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Singular Abreu equations and linearized Monge-Ampère

equations with drifts

Abstract. We study the solvability of singular Abreu equations which arise in the approximation

of convex functionals subject to a convexity constraint. Previous works established the solvability

of their second boundary value problems either in two dimensions, or in higher dimensions under

either a smallness condition or a radial symmetry condition. Here, we solve the higher dimensional

case by transforming singular Abreu equations into linearized Monge-Ampère equations with drifts.

We establish global Hölder estimates for the linearized Monge-Ampère equation with drifts under

suitable hypotheses, and then use them to the regularity and solvability of the second boundary

value problem for singular Abreu equations in higher dimensions. Many cases with general right-

hand side will also be discussed.
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1. Introduction and statements of the main results

In this paper, we study the solvability of the second boundary value problem of the follow-

ing fourth order Monge-Ampère type equation on a bounded, smooth, uniformly convex
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domain Ω ⊂ R= (= ≥ 2):




=∑

8, 9=1

*8 9�8 9| = −Wdiv ( |�D |@−2�D) + b · �D + 2(G, D) := 5 (G, D, �D, �2D) in Ω,

| = (det�2D)−1 in Ω,

D = i on mΩ,

| = k on mΩ.

(1.1)

Here W ≥ 0, @ > 1,* = (*8 9 )1≤8, 9≤= is the cofactor matrix of the Hessian matrix

�2D = (�8 9D)1≤8, 9≤= ≡
(
m2D

mG8mG 9

)

1≤8, 9≤=

of an unknown uniformly convex function D ∈ �2 (Ω); i ∈ �3,1 (Ω), k ∈ �1,1 (Ω), b : Ω→
R
= is a vector field on Ω, and 2(G, I) is a function on Ω × R. When the right-hand side

5 depends only on the independent variable, that is 5 = 5 (G), (1.1) is the Abreu equa-

tion arising from the problem of finding extremal metrics on toric manifolds in Kähler

geometry [Ab], and it is equivalent to

=∑

8, 9=1

m2D8 9

mG8mG 9
= 5 (G),

where (D8 9 ) is the inverse matrix of �2D. The general form in (1.1) was introduced by

the second author in [Le6, Le7, Le8] in the study of convex functionals with a convexity

constraint related to the Rochet-Choné model [RC] for the monopolist’s problem in eco-

nomics, whose Lagrangian depends on the gradient variable; see also Carlier-Radice [CR]

for the case where the Lagrangian does not depend on the gradient variable.

More specifically, in the calculus of variations with a convexity constraint, one con-

siders minimizers of convex functionals
∫

Ω

�0 (G, D(G), �D(G)) 3G

among certain classes of convex competitors, where �0 (G, I, p) is a function on Ω × R ×
R
=. One example is the Rochet-Choné model with @-power (@ > 1) cost

�@,W (G, I, p) = ( |p|@/@ − G · p + I)W(G),

where W is nonnegative and Lipschitz function called the relative frequency of agents in

the population.

Since it is in general difficult to handle the convexity constraint, especially in numer-

ical computations [BCMO,Mir], instead of analyzing these functionals directly, one might

consider analyzing their perturbed versions by adding the penalizations−Y
∫
Ω

logdet�2D 3G

which are convex functionals in the class of �2, strictly convex functions. The heuristic

idea is that the logarithm of the Hessian determinant should act as a good barrier for
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the convexity constraint. This was verified numerically in [BCMO] at a discretized level.

Note that, critical points, with respect to compactly supported variations, of the convex

functional ∫

Ω

�0 (G, D(G), �D(G)) 3G − Y
∫

Ω

log det�2D 3G,

satisfy the Abreu-type equation

Y*8 9�8 9 [(det�2D)−1] = −
=∑

8=1

m

mG8

( m�0

m?8
(G, D, �D)

)
+ m�0

mI
(G, D, �D).

Here we denote p = (?1, . . . , ?=) ∈ R=. In particular, for the Rochet-Choné model with

@-power (@ > 1) cost and unit frequency W ≡ 1, that is, �0 = �@,1, the above right-hand

side is

−div ( |�D |@−2�D) + = + 1,

which belongs to the class of right-hand sides considered in (1.1). When �0 (G, I, p) =
� (p) + �̂ (G, I) the above right-hand side becomes

−div (�� (�D)) + m�̂
mI

(G, D).

When W > 0, we call (1.1) a singular Abreu equation because its right-hand side

depends on �2D which can be just a matrix-valued measure for a merely convex func-

tion D.

Our focus in this paper will be on the case W > 0. For simplicity, we will take W = 1.

The Abreu type equations can be included in a class of fourth order Monge-Ampère

type equations of the form

*8 9�8 9 [6(det�2D)] = 5 (1.2)

where 6 : (0,∞) → (0,∞) is an invertible function. In particular, when 6(C) = C \ , one can

take \ =−1 and \ =− =+1
=+2

to get the Abreu type equation and the affine mean curvature type

equation [Ch], respectively. It is convenient to write (1.2) as a system of two equations for

D and | = 6(det�2D). One is a Monge-Ampère equation for the convex function D in the

form of

det�2D = 6−1 (|) (1.3)

and other is the following linearized Monge-Ampère equation for |:

*8 9�8 9| = 5 . (1.4)

The second-order linear operator
∑=

8, 9=1*
8 9�8 9 is the linearized Monge-Ampère operator

associated with the convex function D because its coefficient matrix comes from lineariz-

ing the Monge-Ampère operator:

* =
m det�2D

m (�2D)
.
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When D is sufficiently smooth, such as D ∈,4,B
loc

(Ω) where B > =, the expression

=∑

8, 9=1

*8 9�8 9|

can be written as

=∑

8, 9=1

�8 (*8 9� 9|), since the cofactor matrix (*8 9 ) is divergence-free,

that is,
=∑

8=1

�8*
8 9
= 0

for all 9 . The regularity and solvability of equation (1.2), under suitable boundary condi-

tions, are closely related to the regularity theory of the linearized Monge-Ampère equa-

tion, initiated in the fundamental work of Caffarelli-Gutiérrez [CG]. In the past two dec-

ades, there have been many progresses on the study of these equations and related geo-

metric problems, including [TW1, TW2, TW3, CW, CHLS, Le1, Le2, D1–D4, Z1, Z2], to

name a few.

According to the decomposition (1.3) and (1.4), a very natural boundary value prob-

lem for the class of fourth order equation (1.2) is the second boundary value problem

where one describes the values of D and | on the boundary mΩ as in (1.1).

1.1. Previous results and difficulties

A summary of solvability results for (1.1), or more generally, the second boundary value

problem for (1.2), for the case 5 ≡ 5 (G) is as follows. For the second boundary value

problem of the affine mean curvature equation, that is, (1.2) with 6(C) = C− =+1
=+2 , Trudinger-

Wang [TW2, TW3] proved the existence of a unique �4,U (Ω) solution when 5 ∈ �U (Ω)
with 5 ≤ 0, and a unique,4, ? (Ω) solution when 5 ∈ !∞ (Ω) with 5 ≤ 0. The analogous

result for the Abreu equation (1.1) was then obtained by the fourth author [Z2]. For the

,4, ? (Ω) solution, the second author [Le1] solved (1.1) for 5 ∈ ! ? (Ω) with ? > = and

5 ≤ 0. The sign on 5 was removed by Chau-Weinkove [CW] under the assumption that

5 ∈ ! ? (Ω) with ? > = and 5 + := max{ 5 , 0} ∈ !@ (Ω) with @ > = + 2 for the affine mean

curvature equation. Finally, in [Le2], the second author showed that the,4, ? (Ω) solution

exists under the weakest assumption 5 ∈ ! ? (Ω) with ? > = for a broad class of equations

like (1.2), including both the affine mean curvature equation and the Abreu equation. We

will concentrate on the singular Abreu equation (1.1), and its solvability in �4,U and,4,B

(B > =) in this paper. We obtain solvability by establishing a priori higher order derivative

estimates and then using the degree theory. Essentially, establishing a priori estimates

requires establishing the Hessian determinant estimates for D, and Hölder estimates for |.

For the singular Abreu equation, the dependence of the right-hand side on �2D creates

two new difficulties in applying the regularity theory of the linearized Monge-Ampère

equation. The first difficulty lies in obtaining the a priori lower and upper bounds for

det�2D, which is a critical step in applying the regularity results of the linearized Monge-

Ampère equation. The appearance of �2D has very subtle effects on the Hessian determ-

inant estimates. The second author [Le6] obtained the Hessian determinant estimates for

the case 5 = −div ( |�D |@−2�D) in two dimensions with @ ≥ 2 by using a special algebraic
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structure of the equation. In a recent work of the second and the fourth authors [LZ], the

Hessian determinant estimates for the case 1 < @ < 2 were established by using partial

Legendre transform. The second difficulty, granted that the bounds 0 < _ ≤ det �2D ≤
Λ < ∞ have been established, consists in obtaining Hölder estimates for | in the lin-

earized Monge-Ampère equation (1.4), which has no lower order terms on the left-hand

side. This requires certain integrability condition for the right-hand side, as can be seen

from the simple equation Δ| = 5 . In previous works [CG, GN1, GN2], classical regu-

larity estimates for linearized Monge-Ampère equation were obtained for != right-hand

side. This integrability breaks down even in the case 5 = −ΔD (where @ = 2, b = 0

and 2 = 0), which is a priori at most !1+Y for some small constant Y(_,Λ, =) > 0 (see

[DFS,F,Sc]). With the Hölder estimates for the linearized Monge-Ampère equation with

!=/2+Y right-hand side in [LN2], the second author [Le6] established the solvability of

(1.1) for the case 5 = −div ( |�D |@−2�D) in two dimensions with @ ≥ 2. When 1 < @ < 2,

5 = −div ( |�D |@−2�D) becomes more singular in �2D and hence it has lower integrabil-

ity (if any). However, in two dimensions, the second and the fourth authors [LZ] solved

the second boundary value problem (1.1) for 5 = −div ( |�D |@−2�D) + 2(G, D) for any

@ > 1 under suitable assumptions on 2 and the boundary data. The proof was based

on the interior and global Hölder estimates for linearized Monge-Ampère equation with

the right-hand being the divergence of a bounded vector field which were established

in [Le4, Le5]. The solvability of the singular Abreu equations (1.1) in higher dimen-

sions, even the simplest case 5 = −4D, has been widely open. Only some partial results

were obtained in [Le7] under either a smallness condition (such as replacing 5 = −ΔD by

5 = −XΔD for a suitably small constant X > 0) or a radial symmetry condition.

1.2. Statements of the main results

The purpose of this paper is to solve the higher dimensional case of (1.1). We will first

consider the case that the right-hand side has no drift term b · �D. This case answers in the

affirmative the question raised in [LZ, Page 6]. In fact, we can establish the solvability for

singular Abreu equations that are slightly more general than (1.1) where div ( |�D |@−2�D)
is now replaced by div (�� (�D)) for a suitable convex function �. Our first main theorem

states as follows.

Theorem 1.1 (Solvability of the second boundary value problem for singular Abreu equa-

tions in higher dimensions). Let Ω ⊂ R= be an open, smooth, bounded and uniformly

convex domain. Let A > =. Let � ∈,2,A
loc

(R=) be a convex function. Assume that i ∈ �5 (Ω)
and k ∈ �3 (Ω) with minmΩk > 0. Consider the following second boundary value problem
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for a uniformly convex function D:





=∑

8, 9=1

*8 9�8 9| = −div (�� (�D)) + 2(G, D) in Ω,

| = (det�2D)−1 in Ω,

D = i on mΩ,

| = k on mΩ.

(1.5)

Here (*8 9 ) = (det�2D) (�2D)−1, and 2(G, I) ≤ 0.

(i) Assume 2 ∈ �U (Ω × R) where U ∈ (0, 1). Then, there exists a uniformly convex solu-

tion D ∈ ,4,A (Ω) to (1.5) with

‖D‖, 4,A (Ω) ≤ �

for some � > 0 depending on Ω, =, U, �, A , 2, i and k.

Moreover, if � ∈ �2,U0 (R=) where U0 ∈ (0, 1), then there exists a uniformly convex

solution D ∈ �4,V (Ω) to (1.5) where V = min{U, U0} with

‖D‖
�4,V (Ω) ≤ �

for some � > 0 depending on Ω, =, U, U0, �, 2, i and k.

(ii) Assume 2(G, I) ≡ 2(G) ∈ ! ? (Ω) with ? > = where 2(G) ≤ 0. Then, for B = min{A, ?},
there exists a uniformly convex solution D ∈ ,4,B (Ω) to (1.5) with

‖D‖, 4,B (Ω) ≤ �

for some � > 0 depending on Ω, =, ?, �, A, B, ‖2‖!? (Ω) , i and k.

We will prove Theorem 1.1 in Section 4.

We also discuss the solvability and regularity estimates of (1.1) in the case that the

right-hand side has more general lower order terms and no sign restriction on 2. We mainly

focus on the most typical case that the right-hand side has a Laplace term:




=∑

8, 9=1

*8 9�8 9| = −4D + b · �D + 2(G, D) in Ω,

| = (det�2D)−1 in Ω,

D = i on mΩ,

| = k on mΩ.

