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Abstract

Photon-photon collisions, as one of the fundamental processes in quantum physics,
have attracted a lot of attention. However, most effort has been focused on photons
energetic enough to create particle-antiparticle pairs. The low energy limit - e.g.,
optical photons - has attracted less attention because of their extremely low collision
cross section. By optical photons we mean UV, visible and infrared, although the
cutting edge of extreme lasers is in the near infrared. The Schwinger critical field
for pair generation seems not possible, at least directly, with the current laser
technology. This often is considered as a problem, but we view this as an asset; the
near impossibility of pair production via photon-photon scattering in the infrared is
a perfect scenario to study virtual pairs that characterize Dirac’s quantum vacuum.
Moreover, it is remarkable that this scenario of photon-photon collisions was
already studied in the 1930s by two of the fathers of Quantum Mechanics, among
others, at the dawn of this theory. In their respective papers, however, Born and
Heisenberg arrived to different conclusions regarding the birefringence of vacuum.
This controversy is still an open question that will be solved soon, we hope, with
upcoming experiments. Here, we discuss a possible photon-photon collision
experiment with extreme lasers, and will show that it can provide measurable
effects, allowing fundamental information about the essence of Quantum
Electrodynamics and its Lagrangian to be extracted. A possible experimental
scenario with two ultra-intense pulses for detecting photon-photon scattering is
analyzed. This would need a high-precision measurement, with control of temporal
and spatial jitter, and noise. We conclude that such an experiment is barely feasible
at 102 W/cm? (today’s intensity record) and very promising at 10** W/cm?.

Keywords: quantum vacuum, nonlinear QED, photon-photon scattering, extreme
laser intensity



1.- Introduction

There is no doubt that Quantum Electrodynamics (QED) is one of the most
successful theories, if not the most successful theory developed so far in quantum
physics. It predicts experimental measurements with extraordinary precision and is
the paradigm of what a theory must be. However, in the logical evolution of science
one must seek the limits of a theory and test it against new information and with
new experimental tools when they become available. One of those extraordinary
tools is the laser and particularly laser pulses focused to extreme intensities. It is
well known that with the Chirped Pulse Amplification (CPA) technique discovered
by Donna Strickland and Gerard Mourou [1, 2] and subsequently developed during
the past four decades, it is possible to generate intensities of 10?* W/cm? [3]; this
record is likely to be broken in a near future due to the enormous effort being
expended to develop multi-Petawatt lasers with a goal of reaching the 0.1 Exawatt
frontier. The present availability and future expectations of such extreme lasers,
working in the near-infrared range, allows the design of new experiments to explore
QED predictions in a nonlinear region in the absence of pair creation with low-
energy photons. Getting information on the deep study of matter using just the
vacuum might seem contradictory. However, we should consider that vacuum is
not really empty but is full of virtual particle antiparticle pairs. It is of fundamental
relevance to study such pairs while they are virtual, which is best done today with
infrared lasers. The world’s laser community now has the “perfect tool” around
which to design experiments at very low energies (compared with the electron rest
energy), that will be complementary to the high-energy experimentation performed
at big particle accelerators [4] and intermediate photon energies performed at Free-
Electron Lasers (FELs) [5].

A priori it might seem that all is understood in this low energy limit, however
there are two surprises:

e The first is the existence of two theories, one proposed by Born in 1934 and
another proposed by Heisenberg in 1936, which give contradictory results.
While the latter is now considered the lowest-order nonlinear term of the QED
model, there are so far no experiments that support one or the other. Now,
almost a century later since their presentation, this may be possible with
ultraintense, infrared pulses.

e The second is an exploration of the quantum vacuum, that might give
information and/or set limits on certain types of theorized dark matter particles.
This is possible because infrared photons explore a region of the quantum
vacuum where such dark matter might produce a measurable effect that could
modify the first nonlinear QED term. This can be a tool to study dark matter
form an alternative point of view.

Unfortunately, experiments to probe the quantum vacuum are not at all easy. A
possible scenario to analyze scattered photons from the collision of two ultra-
intense pulses is presented. While our approach would employ two infrared lasers
(of the same frequency) there is another, ongoing two-frequency approach [6]. This
is an experiment, currently in progress in Hamburg’s European XFEL, where one
of its X-ray beams, with an ultraprecise polarization [7], crosses the beam of a



focused petawatt-class laser [5]. The infrared laser produces a very small
polarization rotation of the X-ray beam. The future success of this experiment
requires an ultraprecise X-ray polarization rotation measurement.

2.- The 1934-1936 unsolved controversy on Quantum Electro-
dynamics

The precision of QED is astonishing in all situations in which it has been tested
that includes a large variety of experiments. However, there are gaps, -- specific
experimental configurations where it has not been tested, like the one in the context
of the present project. We refer to this as a regime of very low energy photon-
photon collisions, i.e., collisions between infrared photons. It is noteworthy that the
very low energy photon-photon collision scenario was studied during the 1930s by
two of the fathers of Quantum Mechanics, at the very dawn of this theory.

In 1936 Werner Heisenberg and Hans Euler [8] published in Zeitschrift fiir
Physik a study based on the analysis of the Dirac equation, which had been
published just a few years earlier. Two years prior to the Heisenberg-Euler paper,
Max Born and Leopold Infeld [9] published a study based on the electron self-
energy in Proc. Royal Society London, which led to their Lagrangian governing
photon-photon collisions [10]. This was a coincidence of historical relevance. The
conflict arises at the moment one realizes that these two contributions to the study
of photon-photon scattering reached contradictory conclusions. The difference is
fundamental; while the Heisenberg-Euler (HE) result indicates the vacuum is
birefringent, the Born-Infeld (BI) model suggests the vacuum acts as an isotropic
medium. In spite of that, the physics community surprisingly never considered this
controversy as relevant, at least up until now. Why is this controversy not widely
known? Perhaps because of the hegemony of the Heisenberg-Euler model, which
is often considered as the first-order correction QED model. It should be noted that
the discrepancy appears only in the nonlinear terms, while most of the experimental
measurements involving QED rarely, if ever, go beyond the linear situation where
the two approaches agree.

It is widely accepted that the QED Lagrangian accounting for photon-photon
coupling in the optical region has to be based on the only two possible covariant
terms, F = g,(E? — ¢?B?)/2 and G = ¢, (E - cB). Thus, one can write it in a
general way as, L,, = Ly+Ly;, where the photon-photon Lagrangian L, has a
linear term L,= F that is very well known from Maxwell equations and Quantum
Mechanics’ early times. This term by itself is not able to account for photon-photon
scattering. We are interested in the optical region, so we can restrict ourselves to
the limit where the photon energy is much smaller than the electron mass (Aw «
m,c?), otherwise conventional mass terms must be added to the Lagrangian.

There are many possibilities for the nonlinear effective Lagrangian Ly;. The
only restriction is to build combinations of the F and G terms, since they are the



only possible covariant choices. Working at the first non-linear order (the order we
are interested in), there are three possible combinations,

Lyy:T+EII?2+Eng+E*Tg (1)

The key point for the discussion we want to convey here is that the Lagrangian is
based on three coupling parameters §, §,, and &, . The first non-vanishing order
information on the photon-photon coupling is going to be found through these three
parameters. The reason for using the subindex parallel in §; as well as the subindex
perpendicular in £, will be apparent in a moment. The analysis of the third coupling
parameter, &,, will be neglected in this chapter because it breaks the invariance
under spatial reflections or time reversal [11] and QED must be invariant under
these transformations. Addition of this term might be relevant in the future, once
the experiment defined here indicates the possibility of such extra QED terms.

As stated earlier, the lack of consensus on the value of the nonlinear coefficients
is the motivation for this chapter. Heisenberg and Euler [8] showed the instability
of the Dirac vacuum for high fields based on this Lagrangian with the coupling
constants,
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This value EﬁIE can be considered a reference of the coupling strength. Obviously
€. = 0 in the Heisenberg-Euler formulation. The difference in the values of £'* and

HE is the origin of vacuum birefringence, predicted by the Heisenberg-Euler (HE)
model but not confirmed experimentally yet, although an experiment at European
XFEL (X-Ray Free Electron Laser) in Hamburg is expected to answer this question
soon using an X-ray probe of ultrahigh precision [7, 6].

Similar nonlinear effects should also occur with super-strong magnetic fields
[12, 13, 14]. Perhaps the most sensitive and precision lab-based polarimetry
measurements have been done in the optical region by the PVLAS collaboration
[15] although they are not yet able to either confirm or rule out the birefringence
that the Heisenberg-Euler model predicts.

The Heisenberg-Euler model coupling constants of Eq. (2) are the values
considered in most of the literature, sometimes as the only ones compatible with
QED. However, they are not the only ones possible. Born-Infeld, on the contrary,
did not calculate a value for the coupling constants but rather proposed a linear
relation between these coefficients, &5 = Ef?l [11]. Considering the whole line
suggested by Born and Infeld (BI), what is more remarkable is that if this model is
correct, the vacuum will not be birefringent, at least not birefringent by the
couplings possible inside the particle physics Standard Model.



