams. However there is a 
second fundamental difference. 
 
 The angle of observation of the scattered light is the second point to consider to 
decide which beam configuration is the most adequate. One relevant advantage of 
working with beams crossing is that the observation can be done at a small angle, 
as indicated in Fig. 17a. However, in the case of counterpropagating beams (Fig. 
17b) the pump cone angle is a region avoided for detection because of the pump 
off-axis-paraboloidal (OAP) mirror used for the tight focusing of the pump. The 
tighter the focus, the bigger the pump cone angle, and this can be a major difficulty 
to work with focal numbers smaller than three. The detection zone (or detection 
ring) is indicated in green in the figure. A detection a few degrees closer to the 
probe axis can be fundamental because the scattered signal drops very quickly as 
the angle increases as can be see in the red dotted lines of Fig. 9. In this figure, the 
focal cone angle (f/3 in the figure) is the shaded region indicated as forbidden, and 
this forbidden cone happens only in the counterpropagating case. In the case of 
beams crossing at a right angle the detection can be as close as the probe diffraction 
allows. For this reason it is fundamental to have a probe with a Gaussian profile to 
minimize its linear diffraction.  
 

 
Figure 18. The quantum vacuum nonlinearity depends not exactly on the peak intensity but on the 
line integrated energy density “seen” by each differential pencil (probe ray). The red ellipses 
represent the pump pulse with its waist, w', and duration cτ'. The blue line represents the probe 
ray pencil of differential section dS that probes the vacuum nonlinearity. The phase shift acquired 
by this probe ray gives the fundamental information to calculate the nonlinear probe beam 
diffraction. Depending of the pump probe configuration the probe ray scans the pump pulse in a 
different way. a) corresponds to the path of the probe ray for counterpropagating fields (Section 6). 
b) corresponds to pump and probe pulses crossing at a right angle (Section 7). The pump-probe 
relative motion results in the effective scanning, along the pump pulse, shown in b). 
 
 
 
9.- Scaling with linear density of energy 
 
 
 Observe that for the two geometries discussed, the phase increment is 
proportional (with a constant depending of the geometry but close to unity) to 
k/	n"	I!9	cτ9, as shown in Eqs. (11) and (25) respectively. k/ is the probe 
wavenumber, the shorter the probe wavelength the higher the wavenumber, but the 
diffraction angle is also going to be smaller. All has to be considered when 
designing an experiment. n" is the nonlinear term to measure (parallel or 
perpendicular). And finally, we get I!9	cτ9. At first glance, the larger the probe 
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intensity the better, however if we check this expression carefully, we observe that 
the key factor is the energy density seen by the probe ray. Imagine that our probe 
ray is a very thin disk of area dS that moves at the speed of light. It scans a cylinder 
whose length is given by cτ9. Then cτ9	dS is the differential volume it covers and 
I!9	τ9	dS is the energy inside this volume. These differential volumes are shown in 
Fig. 18a for the case of counterpropagating lasers and in Fig. 18b for the case of 
crossing beams. In this second situation both probe and pump move in 
perpendicular directions, and the probe ray scans a region of the pump at a 45-
degree angle due to the pump-probe relative motion. The region of the pump pulse 
scanned is indicated by the blue differential pencil. For this reason the ratio between 
the pump waist and its duration is relevant for the optimization of the nonlinearities. 
The shortest pump pulse not necessarily implies the strongest coupling (keeping 
constant the pump energy per shot).   
 
 In conclusion, to optimize the quantum vacuum nonlinearity it is  necessary to 
maximize the energy inside this differential volume probed by the probe ray (blue 
lines in Fig. 18). This is important because it is not the intensity by itself what is 
relevant. For example, efforts to reduce the pulse duration converting a one PW 
pulse (30J/30fs) in a two PW pulse (30J/15fs) represent a great effort in enlarging 
the pulse bandwidth and do not help for our purpose. Pulses with a longer duration 
imply a smaller bandwidth and thus a smaller complexity than the OPA 15 fs or 
less available now. Extending the pump pulse duration is limited by the requirement 
that all its energy has to be at the waist at one. In other words the pump Rayleigh 
length has to be longer than the pulse length (cτ9), otherwise the pulse would have 
a complicated shape as shown in Fig. 19. This figure is a scheme for the case of cτ9 
longer that the pump Rayleigh length. In this case the probe probes the pump before, 
during and after the pump waist. The overlapping that happens before or after the 
focus (right and left plot in Fig. 19) does not result in a relevant nonlinear effect 
because the pump intensity is far from its peak. Only the central part contributes. 
 
 

 
Figure 19.- Cartoon of the collision when the pump is a long pulse (300 fs in this case with a 
waist of only 2 µm). Although this is just a drawing, the horizontal scale is compressed by a factor 
of 5 compared to the vertical scale to increase the visibility of the effect we want to show. If the  
pump pulse is too long not all its energy will be on the focal spot at the same time.  
 