(1.6)

Here, (*8 9 ) = (det�2D) (�2D)−1. Our second main result is the following theorem.

Theorem 1.2 (Solvability of the second boundary value problem for singular Abreu equa-

tions with lower order terms in high dimensions). Let Ω ⊂ R=(= ≥ 3) be an open, smooth,

bounded and uniformly convex domain. Assume that i ∈ �5 (Ω) and k ∈ �3 (Ω) with

minmΩ k > 0. Consider the second boundary value problem (1.6) with 2(G, I) ≡ 2(G).
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(i) If b ∈�U (Ω;R=) and 2 ∈�U (Ω) where U ∈ (0,1), then there exists a uniformly convex

solution D ∈ �4,U (Ω) to (1.6) with

‖D‖
�4,U (Ω) ≤ �

for some � > 0 depending on Ω, =, U, ‖b‖
�U (Ω) , ‖2‖�U (Ω) , i and k.

(ii) If b ∈ !∞ (Ω;R=) and 2 ∈ ! ? (Ω) with ? > 2=, then there exists a uniformly convex

solution D ∈ ,4, ? (Ω) to (1.6) with

‖D‖, 4, ? (Ω) ≤ �

for some � > 0 depending on Ω, =, ?, ‖b‖!∞ (Ω) , ‖2‖!? (Ω) , i and k.

We will prove Theorem 1.2 in Section 5. Furthermore, in two dimensions, when

‖b‖!∞ (Ω) is small, depending on Ω, k and k, the conclusions of Theorem 1.2 still hold;

see Remark 5.5.

The lack of non-positivity of 2 in (1.6) can raise more difficulties in the !∞-estimate

and the use of Legendre transform in the Hessian determinant estimates. Compared to

the weakest assumption 2 ∈ ! ? (Ω) with ? > = in [Le2], we need ? > 2= in Theorem

1.2(88). However, in two dimensions, this assumption can be weakened provided stronger

conditions on b are imposed, but ‖b‖!∞ (Ω) can be arbitrarily large. This is the content of

our final main result.

Theorem 1.3 (Solvability of the second boundary value problem for singular Abreu equa-

tions with lower order terms in two dimensions). Let Ω ⊂ R2 be an open, smooth, bounded

and uniformly convex domain. Assume that i ∈ �5 (Ω) and k ∈ �3 (Ω) with minmΩ k > 0.

Consider the second boundary value problem (1.6). Assume that b ∈ �1 (Ω; R=) with

div (b) ≤ 32
380<(Ω)2 , and 2(G, I) ≡ 2(G) ∈ ! ? (Ω) with ? > 2. Then there exists a uniformly

convex solution D ∈ ,4, ? (Ω) to (1.6) with

‖D‖, 4, ? (Ω) ≤ �

for some � > 0 depending on Ω, ?, b, ‖2‖!? (Ω) , i and k.

The proof of Theorem 1.3 will be given in Section 6.

Remark 1.4. Some remarks are in order.

(1) Theorem 1.1 applies to all convex functions � (G) = |G |@/@ (@ > 1) on R= for which

(1.5) becomes (1.1) when b = 0. Note that, if 1 < @ < 2, then |G |@ ∈ ,2,A
loc

(R=) for all

= < A < =/(2 − @), while if @ ≥ 2, we have |G |@ ∈ ,2,A
loc

(R=) for all A > =.

(2) By the Sobolev embedding theorem, the solutions D obtained in our main results at

least belong to �3,V (Ω) for some V > 0.

(3) The condition div (b) ≤ 32
380<(Ω)2 in Theorem 1.3 is due to the method of its proof in

obtaining a priori !∞ estimates that uses a Poincaré type inequality on planar convex

domains in Lemma 6.2.
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Remark 1.5. We briefly relate the hypotheses in our existence results to concrete examples

in applications.

(1) Theorem 1.1 applies to the approximation problem of the variational problem

inf

∫

Ω

�0 (G, D(G), �D(G)) 3G (1.7)

among certain classes of convex competitors, say, with the same boundary value i on

mΩ, where �0 (G, I,p) = � (p) + �̂ (G, I) with � being convex and 2(G, I) ≡ m�̂
mI

(G, I) ≤
0. The case � ≡ 0 is applicable. One particular example is �0 (G, I, p) = �̂ (G, I) =(
|G |2/2 − I

)
det�2{(G) where { is a given function, which arises in wrinkling patterns

in floating elastic shells in elasticity [T].

(2) Consider now �0 (G, I,p) = �̂ (G, I). Denote 2(G, I) ≡ m�̂
mI

(G, I). We note that without the

condition 2(G, I) ≤ 0, (1.7) might not have a minimizer. (For example, if �̂ (G, I) = I3
so 2(G, I) = 3I2 ≥ 0, then the infimum value of (1.7) is −∞ if i . 0.) On the other

hand, when the assumption 2(G, I) ≤ 0 holds, a solution to (1.7) always exists: One

solution is the maximal convex extension of i from mΩ to Ω. The existence results in

Theorem 1.1 imply that when �̂ (G, I) is perturbed by convex functions of �D (such as

F(Du) where F is convex) and det�2D (such as − log det�2D), critical points of the

resulting functionals, under appropriate boundary conditions, always exist, and this

heuristically means that the resulting functionals continue to have minimizers.

(3) Theorem 1.2 applies to (1.6) with right-hand side −ΔD + 1. This expression arises

from the Rochet-Choné model with quadratic cost �0 (G, I,p) = |p|2/2 − G · p + I, due

to

−
=∑

8=1

m

mG8

( m�0

m?8
(G, D, �D)

)
+ m�0

mI
(G, D, �D) = −ΔD + = + 1.

Remark 1.6. Given our existence results concerning (1.1), one might wonder if the solu-

tions found are unique. In general, for the fourth-order equations, we can not obtain the

uniqueness of solutions by using the comparison principle. However, for equations of the

type (1.1), we can obtain uniqueness in some special cases by exploring their very par-

ticular structures, using integral methods, and taking into account the concavity of the

operator log det �2D and the convexity of |G |@/@ (@ > 1) or � in general. For example,

we can infer from the arguments in [Le6, Lemma 4.5] that the uniqueness of (1.1) holds

when b ≡ 0 and 2(G, I) satisfies the following monotonicity condition:

(2(G, I) − 2(G, Ĩ)) (I − Ĩ) ≥ 0 for all G ∈ Ω and I, Ĩ ∈ R.

In particular, this implies that the solutions in Theorem 1.1 (ii) are unique, and the solu-

tions in Theorems 1.2 and 1.3 are unique provided that b≡ 0. To the best of our knowledge,

the uniqueness for (1.1) when b ≠ 0 is an interesting open issue.

1.3. On the proofs of the main results

Let us now say a few words about the proofs of our main results using a priori estim-

ates and degree theory. We focus on the most crucial point that overcomes the obstacles
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encountered in previous works: obtaining the a priori Hölder estimate for | = (det�2D)−1

in higher dimensions, once the Hessian determinant bounds on D have been obtained. In

this case, global Hölder estimates for �D follow. Here, we use a new equivalent form (see

Lemma 2.1) for the singular Abreu equation to deal with the difficulties mentioned in

Section 1.1. In particular, in Theorem 1.1, instead of establishing the Hölder estimate for

|, we establish the Hölder estimate for [ = |4� (�D) . The key observation is that [ solves

a linearized Monge-Ampère equation with a drift term in which the very singular term

div (�� (�D)) = trace(�2� (�D)�2D)

no longer appears. Thus, the proof of Theorem 1.1 reduces the global higher order deriv-

ative estimates for (1.5) to the global Hölder estimates of linearized Monge-Ampère

equations with drift terms. To the best of the authors’ knowledge, these global Hölder

estimates with full generality are not available in the literature. In the case of Theorems

1.2 and 1.3, the drift terms are also Hölder continuous. However, they do not vanish on the

boundary and this seems to be difficult to prove Hölder estimates for [ at the boundary, not

to mention global Hölder estimates. We overcome this difficulty by observing that each of

our singular Abreu equation is in fact equivalent to a family of linearized Monge-Ampère

equations with drifts. In particular, at each boundary point G0,

[G0 (G) = |(G)4� (�D (G))−�� (�D (G0)) ·(�D (G)−�D (G0))−� (�D (G0))

solves a linearized Monge-Ampère equation with a Hölder continuous drift that vanishes

at G0. This gives pointwise Hölder estimates for [G0 (and hence for [) at G0. Combining

this with interior Hölder estimates for linearized Monge-Ampère equations with bounded

drifts, we obtain the global Hölder estimates for [ and hence for |. Section 3 will discuss

all these in detail.

For reader’s convenience, we recall the following notion of pointwise Hölder continu-

ity.

Definition 1.7 (Pointwise Hölder continuity). A continuous function { ∈ � (Ω) is said to

be pointwise�U (0 < U < 1) at a boundary point G0 ∈ mΩ, if there exist constants X, " > 0

such that

|{(G) − {(G0) | ≤ " |G − G0 |U for all G ∈ Ω ∩ �X (G0).

Throughout, we use the convention that repeated indices are summed.

The rest of the paper is organized as follows. In Section 2, we establish a new equival-

ent form for the singular Abreu equations which transform them into linearized Monge-

Ampère equations with drift terms, and the dual equations under Legendre transform. The

global Hölder estimates for the linearized Monge-Ampère equation with drift terms, under

suitable hypotheses, will be addressed in Section 3. With these estimates, we can prove

Theorem 1.1 in Section 4. The proofs of Theorems 1.2 and 1.3 will be given in Sections 5,

and 6, respectively. In the final Section 7, we discuss (1.1) with more general lower order

terms, and present a proof of Theorem 3.2 on global Hölder estimates for solutions to the
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linearized Monge-Ampère equation with a drift term that are pointwise Hölder continuous

at the boundary.

2. Equivalent forms of the singular Abreu equations

In this section, we derive some equivalent forms for the following general singular Abreu

equations: {
*8 9�8 9| = −div (�� (�D)) +&(G, D, �D), in Ω,

| = (det�2D)−1 in Ω,
(2.1)

where* = (*8 9 ) = (det�2D) (�2D)−1, � ∈,2,=
loc

(R=), and& is a function on R= ×R×R=.

2.1. Singular Abreu equations and linearized Monge-Ampère equations with drifts

Our key observation is the following lemma.

Lemma 2.1 (Equivalence of singular Abreu equations and linearized Monge-Ampère

equations with drifts). Assume that a locally uniformly convex function D ∈ ,4,B
loc

(Ω)
(B > =) solves (2.1). Then

[ = |4� (�D)

satisfies

*8 9�8 9[ − (det�2D)�� (�D) · �[ = 4� (�D)&(G, D, �D). (2.2)

Proof. Let (D8 9 ) = (�2D)−1 =|*. By computations using � 9*
8 9 = 0 and | = (det�2D)−1,

we have

*8 9�8 9| = � 9 (*8 9�8|) = � 9 (D8 9�8 (log|)) = −� 9 (D8 9�8 (log det�2D))

and

� 9

[
D8 9�8 (� (�D))

]
= div (�� (�D)). (2.3)

It follows that equation (2.1) can be written as

� 9 (D8 9�8Z) = −&(G, D, �D) (2.4)

where

Z = log det�2D − � (�D).

In other words, in (2.1), the singular term

div (�� (�D)) = trace(�2� (�D)�2D)

can be absorbed into the left-hand side to turn it into a divergence form equation.

Next, observe that Z = − log [, and

�8Z = −�8[/[ = −�8[ det�2D4−� (�D) .
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Thus (2.4) becomes

&(G, D, �D) = −� 9 (D8 9�8Z)

= � 9

(
D8 9 det�2D4−� (�D)�8[

)

= � 9

(
*8 94−� (�D)�8[

)

= *8 9� 9

(
4−� (�D)�8[

) (
using the divergence free property of (*8 9 )

)

= *8 9�8 9[4
−� (�D) −*8 9�8[4

−� (�D)�:� (�D)�: 9D

= *8 9�8 9[4
−� (�D) − (det�2D)4−� (�D)�� (�D) · �[.

Therefore, (2.2) holds, and the lemma is proved.

Remark 2.2. In general, (2.1) is not the Euler-Lagrange equation of any functional. How-

ever, the introduction of

[ = |4� (�D)
= (det�2D)−14� (�D)

in Lemma 2.1 has its root in an energy functional. Indeed, when & ≡ 0, (2.1) becomes

�8 9 (*8 9 (det�2D)−1) + div (�� (�D)) = 0,

and this is the the Euler-Lagrange equation of the Monge-Ampère type functional
∫

Ω

(
� (�D) − log det�2D

)
3G =

∫

Ω

log
(
(det�2D)−14� (�D)

)
3G.

Remark 2.3. Taking � (G) = |G |@/@ with @ > 1 in Lemma 2.1 where G ∈ R=, we find that

an equivalent form of

*8 9�8 9| = −div ( |�D |@−2�D) +&(G, D, �D), | = (det�2D)−1

is

*8 9�8 9[ − (det�2D) |�D |@−2�D · �[ = &(G, D, �D)4
|�D |@

@ , (2.5)

where

[ = |4
|�D |@

@ .