3.- Beyond the Standard Model

It is well accepted that the Standard Model is incomplete. There are indications
of physics Beyond the Standard Model (BSM) in the form of new interactions and
new particles. Some of the latter could be thought of as “dark matter” [16], that is,
massive stable particles that interact gravitationally in the usual way, but do not
interact - or do so in a very feeble way - with photons. We will assume as a working
hypothesis they do interact, as suggested by existing models. The study of dark
matter is of utmost importance as it seems to constitute 85% of the total matter in
the universe. The evidence for dark matter is only indirect, through the observation
of galaxy rotation curves that cannot be explained with the observed visible matter.
Since dark-matter particles interact so weakly, finding them is challenging and so
far they have escaped direct detection. Not having appropriate detectors, one can
make advantage of the quantum paradigm and gather indirect evidence of their
existence as virtual states (that is, propagating modes within Feynman diagrams).
This is a usual strategy in particle physics, although it is normally applied in
searches of particles too heavy to be produced. In our case, box-diagrams for
photon-photon scattering in which charged dark-matter particles circulate, interfere
coherently with the electron-loop contribution, thus affecting the numerical value
of the effective Lagrangian (assuming their mass is higher than the energies
involved in the experiment), or simply changing the cross section (if the mass is
comparable or smaller than the energy). Other diagrams can be also present that
will modify the effective Lagrangian too. This affects not only to dark-matter, but
to any other particle that is hard to detect, for instance (but not limited to) axion-
like particles (ALP) [15, 17]. Therefore, an experimental study of photon-photon
scattering in the infrared domain can yield a lot of valuable information not only on
which model is correct (HE or BI) but also on whether or not some kinds of dark
matter indeed exist.

The BI versus HE historical controversy is based uniquely on the effect of the
electron-positron pairs. Since the electrons (and its antiparticle, the positron) are
the charged particles with the smallest mass they are expected to be the responsible
for vacuum polarization. Heavier particles, as muons or pions (let alone protons),
will have a negligible effect as the effect scales inversely as the fourth power of the
mass [18]. The lightest known particle of all, the neutrino (conjectured by Wolfgang
Pauli in 1930), does not interact with electromagnetic fields. For these reasons the
study has to be reduced to electron-positron pairs. The controversy was triggered
by the interpretation of the electrons and positrons on the grounds of the Dirac
equation. The discrepancy between the Heisenberg-Euler Lagrangian, and other
Lagrangians, such as the Born-Infeld, is a basic fundamental problem that has not
been properly considered for many decades. Better knowledge could be key to a
better understanding of some of the present-day questions that the Standard Model
cannot address. A direct optical measurement of these coefficients would be of
great interest. Moreover, the coupling is going to be different for pseudoscalar ALP
(coupling with two photons through E - cB), scalar ALP (coupling through E2-
c’B?), as well as for other hypothetical BSM particles. A clean and precise
determination of the coupling terms is of paramount importance, and would provide
valuable data.



Using a phenomenological nonlinear Lagrangian, it is possible to write it in a
form similar to Eq. (1),

Ly =F+ § +A8) F? + (&, +A%,) G2 (3)

where Ag, and A%, are the possible corrections due to dark matter. Fortunately,
different kinds of dark particles can result in different variations of these coupling
coefficients. For example, scalar axions would result in a nonzero A§, and A§, =
0, while pseudoscalar axions would give nonzero Ag; and Ag; = 0. Other possible
conjectured mini or millicharged particles would result in different ratios Ag; /A%
of these two dark-matter correction effective coefficients. The dimensionless
coefficient multiplying the (charge/mass)* scale factor of the Lagrangian term in
A% or in A%, depends on the spin of the hypothetical particle. For this reason it is
important to design experiments that can clearly differentiate between parallel and

perpendicular components. More information on this can be found in a previous
book of this series [19].
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Figure 1. Configuration space of these two coupling coefficients appearing in the nonlinear
Lagrangian L,,. For simplicity we used the axes &,/ EE and &, /E'E, referring to the HE values.
BI model predicts a line not intersecting the HE point, illustrating the discrepancy between the
two theories. The addition of BSM particles could change the effective Lagrangian coupling
parameters. While the QED point is the one predicted by HE, and the BI line is the bisector
(representing no Dbirefringence), the segments A%, /&' and A%, /E'E have been depicted
arbitrarily. Other sorts of millicharged hypothetical particles would result in corrections in
different directions depending of their spin.

Fig. 1 shows this effective Lagrangian configuration space. For simplicity, the
figure axes indicate the relative couplings, g/ EﬁIE (parallel) and &,/
€HE (perpendicular). The big dot at (1,1) indicates the HE point, and the thick line
the BI line. Observe that the HE dot does not lie on the BI line, evidencing the
discrepancy between both models. Addition of BSM particles can add extra terms
to the effective Lagrangian coupling coefficients, Ag; and A%, , causing a deviation
in the configuration space from the HE model. Their values are not yet known, but
the direction of deviation can be understood on the basis of the kind of particles we



are looking for. For example, pseudoscalar ALP would correspond only to AE; (and
A%;=0), while scalar ALP would correspond only to A§, (and A§; = 0). The arrows
for the two kinds of ALP are shown in Fig. 1, although the length of the arrows has
been arbitrarily selected. The length of these arrows, if nonzero, would be a clear
evidence of such particles and of their properties, in a future laser-laser collision
experiment. Other kinds of dark matter candidates will generate a correction in a
different direction. For example, hypothetical spin 1/2 millicharged particles will
have a correction along a line of slope 1 (similarly to the BI model, due to the spin
1/2 electron).

4.- Photon-photon scattering

Scattering of light by light [20] or, in other words, photon-photon collision, has
received a lot of interest in the past as well at present. However, most of the physics
seems to be related to photon-photon collisions at center-of-mass energies close to
the the electron-positron pair mass to study such pair generation [21] or at even
higher center of mass energies to produce muon-antimuon pairs [22] or to explore
new unexplored high energy resonances [23] at the high energy frontier allowed at
CERN LHC or other big particle accelerator systems available. The differential
cross section for scattering of light by light has been studied in detail [24] for many
decades and for many photon-energy ranges.

Besides this high energy scenario there is also the opposite one, the very low
energy frontier. In the limit Aw <« mc?, i.e., photon energies (hw) much smaller
than the electron mass (mc?). The photon-photon cross section decays abruptly as
w®. In this limit, the total photon-photon scattering cross section (integrated over
all the sphere) and averaged for unpolarized photons is given by [25]

973 a*h? (hm )6
vv=-vy T 10125 1 m2¢2

(4)

mc?2

where o is the fine structure constant. The laser photon energy hw has to be
considered in the center of momentum frame (i.e., a frame in which both colliding
photons have the same energy). This expression can be rewritten in more practical
units, oy, _yy[cm?] = 0.73 107% (Aw [eV])®, considering the cross section in cm?
and the photon energy in eV. This means that for one of the most widely used type
of CPA laser, the Titanium:Sapphire laser, which has photons with energies around
1.55 eV (we say around because of the large bandwidth of these lasers), the cross
section may drop to values of 10* cm? (see Fig. 2). For this reason, the collision
of optical photons has been disregarded for many decades. Now, with the
availability of ultrahigh intensities [3], it seems to be the right time to reconsider
this experimental situation.

Although it may seem that the most interesting scenario is the creation of new
particles, basically electron-positron pairs, the situation of very small photon
energies is very attractive because it interrogates the “true” vacuum. By true



vacuum we mean the vacuum far from the appearance of real pairs. After the
introduction of Dirac’s equation to describe the relativistic electron, it is clear that
the vacuum is full of virtual particle-antiparticle pairs. The analysis of these virtual
pairs can be done with lasers. This is relevant because it relates to one of the basic
principles of quantum mechanics, but it is also interesting because it opens an
alternative way to explore dark matter. From a more philosophical view point, it is
curious that we seek getting information from nothing, from the vacuum. The
quantum vacuum is a fabulous tool that does not require real particles to get new
information (a very attractive feature for studying dark matter).
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The controversy between Heisenberg and Born as well as the study of different
kinds of dark matter can now (or in a near future) be solved by conducting a specific
experiment using ultraintense lasers. Extreme lasers are needed due to the
extremely low cross-sectional area at infrared wavelengths. Let us analyze how to
perform a realistic experiment, but before that, we need to stablish a QED-optics
connection via the vacuum refractive index.