 
 On the contrary, increasing the pulse duration helps to introduce more energy 
inside it. For this reason in the counterpropagating case a focus too tight is probably 
not the best option. The optimized pulse length is an interplay between the focal 
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number for the pump (not smaller that three certainly, and probably even longer) 
and the focal number of the probe, that has to be very high, indicating a wide focus.  
 
 As we mentioned before the infrared-infrared approach discussed here is not the 
only option to study quantum vacuum. There is an ongoing experiment in 
Hamburg’s European XFEL where the pump is a PW-class laser and the probe is 
one of the XFEL X-ray beams. It is a counterpropagating geometry, to maximize 
the nonlinear n"  coefficient. In that case the probe beam is the X-ray beam that is 
focused. With an extremely wide waist (wide in comparison to its wavelength) 
therefore the relation between waists and pulse lengths allows the use of a very long 
pulse. With this we would like to point out that the idea that, in order to maximize 
the nonlinearity, it is necessary to enhance the intensity as much as possible is not 
necessarily correct. An increase in the intensity is good if it increases the amount 
of energy “seen” by the probe ray. Or in other words, it is necessary to maximize 
the energy density inside the differential tube of section dS shown in Fig. 18. The 
present extreme lasers technology is saturating towards a limit of a few tens of PW 
[29]. Sometimes the increase of peak power is based on a reduction of the pulse 
duration keeping the pulse energy almost constant. This increases the peak intensity 
but does not optimize the energy density distribution, in fact some times it could 
even signify a slight decrease of the energy density seen by the probe ray.  
 
 
 
9.- Conclusions 
 
 
 The quest of an experimental observation of the vacuum nonlinearities has not 
been successful for the moment [30, 31]. However lasers are improving 
performances very rapidly and a new generation of such experiments is expected 
using infrared-X-Ray or infrared-infrared [4]. 
  
 In the previous Sections we analyzed two different configurations for a future 
infrared-infrared experiment that could solve the controversy between the 
Heisenberg-Euler and the Born-Infeld models. We can conclude that the 
geometrical factors appearing for different pump and probe configurations are not 
so different (compare 0.63 to 0.72), however the dependence of n" with the tilt 
angle (the angle between the two propagation vectors) is very relevant. There is a 
factor of 4 between the situations studied in Section 6 (counterpropagating) and in 
Section 7 (normal propagation vectors) and this is a fundamental effect that can not 
be avoided.  
 
 In these considerations we didn’t include the longitudinal components of the 
field. Longitudinal fields are needed in order to fulfill the transversality conditions, 
𝛁 ∙ 𝐄 = 0 and 𝛁 ∙ 𝐁 = 0 for the electric and magnetic fields. The transversality 
condition has been studied in many papers and there are very simple and convenient 
expressions to calculate them in first and second order [26]. For a wide waist probe, 
this longitudinal field is probably not going to be relevant. For the case of a pump 
focused with an f/3 parabola probably it is also negligible. However, for very tight 
focuses, close to f/1, longitudinal fields have to be included too. A visual 
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construction like the one shown in Fig. 14 probably will help to understand the 
effect of the Lagrangian couplings induced by such longitudinal fields.  
 
 Our objective has not been to produce a strong quantum vacuum effect. Our 
objective has been discussing situations where it is possible to have a clean and 
measurable quantum vacuum effect. For this reason, among other considerations, 
in this study we restricted ourselves to f/3 focal numbers in order to get clean results 
both for parallel and perpendicular polarizations. Our study indicates that reducing 
the focal number too much to get a very tight focus and trying to maximize the 
intensity is probably not the best strategy to maximize the quantum nonlinearity. 
To enhance the effect we are looking for, the parameter to maximize is the energy 
density distribution along the path of the central probe rays. This changes the 
refractive index seen by the probe ray and thus to enhances the probe diffraction, 
which is the signal we are looking for.  
 
 There is a need to keep these consideration in mind for the design of lasers 
specific to see these nonlinearities induced by the vacuum (or better by the virtual 
pairs present in vacuum). Some figures of merit typically used, such as the peak 
intensity, are relevant but not the only relevant specifications of the laser for this 
purpose. For example the optical quality of the probe pulse has to be as good as 
possible, with a Gaussian profile, to minimize its linear diffraction (diffraction with 
the pump off), and at the same time it has to be as intense as possible (signal 
proportional to the number of photons in the probe). Finally, it is relevant to 
mention that pump coherence, being relevant, is not as relevant as in other 
applications. A number of pump lasers, conveniently designed and finely 
synchronized, but incoherent between them, can be of interest for this application.  
 
 Therefore we are in front of a new generation of extreme laser experiments that 
requires tools specifically designed. At the same time new fundamental applications 
of such lasers are to be possible, in particular, ultraintense lasers as a tool to study 
dark matter.  
 
 
 These lines are dedicated to the memory of Professor Howard R. Reiss, an 
outstanding pioneer in extreme laser field physics, who taught some of us about 
those concepts.  
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