Lemma 2.1 shows that [ =|4� (�D) , where D is a solution of (2.1), satisfies a linearized

Monge-Ampère equation with a drift term. This fact plays a crucial role in the study

of singular Abreu equations in higher dimensions in latter sections. Once we have the

determinant estimates for det�2D for the second boundary value problem of (2.1), we can

estimate D in �1,U (Ω) provided the boundary data is smooth. This gives nice regularity

properties for the right-hand side of (2.2) (and particularly, (2.5)) and the drift on the left-

hand side. Then the higher regularity estimates for (2.1) can be reduced to global Hölder

estimates for the following linearized Monge-Ampère equation with a drift term:

*8 9�8 9[ + b · �[ + 5 (G) = 0. (2.6)

This is the content of Section 3.
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2.2. Singular Abreu equations under the Legendre transform

In this section, we derive the dual equation of (2.1) under the Legendre transform in any

dimension. After the Legendre transform, the dual equation is still a linearized Monge-

Ampère equation.

Denote the Legendre transform D∗ of D by

D∗ (H) = G · �D − D, where H = �D(G) ∈ Ω
∗
= �D(Ω).

Then

G = �D∗ (H), and D(G) = H · �D∗ (H) − D∗ (H).

Proposition 2.4 (Dual equations for singular Abreu equations). Let D ∈ ,4,B
loc

(Ω) (B > =)

be a uniformly convex solution to (2.1) in Ω. Then in Ω∗ = �D(Ω), its Legendre transform

D∗ satisfies the following dual equation

D∗8 9�8 9 (|∗ + � (H)) = & (�D∗, H · �D∗ − D∗, H) . (2.7)

Here (D∗8 9 ) is the inverse matrix of �2D∗, and |∗ = log det�2D∗.

Proof. When (2.1) is a Euler-Lagrange equation of a Monge-Ampère type functional, we

can derive its dual equation from the dual functional as in [LZ, Proposition 2.1]. Here for

the general case, we prove it by direct calculations. Note that for the case that the right-

hand side has no singular term, the dual equation has been obtained in [Le2, Lemma 2.7].

We include a complete proof here for reader’s convenience.

For simplicity, let 3 = det �2D and 3∗ = det �2D∗. Then 3 (G) = 3∗−1 (H) where H =

�D(G). We will simply write 3 = 3∗−1 with this understanding.

We denote by
(
D8 9

)
and

(
D∗8 9

)
the inverses of the Hessian matrices �2D =

(
�8 9D

)
=(

m2D
mG8mG 9

)
and �2D∗ =

(
�8 9D

∗) =
(

m2D∗

mH8mH 9

)
, respectively. Let (*∗8 9 ) = (det�2D∗) (D∗8 9 ) be

the cofactor matrix of �2D∗.
Note that | = 3−1 = 3∗. Thus

� 9| =
m|

mG 9
=
m3∗

mH:

mH:

mG 9
=
m3∗

mH:
�: 9D =

m3∗

mH:
D∗: 9 .

Clearly,

3∗−1 m3
∗

mH:
=

m

mH:
(log 3∗) = �H:|

∗,

from which it follows that

�G 9
| = �H:|

∗ (*∗): 9 .

Similarly,

�8 9| = ( m
mH;

� 9|)D∗;8 .

Hence, using

*8 9
= det�2D · D8 9 = (3∗)−1

�H8 H 9
D∗,
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and the fact that*∗ =
(
*∗8 9 ) is divergence-free, we obtain

*8 9�8 9| = (3∗)−1
�H8 H 9

D∗D∗;8
m

mH;
� 9|

= (3∗)−1 ( m

mH 9
� 9|)

= (3∗)−1 m

mH 9

(
�H:|

∗*∗: 9
)

= (3∗)−1
*∗: 9�H: H 9

|∗

= D∗8 9�8 9|
∗. (2.8)

On the other hand, by (2.3), we have

div (�� (�D)) = �G 9

[
D8 9�G8 (� (�D))

]

= D∗; 9
m

mH;

[
D∗8 9D

∗:8 m

mH:
(� (H))

]

= D∗8 9�H8 H 9
(� (H)) . (2.9)

Combining (2.8) with (2.9) and recalling (2.1), we obtain

D∗8 9�8 9 (|∗ + � (H)) = &(G, D(G), �D(G)) = & (�D∗, H · �D∗ − D∗, H) ,

which is (2.7). The lemma is proved.

3. Hölder estimates for linearized Monge-Ampère equation with drifts

In this section, we study global Hölder estimates for the linearized Monge-Ampère equa-

tion with drift {
*8 9�8 9{ + b · �{ = 5 in Ω,

{ = i on mΩ,
(3.1)

where* = (*8 9 ) = (det�2D) (�2D)−1 and b : Ω → R= is a vector field.

When there is no drift term, that is b ≡ 0, global Hölder estimates for (3.1) were

established under suitable assumptions on the bounds 0 < _ ≤ det�2D ≤ Λ on the Hessian

determinant of D, and the data. In particular, the case 5 ∈ != (Ω) was treated in [Le1,

Theorem 1.4] (see also [LN1, Theorem 4.1] for a more localized version) and the case

5 ∈ !=/2+Y (Ω) was treated in [LN2, Theorem 1.7].

We would like to extend the above global Hölder estimates to the case with bounded

drift. In this case, the interior Hölder estimates for (3.1) were obtained as a consequence

of the interior Harnack inequality proved in [Le3, Theorem 1.1]. Note that Maldonado

[M] also proved a Harnack’s inequality for (3.1) with different and stronger conditions on

b.

Therefore, to obtain global Hölder estimates for (3.1) with a bounded drift b, it remains

to prove the Hölder estimates at the boundary. Without further assumptions on b, this
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seems to be difficult with current techniques. However, when b is pointwise Hölder con-

tinuous, and vanishes at a boundary point G0, we can obtain the pointwise Hölder continu-

ity of { at G0. This can be deduced from the following result, which is a drift version of

[Le1, Proposition 2.1].

Proposition 3.1 (Pointwise Hölder estimate at the boundary for solutions to non-uni-

formly elliptic, linear equations with pointwise Hölder continuous drift). Assume that

Ω ⊂ R= is a bounded, uniformly convex domain. Let i ∈ �U (mΩ) for some U ∈ (0, 1),
and 6 ∈ != (Ω). Assume that the matrix (08 9 ) is measurable, positive definite and satisfies

det(08 9 ) ≥ _ in Ω. Let b ∈ !∞ (Ω;R=). Let { ∈ � (Ω) ∩,2,=
;>2

(Ω) be the solution to

08 9�8 9{ + b · �{ = 6 in Ω, { = i on mΩ.

Suppose there are constants `, g ∈ (0, 1), and " > 0 such that at some G0 ∈ mΩ, we have

|b(G) | ≤ " |G − G0 |` for all G ∈ Ω ∩ �g (G0). (3.2)

Then, there exist X, � depending only on _, =, U, `, g, " , ‖b‖!∞ (Ω) , and Ω such that

|{(G) − {(G0) | ≤ � |G − G0 |
min{U,`}

min{U,`}+4
(
‖i‖�U (mΩ) + ‖6‖!= (Ω)

)
for all G ∈ Ω ∩ �X (G0).

We will prove Proposition 3.1 in Section 3.1.

Once we have the pointwise Hölder estimates at the boundary, global Hölder estimates

for (3.1) follow. This is the content of the following theorem.

Theorem 3.2 (Global Hölder estimates for solutions to the linearized Monge-Ampère

equation with a drift term that are pointwise Hölder continuous at the boundary). Assume

that Ω ⊂ R= is a uniformly convex domain with boundary mΩ ∈ �3. Let D ∈ � (Ω) ∩�2 (Ω)
be a convex function satisfying

_ ≤ det�2D ≤ Λ in Ω

for some positive constants _ and Λ. Moreover, assume that D |mΩ ∈ �3. Let (*8 9 ) =
(det�2D) (�2D)−1. Let b ∈ !∞ (Ω;R=) with ‖b‖!∞ (Ω) ≤ " , 5 ∈ != (Ω) and i ∈ �U (mΩ)
for some U ∈ (0, 1). Assume that { ∈ � (Ω) ∩,2,=

;>2
(Ω) is a solution to the following lin-

earized Monge-Ampère equation with a drift term

{
*8 9�8 9{ + b · �{ = 5 in Ω,

{ = i on mΩ.

Suppose that there exist W ∈ (0, U], X > 0 and  > 0 such that

|{(G) − {(G0) | ≤  |G − G0 |W for all G0 ∈ mΩ, and G ∈ Ω ∩ �X (G0). (3.3)

Then, there exist a constant V ∈ (0, 1) depending on =, _, Λ, W and " , and a constant

� > 0 depending only on Ω, D |mΩ, _, Λ, =, U, W, X,  and " such that

|{(G) − {(H) | ≤ � |G − H |V
(
‖i‖�U (mΩ) + ‖ 5 ‖!= (Ω)

)
, ∀G, H ∈ Ω.
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The proof of Theorem 3.2 is similar to that of [Le1, Theorem 1.4] for the case without

a drift. For completeness and for reader’s covenience, we present its proof at the end of

the paper in Section 7.

Remark 3.3. It would be interesting to prove the global Hölder estimates in Theorem 3.2

without the assumption (3.3).

In Section 3.2, we will apply Theorem 3.2 to establish the global Hölder estimates for

Hessian determinants of singular Abreu equations provided that the Hessian determinants

are bounded between two positive constants; see Theorem 3.4.

3.1. Pointwise Hölder estimates at the boundary

In this section, we prove Proposition 3.1.

Proof of Proposition 3.1. The proof is similar to that of [Le1, Proposition 2.1]. Due to the

appearance of the drift b and the pointwise Hölder continuity condition (3.2), we include

the proof for reader’s convenience.

Let

 = ‖b‖!∞ (Ω) , and ! = diam(Ω).

In this proof, we fix the exponent

W = min{U, `}/2.

However, the proof works for any exponent W ∈ (0, 1) such that W < min{U, `}, and in this

case, we replace the exponent
min{U,`}

min{U,`}+4
in the proposition by

W

W+2
.

Clearly i ∈ �W (mΩ) with ‖i‖�W (mΩ) ≤ � (U, `, !)‖i‖�U (mΩ) . By considering the

equation satisfied by (‖i‖�W (mΩ) + ‖6‖!= (Ω) )−1{, we can assume that

‖i‖�W (mΩ) + ‖6‖!= (Ω) = 1,

and it suffices to prove that, for some X = X(=, _, U, g,  , ", `,Ω) > 0, we have

|{(G) − {(G0) | ≤ � (=, _, U, g,  , ", `,Ω) |G − G0 |
W

W+2 for all G ∈ Ω ∩ �X (G0).

Moreover, without loss of generality, we assume that

Ω ⊂ R= ∩ {G= > 0}, G0 = 0 ∈ mΩ.

Since det(08 9 ) ≥ _, by the Aleksandrov-Bakelman-Pucci (ABP) estimate for elliptic, linear

equations with drifts (see [GT, inequality (9.14)]), we have

‖{‖!∞ (Ω) ≤ ‖i‖!∞ (mΩ)

+ diam(Ω)
{

exp
[ 2=−2

==l=

∫

Ω

(
1 + |b|=

det(08 9 )

)
3G

]
− 1

}1/=



6

(det(08 9 ))1/=





!= (Ω)

≤ �0 (3.4)
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for a constant�0 (=,_, , !) > 1. Here we usedl= = |�1 (0) |, and ‖i‖�W (mΩ) + ‖6‖!= (Ω) =
1. Hence, for any Y ∈ (0, gW)

|{(G) − {(0) ± Y | ≤ 3�0 := �1. (3.5)

Consider now the functions

k±(G) := {(G) − {(0) ± Y ± �1^(X2)G=

where

^(X2) := (inf{H= : H ∈ Ω ∩ m�X2
(0)})−1

in the region

� := Ω ∩ �X2
(0)

where X2 < 1 is small to be chosen later.

The uniform convexity of Ω gives

inf{H= : H ∈ Ω ∩ m�X2
(0)} ≥ �−1

2 X2
2 (3.6)

where �2 depends on the uniform convexity of Ω. Thus,

^(X2) ≤ �2X
−2
2 .

Note that, if G ∈ mΩ with |G | ≤ X1 (Y) := Y1/W (≤ g) then, we have from ‖i‖�W (mΩ) ≤ 1

that

|{(G) − {(0) | = |i(G) − i(0) | ≤ |G |W ≤ Y. (3.7)

It follows that, if we choose X2 ≤ X1, then from (3.5) and (3.7), we have

k− ≤ 0, k+ ≥ 0 on m�.

From (3.2), we have

|b| ≤ "X
`

2
in �,

and therefore

08 9�8 9k− + b · �k− = 6 − �1^(X2)b · 4= ≥ −|6 | − �1�2"X
`−2

2
in �,

where 4= = (0, · · · , 0, 1) ∈ R=.

Similarly,

08 9�8 9k+ + b · �k+ = 6 + �1^(X2)b · 4= ≤ |6 | + �1�2"X
`−2

2
in �.