5.- Quantum Optical Kerr effect in the optical region

As indicated before, we are going to work well below the pair formation limit
because on the one hand the laser frequency is much smaller than the electron mass
(hw < mg c?) and on the other hand the field amplitude is well below the
Schwinger critical field (E < E ~ 1.32 X 10'® V/cm) [20]. Therefore, real pair
creation is avoided, in principle. Later we will comment on certain side effects that
could induce real pair creation. Thus, the entire discussion is related to virtual pairs.
Just to give a naive but intuitive interpretation of the physics to be considered, we
may say that ordinary vacuum is not completely empty, but full of virtual electron-
positron pairs. It is not a contradiction to quantum mechanics to consider that these
pairs exist, provided that they exist just for a short time. The incertitude of the
energy is twice the electron mass and the corresponding implication of the
Heisenberg uncertainty principle, A€ At > h/2, AE = 2 m, c2~1 MeV being the



excess of energy needed to generate the pair, and At the time allowed for this energy
mismatch according to the Heisenberg uncertainty principle. This time happens to
be very small, as expected, with At~ 10722 seconds. However, with a conveniently
large electric field these virtual pairs can live a bit longer because the field moves
the electron and the positron in opposite directions. The fact that this At grows a
little bit indicates a polarization in the quantum vacuum that translates in a small
but nonzero nonlinear refractive index. This is just a simplified explanation. The
correct way to link this with the refractive index has been described in several
papers for different situations. One of the most clear and convincing has been
presented by [11] considering this effect as a nonlinear refractive index. The
consideration of vacuum as a material with an intensity-dependent refractive index
is the link between QED and optics and will be very useful.

It is well known that, in most optical materials, as soon as the intensity increases,
the refractive index is affected by a nonlinear term that changes with the intensity
of the radiation that passes through it. For the quantum vacuum we can do the same
and write the vacuum refractive index as n(I) = n; + n,I, where n; indicates the
linear part of the refractive index (obviously n; = 1 for the vacuum) and n,
indicates the nonlinear term. In this chapter we will measure n, in units of cm*W
and the intensity in W/cm?, and the product will be dimensionless, as it should be.
As the intensity increases, higher order nonlinearities appear for all materials and
will appear for vacuum, too. For our purpose, and due to the available laser
intensities currently or in the foreseeable future in operation or in construction, the
approximation of considering just the first term, n,I , is clearly sufficient.

We can consider the nonlinear refractive index for the probe pulse at each point
in space and time as proportional to the pump intensity at the same point and time.
The nonlinear index is essentially instantaneous, at least compared to the time
scales considered here (optical laser period, few femtoseconds), because the
characteristic time corresponding to 1 MeV (the electron-positron pair mass) is of
the order of 10722 seconds. It has been shown that this coupling results in a change
of the vacuum refractive index [11]. This is the key point of this work: a signature
of the quantum vacuum that can be observed as a simple change in the refractive
index and thus optical techniques can be applied. Obviously, this change is very
small and such experiments have to be planned with great accuracy to be prepared
to measure a very small (but observable) signal in a very noisy environment. It is
relevant to observe that a convenient choice of the fields will result in the
predominance of the F? term, when the fields are parallel, or of the G2 term when
the fields are perpendicular. Therefore, the coupling due to one or the other
Lagrangian terms is distinguishable, provided that the fields have a well-defined
geometry.

The nonlinear index is in fact a tensor as in any anisotropic optical material, thus
depending on the polarization. In the BI model it reduces to a number, again as in
isotropic optical materials. However, what is more important is that the refractive
index n is directly linked to the coupling coefficients of the nonlinear effective
Lagrangian.



It is well known that a plane wave (monochromatic or broadband) can’t generate
such nonlinear effects. Without entering in the complete discussion given by [4] it
is possible to give an intuitive idea to study the meaning of these couplings by
analyzing the nonlinear terms in the Lagrangian. In the case of a linearly polarized
plane travelling wave, as schematically indicated in Fig. 3, the two covariant terms
F, and G are going to be E?-B?=E;-BZi=0, and E-cB=
0 (where we have used the relation E, = cB, for the electric and magnetic field
amplitudes). The same result would be obtained for circular or elliptical
polarization, assuming that it is a purely traveling wave.

Figure 3.- In the case of a pure plane

travelling wave, we have F = 0 , and

T G = 0. We label these fields with the
X subindex A, indicating the pump beam,
L because in the next sections we will
y introduce a probe beam. The present x,
¥ Yy, Z axis notation is going to be the same

for all this Chapter.

Ea

Ba

In the case of a tightly focused beam, the convergence can make these terms
nonzero, albeit weak. The convergence is going to create a longitudinal electric and
magnetic field, E;, and By, both propagating along the propagation direction z. The
paraxial expression for these fields can be seen in [26]. Then we have E =
(Es,0,E)) and B =(0,Bs,By), resulting in E2—c?B? =Ej} +E? —
c?BZ—c?Bf = 0 (where we have used thatE; = cBy, ), and E:cB = E| cB,.
Therefore, at focus, a single laser may create a nonzero quantum vacuum effect.
This effect is associated with the longitudinal components existing at focus to
preserve the V- E = 0 and V - B = 0 constrains. Obviously the effect is relatively
small. It is well known that for a Gaussian pulse (TEMyo), the longitudinal field is
zero on-axis and has its maximum at a distance from the axis of about 70 percent
of the waist, therefore its contribution will not be too relevant.

Adding a second laser not as intense as the first one, it is possible to work in a
pump-probe configuration. Having this in mind, we identify two completely
different pump-probe configurations that represent two limiting situations. In
Section 6, we will analyze the case of counterpropagating waves and in Section 7
the case of beams crossing at a right angle.

6.- Counterpropagating beams

Let’s consider first the case of two counterpropagating lasers [27] (see Fig. 4).
It can be shown that that in such a pump-probe configuration the n, nonlinear
refractive index in the HE model is given by [11]

ny; = 0.888 x 10733 cm?/W (5a)
niE = 1555 x 10733 cm?/W (5b)

10



Figure 4. In Section 6 we study the case
where the two propagation vectors are
along the z-axis and counterpropagating.
The pump will move as z-ct while the

— probe will move as z+ct. There are two
cases of possible polarizations that have
to be described.

In terms of the pump and probe configuration we are interested in, this means
that the pump modifies the vacuum so that the probe, depending on its polarization,
sees the n, | nonlinearity if pump and probe electric fields are parallel and sees the
n, ; nonlinearity if pump and probe electric fields are perpendicular. In a general
polarization case, the index will be in between these two values according to the
projections in perpendicular and parallel components. We are interested in the
design of an experiment that maximizes the difference between these two
components, and ideally measures n,; and n,; separately. The nonlinear
coefficients scale as &, and &,. The nonlinear refractive index assuming the HE
theory can be used as a well-stablished reference, thus in the general case n, =
ny | & /&', and ny ; = n¥E &) /EHE. In fact, we can refer to any effective model
using these two ratios &, /&'" and &, /EE. The nonlinear refractive index is
therefore proportional to these coupling coefficients. This makes  the
n, nonlinearity a perfect link between QED and optics.

We consider a pump-probe beam configuration. The suffix A will refer to the
pump pulse and the suffix B to the probe. The probe has to be intense in order to
have a high number of scattered photons, although it is always much weaker that
the pump. All relevant quantum vacuum effects will be caused by the pump. To
keep a constant notation of axes, the pump will move in the positive z direction,
i.e., as z-ct. Because the signal we are looking for is the scattering of the probe
photons, we have to minimize other sources of scattering/diffraction of the probe.
Therefore, as indicated in [27], we choose a probe with a relatively wide waist, and
a very good TEMyo structure. The shape of the pump pulse is not so relevant,
provided it arrives to an extreme intensity.

For counterpropagating beams with parallel polarizations, Fig. 5a, E2— ¢2 B2 =
(Ea + Eg)?— c? (B + Bg)? = 4 E,Eg because both the electric and the magnetic
fields contribute to F2. E4 and B, (= ¢ E,) indicate positively defined electric and
magnetic field amplitudes the pump beam, moving with z-ct. Eg and Bg
(= c Ep) indicate the probe beam positively defined amplitudes, moving as z+ct.
Obviously, ¢ E-B =0, and there is no contribution to the G2 term of the
Lagrangian. The parallelism occurs between E, and Eg and between B, and By at
the same time. This is why we refer this case as parallel.

Analogously, for counterpropagating beams with perpendicular polarizations,
Fig. 5b, one has E2—c? B2 = 0, and c E - B = 2E,Eg because both the electric and
magnetic fields contribute to G. The perpendicularity occurs between E, and Eg
and between B, and By at the same time (this is relevant to remember when
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comparing with tilted beams). Intermediate polarizations will couple via a
combination of these two limiting cases. Therefore, for counterpropagating beams,
all the possible information comes from the study of the two combinations of pump
and probe polarizations.