Again, applying the ABP estimate for elliptic, linear equations with drifts, we obtain

k− ≤ � (=, _,  , !)diam(�)



6 + �1�2"X

`−2

2





!= (�)

≤ �3 (=, _,  , ",Ω, g, `)X`2 in �.

In the above inequality, we used ‖6‖!= (�) ≤ 1 and

‖6 + �1�2"X
`−2‖!= (�) ≤ ‖6‖!= (�) + �1�2"X

`−2

2
|�|1/= ≤ � (=, _,  , ",Ω, g, `)X`−1

2
.
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Similarly, we have

k+ ≥ −� (=, _,  , !)diam(�)



6 + �1�2"X

`−2

2





!= (�)

≥ −�3 (=, _,  , ",Ω, g, `)X`2 in �.

We now restrict Y ≤ �
−W
`−W

3
so that

X1 = Y1/W ≤ [Y/�3]1/` .

Then, for X2 ≤ X1, we have �3X
`

2
≤ Y, and thus,

|{(G) − {(0) | ≤ 2Y + �1^(X2)G= in �.

Therefore, choosing X2 = X1, we find

|{(G) − {(0) | ≤ 2Y + �1^(X2)G= ≤ 2Y + 2�1�2

X2
2

G= in �.

Summarizing, we obtain the following inequality

|{(G) − {(0) | ≤ 2Y + 2�1�2

X2
2

|G | ≤ 2Y + 2�1�2Y
−2/W |G | (3.8)

for all G, Y satisfying the following conditions

|G | ≤ X1 (Y) := Y1/W , Y ≤ �
−W
`−W

3
:= 21. (3.9)

Let us now choose Y = |G |
W

W+2 . Then the conditions in (3.9) are satisfied as long as

|G | ≤ min{2
W+2
W

1
, 1} := X.

With this choice of X, and recalling (3.8), we have

|{(G) − {(0) | ≤ (2 + 2�1�2) |G |
W

W+2 for all G ∈ Ω ∩ �X (0).

The proposition is proved.

3.2. Singular Abreu equations with Hessian determinant bounds

In this section, we apply Theorem 3.2 to establish the global Hölder estimates for Hes-

sian determinants of singular Abreu equations provided that the Hessian determinants are

bounded between two positive constants. This is the content of the following theorem.

Theorem 3.4 (Hölder continuity of Hessian determinant of singular Abreu equations

under Hessian determinant bounds). Assume that Ω ⊂ R= is a uniformly convex domain

with boundary mΩ ∈ �3. Let � ∈,2,A
loc

(R=) for some A > =, and let 6 ∈ !B (Ω) where B > =.
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Let i ∈ �4 (Ω) and k ∈ �2 (Ω) with minmΩ k > 0. Assume that D ∈,4,B (Ω) is a uniformly

convex solution to the singular Abreu equation:





*8 9�8 9| = −div (�� (�D)) + 6(G), in Ω,

| = (det�2D)−1 in Ω,

D = i on mΩ,

| = k on mΩ,

where* = (*8 9 ) = (det�2D) (�2D)−1. Suppose that, for some positive constants _ and Λ,

we have

_ ≤ det�2D ≤ Λ in Ω.

Then, there exist constants V,� > 0 depending only onΩ, i,k, _,Λ, =, A , �, and ‖6‖!= (Ω) ,
such that

‖|‖
�V (Ω) ≤ �.

Proof. Since � ∈ ,2,A
loc

(R=), by the Sobolev embedding theorem, we have � ∈ �1,U (R=)
where U = 1 − =/A ∈ (0, 1). From the Hessian determinant bounds on D, and D = i on mΩ

where i ∈ �4 (Ω), by [LS, Proposition 2.6], we have

‖D‖
�1,U0 (Ω) ≤ �1, (3.10)

where U0 ∈ (0, 1) depends on _,Λ, and =. The constant �1 depends on Ω, =, _,Λ and i.

By Lemma 2.1, the function

[(G) = |(G)4� (�D (G))

satisfies

*8 9�8 9[ − (det�2D)�� (�D(G)) · �[ = 6(G)4� (�D (G)) ≡ 5 (G). (3.11)

From (3.10), we deduce that [ |mΩ ∈ �U0 with estimate

‖[‖�U0 (mΩ) ≤ �∗ (k,�1, �). (3.12)

Step 1: Pointwise Hölder continuity of [ at the boundary. Fix G0 ∈ mΩ. Let us denote

�̃ (H) := � (H) − � (�D(G0)) − �� (�D(G0)) · (H − �D(G0)) for H ∈ R=.

Then, we have

*8 9�8 9|(G) = −div (��̃ (�D(G))) + 6(G) in Ω.

By Lemma 2.1, the function

[G0 (G) = |(G)4�̃ (�D (G))
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satisfies

*8 9�8 9[
G0 − (det�2D) (�� (�D(G)) − �� (�D(G0))) · �[G0 = 6(G)4�̃ (�D (G)) ≡ 5 G0 (G).

(3.13)

Clearly,

‖ 5 G0 ‖!= (Ω) ≤ �2, (3.14)

where �2 depends on ‖�‖�1 (��1
(0)) and ‖6‖!= (Ω) .

The vector field

b(G) = (det�2D) · (�� (�D(G)) − �� (�D(G0)))

satisfies in Ω the estimate

|b(G) | ≤ Λ‖��‖�U (��1
(0)) |�D(G) − �D(G0) |U ≤ Λ�1‖��‖�U (��1

(0)) |G − G0 |U1 ,

(3.15)

where

U1 = UU0.

We also have [G0 |mΩ∈ �U1 (mΩ) with

‖[G0 ‖�U1 (mΩ) ≤ �3 (U, U0, �1, k, ‖��‖�U (��1
(0)) ). (3.16)

Note that

det(*8 9 ) = (det�2D)=−1 ≥ _=−1.

Hence, from (3.13), (3.15) and (3.16), we can apply Proposition 3.1 and find constants

W = U1/(U1 + 4) ∈ (0, 1),

and X,�4 > 0 depending only on =,_,Λ, U, �, i,k, and Ω such that, for all G ∈Ω∩ �X (G0),

|[G0 (G) − [G0 (G0) | ≤ �4 |G − G0 |W
(
‖[G0 ‖�U1 (mΩ) + ‖ 5 G0 ‖!= (Ω)

)
≤ �5 |G − G0 |W , (3.17)

where �5 = �4 (�2 + �3).
Due to

[(G) = [G0 (G)4� (�D (G0))+�� (�D (G0)) ·(�D (G)−�D (G0)) ,

and (3.10), (3.17) implies the pointwise �W continuity of [ at G0 with estimate

|[(G) − [(G0) | ≤ �6 |G − G0 |W for all G ∈ Ω ∩ �X (G0), (3.18)

where �6 depends on Ω, i, k, _, Λ, =, U, � and ‖6‖!= (Ω) .
Step 2: Global Hölder continuity of [ and |. From (3.18), we can apply Theorem 3.2

to (3.11) to conclude the global Hölder continuity of [. Since | = [4−� (�D) , | is also

globally Hölder continuous. In other words, there exist a constant V ∈ (0, 1) depending

on =, _,Λ, U and �, and a constant � > 0 depending only on Ω, i, k, _, Λ, =, A , � and

‖6‖!= (Ω) such that

‖|‖
�V (Ω) ≤ �.

The theorem is proved.
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4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 using a priori estimates and degree theory. With

Theorem 3.4 at hand, a key step is to establish a priori Hessian determinant estimates for

uniformly convex solutions D ∈ ,4,B (Ω) (B > =) of (1.5).

For the Hessian determinant estimates, we will use the maximum principle and the

Legendre transform; see also [LZ, Theorem 1.2] with a slightly different proof for the

case of � (G) = |G |@/@ (@ > 1) and 2(G, I) being smooth.

Lemma 4.1 (Hessian determinant estimates). Let Ω ⊂ R= be an open, smooth, bounded

and uniformly convex domain. Assume that i ∈ �5 (Ω) and k ∈ �3 (Ω) with minmΩ k > 0.

Let A, B > =. Let � ∈ ,2,A
loc

(R=) be a convex function, and 2(G, I) be a function on Ω × R.

Suppose 2(G, I) ≤ 0 with 2 ∈ �U (Ω × R) where U ∈ (0, 1) or 2(G, I) ≡ 2(G) ∈ !B (Ω).
Assume that D ∈ ,4,B (Ω) is a uniformly convex solution to the second boundary value

problem




*8 9�8 9| = −div (�� (�D)) + 2(G, D) in Ω,

| = (det�2D)−1 in Ω,

D = i on mΩ,

| = k on mΩ,

where (*8 9 ) = (det�2D) (�2D)−1. Then

�−1 ≤ det�2D ≤ (min
mΩ

k)−1 in Ω,

where� > 0 is a constant depending on Ω, =, i, k, � and 2. In the case of 2(G, I) ≡ 2(G) ∈
!B (Ω), the dependence of � on 2 is via ‖2‖!= (Ω) .

Proof. From the convexity of � and D, we have

−div (�� (�D)) = −trace(�2� (�D)�2D) ≤ 0.

This combined with 2(G, D) ≤ 0 yields

*8 9�8 9| = −div (�� (�D)) + 2(G, D) ≤ 0 in Ω.

Hence, by the maximum principle, | attains its minimum value in Ω on the boundary.

Thus

| ≥ min
mΩ

| = min
mΩ

k > 0 in Ω.

This together with det�2D = |−1 gives the upper bound for the Hessian determinant:

det�2D ≤ �1 := (min
mΩ

k)−1 in Ω.

From the above upper bound, by using D = i on mΩ together with Ω being smooth and

uniformly convex, we can construct suitable barrier functions to deduce that

sup
Ω

|D | + ‖�D‖!∞ (Ω) ≤ �2, (4.1)
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where �2 depends on =, i, k and Ω.

We now proceed to establish a positive lower bound for the Hessian determinant.

Let

D∗(H) = G · �D(G) − D(G)

be the Legendre transform of D(G) where

H = �D(G) ∈ Ω
∗ := �D(Ω).

Then, (4.1) implies

diam(Ω∗) + ‖D∗‖!∞ (Ω∗) ≤ �3 (=, i, k,Ω). (4.2)

In view of Proposition 2.4, D∗ satisfies

D∗8 9�8 9 (|∗ + � (H)) = 2(�D∗, H · �D∗ − D∗) in Ω
∗, (4.3)

where

(D∗8 9 ) = (�2D∗)−1, and |∗
= log det�2D∗.

Note that, for H = �D(G) ∈ mΩ∗ where G ∈ mΩ, we have

|∗ (H) = log(det�2D(G))−1
= logk(G).

By the ABP maximum principle applied to (4.3), and recalling (4.2), we find

sup
Ω∗

(|∗ + � (H)) ≤ sup
mΩ∗

(|∗ + � (H)) + � (=, diam(Ω∗))






2(�D∗, H · �D∗ − D∗)

(det�2D∗)−1/=







!= (Ω∗)

= sup
mΩ∗

(|∗ + � (H)) + � (=, diam(Ω∗))
( ∫

Ω

|2(G, D) |=3G
)1/=

≤ �4

where �4 depends on Ω, =, i, k, � and 2. Clearly, in the case of 2(G, I) ≡ 2(G) ∈ !B (Ω),
the dependence of �4 on 2 is via ‖2‖!= (Ω) . In the above estimates, we used







2(�D∗, H · �D∗ − D∗)

(det�2D∗)−1/=







!= (Ω∗)

=

( ∫

Ω∗
|2(�D∗, H · �D∗ − D∗) |= det�2D∗ 3H

)1/=

=

( ∫

Ω

|2(G, D) |= det�2D∗ det�2D 3G

)1/=

=

( ∫

Ω

|2(G, D) |=3G
)1/=

.

It follows that

sup
Ω∗
|∗ (H) = sup

Ω∗
log det�2D∗ ≤ �5



22 Y. H. Kim, N. Q. Le, L. Wang, B. Zhou

which implies

det�2D ≥ 4−�5 > 0 in Ω,

where �5 depends on Ω, =, i, k, � and 2. This is the desired positive lower bound for the

Hessian determinant, and the proof of the lemma is completed.

Now, we can give the proof of Theorem 1.1.

Proof of Theorem 1.1. We divide the proof, using a priori estimates and degree theory,

into three steps. Steps 1 and 2 establish higher order derivative estimates for D ∈ ,4,B (Ω)
(B > =) solutions. Step 3 confirms the existence of ,4,B (Ω) or �4,V (Ω) solutions via

degree theory.

In the following, we fix B > = with the additional requirement that

{
B = A in case (8),
B = min{A, ?} in case (88).

Step 1: Determinant estimates and second order derivative estimates for uniformly

convex D ∈ ,4,B (Ω) (B > =) solutions D of (1.5). By Lemma 4.1, we have

0 < _ ≤ det�2D ≤ Λ := (min
mΩ

k)−1 in Ω, (4.4)

where _ depends on Ω, =, �, i, k, and on either 2 in case (8), or ‖2‖!= (Ω) in case (88).
From (4.4) and D = i on mΩ where i ∈ �5 (Ω), by [LS, Proposition 2.6], we have

‖D‖
�1,U0 (Ω) ≤ �1, (4.5)

where U0 ∈ (0, 1) depends on _,Λ, and =. The constant �1 depends on Ω, =, _,Λ and i.