Ea T
a) X Es
ka ke -Be
_— L z—>
Y |
< b
Ba UM probe
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b) X BBT
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R —— Z— <+
o Ee
Ba pump
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Figure 5.- Nonlinearity contributions for the two possible field polarization configurations in the
case of counterpropagating pulses: a) corresponds to pump-probe parallel polarization, giving
E2—c2B2 =4E, Egand E ‘- ¢cB = 0, and therefore the with these polarizations the fields couple
only via the §, term; b) corresponds to pump-probe perpendicular polarization E2—c? B? =0,
and E - ¢ B = 2E, Eg, and therefore these fields couple only via the &, term of the Lagrangian.
E, and Eg indicate the positively defined electric field amplitudes of the pump and the probe
beam respectively. B, and By indicate the respective magnetic field amplitudes. They are all
positively defined, with the sign explicitly indicated. The ordered vectors. E, B, and z form in all
cases a right-handed orthogonal set.

Using counterpropagating fields is the best scenario to maximize the F2 and G2
Lagrangian terms. However, it has some technical difficulties because one laser can
enter the amplifiers of the other if the alignment is too good. The experimental
difficulties can be reduced with a configuration with the pump and probe beams at
an angle. Therefore we will discuss later also the case of beams crossing
perpendicularly.

just before during just after
collision collision collision
probe probe
pulse pulse
pump
pulse
‘ \
S — — —>
pump
pulse
flat probe phase-shifted
wavefront wavefront

Figure 6.- Schematic representation of the head on collision. The probe has to cover the entirety
of the focused pump to sample the phase change when the field has its maximum intensity.
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The interaction between probe and pump pulses is indicated schematically in
Fig. 6. The probe has a well-defined phase wavefront, planar near its waist. When
the pulses cross each other, the quantum vacuum coupling introduces a phase shift.
After the interaction, this phase shift will generate a diffraction of the probe beam,
and this diffraction is what we are going to measure. This diffraction is caused by
photon-photon collisions. In order to keep momentum conservation, a photon of the
pump has to be scattered also. However this second photon is not observable due
to the extreme and tightly focused pump.

Because we are interested in a configuration where the probe waist is relatively
large, its Rayleigh length will be very long and, along the interaction region, it will
have almost planar phase surfaces. It is reasonable therefore to consider just ray
propagation for the probe, and calculate the phase shift due to the nonlinear term
induced by the pump. As discussed in our previous paper [27], we recommend for
such kind of experiments a tight pump focus and a wide waist probe with a very
high optical quality. Although the probe peak intensity is not required to be so
extreme, the needed optical quality and wide waist makes it challenging to prepare
such probe pulses. The advantage of a wide waist is that all the quantum
nonlinearities happen inside a region that is much smaller than the probe Rayleigh
length. In this case we can consider (just very close to the probe waist) the probe
wavefronts and calculate locally their phase considering probe rays.

------------------------------- i--eaooh /\
| E H L/// \\
: \;\j\ﬂx,y,z,ﬂ I i //Er \
e n..
- o Ay Wi |
D T |
\ ;

\\j/ bz ; probe o \ )

Figure 7. Ray modelling for the counterpropagating case. The phase shift calculation procedure
considers individual probe rays in a region between two values of z (zi, z initial, and zs, z final)
that lie inside the probe Rayleigh length. Numerical integration to see quantum vacuum effects
can be restricted to the dashed cube depicted.

For an accurate description of the pump interaction (see Fig. 7) it is enough to
consider the probe propagation inside a medium with a refractive index given by
n,l,, where n, is a constant parameter depending of the laser configuration and
I4(X,y, 7 t) is the time-dependent pump intensity. This can be time consuming and
will give no information on the contributions relevant for the quantum vacuum
nonlinearities. Such a computation has to be done before doing such a demanding
experiment for a fine determination of the nonlinearities that will imply a fine
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determination of the Lagrangian coupling parameters. However, the experimental
scenario allows multiple choices of pump and probe laser geometries, detector
positioning, light scattering, and many more effects. In order to optimize this, a
simplified model, such as the one to be described, can be of interest to allow a
realistic first approximation of the experimental scenario.

We are going to consider probe waists of 16 um or more (20 wavelengths or
more). When the probe waist is so large, we can describe it near the focus as a plane
wavefront. We know from the beginning that the influence of the quantum vacuum
is going to be very small and can be accounted for as a minor phase shift. Therefore,
it is enough to consider probe rays. In this situation the probe Rayleigh length is
very large and there is the possibility to consider such a pulse as rays moving
exactly along the z-axis. The general equation for each one of these probe rays is,
z + ct = cty, x=constant, y=constant, where t; indicates the time where this
element of the ray crosses the z=0 plane (the waist). We calculate the phase gained
by each of the probe rays (at each time) due to the pump beam modification of the
vacuum,

Zfin
(I)(X, Y, tO) = ka Il(X, V,Z,ty — Z/C) dz =.
Zin

= kB (Zfin - Zin) + kB Aq)(y' ZrtO) (6)

where the first term is kg(Zg, — Zin) the optical (linear) path between the two
points. The second term, Ad(X,y,ty), is the one accounting for the vacuum
nonlinearities and can be expressed as,

Zfin
(%Y, to) = ks f ny 1a(%,¥,2, to — z/c ) dz %)
VA

in

Io(%,y,2,ty — z/c) indicates the pump laser intensity along the probe ray
(x constant, y constant, and z — ct = ct,) being x and y the transverse coordinates
for the probe ray considered and t the time when the probe ray is at z=0, i.e., at the
waist. Here we consider n, in general, depending of the field polarizations it can be
Ny, Ny, or a combination of them.

The integration region|z;,, Zg ] has to be smaller than the probe Rayleigh length
in order to allow this ray approach. To continue with the development of the
expression for the nonlinear phase shift is is necessary to guess the form of the
pump beam near the focus.

N A
Ta

Obviously p? = x? + y2. With N=f/D being the focal number (D is the focusing
parabola diameter and f its effective focal length). Atindicates the pump-probe
jitter. We assume that the probe is centered at the origin of coordinates at t=0 and
that the pump will arrive to that focal point at a time At (a few periods at most).
This expression describes the transverse dependence just at focus and is thus valid
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only for very shot pulses. In any case a detailed description of the pump focus needs
a numerical calculation that is beyond the scope of the present work. Including the
explicit dependence of the pump intensity in the expression for the nonlinear phase
shift, we get

Ad(x,y,to) =
TP ) exp (_2 (2z — c(ty + Ab)) ) i )

k fzfi I 2 AB N ] <
= n _— _—
B , 210A T p 1 AA N C2 Ti

in

The integration is over the ray z + ct = ct,, with y=constant and z=constant too (as
we said, this is the equation of the ray, and t, indicates the time this phase plane
crosses the x=0 plane). This is a useful expression to calculate the quantum vacuum
phase shift, and generalization to other pump shape models is straightforward. The
maximum shift is going to correspond to t, = 0. The integral for the phase shift
can be extended to infinity if the pump focus is much tighter that the probe, as is
the case we are considering. Eliminating the effect of At (no jitter), the shift will be

Ag N tp\ (7 (22)?
Amax®(x%,y,0) = kgnylps 2 ETY J1 <7\A_N) f_w exp —2@ dz (10)
AB Tt
AmaX(I)(O,O,O) = kBnZIOA 7\_ § CTy (11)
A

For the case we are interested in, A, = Ag = A = 800 nm, kg = 2m/Agz and
T4 = 10 cycles, this phase change is Ap.,d =~ 4 10732 I, rad, with the pump
intensity measured in W/cm?. Therefore, the phase change is very small. Once we
have the phase shift for each one of these wave-fronts we can calculate the effect
of the probe wave. Just before the overlapping of the two fields, the probe field
amplitude is Eg(X,y,t) while after the interaction is Eg(x,y,t) exp(iAd(x,y,1)).
Because the phase shift is much less than 2m, this can be approximated to be
Eg(x,y,)(1 +iAd(x,y,t)), and we can write the field just after the nonlinear
coupling as Eg(x,y,t) + Es(x,y,t) where Eg(x,y,t) =iAdp(x,y,t) Eg(x,y,1)
indicates the scattered term, the one that we have to measure. The measurement has
to be carried out at a point in space far from the waist. Thus, we can apply the well-
known Fraunhofer diffraction equations. In the far field, the unperturbed probe
(without pump) will be

Fg()) = —i 21tp Eg(p) Jo(kg p Odp (12)
0

We label the fields at the observation plane by F and the fields near the focus by
E, just for clarity of the notation. Both correspond to electric fields. Therefore, F2
will indicate the intensity at the observation plane. { indicates the polar angle (we
assume cylindrical symmetry). The quantum vacuum signal will be given by

Fs()) = —i 211 Eg(p) i Amax®(p) Jo (kg p Odp (13)
0
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where Ap.x$(p) indicates the maximum dephasing given by the A d(x,y,0),
for p?> = x? + y2. This is a reasonably simple expression to calculate the scattered
light. The scattered intensity at a scattering angle { will be proportional to |Fg(Q)|2.

While it is clear that the nonlinear effect is due to the pump and it is necessary
to have a very intense pump, the influence of the probe is rarely considered although
it is fundamental for a successful experiment. Fg indicates the probe beam
propagation at large distances. Its diffraction (linear diffraction) has to be confined
within a narrow cone -as narrow as possible- in order to avoid overlapping with the
quantum vacuum signal (nonlinear diffraction) out of this cone. The lowest linear
diffraction occurs with a perfect Gaussian, thus we impose having a probe with a
good Gaussian shape, with very high optical quality and with a relatively large
waist.

We assume a Gaussian probe beam B given by Eg(p) = Eop exp (—p?/w§).
Just to get a sense of how many photons per solid angle we have in the probe beam
we can analytically calculate the propagation (nonperturbed propagation) of the
probe beam close to the z-axis. We calculate the intensity on axis for a small solid
angle, 1 deg?, centered at the z-axis, we call this axial intensity along z, I,y (2)
and the solid angle d(). With wg as the waist of beam B and Iy its the intensity at
the waist, the probe intensity along the propagation axis will be expressed as,
Laxial(z) = Ig (m w3 / zAg)? and the surface corresponding to this solid angle is
z2dQ. Therefore, I 4q1(z) 22dQ = Iz (M w3 / Ag)? dQ. The fluence will be this
expression multiplied by tg. Each Joule corresponds to 4 10'® photons, at 800 nm.
Thus, the number of probe photons will be nyp, = 1018 I 1 k& wgdQ photons per
Joule per solid angle. In the case of Ig=10?° W/cm?, this is a very challenging
requirement to obtain a a good Gaussian shape and will require a lot of filtering.
Observe that 0.000305 sr correspond to one deg?. Therefore, for wg=20
wavelengths=16 um and for 30 fs pulse duration, this corresponds to ny, =
3.7 x 10° photons. The number 3.7 10! photons per shot, for Ig=10>" W/cm?,
arriving to the detector (on axis) for wg=16 um (20 wavelengths), for 30 fs pulse
duration and a detector on axis covering one deg? solid angle, is going to be
considered as a realistic reference for the comparisons presented. For other
intensities, because the number of photons scales as the intensity, the value 10%°
W/cm? can be a reasonable reference. This is the background we have to avoid.

‘deiector

pump-aperture
cone

z=0
e ——— probe

/ 2
pur\"p waist ' 2ct

RN . J o) QEes——

Figure 8. A possible setup for the counterpropagating case is shown in this figure. Due to the
geometry, we can place a ring of detectors covering one, or a few degrees radially and all the
circle, as shown in this scheme. However those detectors must be placed at an angle larger than
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the pump aperture cone (given by the pump f-number). Because the probe has a large waist, its
diffraction cone will be smaller than the pump aperture cone.

Fig. 8 shows a possible experimental setup. The two beams, pump and probe,
are counterpropagating. The tight pump focus imposes a wide aperture cone. The
probe detection has to be just outside of this pump aperture cone, and can be on a
circle (green detection circle in the figure). Fig. 9 shows the logio of the number of
scattered photons arriving to a detector covering a surface of one degree square
versus the scattering angle. The figure corresponds to pump and probe of the same
wavelength, 800 nm, and to a pump focus with /3 focal number. Due to the pump
aperture angle, the detection has to happen at angles greater than 0.17 rads. The
angular region forbidden by this is shaded in blue in this figure. This is a problem
for counterpropagating beams with a tight pump focus. Working at f/1.1 as in the
world intensity record [3], the aperture of the pump would represent a fundamental
difficulty to the placement of the scattered probe photons detectors. Because a short
f-number corresponds to a wide focal cone. Observe that here the probe parameters
are waist 16 um and peak intensity 10*° W/cm?. For a detector placed at an angle
of 0.2 rads out of the collinear axis (z-axis) Fig. 9 indicates that there are 0.01
scattered photons expected per deg? detection solid angle for a pump intensity of
10> W/cm? per shot, and one scattered photon per shot for a 10** W/cm? pump.
Observe the scaling with the intensity. As we said [3], the pump intensity 10?3
W/cm? can be considered as today’s record; the intensity 10?* W/cm? will be sooner
or later a reality. These numbers are for a detector covering only one deg?. We can
consider a ring-shaped detection, i.e., a detector that covers a ring of one degree
width. For this ring-shaped detector a few scattered photons are expected per shot
when using the probe we considered (waist 16 um, peak probe Gaussian shape with
a peak intensity 10?° W/cm?) for a pump intensity of 102 W/cm?. Ramping up the
simulations to intensities greater that 10** W/cm? can be questioned because other
effects may be present, as radiation reaction or electron pair cascading, although for
this kind of nonlinear vacuum experiments, an extremely high vacuum level is
necessary.

The solid blue line in Fig. 9 indicates the probe beam linear diffraction cone
(linear means without pump). It is a section of a parabola centered at angle zero (a
Gaussian in log scale). The detection of the scattered photons inside the probe linear
diffraction cone is impossible. Scattered photons out of this cone are represented
by the red dashed lines in the figure. However, the pump focusing system also
implies a forbidden cone (blue shadowed region) that is the space occupied by the
pump focusing parabola (see Fig. 8).
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Figure 9. Logio of the number of scattered
photons per degree squared versus the
3| : scattering angle ¢ for the case of an {/3 for the

At pump and ws=16 pm for the probe, both at
b lanizations 800 nm. The solid (blue) curve corresponds
to the linear case, i.e. without pump. The
probe intensity at the center of the focus is
10 W/cm?, the dashed (red) -curves
correspond to two different intensities of the

---------- | 1024 W/cm?2 pump. In this case, both fields overlap exactly

0 S S N at the focal spot. The number of photons has
Sl been calculated assuming a 1 deg’ detector

N area. The figure corresponds to the parallel
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------------- reference. Obviously, for the perpendicular
T 108 W/em? case, nbE | simply multiply by the 7/4 factor.
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the next figure. Observe the scaling of the
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With all these considerations we extract some conclusions on the possibility to
detect the two coefficients of the effective Lagrangian introduced in Eq. (1). A
complete analysis depends on many factors but it can be reasonable to consider that
one photon per deg? per shot can be a threshold for detection (always with the the
standard Gaussian probe with waist 16 um and peak intensity of 102° W/cm?). If
this is the case, for pump intensities of 10** W/cm? we must arrive to the
Heisenberg-Euler point. This is indicated in Fig. 10, where the progressively darker
blue regions indicate our estimation for the possibility to detect the Lagrangian
coupling coefficients at this pump intensity level. We say that this is just an
estimation because such an experiment would strongly depend on the noise sources.
For the lack of space, we do not discuss here the noise sources that are very relevant
for such a weak signal. A discussion can be found in [27]. Here we have considered
the counterpropagating geometry and the refence number of one deg? square
detector. With a detection ring, the solid angle covered can be increased by a factor
to 100 or even 1000, but not more because of the quick dropping of the number of
scattered photons with the scattering angle that can be seen in Fig. 9. Also, we have
considered a probe with a peak intensity of 10?° W/cm? and with a good Gaussian
shape. Although this probe intensity does not seem extreme at first sight, it is
extreme too due to the large waist and the requirement of a good optical quality and
a Gaussian shape.
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Let’s comment briefly about the pump/probe jitter introduced in Eq. (9). For that
it is better to move to a Gaussian description of the probe. Since the only relevant
part of the nonlinear coupling happens close to the laser focus, it is a reasonable
approach (open to improvement) to consider the pump as a Gaussian pulse with a
waist wy given by wy = 0.87 A4 N. Where A, is the pump central wavelength (800
nm for Ti:Sapphire lasers) and N indicates the focal number. In that case the pump
Rayleigh length is zgy = T W3 /A4. A very loose focus results in a peak intensity
too low for the effects we are looking for. On the contrary, a very tight focusing
helps to increase the peak intensity at the price of a strongly convergent beam that
mixes up the different components of the electric field. This complicates a clean
measurement of the parallel and perpendicular coupling coefficients. Probably, a
good compromise is around N=3. For that case w, = 2.6 A\, = 2.1 um, the
Rayleigh length will be zg, = 17 pm. These numbers are indicative of the size
needed for the pump in order to cross the probe focus as a quasi-plane wave. This
is only an approximation for the central part of the Airy focus, to prepare convenient
scaling laws. If we call Ioa (z) the intensity of the central part (i.e., for p = 0) of the
beam (axial) it is going to change with z as [27],

m wi ) = 5.65 N* A%
2wt (z) + 2223 foa 5.65 N4 A2 +

loa(z) = 72 la(0) (14)

where we wrote the intensity in terms of the focal number. Expressing z in terms of
the jitter time, 2z = cAt (see Fig. 11), allows us to modify Eq. (10). Assuming that
the relative jitter is smaller than the Rayleigh length of the probe, the nonlinear
phase shift is going to be:

Apax® (with jitter At) =

C 5.65 N* A% © \/ﬁ .
- Bn2565N4AZ+025c2At2 0AYT XA g ¢ A (15)

This expression is of great experimental interest because it represents a
characteristic Lorentzian shape of the dependence of the quantum vacuum signal
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with the pulse delay time At between pump and probe. In an experiment where we
need to get rid of an enormous noise-background, the knowledge of the signal
dependence with the pulse delay is fundamental because the rest of the noise
sources are not affected by a small pulse delay. Scaling laws like this one, do not
seem very relevant in principle but for future experiments can be of paramount
relevance to train artificial intelligence systems to detect patterns due to signal to
noise specific scalings.