With (4.4) and � ∈,2,A
loc

(R=), we can use Theorem 3.4 to find V0 ∈ (0, 1), and �5 > 0

depending on Ω, =, �, A, i, k, 2, such that

‖|‖
�V0 (Ω) ≤ �2 (Ω, =, �, A, i, k, 2).

Hence det�2D = |−1 ∈ �V0 (Ω). By the global Schauder estimates for the Monge-Ampère

equation in [TW3,S2], we have

‖D‖
�2,V0 (Ω) ≤ �3 (Ω, =, �, A, i, k, 2). (4.6)

Combining this with (4.4), we find

�−1
4 �= ≤ �2D ≤ �4�= in Ω

for some �4 (Ω, =, �, A, i, k, 2) > 0. Here �= denotes the identity = × = matrix. In other

words, the linear operator *8 9�8 9 is uniformly elliptic with coefficients *8 9 bounded in

�V0 (Ω).
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Step 2: Global higher order derivative estimates for uniformly convex,4,B (Ω) (B > =)
solutions D of (1.5). Denote the right-hand side of (1.5) by

5 := −div (�� (�D)) + 2(G, D) = −trace(�2� (�D)�2D) + 2(G, D). (4.7)

Observe that, one has the following estimate



trace(�2� (�D)�2D)



!A (Ω) ≤ � (Ω, =, �, A, i, k, 2). (4.8)

Indeed, we have



trace(�2� (�D)�2D)


A
!A (Ω) ≤ =

2‖�2D‖A!∞ (Ω) ‖�
2� (�D)‖A!A (Ω)

≤ =2�A
3

∫

Ω

|�2� (�D(G)) |A 3G (using (4.6))

= =2�A
3

∫

�D (Ω)
|�2� (H) |A 1

det�2D((�D)−1 (H))
3H

≤ =2�A
3_

−1

∫

��1
(0)

|�2� (H) |A 3H (using (4.4) and (4.5))

≤ �A
3_

−1� (=, �1, �, A).

We consider cases (8) and (88) separately.

(i) The case of 2 ∈ �U (Ω × R). Recall that B = A in this case. We have from (4.8) that

5 = −trace(�2� (�D)�2D) + 2(G, D) ∈ !B (Ω) with estimate

‖ 5 ‖!B (Ω) ≤ � (Ω, =, �, A, B, i, k, 2).

By Step 1,

*8 9�8 9| = 5 in Ω, | = k on mΩ,

is a uniformly elliptic equation in | with�V0 (Ω) coefficients. Thus, from the standard

,2, ? theory for uniformly elliptic linear equations (see [GT, Chapter 9]), we obtain

the following,2,B (Ω) estimate:

‖|‖, 2,B (Ω) ≤ � (Ω, =, @, B, i, k, 2).

Now, recalling det�2D = |−1 in Ω with D = i on mΩ, we can differentiate and apply

the standard Schauder and Calderon-Zygmund theories to obtain the following global

,4,B estimate of D:

‖D‖, 4,B (Ω) ≤ � (Ω, =, �, A, B, i, k, 2).

Indeed, for any : ∈ {1, . . . , =} by differentiating det �2D = |−1 in the G: direction,

we see that �:D solves the equation

*8 9�8 9 (�:D) = �: (|−1) ∈ ,1,B (Ω),
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which is uniformly elliptic with �V0 (Ω) coefficients*8 9 due to (4.4) and (4.6). Since

B > =, we have ,1,B (Ω) ∈ �0,1−=/B (Ω). By the classical Schauder theory (see [GT,

Chapter 6] for example), we deduce that �:D ∈ �2,V1 (Ω) for all : with appropri-

ate estimates, where V1 = min{V0, 1 − =/B}. This shows that D ∈ �3,V1 (Ω) and the

coefficients satisfy *8 9 ∈ �1,V1 (Ω). Next, for any ; ∈ {1, . . . , =}, we differentiate the

preceding equation in the G; direction to get

*8 9�8 9 (�:;D) = �:; (|−1) − �;*
8 9�8 9:D ∈ !B (Ω) for all :, ; ∈ {1, . . . , =}.

Applying the Calderon-Zygmund estimates, we obtain �:;D ∈ ,2,B (Ω) for all :, ; ∈
{1, . . . , =} with appropriate estimates. Consequently, D ∈,4,B (Ω) with estimate stated

above.

Moreover, in the particular case that � ∈ �2,U0 (R=), we find that 5 ∈ �W (Ω) where

W ∈ (0, 1) depends only on U, �, U0, and V0 with estimate

‖ 5 ‖
�W (Ω) ≤ � (Ω, =, U, @, 2, i, k). (4.9)

Thus, we can apply the classical Schauder theory (see [GT, Chapter 6] for example) to

(1.5) which, by Step 1, is a uniformly elliptic equation in | with �V0 (Ω) coefficients.

We conclude that | ∈ �2,V (Ω), where V ∈ (0, 1) depends only on =, W and V0, with

estimate

‖|‖
�2,V (Ω) ≤ � (Ω, =, U, U0, �, 2, i, k).

Due to

det�2D = |−1 in Ω, D = i on mΩ,

this implies that D ∈ �4,V (Ω) with estimate

‖D‖
�4,V (Ω) ≤ � (Ω, =, U, U0, �, 2, i, k). (4.10)

With this estimate, we go back to 5 = −trace(�2� (�D)�2D) + 2(G, D) and find that

one can actually take W = min{U, U0} in (4.9). Repeating the above process, one find

that (4.10) holds for V = min{U, U0}.
(ii) The case of 2(G, I) ≡ 2(G) ∈ ! ? (Ω) with ? > =. Recall that in this case B = min{A, ?}.

Then, we have from (4.7) and (4.8) that

‖ 5 ‖!B (Ω) ≤ (Ω, =, ?, �, A, B, i, k, ‖2‖!? (Ω) ).

Arguing as in the case (8) above, we obtain the following,4,B estimate of D:

‖D‖, 4,B (Ω) ≤ � (Ω, =, ?, �, A, B, i, k, ‖2‖!? (Ω) ).

Step 3: Existence of solutions via degree theory. From the �4,V (Ω) or,4,B (Ω) estim-

ates for uniformly convex ,4,B (Ω) solutions D of (1.5) in Step 2, we can use the Leray-

Schauder degree theory as in [CW, TW2, Le6] to prove the existence of �4,V (Ω) or

,4,B (Ω) solutions to (1.5) as stated in the theorem. We omit details here.



On the singular Abreu equations 25

5. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. As in the proof of Theorem 1.1 in Section 4, we

focus on a priori estimates for smooth, uniformly convex solutions. The most crucial ones

are the Hessian determinant estimates. Without the sign of 2, we first need to obtain the a

priori !∞-bound for D.

Lemma 5.1 (A priori !∞-bound for uniformly convex,4,= solutions). Let Ω ⊂ R=(= ≥ 3)

be an open, smooth, bounded and uniformly convex domain. Assume that i ∈ �5 (Ω) and

k ∈ �3 (Ω) with minmΩ k > 0. Assume b ∈ !∞ (Ω;R=). Suppose that there exist functions

61, 62 ∈ !1 (Ω) and a constant 0 ≤ < < = − 1 such that

|2(G, I) | ≤ |61 (G) | + |62 (G) | · |I |< in Ω × R. (5.1)

Assume that D ∈ ,4,= (Ω) is a uniformly convex solution to (1.6). Then there exists a

constant � > 0 depending on Ω, =, i, k, ‖b‖!∞ (Ω) , ‖61‖!1 (Ω) , ‖62‖!1 (Ω) and < such that

‖D‖!∞ (Ω) ≤ �.

Proof. From D ∈ ,4,= (Ω) and the Sobolev embedding theorem, we have D ∈ �2 (Ω). For

a convex function D ∈ �2 (Ω) with D = i on mΩ, we have (see, e.g., [Le2, inequality (2.7)])

‖D‖!∞ (Ω) ≤ ‖i‖!∞ (Ω) + �1

(
=,Ω, ‖i‖�2 (Ω)

) (∫

mΩ

(
D+a

)=
3(

)1/=
, (5.2)

where D+a = max (0, Da), a is the unit outer normal of mΩ and 3( is the boundary measure.

Thus, to prove the lemma, it suffices to prove

∫

mΩ

(
D+a

)=
3( ≤ � (Ω, =, i, k, ‖b‖!∞ (Ω) , ‖61‖!1 (Ω) , ‖62‖!1 (Ω) , <).

For this, we use the arguments as in the proof of [Le6, Lemma 4.2]. Observe that, since D

is convex with boundary value i on mΩ, we have Da ≥ −‖�i‖!∞ (Ω) and hence

|Da | ≤ D+a + ‖�i‖!∞ (Ω) , and (D+a)= ≤ D=a + ‖�i‖=
!∞ (Ω) on mΩ. (5.3)

Let d be a strictly convex defining function of Ω, i.e.

Ω := {G ∈ R= : d(G) < 0} , d = 0 on mΩ and �d ≠ 0 on mΩ.

Let

D̃ = i + ` (4d − 1) .

Then, for ` large, depending on =, Ω and ‖i‖
�2 (Ω) , the function D̃ is uniformly convex,

belongs to �5 (Ω). Furthermore, as in [Le2, Lemma 2.1], there exists a constant �2 > 0

depending only on =, Ω, and ‖i‖
�4 (Ω) such that the following facts hold:

(i) ‖D̃‖
�4 (Ω) ≤ �2, and det�2D̃ ≥ �−1

2
> 0 in Ω,
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(ii) letting |̃ =
[
det�2D̃

]−1
, and denoting by

(
*̃8 9

)
the cofactor matrix of �2D̃, we

have 

*̃8 9�8 9 |̃



!∞ (Ω) ≤ �2.

Let  (G) be the Gauss curvature at G ∈ mΩ. Then, since Ω is uniformly convex, we have

0 < �−1 (Ω) ≤  (G) ≤ � (Ω) on mΩ. (5.4)

From the estimate (4.10) in the proof of [Le6, Lemma 4.2] with \ = 0 and 5X := −ΔD +
b · �D + 2 which uses (i) and (ii), we obtain

∫

mΩ

 kD=a3( ≤
∫

Ω

(ΔD − b · �D − 2) (D − D̃)3G + �3

(∫

mΩ

(
D+a

)=
3(

) (=−1)/=
+ �3,

(5.5)

where �3 depends on �2, Ω and i.

We will estimate the first term on the right-hand side of (5.5) by splitting it into three

terms. Firstly, using DΔD = div (D�D) − |�D |2 and integrating by parts, we have

∫

Ω

ΔD(D − D̃) 3G ≤
∫

Ω

DΔD 3G + �2

∫

Ω

ΔD 3G

=

∫

mΩ

iDa 3( −
∫

Ω

|�D |2 3G + �2

∫

mΩ

Da 3(

≤ � (i, �2)
∫

mΩ

|Da | 3( −
∫

Ω

|�D |2 3G

≤ �4 (=, i, �2)
(∫

mΩ

(D+a)= 3(
) 1

=

+ �4 (=, i, �2) (recalling (5.3)).

(5.6)

Secondly, by integration by parts, we find

∫

Ω

|�D |2 3G =
∫

Ω

(div (D�D) − DΔD) 3G

=

∫

mΩ

iDa 3( −
∫

Ω

DΔD 3G

≤ �5 (i)
∫

mΩ

D+a 3( + ‖D‖!∞ (Ω)

∫

Ω

ΔD 3G + �5 (i)

≤ (�5 + ‖D‖!∞ (Ω) )
∫

mΩ

D+a 3( + �5. (5.7)

In view of (5.7) with (5.2), we can estimate

∫

Ω

b · �D(D̃ − D) 3G ≤ |Ω|1/2‖b‖!∞ (Ω) (‖D̃‖!∞ (Ω) + ‖D‖!∞ (Ω) )
(∫

Ω

|�D |2 3G
) 1

2

≤ �6 + �6

(∫

mΩ

(
D+a

)=
3(

) 2
=

(5.8)
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where �6 depends on Ω, =, i and ‖b‖!∞ (Ω) . Moreover, �6 depends linearly on ‖b‖!∞ (Ω) .
Finally, using (5.1) and (5.2), we have

∫

Ω

−2(D − D̃) 3G ≤ (‖D‖!∞ (Ω) + ‖D̃‖!∞ (Ω) )
∫

Ω

|61 | + |62 | |D |< 3G

≤ � + �‖D‖<+1
!∞ (Ω)

≤ �7 + �7

(∫

mΩ

(D+a)= 3(
) <+1

=

. (5.9)

Here �7 depends on Ω, =, i, ‖61‖!1 (Ω) , ‖62‖!1 (Ω) and <.

It follows from (5.3) that

∫

mΩ

 k(D+a)= 3( ≤ �8 (Ω, i, k) +
∫

mΩ

 kD=a 3(. (5.10)

Combining (5.4)–(5.6), (5.8)–(5.10) while recalling that 0 ≤ < < = − 1 and = ≥ 3, we

obtain

�−1 (Ω) min
mΩ

k

∫

mΩ

(D+a)= 3( ≤ �8 +
∫

mΩ

 kD=a 3(

≤ �9

[

1 +
(∫

mΩ

(D+a)= 3(
) =−1

=

+
(∫

mΩ

(D+a)= 3(
) <+1

=

]

,

where �9 depends on �3, �4, �6, �7 and �8. It follows that

∫

mΩ

(D+a)= 3( ≤ �

where � depends on Ω, =, i, k, ‖b‖!∞ (Ω) , ‖61‖!1 (Ω) , ‖62‖!1 (Ω) and <. The proof of the

lemma is completed.