Figure 11. A jitter between
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_— 7=0 the overlap will occur at a

- lower pump intensity and at

P Y.\ 11— a wider pump waist, two
~ 7 factors that reduce the

nonlinear scattering we are
looking for.

7.- Crossing beams

Up to now we have only considered counterpropagating lasers. To avoid some
of the problems generated by counterpropagating beams it is also possible to work
with beams crossing at an arbitrary angle. In that case the n, nonlinearities, parallel
and perpendicular, have to be modified. Although it is possible to develop models
for any arbitrary angle, we restrict ourselves here to the case that both lasers cross
at a right angle, in other words to the case where pump and probe wavevectors are
perpendicular. To avoid confusion with the word perpendicular, used for
polarizations, we would refer here to beams crossing at a right angle (see Fig.12).

u\se :
pump P Ea X Figure 12. In Section 7 we study

X‘Z the case where where the two

e Vs) propagation vectors are crossing

Kks Es % perpendicularly. The pump will

Ba Q move as z-ct while the probe will
%,

Bs @ move as x-ct. All four cases of

possible polarizations have to be
described.

From this point on we will consider only a geometry where pump and probe
propagate about different directions. In particular we will consider the pump
moving towards the positive side of the the z-axis, with a wavevector k, =

20



(0,0,kp), ka = 21/A,, being A, the pump pulse central wavelength. Therefore, the
pump field propagation will be z-ct. And we will consider the probe moving
towards the positive side of the the x-axis, with a wavevector kg = (kg, 0,0), kg =
2m/Ag, where Ag is the probe pulse central wavelength. Therefore, the probe field
propagation will be x-ct. We consider that both pulses are going to collide close the
origin of coordinates (0,0,0).

Working with crossed beams, the problem of light from one beam entering the
amplification chain of the other is totally avoided, and this is certainly beneficial
from the experimental point of view, particularly if experiments with a high
repetition rate have to designed due to the ultralow signal we expect to get.
However, the quantum vacuum nonlinearity is reduced as the beams increase their
relative angle. It can be shown [11] that the nonlinear terms change with the tilt
angle between the pump and probe beams by a factor cos* (6/2) , where 0 is the
tilt angle between pump and probe, 6 = 0 for counterpropagating and 6 = /2 for
the geometry to be described here. Therefore, at this 8 = m/2 tilt angle the
nonlinearities are going to be reduced by a factor 4. In spite of this reduction, there
can be other causes that favor such experiments at these angles (or at intermediate
tilts). We will keep the notation n, /4 in the following discussion and thus n, will
indicate the nonlinearities for the counterpropagating case. Obviously there will be
the two nonlinear indices n, ; and n, ; depending of the electric and magnetic fields
polarizations.

phase-shifted 4
wavefront probe pulse

pump pulse * just after
collision
¢ e . e .

v v
during collision pump pulse
just before
collision
flat probe
probe pulse wavefront

Figure 13. Schematic geometry of the pump-probe interaction described. We study the small
phase shift that the quantum nonlinear effect introduces on the probe pulse after crossing a very
intense pump pulse.

In this case the probe beam phase-shift is going to be produced in a collisional
geometry as the one depicted in Fig. 13. We consider that the probe arrives with a
flat optical phase (near its waists) and due to the interaction to the extreme field, it
changes its phase by a small amount (much lower than one wavelength). This phase
shifted wavefront will result in a diffracted probe beam.
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Figure 14. In this case of crossing beams there are four polarization configurations. Two of them (a
and b) can be considered as parallel, or better longitudinal, because they “explore” the E2— c?B?
coupling, being E - cB = 0. The other two (¢ and d) can be considered as perpendicular, or better
transverse, because they “explore” the E - ¢B coupling, being E2— c?B? = 0.

For the case of counterpropagating cases there were only two possibilities,
perpendicular or parallel, as shown in Fig. 5. However, in the case of beams
crossing at a right angle there are four basic configurations that are described in Fig.
14. While in the counterpropagating case it was possible to have pump and probe
electric fields parallel and at the same time that pump and probe magnetic fields
parallel too, in this case this is not possible. Fig. 14a corresponds to parallel pump
and probe magnetic fields. The electric fields are perpendicular. In this case, the
two nonlinear couplings in the Lagrangian are E>— c2B? = —2E,Ep (observe that
E=cB) and E-cB = 0. Observe that in the case of parallel counterpropagating
lasers shown in Fig. 5a the coupling is E2— ¢? B2 = 4E,Eg. This is the reason why
the coupling in this case is smaller than the coupling in the counterpropagating
geometry. In the case of Fig. 14b the electric fields of pump and probe are parallel.
The magnetic fields are perpendicular. Now the two nonlinear couplings in the
Lagrangian are E2—c?B? = 2E,Eg and E - cB = 0. Again, half of the value for
counterpropagating parallel fields. Fig. 14c corresponds to one configuration where
the pump and the probe electric fields are perpendicular and so are the magnetic
fields. Therefore E?—c?B? =0, and cE:B = EpEg. Again, in the case of
counterpropagating fields, shown in Fig. 5b, this contribution would have been E -
cB = 2 E,Eg. Itis therefore clear that the coupling is half of the counterpropagating
coupling for perpendicular polarizations. The last possibility is presented in Fig.
14d, that corresponds to the perpendicular case too and where the couplings are
E*— c?B? =0, and E - cB = E,Ep. As we see, the terms &, and &, correspond to
parallel and perpendicular polarizations but in the sense explained here. These
examples of basic reasoning can be very useful when designing experimental
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configurations for such kind of experiments. As indicated before we omitted the
influence of the longitudinal fields. For the loose focus of the probe this can be
reasonable, but for a tightly focused pump such longitudinal effects can be of
certain relevance.

In the case of crossing beams, we can also use the ray description introduced
previously. Since we are interested in a configuration where the probe waist is
relatively large, its Rayleigh length will be very long and along the interaction
region it will have almost plane phase surfaces. It is reasonable therefore to consider
just ray propagation -probe ray propagation- and calculate the phase shift due to the
nonlinear term induced by the pump. As discussed in our previous paper we
recommend for such kind of experiments a tight focus pump and a wide waist probe
with a very high optical quality. Although the probe peak intensity won’t be so
extreme, the needed optical quality and wide waist makes it a challenge to prepare
such probe pulses.

The advantage of a wide waist is that all the quantum nonlinearities happen
inside a region that is much smaller that the probe Rayleigh length. In this case we
can consider (just very close to the probe waist) probe wavefronts and calculate
locally their phase considering probe rays.

Figure 15. Outline of the phase shift calculation procedure, considering individual probe rays in a
:gion between two values of x (Xin, X initial, and X, x final) that lie inside the probe Rayleigh length.
umerical integration to see quantum vacuum effects can be restricted to the dashed cube depicted.

As indicated for the counterpropagating case, it is enough to consider the probe
propagation inside a medium with a refractive index given by n,I,. A ray
description is also valid. Fig. 15 is the evolution of Fig. 7 with the only change
being that now the probe moves along x as x-ct.

If the probe waist is large enough, we can describe it near the focus as a plane
wavefront. We know from the beginning that the influence is going to be very small
and can be accounted for as a phase shift. Therefore, it is enough to consider probe
rays. These are geometrical lines x-ct= constant, y=constant and z=constant, in a
way similar to our approach to study the counterpropagating case.
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The scheme of such interaction is given in Fig. 16. Because the probe waist is
relatively wide in the interaction region, we describe it as a plane-wavefront. Before
the collision the wavefront is a plane moving upwards in the figure. During the
interaction with the pump, the quantum vacuum effect adds a phase in the regions
where the pump intensity is high. After the collision this probe wavefront leaves
the interaction region with a very small phase-shift according to the pump intensity
it has passed through. All this happens inside the Rayleigh length of the probe. From
this moment on, the quantum vacuum coupling is over and the wavefront
propagates (diffracts) in the vacuum. This diffractive evolution can be accounted
for using the well-know Fraunhofer diffraction model because the detectors are
going to be placed at a distance from the collision point of the order of tens of
centimeters or even meters (such long distance could also be useful for certain time
gating techniques). In the case of positioning the detection devices close to the
focus, the well-known Fresnel diffraction models have to be considered.

Figure 16. Schematic
representation of a probe
wavefront phase plane change.
Before crossing the focus
(left) the wavefront (blue) is a
plane. During the interaction
with the pump pulse (center) it
acquires a phase shift
proportional to the intensity
the probe has “seen”. After
that we get a phase shifted
wavefront (right).

collision

just before
collision

As in the counterpropagating case, we are going to consider a probe waist of 16
um just to show the benefits for detection (this value can be considered a
compromise between a very low diffraction probe and still possibility to arrive to
relatively large probe intensities). In this situation the probe Rayleigh length is very
big (~ 1 millimeter) and there is the possibility to consider such pulse as rays. Rays
moving exactly along the x-axis. The general equation for each one of these rays is,
X — ct = cty, y= constant, z=constant. t, indicates the time where this element of
the ray crosses the x=0 plane. The analogous to Eq. (7) for the nonlinear phase shift
in this case is

n Xfin
D00 t0) = ks [ aCuyzx/c —t0) da (16)

Xin

This expression represents the phase shift of the ray moving along a line parallel to
the x-axis, in the integration region that has to be smaller than the probe Rayleigh
length in order to allow this ray approach.

To continue with the development of the expression for the nonlinear phase shift
is is necessary to define the form of the pump beam near the focus. We introduce
this analogously to what we did to arrive to Eq. (9). As defined previously, p? =
x? + y2, N=1/D is the focal number (D is the focusing parabola diameter and f its
effective focal length), and At indicates the pump-probe jitter. We assume that the
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probe is centered at the origin of coordinates at t=0 and thus the probe can arrive to
be centered at that point at a time At (a few periods at most).

Adp(y,z,t) =
. n, (X ) Ag N TP (z — c(t + At))? q
= BILin Iya T[_p J1 <—) exp| —2 X (17)

AA N C2 Ti

This expression is analogous to Eq. (9), with the obvious difference that now we
have integrated over the ray x — ct = ct, constant, with y and z constant too (this
is the equation of the ray, and t, indicates the time this phase plane crosses the x=0
plane). A difficulty appears now, the integral over dx involves the p variable and
therefore an expression as simple as the indicated in Eq. (11) can not be worked
out.

Thus, to get an insight of the important features of this interaction it is better to
use a Gaussian description of the pump intensity near its waist, as we also did for
the derivation of Eq. (14). Working with a Gaussian pump pulse characterized by a
waist wy given by w, = 0.87 A5 N, the pump intensity near the focus will be

x? +y? 7z — c(t + Ab))?
[A(X,y,2,t) =ys exp (—2 2y )exp (—2( (2 5 ) ) (18)
wi c? 13

we can obtain enlightening equations for the nonlinear phase shift. The phase shift
acquired by this probe ray we are considering will be

Ad(x,y,to) = , , ,
n Xfi X + z—c(t+ At
= kg — IoAf exp (—2 Zy )exp (—2( (2 5 ) ) dx (19)
4 Xin Wi C% Ty

Eq. (19) gives an analytical expression for the phase shift under these
approximations. We can go one step further and considering that all the nonlinear
interaction is between the x=x;, and the x=xg planes. Therefore, we can artificially
extend the integral to +oo

n - X2 + y? Z— X+ cty)?
Ad () ~ kg -2 IoAf exp (—2 4 )exp (—2 %) dx  (20)
4 w c’t

+00 A A

and therefore,

Ad)(xl y; to)
K n, I 2 (Wi + CzTi)(CZTiyz + WX(Z + Cto)z) + W;i(Z n Cto)z
= —_ ex —
By 04 p w2 22 (W2 + c212)

2 (W3 + c?13)
We neglected the jitter At for simplicity, adding it is straightforward. For tq = 0,
we are considering the moment that the probe wavefront crosses the pump pulse

\[ T Wac2T4 (21)
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just at the waist. This will the case of maximum phase shift. Thus, the maximum
shift for the ray x-ct, y, z is given by

A(I)max (y’ Z' 0)

(23)

2 4 (1222 (0272 2 2,2 4 ho2 2 2.2
(Wi + c?13)(c*tay? + wiz )+WAZ> W, c2T4

Ny
~ kBZ Ioa exp( 2 2 (w2 + 22)

wac2ti (wi + c213)

This expression is important because indicates the dependence of the phase with
the pump pulse shape. From approximate equations similar to this, a lot of
information to design an optimized experiment can be obtained.

Among the results we can extract from this equation pertaining to the design of
an experiment, we can study the optimized pump waist/length ratio. The equation
for Appmax(y,2z,0) just obtained depends on two parameters that characterize the
pump laser pulse, its waist w, and its length c T4. The relation between these two
parameters is of fundamental importance. Considering that the central part of the
pulse has a Gaussian form close to the focus and that it has symmetry of revolution
(wy is equal for x and for y) we can have a spheroidal shape (ellipsoid of revolution
along the z-axis). It is well known that there are three kinds of spheroids: oblate (or
disk shape), when ¢ T, < wy; true spherical, when ¢ T4 = w,; and prolate (or cigar
shape), when c T4 > w,. Because the minimum, Fourier-transform limited, value
of T, is determined by the laser bandwidth, it is possible to leave a residual chirp
when compressing the pulse to produce a value of T, to be slightly bigger. Although
this is seldom considered in the context of extreme fields, it would be also
interesting to consider pulses without revolution symmetry, i.e. pulses where the
waist wyp is different for the two transverse directions, way, # wyy [28]. These
anisotropic Gaussian pulses could optimize the pump-probe overlapping in certain
situations, although we are not going to consider them now.

Coming back to isotropic/spheroidal pulses, it is normal to refer the ratio of these
two parameters as the eccentricity of the spheroid. The eccentricity € is defined by
€ = c tp/Wa. Considering the ray crossing for the line z=0, y=0 and introducing
the eccentricity parameter, Eq. (23) becomes

T Wi c2T4 o T €2
= ————— 1
(W3 + c213) BIOA l4(1+¢2) A

n
APmax(0,0,0) = kg - oa |5 (24)

Obviously, the maximum phase shift occurs when ct, goes to infinity, keeping
the waist w, constant, but this is artificial because the energy inside the pump pulse
is going to be proportional to w3 c T, (i.e. proportional to the volume of the
spheroid) and increasing c T4 while keeping Iy, constant would require more and
more energy. It is more interesting to consider that experimentally adding a residual
chirp to the pulse just distributes the energy. Thus, we can maximize the expression
for Apax(0,0,0) with the constrain that wi c T, is kept constant. It is not difficult
to see that the max dephasing Ad,,.4(0,0,0) happens for an eccentricity equal to
£ = /2, i.e. cty=1.41 wy. In this case Eq.(24) becomes
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APy = 0.72 kg 1y /4 Igs CTo (25)

That gives the maximum value of the phase shift for a given pulse energy when the
two lasers, of the same wavelength, cross at at t/2 angle. It is worth comparing
this expression with Eq. (11) for counterpropagating lasers that can be simplified
to Apax® = 0.63 kgn,lys cts. As indicated before, n, corresponds to the
counterpropagating case and may have two values according to the field’s
polarizations (parallel, n, , or perpendicular, n, ; ). We have explicitly written the
n, /4 factor in Eq. (25) to remind us of the n/2 angle of the two propagation vectors.

8.- Comparison between the two situations

We have analyzed the case of counterpropagating beams and the case where the
two beams cross at a right angle. These can be considered as the two limiting cases.
Obviously the copropagating case is not of interest. Besides a coefficient close to
one, depending on the pulse configuration, there are two main differences that can
be of fundamental relevance for the design of a quantum vacuum experiment. These
differences are: the coupling factor, and the observation angle.

a) b)

]~
cone angle

gle

~ Probe cone an

— {

Figure 17. One relevant advantage of working with beams crossing is that the observation can be
done at a small angle (a). However in the case of counter-propagating beams (b) the pump cone
angle is a region avoided for detection because of the pump off-axis-paraboloidal (OAP) mirror used
for the tight focusing of the pump. The tighter the focus, the bigger the pump cone angle, and this
can be a major difficulty to work with focal numbers smaller than three. The scattered photon
detection zone (or detection ring) is indicated in green in the figure.

By the coupling factor we refer to the cos* (0/2) factor described in the previous
Section, where 0 is the tilt angle between the pump and the probe propagation
directions. For beams crossing at a right angle (6 = m/2) this factor is 1/4 while
for counterpropagating beams (8 = 0) this factor is one. Therefore any possible
quantum vacuum signal is going to be four times bigger in the case of
counterpropagating than in the case of crossing at a right angle. This seems a strong
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argument in favor of working with counterpropagating beams. However there is a
second fundamental difference.