Remark 5.2. We have the following observations regarding the two dimensional version

of Lemma 5.1.

(i) The above proof fails in two dimensions. This is because, in two dimensions, the right-

hand side of (5.8) is of the same order of magnitude as the left-hand side of (5.5).

Therefore, when �6 is large, plugging (5.8) into (5.5) does not give any new informa-

tion.

(ii) On the other hand, since �6 depends linearly on ‖b‖!∞ (Ω) , in two dimensions, one

can still absorb the right-hand side of (5.8) into the left-hand side of (5.5) as long

as ‖b‖!∞ (Ω) is small, depending on Ω, i and k. In this case, we still have the !∞

estimate.

(iii) In Section 6, we will establish the !∞ estimate in two dimensions under a stronger

condition on b but ‖b‖!∞ (Ω) can be arbitrarily large.

Next, we establish the Hessian determinant estimates.
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Lemma 5.3 (Hessian determinant estimates). Let D ∈ ,4, ? (Ω) be a uniformly convex

solution to the fourth order equation





=∑

8, 9=1

*8 9�8 9| = −ΔD + b · �D + 2(G) in Ω,

| = (det�2D)−1 in Ω,

D = i on mΩ,

| = k on mΩ,

(5.11)

where (*8 9 ) = (det �2D) (�2D)−1, minmΩ k > 0, b ∈ !∞ (Ω; R=) and 2 ∈ ! ? (Ω) with

? > 2=. Then there exists a constant � > 0 depending on Ω, =, ?, i, k, ‖b‖!∞ (Ω) and

‖2‖!? (Ω) such that

0 < �−1 ≤ det�2D ≤ � in Ω.

Proof. The proof uses a trick in Chau-Weinkove [CW]. For simplicity, denote

3 := det�2D and (D8 9 ) = (�2D)−1.

Let

� = 34"D2

,

where " > 0 is a large constant to be determined later. By Lemma 5.1, we have

‖D‖!∞ (Ω) ≤ �0

where �0 > 0 depends on Ω, =, i, k, ‖b‖!∞ (Ω) , and ‖2‖!1 (Ω) .

Since | = 3−1, we have | = �−14"D2

. Direct calculations yield

�8| = −�−2�8�4
"D2 + 2"D�8D�

−14"D2

,

�8 9| = 2�−3�8�� 9�4
"D2 − �−2�8 9�4

"D2

− 2"D� 9D�8��
−24"D2 − 2"D�8D� 9��

−24"D2

+ 2"�8D� 9D�
−14"D2 + 2"D�8 9D�

−14"D2 + 4"2D2�8D� 9D�
−14"D2

.

Then, using*8 9�−14"D2

= D8 9 , we have

*8 9�8 9| = 2�−2D8 9�8�� 9� − �−1D8 9�8 9� − 4"D�−1D8 9�8D� 9�

+ 2"D8 9�8D� 9D + 2"=D + 4"2D2D8 9�8D� 9D

= �−2D8 9�8�� 9� + D8 9 (2"D�8D − �−1�8�) (2"D� 9D − �−1� 9�)

− �−1D8 9�8 9� + 2"D8 9�8D� 9D + 2"=D

≥ −�−1D8 9�8 9� + 2"D8 9�8D� 9D + 2"=D.
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Thus, from the first equation in (5.11), we obtain

�−1D8 9�8 9� ≥ 2"D8 9�8D� 9D + 2"=D + ΔD − b · �D − 2.

Using the following matrix inequality (see, for example, [Le3, Lemma 2.8(c)])

D8 9�8{� 9{ ≥
|�{ |2

trace (�2D)
=

|�{ |2
ΔD

together with ΔD ≥ =31/=, we find that

�−1D8 9�8 9� ≥ 2"
|�D |2
ΔD

+ 1

2
ΔD − b · �D + 1

2
ΔD + 2"=D − 2

≥ 2
√
" |�D | − |b| · |�D | + =

2
3

1
= + 2"=D − 2

≥ −(2 − 2"=D − =

2
3

1
= )+ in Ω, (5.12)

provided

" ≥ 1

4
‖b‖2

!∞ (Ω) .

Hence, by the ABP estimate applied to (5.12) in Ω where � = k−14"i2

on mΩ, we have

sup
Ω

� ≤ sup
mΩ

(k−14"i2 ) + � (=,Ω)









(2 − 2"=D − =
2
3

1
= )+

[
det(�−1 (�2D)−1)

] 1
=








!= (Ω)

= sup
mΩ

(k−14"i2 ) + � (=,Ω)






34"D2 (2 − 2"=D − =

2
3

1
= )+

3−
1
=







!= (Ω)

≤ sup
mΩ

(k−14"i2 ) + �1




31+ 1
= (2 − 2"=D − =

2
3

1
= )+





!= (Ω)

. (5.13)

Here �1 depends on =, Ω and �0 (via ‖D‖!∞ (Ω) ). Note that, for any ?0 > =, we have




31+ 1
= (2 − 2"=D − =

2
3

1
= )+





!= (Ω)

≤
(∫

{
2−2"=D≥(=/2)3 1

=

} 3=+1 (2 − 2"=D)= 3G
) 1

=

≤
(∫

{
2−2"=D≥(=/2)3 1

=

} 3=+1 (2 − 2"=D)= (2 − 2"=D) ?0−=
[
(=/2)31/=] ?0−= 3G

) 1
=

= (=/2)−
?0−=
=

(∫
{
2−2"=D≥(=/2)3 1

=

} 3=−
?0
=
+2 (2 − 2"=D) ?0 3G

) 1
=

. (5.14)

We now choose ?0 such that

2= < ?0 < min{=(= + 2), ?}.



30 Y. H. Kim, N. Q. Le, L. Wang, B. Zhou

Let W = 1 − ?0

=2 + 2
=
. Then 0 < W < 1. Moreover, from (5.13) and (5.14), we have

sup
Ω

� ≤ � + �
(∫

Ω

3=W ( |2 | + |D |) ?0 3G

) 1
=

≤ � + �
(∫

Ω

(34"D2 )=W ( |2 |? + 1) 3G
) 1

=

≤ �2 + �2 (sup
Ω

�)W ·
(∫

Ω

( |2 |? + 1) 3G
) 1

=

.

Here �2 depends on Ω, ", i, k, �1, W and ?. It follows that

sup
Ω

� ≤ �3 (�2, W, ‖2‖!? (Ω) ).

Since � = 34"D2

, we also get an upper bound for 3 = det�2D:

det�2D ≤ �3 in Ω.

It remains to establish a positive lower bound for det�2D.

Once we have the upper bound of the Hessian determinant of D, using D = i on mΩ

and a suitable barrier, we obtain

sup
Ω

|D | + sup
Ω

|�D | ≤ �4 (�3, i,Ω).

Then we can apply the Legendre transform to get the lower bound of the determinant.

According to Proposition 2.4, the Legendre transform D∗ of D satisfies

D∗8 9�8 9

(
|∗ + |H |2

2

)
= b(�D∗) · H + 2(�D∗) in Ω

∗
= �D(Ω),

where D∗8 9 = (�2D∗)−1 and |∗ = log det�2D∗. Applying the ABP estimate to |∗ + |H |2
2

on

Ω∗, and then changing of variables H = �D(G) with 3H = det�2D 3G, we obtain

sup
Ω∗

(
|∗ + |H |2

2

)
≤ sup

mΩ∗

(
|∗ + |H |2

2

)
+ � (=)diam(Ω∗)







b(�D∗) · H + 2(�D∗)

(det D∗8 9 ) 1
=







!= (Ω∗)

≤ � (k,�4) + � (=, �4)
(∫

Ω∗

|b(�D∗) · H + 2(�D∗) |=
(det�2D∗)−1

3H

) 1
=

= � (k,�4) + � (=, �4)
(∫

Ω

|b · �D + 2(G) |= 3H
) 1

=

≤ � (k,�4) + � (=, �4) (‖b‖!= (Ω) sup
Ω

|�D | + ‖2‖!= (Ω) ).

In particular, we have

sup
Ω∗
|∗ ≤ �5
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where �5 > 0 depending on Ω, =, i, k, ‖b‖!∞ (Ω) and ‖2‖!? (Ω) . Since |∗ = log det�2D∗,
the above estimate gives the lower bound for det�2D:

det�2D ≥ 4−�5 in Ω,

completing the proof of the lemma.

Remark 5.4. If there is no first order term, b · �D on the right-hand of (1.6), we can dir-

ectly obtain Hessian determinant bounds by the same trick used in the proof of Lemma 5.3

without getting a priori !∞-bound of D. Moreover, these bounds are valid for all dimen-

sions.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. The proof uses a priori estimates and degree theory as in that of

Theorem 1.1. We obtain the existence of a uniformly convex solution in �4,U (Ω) in case

(8), and in,4, ? (Ω) in case (88), with stated estimates provided that we can establish these

estimates for,4, ? (Ω) solutions. Thus, it remains to establish these a priori estimates.

Assume now D ∈,4, ? (Ω) is a uniformly convex smooth solution to (1.6). By Lemma

5.1 and the assumption on 2 in either (8) or (88), we can obtain the Hessian determinant

estimates for D by Lemma 5.3. Once we have the Hessian determinant estimates, Theorem

3.4 applies with

� (G) = |G |2/2, and 6(G) = 1(G) · �D(G) + 2(G).

This gives the Hölder estimates for |. The rest of the proof of Theorem 1.2, which is

concerned with global higher order derivative estimates, is similar to Step 2 in the proof

of Theorem 1.1(8) and (88). We omit the details.

Remark 5.5. In two dimensions, when ‖b‖!∞ (Ω) is small, depending on Ω, k and k, the

conclusions of Theorem 1.2 still hold. Indeed, in this case, by Remark 5.2, we still have

the !∞ estimate in Lemma 5.1. The proof of Theorem 1.2 then follows.

6. Proof of Theorem 1.3

In this section, we will prove Theorem 1.3. As in the proof of Theorem 1.1, it suffices to

derive the a priori estimates for,4, ? (Ω) solutions. Here, we recall that

? > 2.

Theorem 1.3 can be deduced from the following Theorem 6.1.

Theorem 6.1 (A priori ,4, ? (Ω) estimates for ,4, ? (Ω) solutions). Let Ω ⊂ R2, i, k, b

and 2 be as in Theorem 1.3. Assume that D ∈ ,4, ? (Ω) is a uniformly convex solution to

(1.6). Then

‖D‖, 4, ? (Ω) ≤ �,
where � > 0 is a constant depending on Ω, ?, i, k, b and 2.
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The rest of this section is devoted to the proof of Theorem 6.1.

We will first obtain the !∞-bound of D and !2-bound of �D. For this, the following

Poincaré type inequality will be useful.

Lemma 6.2 (Poincaré type inequality on planar convex domains). Let Ω ⊂ R2 be an

open, smooth, bounded and uniformly convex domain. Assume that D ∈ �1 (Ω) ∩ � (Ω)
and D |mΩ = i. Then

∫

Ω

|D |2 3G ≤ � (i, diam(Ω))‖D‖!∞ (Ω) +
diam(Ω)2

16

∫

Ω

|�D |2 3G.

Proof. Note that for any one-variable function 5 ∈ �1 (0, 1) ∩�0 [0, 1] where 0 < 1, one

has
∫ 1

0

| 5 (G) |2 3G ≤ (1 − 0) ( | 5 (0) | + | 5 (1) |)‖ 5 ‖!∞ (0,1) +
(1 − 0)2

8

∫ 1

0

| 5 ′(G) |2 3G. (6.1)

Indeed, denoting 2 := 0+1
2

, then using Hölder’s inequality and Fubini’s theorem, one

obtains
∫ 2

0

| 5 (G) |2 3G =
∫ 2

0

5 (0) (2 5 (G) − 5 (0)) 3G +
∫ 2

0

(∫ G

0

5 ′(C) 3C
)2

3G

≤ 2(2 − 0) | 5 (0) | · ‖ 5 ‖!∞ (0,1) − (2 − 0) 5 (0)2 +
∫ 2

0

(G − 0)
∫ G

0

| 5 ′(C) |2 3C3G

= 2(2 − 0) | 5 (0) | · ‖ 5 ‖!∞ (0,1) − (2 − 0) 5 (0)2 +
∫ 2

0

| 5 ′(C) |2
∫ 2

C

(G − 0) 3G3C

≤ 2(2 − 0) | 5 (0) | · ‖ 5 ‖!∞ (0,1) − (2 − 0) 5 (0)2 + (2 − 0)2

2

∫ 2

0

| 5 ′(G) |2 3G

≤ (1 − 0) | 5 (0) | · ‖ 5 ‖!∞ (0,1) +
(1 − 0)2

8

∫ 2

0

| 5 ′(G) |2 3G. (6.2)

Similarly, we have

∫ 1

2

| 5 (G) |2 3G ≤ (1 − 0) | 5 (1) | · ‖ 5 ‖!∞ (0,1) +
(1 − 0)2

8

∫ 1

2

| 5 ′(G) |2 3G. (6.3)

Combining (6.2) with (6.3), we obtain (6.1).

Next, by the convexity of Ω, we can assume that there are 2, 3 ∈ R, and one-variable

functions 0(G1), 1(G1), such that

Ω = {(G1, G2) : 2 < G1 < 3, 0(G1) < G2 < 1(G1)}.

It is clear that 3 − 2 ≤ diam(Ω) and 1(G1) − 0(G1) ≤ diam(Ω). Then, by (6.1) and D = i

on mΩ, we have

∫ 1 (G1)

0 (G1)
|D(G1, G2) |2 3G2 ≤ 2 diam(Ω)‖i‖!∞ (Ω) ‖D‖!∞ (Ω)

+ diam(Ω)2

8

∫ 1 (G1)

0 (G1)
|�G2

D(G1, G2) |2 3G2.



On the singular Abreu equations 33

Integrating the above inequality over 2 < G1 < 3 yields

∫

Ω

|D |2 3G ≤ 2 diam(Ω)2‖i‖!∞ (Ω) ‖D‖!∞ (Ω) +
diam(Ω)2

8

∫

Ω

|�G2
D |2 3G. (6.4)

Similarly,

∫

Ω

|D |2 3G ≤ 2 diam(Ω)2‖i‖!∞ (Ω) ‖D‖!∞ (Ω) +
diam(Ω)2

8

∫

Ω

|�G1
D |2 3G. (6.5)

Combining (6.4) and (6.5), we obtain

∫

Ω

|D |2 3G ≤ 2 diam(Ω)2‖i‖!∞ (Ω) ‖D‖!∞ (Ω) +
diam(Ω)2

16

∫

Ω

|�D |2 3G,

completing the proof of the lemma.

6.1. Estimates for supΩ |D | and ‖�D‖!2 (Ω)

Now we derive bounds for D and ‖�D‖!2 (Ω) .

Lemma 6.3 (!∞ and ,1,2 estimates). Let Ω ⊂ R2, i, k, b and 2 be as in Theorem 1.3.

Assume that D ∈ ,4, ? (Ω) is a uniformly convex solution to (1.6). Then there exists a

constant � > 0 depending on Ω, i, k, b and ‖2‖!1 (Ω) such that

‖D‖!∞ (Ω) ≤ � and ‖�D‖!2 (Ω) ≤ �.

Proof. To prove the lemma where = = 2, by (5.2) and (5.7), it suffices to prove

∫

mΩ

D2
a3( ≤ � (Ω, i, k, b, ‖2‖!1 (Ω) ), (6.6)

where a is the unit outer normal of mΩ.

Let D̃ be as in the proof of Lemma 5.1 so that (8) and (88) there are satisfied. Let  (G)
be the Gauss curvature at G ∈ mΩ. Then, as in (5.5), we have, for some �1 (Ω, i) > 0

∫

mΩ

 kD2
a3( ≤

∫

Ω

(ΔD − b · �D − 2) (D − D̃)3G + �1

( ∫

mΩ

D2
a3(

)1/2
+ �1 (6.7)

Next, we will estimate the RHS of (6.7) term by term. First, from the inequality before

last in (5.6), we have

∫

Ω

ΔD(D − D̃) 3G ≤ � (Ω, i)
(∫

mΩ

D2
a 3(

) 1
2

−
∫

Ω

|�D |2 3G. (6.8)
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Using D = i on mΩ, and integrating by parts, we get

∫

Ω

(b · �D)D̃ 3G =
∫

Ω

(bD̃) · �D 3G

=

∫

mΩ

DD̃b · a 3( −
∫

Ω

div (bD̃)D 3G

=

∫

mΩ

iD̃(b · a) 3( −
∫

Ω

(b · �D̃ + D̃ div b)D 3G

≤ � (1 + ‖D‖!∞ (Ω) ) ≤ �3 + �3

( ∫

mΩ

D2
a3(

)1/2
, (6.9)

where �3 depends on Ω, i, supmΩ |b|, ‖b‖!∞ (Ω) and ‖div b‖!∞ (Ω) .
Moreover,

∫

Ω

−(b · �D)D 3G = 1

2

∫

Ω

−b · � (D2) 3G = 1

2

[∫

Ω

(div b)D2 3G −
∫

mΩ

D2b · a 3(
]
.

Note that div b ≤ 32
diam(Ω)2 . Then by Lemma 6.2 and (5.2), we have

1

2

∫

Ω

(div b)D2 3G ≤ � (i, diam(Ω))‖D‖!∞ (Ω) +
∫

Ω

|�D |2 3G

≤ � (Ω, i) + � (Ω, i)
(∫

mΩ

D2
a 3(

) 1
2

+
∫

Ω

|�D |2 3G.

Hence
∫

Ω

−(b · �D)D 3G = 1

2

[∫

Ω

(div b)D2 3G −
∫

mΩ

i2b · a 3(
]

≤ �4 + �4

(∫

mΩ

D2
a 3(

) 1
2

+
∫

Ω

|�D |2 3G, (6.10)

where �4 depends on Ω, i, and supmΩ |b|.
Finally, as in (5.9), we get

∫

Ω

−2(D − D̃) 3G ≤ �5 + �5

(∫

mΩ

D2
a 3(

) 1
2

, (6.11)

where �5 depends on Ω, i and ‖2‖!1 (Ω) .
Combining (6.7)–(6.11), we obtain

�−1 (Ω) inf
mΩ
k

∫

mΩ

D2
a 3( ≤

∫

mΩ

 kD2
a 3( ≤ �6

[

1 +
(∫

mΩ

D2
a 3(

) 1
2

]

,

where�6 > 0 depends on Ω, i, k, b and ‖2‖!1 (Ω) . From this, we deduce (6.6), completing

the proof of the lemma.
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6.2. Hessian determinant estimates for D

Lemma 6.4 (Hessian determinant estimates). Let Ω ⊂ R2, i, k, b and 2 be as in Theorem

1.3. Assume that D ∈ ,4, ? (Ω) is a uniformly convex solution to (1.6). Then

0 < �−1 ≤ det�2D ≤ � in Ω,

where � > 0 is a constant depending on Ω, i, k, b and ‖2‖!2 (Ω) .

Proof. We first prove the lower bound of det�2D. Note that in two dimensions, we have

trace* = ΔD. Hence we can rewrite the first equation in (1.6) as

*8 9�8 9

(
| + |G |2/2

)
= b(G) · �D(G) + 2(G) := &(G) in Ω. (6.12)

By Lemma 6.3, we have

‖&‖!2 (Ω) ≤ �0

where �0 depends on Ω, i, k, b and ‖2‖!2 (Ω) .
Applying the ABP estimate to (6.12) and using det* = det�2D, we have

sup
Ω

(
| + |G |2/2

)
≤ sup

mΩ

k + � (Ω) + � (Ω)






&

(det*)1/2






!2 (Ω)

≤ � (Ω, k) + � (Ω)‖&‖!2 (Ω) · sup
Ω

(det�2D)− 1
2

≤ � (Ω, k) + � (Ω) (sup
Ω

|) 1
2 .

Therefore supΩ | ≤ �1, where �1 depends on Ω, i, k, b and ‖2‖!2 (Ω) . Consequently,

det�2D ≥ �−1
1 > 0 in Ω. (6.13)

Hence by the boundary Hölder estimate for solutions of non-uniformly elliptic equations

[Le1, Proposition 2.1], we know from (6.12) that | is Hölder continuous on mΩ with

estimates depending only on �1, Ω and k. Then by constructing a suitable barrier near the

boundary as in [Le2, Lemma 2.5], we can obtain

‖�D‖!∞ (Ω) ≤ �2,

where �2 depends on �1, Ω, i and k.

The upper bound of the Hessian determinant can be obtained similar as in Lemma 5.3.

Let D∗ (H) be the Legendre transform of D(G) where

H = �D(G) ∈ �D(Ω) := Ω
∗.

Then

diam(Ω∗) ≤ �2.

By Proposition 2.4 (with � (G) = |G |2/2), D∗ satisfies

*∗8 9�8 9

(
− |∗ − |H |2/2

)
= −&(�D∗) det�2D∗ in Ω

∗ (6.14)
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where (*∗8 9 ) = (det�2D∗) (�2D∗)−1, and |∗ = log det�2D∗.
Applying the ABP maximum principle to (6.14), and recalling that

|∗ (H) = log(det�2D(G))−1
= log|(G) = logk(G) on mΩ∗,

we obtain

sup
Ω∗

(−|∗ − |H |2/2) ≤ sup
mΩ∗

(−|∗ − |H |2/2) + � (diam(Ω∗))‖&(�D∗) (det�2D∗)1/2‖!2 (Ω∗)

≤ − log min
mΩ

k + � (�2)‖&‖!2 (Ω) ,

where we used
∫

Ω∗
[&(�D∗)]2 det�2D∗ 3H =

∫

Ω

[&(G)]2 det�2D∗ det�2D 3G =

∫

Ω

[&(G)]2 3G = ‖&‖2
!2 (Ω) .

Therefore, we have

sup
Ω∗

(−|∗) ≤ �3

where �3 depends on �0, �2 and minmΩ k. This implies |∗ ≥ −�3 in Ω∗, and hence

det�2D ≤ 4�3 in Ω. (6.15)

The lemma follows from (6.13) and (6.15).

6.3. Proof of Theorem 6.1

Finally, we can prove Theorem 6.1 which implies Theorem 1.3.

Proof of Theorem 6.1. Once we have the determinant estimates, we can establish the higher

estimates by using the regularity of the linearized Monge-Ampère equation with drift

terms as in Section 4 and Section 5. However, in two dimensions, we can also establish

these estimates as in [Le6].

By Lemma 6.4, we have

0 < _ ≤ det�2D ≤ Λ in Ω (6.16)

for _, Λ depending on Ω, i, k, b, ? and ‖2‖!? (Ω) . By the interior ,2,1+Y estimates

for Monge-Ampère equation [DFS, F, Sc], we have �2D ∈ !1+Y
;>2

(Ω) for some constant

Y(_,Λ) > 0. By the global ,2,1+Y estimates for the Monge-Ampère equation [S3], there

exists a constant �0 > 0 depending on Ω, i, k, b, ? and ‖2‖!? (Ω) such that

‖D‖, 2,1+Y (_,Λ) (Ω) ≤ �0.

Let @ := min{?, 1 + Y(_,Λ)} > 1. Then

� := −ΔD + b · �D + 2
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satisfies

‖�‖!@ (Ω) ≤ �1

where �1 > 0 depending on Ω, ?, i, k, b and ‖2‖!? (Ω) . Recall that

*8 9�8 9| = � on Ω, and | = k on mΩ.

By the global Hölder estimate for the linearized Monge-Ampère equation [LN2] with !@

right-hand side where @ > =/2, we deduce

‖|‖
�U (Ω) ≤ � (Ω, i, k, ?, b, 2)

where U ∈ (0, 1) depends on Ω, i, k, ?, b, 2. The proof of,4, ? (Ω) estimate for D is now

the same as that of Theorem 1.1(88). Hence, the theorem is proved.

7. Extensions and the proof of Theorem 3.2

In this section, we discuss (1.1) with more general lower order terms, and present a proof

of Theorem 3.2 for completeness.

7.1. Possible extensions of the main results

The following remarks indicate some possible extensions of our main results.

Remark 7.1. From the proofs in Sections 4-6 and the !∞-estimates in Lemma 5.1, it can

be seen that some conclusions of Theorems 1.1, 1.2 and 1.3 also hold for more general

cases of 2 = 2(G, I). Consider, for example,

2(G, I) = 61 (G) + 62 (G)ℎ(I).

Then the following facts hold:

(1) The conclusions in Theorem 1.1(ii) hold when 61 ≤ 0, 62 ≤ 0; 61, 62 ∈ ! ? (Ω) with

? > =, and ℎ ≥ 0 with ℎ ∈ �U (R).
(2) The conclusions in Theorem 1.2(i) hold when 61, 62 ∈ �U (Ω), and ℎ ∈ �U (R) with

|ℎ(I) | ≤ � |I |< for 0 ≤ < < = − 1.

(3) The conclusions in Theorem 1.2(ii) hold when 61, 62 ∈ ! ? (Ω) with ? > 2=, and ℎ ∈
�U (R) with |ℎ(I) | ≤ � |I |< for 0 ≤ < < = − 1.

(4) The conclusions in Theorem 1.3 hold when 61, 62 ∈ ! ? (Ω) with ? > 2, and ℎ ∈ �U (R)
with |ℎ(I) | ≤ � |I |< for 0 ≤ < < 1.

Remark 7.2. Since we use the trace of b on mΩ in (6.9), it is natural to have b ∈� (Ω;R=).
It would be interesting to obtain the conclusion of Theorem 1.3 for b ∈ � (Ω;R=) instead

of b ∈ �1 (Ω;R=).
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7.2. Global Hölder estimates for pointwise Hölder continuous solutions at the boundary

In this section, we prove Theorem 3.2.