The angle of observation of the scattered light is the second point to consider to
decide which beam configuration is the most adequate. One relevant advantage of
working with beams crossing is that the observation can be done at a small angle,
as indicated in Fig. 17a. However, in the case of counterpropagating beams (Fig.
17b) the pump cone angle is a region avoided for detection because of the pump
off-axis-paraboloidal (OAP) mirror used for the tight focusing of the pump. The
tighter the focus, the bigger the pump cone angle, and this can be a major difficulty
to work with focal numbers smaller than three. The detection zone (or detection
ring) is indicated in green in the figure. A detection a few degrees closer to the
probe axis can be fundamental because the scattered signal drops very quickly as
the angle increases as can be see in the red dotted lines of Fig. 9. In this figure, the
focal cone angle (f/3 in the figure) is the shaded region indicated as forbidden, and
this forbidden cone happens only in the counterpropagating case. In the case of
beams crossing at a right angle the detection can be as close as the probe diffraction
allows. For this reason it is fundamental to have a probe with a Gaussian profile to
minimize its linear diffraction.

probe ray
ds
_— —
Pump
a ) pulse

Figure 18. The quantum vacuum nonlinearity depends not exactly on the peak intensity but on the
line integrated energy density “seen” by each differential pencil (probe ray). The red ellipses
represent the pump pulse with its waist, w,, and duration ct,. The blue line represents the probe
ray pencil of differential section dS that probes the vacuum nonlinearity. The phase shift acquired
by this probe ray gives the fundamental information to calculate the nonlinear probe beam
diffraction. Depending of the pump probe configuration the probe ray scans the pump pulse in a
different way. a) corresponds to the path of the probe ray for counterpropagating fields (Section 6).
b) corresponds to pump and probe pulses crossing at a right angle (Section 7). The pump-probe
relative motion results in the effective scanning, along the pump pulse, shown in b).

probe ray
ds

9.- Scaling with linear density of energy

Observe that for the two geometries discussed, the phase increment is
proportional (with a constant depending of the geometry but close to unity) to
kg n, [gp cTs, as shown in Egs. (11) and (25) respectively. kg is the probe
wavenumber, the shorter the probe wavelength the higher the wavenumber, but the
diffraction angle is also going to be smaller. All has to be considered when
designing an experiment. n, is the nonlinear term to measure (parallel or
perpendicular). And finally, we get Iy, cts. At first glance, the larger the probe
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intensity the better, however if we check this expression carefully, we observe that
the key factor is the energy density seen by the probe ray. Imagine that our probe
ray is a very thin disk of area dS that moves at the speed of light. It scans a cylinder
whose length is given by ct,. Then cty dS is the differential volume it covers and
[pa Ta dS is the energy inside this volume. These differential volumes are shown in
Fig. 18a for the case of counterpropagating lasers and in Fig. 18b for the case of
crossing beams. In this second situation both probe and pump move in
perpendicular directions, and the probe ray scans a region of the pump at a 45-
degree angle due to the pump-probe relative motion. The region of the pump pulse
scanned is indicated by the blue differential pencil. For this reason the ratio between
the pump waist and its duration is relevant for the optimization of the nonlinearities.
The shortest pump pulse not necessarily implies the strongest coupling (keeping
constant the pump energy per shot).

In conclusion, to optimize the quantum vacuum nonlinearity it is necessary to
maximize the energy inside this differential volume probed by the probe ray (blue
lines in Fig. 18). This is important because it is not the intensity by itself what is
relevant. For example, efforts to reduce the pulse duration converting a one PW
pulse (30J/30fs) in a two PW pulse (30J/15fs) represent a great effort in enlarging
the pulse bandwidth and do not help for our purpose. Pulses with a longer duration
imply a smaller bandwidth and thus a smaller complexity than the OPA 15 fs or
less available now. Extending the pump pulse duration is limited by the requirement
that all its energy has to be at the waist at one. In other words the pump Rayleigh
length has to be longer than the pulse length (ct,), otherwise the pulse would have
a complicated shape as shown in Fig. 19. This figure is a scheme for the case of cty
longer that the pump Rayleigh length. In this case the probe probes the pump before,
during and after the pump waist. The overlapping that happens before or after the
focus (right and left plot in Fig. 19) does not result in a relevant nonlinear effect
because the pump intensity is far from its peak. Only the central part contributes.

probe Aprobe
pump ¥ pump ¥V pump v pump
1004

Figure 19.- Cartoon of the collision when the pump is a long pulse (300 fs in this case with a
waist of only 2 um). Although this is just a drawing, the horizontal scale is compressed by a factor
of 5 compared to the vertical scale to increase the visibility of the effect we want to show. If the
pump pulse is too long not all its energy will be on the focal spot at the same time.

On the contrary, increasing the pulse duration helps to introduce more energy
inside it. For this reason in the counterpropagating case a focus too tight is probably
not the best option. The optimized pulse length is an interplay between the focal
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number for the pump (not smaller that three certainly, and probably even longer)
and the focal number of the probe, that has to be very high, indicating a wide focus.

As we mentioned before the infrared-infrared approach discussed here is not the
only option to study quantum vacuum. There is an ongoing experiment in
Hamburg’s European XFEL where the pump is a PW-class laser and the probe is
one of the XFEL X-ray beams. It is a counterpropagating geometry, to maximize
the nonlinear n, coefficient. In that case the probe beam is the X-ray beam that is
focused. With an extremely wide waist (wide in comparison to its wavelength)
therefore the relation between waists and pulse lengths allows the use of a very long
pulse. With this we would like to point out that the idea that, in order to maximize
the nonlinearity, it is necessary to enhance the intensity as much as possible is not
necessarily correct. An increase in the intensity is good if it increases the amount
of energy “seen” by the probe ray. Or in other words, it is necessary to maximize
the energy density inside the differential tube of section dS shown in Fig. 18. The
present extreme lasers technology is saturating towards a limit of a few tens of PW
[29]. Sometimes the increase of peak power is based on a reduction of the pulse
duration keeping the pulse energy almost constant. This increases the peak intensity
but does not optimize the energy density distribution, in fact some times it could
even signify a slight decrease of the energy density seen by the probe ray.

9.- Conclusions

The quest of an experimental observation of the vacuum nonlinearities has not
been successful for the moment [30, 31]. However lasers are improving
performances very rapidly and a new generation of such experiments is expected
using infrared-X-Ray or infrared-infrared [4].

In the previous Sections we analyzed two different configurations for a future
infrared-infrared experiment that could solve the controversy between the
Heisenberg-Euler and the Born-Infeld models. We can conclude that the
geometrical factors appearing for different pump and probe configurations are not
so different (compare 0.63 to 0.72), however the dependence of n, with the tilt
angle (the angle between the two propagation vectors) is very relevant. There is a
factor of 4 between the situations studied in Section 6 (counterpropagating) and in
Section 7 (normal propagation vectors) and this is a fundamental effect that can not
be avoided.

In these considerations we didn’t include the longitudinal components of the
field. Longitudinal fields are needed in order to fulfill the transversality conditions,
V-E =0 and V-B = 0 for the electric and magnetic fields. The transversality
condition has been studied in many papers and there are very simple and convenient
expressions to calculate them in first and second order [26]. For a wide waist probe,
this longitudinal field is probably not going to be relevant. For the case of a pump
focused with an {/3 parabola probably it is also negligible. However, for very tight
focuses, close to /1, longitudinal fields have to be included too. A visual
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construction like the one shown in Fig. 14 probably will help to understand the
effect of the Lagrangian couplings induced by such longitudinal fields.

Our objective has not been to produce a strong quantum vacuum effect. Our
objective has been discussing situations where it is possible to have a clean and
measurable quantum vacuum effect. For this reason, among other considerations,
in this study we restricted ourselves to f/3 focal numbers in order to get clean results
both for parallel and perpendicular polarizations. Our study indicates that reducing
the focal number too much to get a very tight focus and trying to maximize the
intensity is probably not the best strategy to maximize the quantum nonlinearity.
To enhance the effect we are looking for, the parameter to maximize is the energy
density distribution along the path of the central probe rays. This changes the
refractive index seen by the probe ray and thus to enhances the probe diffraction,
which is the signal we are looking for.

There is a need to keep these consideration in mind for the design of lasers
specific to see these nonlinearities induced by the vacuum (or better by the virtual
pairs present in vacuum). Some figures of merit typically used, such as the peak
intensity, are relevant but not the only relevant specifications of the laser for this
purpose. For example the optical quality of the probe pulse has to be as good as
possible, with a Gaussian profile, to minimize its linear diffraction (diffraction with
the pump off), and at the same time it has to be as intense as possible (signal
proportional to the number of photons in the probe). Finally, it is relevant to
mention that pump coherence, being relevant, is not as relevant as in other
applications. A number of pump lasers, conveniently designed and finely
synchronized, but incoherent between them, can be of interest for this application.

Therefore we are in front of a new generation of extreme laser experiments that
requires tools specifically designed. At the same time new fundamental applications
of such lasers are to be possible, in particular, ultraintense lasers as a tool to study
dark matter.

These lines are dedicated to the memory of Professor Howard R. Reiss, an
outstanding pioneer in extreme laser field physics, who taught some of us about
those concepts.
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