The proof is similar to that of [Le1, Theorem 1.4] for the case without a drift. For com-

pleteness, we include the proof which includes the following ingredients: interior Hölder

estimates for linearized Monge-Ampère equations with bounded drifts, and rescalings

using a consequence of the boundary Localization Theorem for the Monge-Ampère equa-

tion which we will recall below.

Under the assumption _ ≤ det�2D ≤Λ, the linearized Monge-Ampère operator*8 9�8 9

is elliptic, but it can be degenerate and singular in the sense that the eigenvalues of

* = (*8 9 ) can tend to zero or infinity. To prove estimates for the linearized Monge-Ampère

equation that are independent of the bounds on the eigenvalues of *, as in [CG] and sub-

sequent works, we work with sections of D instead with Euclidean balls. For a convex

function D ∈ �1 (Ω) defined on the closure of a convex, bounded domain Ω ⊂ R=, the

section of D centered at G ∈ Ω with height ℎ > 0 is defined by

(D (G, ℎ) :=
{
H ∈ Ω : D(H) < D(G) + �D(G) · (H − G) + ℎ

}
.

Before proving the global Hölder estimate, we recall the interior Hölder estimate. The

following interior Hölder estimate for the nonhomogeneous linearized Monge-Ampère

equation with drift terms is a simple consequence of the interior Harnack inequality

proved in [Le3, Theorem 1.1]. In [M], Maldonado proved a similar Harnack’s inequal-

ity for linearized Monge-Ampère equation with drift terms with different and stronger

conditions on b.

Theorem 7.3 (Interior Hölder estimate for the nonhomogeneous linearized Monge-Ampère

equation with drift terms, [Le3]). Suppose that D ∈ �2 (Ω) is a strictly convex function in

a bounded domain Ω ⊂ R= with section (D (0, 1) satisfying

�A1
(0) ⊂ (D (0, 1) ⊂ �A2

(0)

for some positive constants A1 ≤ A2, and its Hessian determinant satisfying

_ ≤ det�2D ≤ Λ in Ω

where _ and Λ are positive constants. Let (*8 9 ) = (det�2D) (�2D)−1. Let b : (D (0, 1) →
R
= be a vector field such that ‖b‖!∞ ((D (0,1)) ≤ " . Let { ∈,2,=

;>2
((D (0, 1)) be a solution to

*8 9�8 9{ + b · �{ = 5 in (D (0, 1).

Then, there exist constants V0, � > 0 depending only _,Λ, =, A1, A2, and " such that

|{(G) − {(H) | ≤ � |G − H |V0

(
‖{‖!∞ ((D (0,1)) + ‖ 5 ‖!= ((D (0,1))

)
, for all G, H ∈ (D (0, 1/2).

To bridge the interior Hölder estimates in Theorem 7.3 and the boundary Hölder

estimates in (3.3), we need to control the shape of sections of the convex function D that

are tangent to the boundary mΩ. The following proposition, proved by Savin in [S3] (see
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also [LS, Proposition 3.2]), provides such a tool. It is a consequence of the boundary Loc-

alization Theorem for the Monge-Ampère equation, proved by Savin in [S1, Theorem 2.1]

and [S2, Theorem 3.1].

Proposition 7.4 (Shape of sections tangent to the boundary, [S3]). Assume that Ω ⊂ R= is

a uniformly convex domain with boundary mΩ ∈ �3. Let D ∈ � (Ω) ∩ �2 (Ω) be a convex

function satisfying

_ ≤ det�2D ≤ Λ in Ω

for some positive constants _ and Λ. Moreover, assume that D |mΩ ∈ �3. Assume that for

some H ∈ Ω the section (D (H, ℎ) ⊂ Ω is tangent to mΩ at some point G0 ∈ mΩ, that is,

m(D (H, ℎ) ∩ mΩ = G0, for some ℎ ≤ ℎ0 (_,Λ,Ω, D |mΩ, =). Then there exists a small positive

constant :0 depending on _, Λ, Ω, D |mΩ and = such that

:0�ℎ ⊂ (D (H, ℎ) − H ⊂ :−1
0 �ℎ , :0ℎ

1/2 ≤ dist(H, mΩ) ≤ :−1
0 ℎ1/2,

where �ℎ = ℎ1/2�−1
ℎ
�1 (0) is an ellipsoid with �ℎ being a linear transformation with the

following properties

‖�ℎ ‖, ‖�−1
ℎ ‖ ≤ :−1

0 | log ℎ|; det �ℎ = 1.

Now, we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. By considering the equation satisfied by (‖i‖�U (mΩ) + ‖ 5 ‖!= (Ω) )−1{,

we can assume that

‖i‖�U (mΩ) + ‖ 5 ‖!= (Ω) = 1,

and we need to show that

‖{‖
�V (Ω) ≤ � (_,Λ, =, U,Ω, D |mΩ, W, X,  , "),

for some V ∈ (0, 1) depending on =, _,Λ, Ω, D |mΩ, W, and " .

Step 1: Hölder estimates in the interior of a section tangent to the boundary. Let H ∈ Ω

with

A = AH := dist(H, mΩ) ≤ 21 (=, _,Λ,Ω, D |mΩ),

and consider the maximal interior section (D (H, ℎ) centered at H, that is

ℎ = ℎH := sup{C | (D (H, C) ⊂ Ω}.

By Proposition 7.4 applied at the point G0 ∈ m(D (H, ℎ) ∩ mΩ, we can find a constant

:0 (=, _,Λ,Ω, D |mΩ) > 0 such that

:0ℎ
1/2 ≤ A ≤ :−1

0 ℎ1/2, (7.1)

and (D (H, ℎ) is equivalent to an ellipsoid �ℎ , that is,

:0�ℎ ⊂ (D (H, ℎ) − H ⊂ :−1
0 �ℎ ,
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where

�ℎ := ℎ1/2�−1
ℎ �1 (0), with ‖�ℎ ‖, ‖�−1

ℎ ‖ ≤ :−1
0 | log ℎ|; det �ℎ = 1. (7.2)

Let

)G̃ := H + ℎ1/2�−1
ℎ G̃.

We rescale D by

D̃(G̃) :=
1

ℎ
[D()G̃) − D(H) − �D(H) · ()G̃ − H)] .

Then

_ ≤ det�2D̃(G̃) ≤ Λ,

and

�:0
(0) ⊂ (̃1 ⊂ �:−1

0
(0), (̃1 := (D̃ (0, 1) = ℎ−1/2�ℎ ((D (H, ℎ) − H). (7.3)

Define the rescalings {̃ for {, b̃ for b, and 6̃ for 6 by

{̃(G̃) := {()G̃) − {(G0), b̃(G̃) = ℎ1/2�ℎb()G̃), 6̃(G̃) := ℎ6()G̃), G̃ ∈ (̃1.

Simple computations give

�{̃(G̃) = ℎ1/2 (�−1
ℎ )C�{()G̃),

�2D̃(G̃) = (�−1
ℎ )C�2D()G̃)�−1

ℎ , �2 {̃(G̃) = ℎ(�−1
ℎ )C�2{()G̃)�−1

ℎ ,

and the cofactor matrix *̃ = (*̃8 9 ) of �2D̃ satisfies

*̃ (G̃) := (det�2D̃) (�2D̃)−1
= (det�2D)�ℎ (�2D)−1 (�ℎ)C = �ℎ* ()G̃) (�ℎ)C .

Therefore, we find that

*̃8 9�8 9 {̃ = trace (*̃�2 {̃) = ℎ(*8 9�8 9{) ()G̃) in (̃1.

It is now easy to see that {̃ solves

*̃8 9�8 9 {̃ + b̃ · �{̃ = 6̃ in (̃1.

Due to (7.2), and the smallness of ℎ (see (7.1)), we have the following bound

‖b̃‖!∞ ((̃1) ≤ :−1
0 ℎ1/2 | log ℎ| · ‖b‖!∞ ((D (H,ℎ)) ≤ :−1

0 ℎ1/2 | log ℎ|" ≤ ".

Now, we apply the interior Hölder estimates in Theorem 7.3 to {̃ to obtain a small constant

V ∈ (0, 1) depending only on =, _,Λ, :0, and " , such that

|{̃( Ĩ1) − {̃( Ĩ2) | ≤ �1 (=, _, Λ, ") | Ĩ1 − Ĩ2 |V
{
‖ {̃‖!∞ ((̃1) + ‖6̃‖!= ((̃1)

}
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for all Ĩ1, Ĩ2 ∈ (̃1/2 := (D̃ (0, 1/2). By (7.3), we can decrease V in the above inequality if

necessary, and thus assume that

2V ≤ W.

A simple computation using (7.2) gives

‖6̃‖!= ((̃1) = ℎ
1/2‖6‖!= ((D (H,ℎ)) .

Moreover, from (7.1) and (7.2), we infer the following inclusions regarding sections and

balls

�22
A

|log A |
(H) ⊂ (D (H, ℎ/2) ⊂ (D (H, ℎ) ⊂ ��2A |log A | (H), (7.4)

for some 22 ∈ (0, 1) and �2 > 0 depending on =, _,Λ,Ω, D |mΩ. We also deduce that

diam((D (H, ℎ)) ≤ � (=, _,Λ,Ω, D |mΩ)A |log A | ≤ X

if

A ≤ 23 (=, _,Λ,Ω, D |mΩ, X).

We now consider A satisfying the above inequality. By (3.3), we have

‖ {̃‖!∞ ((̃1) ≤  diam((D (H, ℎ))W ≤ �3 (A |log A |)W ,

where �3 = �3 (=, _,Λ,Ω, D |mΩ, W,  ). Hence

|{̃( Ĩ1) − {̃( Ĩ2) | ≤ �4 | Ĩ1 − Ĩ2 |V
{
(A |log A |)W + ℎ1/2‖6‖!= ((D (H,ℎ))

}
for all Ĩ1, Ĩ2 ∈ (̃1/2

where �4 = �4 (=, _,Λ,Ω, D |mΩ, X, W,  , ")
Each I ∈ (D (H, ℎ/2) corresponds to a unique Ĩ =)−1I ∈ (̃1/2. Rescaling back, recalling

2V ≤ W, and using Ĩ1 − Ĩ2 = ℎ−1/2�ℎ (I1 − I2), and the fact that

| Ĩ1 − Ĩ2 | ≤ ‖ℎ−1/2�ℎ ‖ |I1 − I2 |
≤ :−1

0 ℎ−1/2 |log ℎ | |I1 − I2 | ≤ �5 (=, _,Λ,Ω, D |mΩ)A−1 |log A | |I1 − I2 | ,

we find

|{(I1) − {(I2) | ≤ |I1 − I2 |V for all I1, I2 ∈ (D (H, ℎ/2), (7.5)

provided that A = AH ≤ 23 < 1 is small.

Step 2: Global Hölder estimates. We now combine (7.5) with (3.3) and (7.4) to prove

‖{‖�V (Ω̄) ≤ � (=, _,Λ,Ω, D |mΩ, U, X, W,  , ").

Indeed, as in (3.4), there exists a constant �∗(=, _, ", diam(Ω)) such that

‖{‖!∞ (Ω) ≤ �∗. (7.6)

It remains to estimate |{(G) − {(H) | /|G − H |V for G and H in Ω. Let AG = dist(G, mΩ) and

AH = dist(H, mΩ). Assume, without loss of generality, that AH ≤ AG . Take G0 ∈ mΩ and

H0 ∈ mΩ such that

AG = |G − G0 | and AH = |H − H0 | .
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From (7.6) and the interior Hölder estimates in Theorem 7.3, we only need to consider

the case AH ≤ AG ≤ 23 < 1. Consider the following cases.

Case 1: |G − H | ≤ 22
AG

|log AG | . In this case, by (7.4), we have

H ∈ �22
AG

|log AG |
(G) ⊂ (D (G, ℎG/2),

where

ℎG = sup{C | (D (G, C) ⊂ Ω}.

In view of (7.5), we have
|{(G) − {(H) |
|G − H |V

≤ 1.

Case 2: |G − H | ≥ 22
AG

|log AG | . In this case, we have

AG ≤ 2−1
2 |G − H | |log |G − H | | . (7.7)

Indeed, if

1 > AG ≥ |G − H | |log |G − H | | ≥ |G − H |

then

AG ≤ 1

22

|G − H | |log AG | ≤
1

22

|G − H | |log |G − H | | .

Due to (7.7), we have

|G0 − H0 | ≤ AG + |G − H | + AH ≤ �6 (=, _,Λ,Ω, D |mΩ) |G − H | |log |G − H | | .

Therefore, by (3.3), ‖i‖�U (mΩ) ≤ 1, and 2V ≤ W ≤ U, we obtain

|{(G) − {(H) | ≤ |{(G) − {(G0) | + |{(G0) − {(H0) | + |{(H0) − {(H) |
≤ �

(
A
W
G + |G0 − H0 |U + AWH

)

≤ � ( |G − H | |log |G − H | |)W ≤ � |G − H |V ,

where� =� (=,_,Λ, U,Ω, D |mΩ, X, W, ,"). This gives an estimate for |{(G) − {(H) | /|G − H |V
in Case 2.

The proof of the theorem is complete.
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