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Singular Abreu equations and linearized Monge-Ampere
equations with drifts

Abstract. We study the solvability of singular Abreu equations which arise in the approximation
of convex functionals subject to a convexity constraint. Previous works established the solvability
of their second boundary value problems either in two dimensions, or in higher dimensions under
either a smallness condition or a radial symmetry condition. Here, we solve the higher dimensional
case by transforming singular Abreu equations into linearized Monge-Ampere equations with drifts.
We establish global Holder estimates for the linearized Monge-Ampere equation with drifts under
suitable hypotheses, and then use them to the regularity and solvability of the second boundary
value problem for singular Abreu equations in higher dimensions. Many cases with general right-
hand side will also be discussed.
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1. Introduction and statements of the main results

In this paper, we study the solvability of the second boundary value problem of the follow-
ing fourth order Monge-Ampere type equation on a bounded, smooth, uniformly convex
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domain Q c R" (n > 2):

n
Z UijD,-]-w = —ydiv (|Du|?2Du) +b - Du + ¢(x,u) = f(x,u, Du, D*u) in Q,
i,j=1

w = (det D%u)™! in Q,

u=¢ on 0Q,

w =y on 0Q.
(1.1)

Herey > 0,q > 1, U = (UY); < j<n is the cofactor matrix of the Hessian matrix
0’u

D*u = (Diju)i<i,j<n = (—)
Ox;i0x; 1<i,j<n

of an unknown uniformly convex function u € C2(Q); ¢ € C>'(Q),y € C1(Q),b: Q —
R”" is a vector field on Q, and ¢(x, z) is a function on Q x R. When the right-hand side
f depends only on the independent variable, that is f = f(x), (1.1) is the Abreu equa-
tion arising from the problem of finding extremal metrics on toric manifolds in Kéhler
geometry [Ab], and it is equivalent to

L

0x;0x
ij=1 """

= f(x),

where (u'7) is the inverse matrix of D?u. The general form in (1.1) was introduced by
the second author in [Le6, Le7, Le8] in the study of convex functionals with a convexity
constraint related to the Rochet-Choné model [RC] for the monopolist’s problem in eco-
nomics, whose Lagrangian depends on the gradient variable; see also Carlier-Radice [CR]
for the case where the Lagrangian does not depend on the gradient variable.

More specifically, in the calculus of variations with a convexity constraint, one con-
siders minimizers of convex functionals

/ Fo(x,u(x), Du(x)) dx
Q

among certain classes of convex competitors, where Fy(x, z, p) is a function on QxR x
R™. One example is the Rochet-Choné model with g-power (g > 1) cost

Fyy(x,z,p) = (IPl?/q —x - p+2)y(x),

where y is nonnegative and Lipschitz function called the relative frequency of agents in
the population.

Since it is in general difficult to handle the convexity constraint, especially in numer-
ical computations [BCMO, Mir], instead of analyzing these functionals directly, one might
consider analyzing their perturbed versions by adding the penalizations —& fQ logdet D?u dx
which are convex functionals in the class of C2, strictly convex functions. The heuristic
idea is that the logarithm of the Hessian determinant should act as a good barrier for
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the convexity constraint. This was verified numerically in [BCMO] at a discretized level.
Note that, critical points, with respect to compactly supported variations, of the convex
functional

/ Fo(x,u(x), Du(x)) dx — 5/ log det D%y dx,
Q Q

satisfy the Abreu-type equation

n
. 0 0F 0F
eUYD;;[(detD*u) '] ==y — (—O(x, u, Du)) + O (x,u, Du).
P (9x,~ api aZ
Here we denote p = (p1, ..., pn) € R". In particular, for the Rochet-Choné model with

g-power (g > 1) cost and unit frequency y = 1, that is, Fy = F 1, the above right-hand
side is

—div (|Dul?>Du) +n + 1,
which belongs to the class of right-hand sides considered in (1.1). When Fy(x, z, p) =
F(p) + F(x, z) the above right-hand side becomes

—div (DF(Du)) + a—F(x, u).
0z

When y > 0, we call (1.1) a singular Abreu equation because its right-hand side
depends on D?u which can be just a matrix-valued measure for a merely convex func-
tion u.

Our focus in this paper will be on the case y > 0. For simplicity, we will take y = 1.

The Abreu type equations can be included in a class of fourth order Monge-Ampere
type equations of the form

U D;;[g(det D*u)] = f (1.2)

where g : (0, 00) — (0, o) is an invertible function. In particular, when g(¢) = t?, one can
taked=—-1and 0 =— :‘l—j:é to get the Abreu type equation and the affine mean curvature type
equation [Ch], respectively. It is convenient to write (1.2) as a system of two equations for
u and w = g(det D?u). One is a Monge-Ampére equation for the convex function u in the
form of

det D*u = g7 (w) (1.3)

and other is the following linearized Monge-Ampere equation for w:
U'D;jw=f. (1.4)

The second-order linear operator 3,7 _; U/ D;; is the linearized Monge-Ampgre operator
associated with the convex function u because its coefficient matrix comes from lineariz-
ing the Monge-Ampere operator:

_ ddetD?u
©9(D%u)
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n
When u is sufficiently smooth, such as u € Wlt CS () where s > n, the expression Z Ui D;;w
ij=1

n
can be written as Z D;(UY D jw), since the cofactor matrix (U%) is divergence-free,
i,j=1
that is,

iD[Uij = 0
i=1

for all j. The regularity and solvability of equation (1.2), under suitable boundary condi-
tions, are closely related to the regularity theory of the linearized Monge-Ampere equa-
tion, initiated in the fundamental work of Caffarelli-Gutiérrez [CG]. In the past two dec-
ades, there have been many progresses on the study of these equations and related geo-
metric problems, including [TW1,TW2, TW3,CW,CHLS, Lel, Le2,D1-D4,71,72], to
name a few.

According to the decomposition (1.3) and (1.4), a very natural boundary value prob-
lem for the class of fourth order equation (1.2) is the second boundary value problem
where one describes the values of u# and w on the boundary Q2 as in (1.1).

1.1. Previous results and difficulties

A summary of solvability results for (1.1), or more generally, the second boundary value
problem for (1.2), for the case f = f(x) is as follows. For the second boundary value
problem of the affine mean curvature equation, that is, (1.2) with g(¢) = t‘%, Trudinger-
Wang [TW2, TW3] proved the existence of a unique C*®(Q) solution when f € C%(Q)
with f < 0, and a unique W*” (Q) solution when f € L®(Q) with f < 0. The analogous
result for the Abreu equation (1.1) was then obtained by the fourth author [Z2]. For the
W*P(Q) solution, the second author [Lel] solved (1.1) for f € LP(Q) with p > n and
f < 0. The sign on f was removed by Chau-Weinkove [CW] under the assumption that
f € LP(Q) with p > n and f* := max{f,0} € LY(Q) with ¢ > n + 2 for the affine mean
curvature equation. Finally, in [Le2], the second author showed that the w4p () solution
exists under the weakest assumption f € L”(Q) with p > n for a broad class of equations
like (1.2), including both the affine mean curvature equation and the Abreu equation. We
will concentrate on the singular Abreu equation (1.1), and its solvability in C*® and W**
(s > n) in this paper. We obtain solvability by establishing a priori higher order derivative
estimates and then using the degree theory. Essentially, establishing a priori estimates
requires establishing the Hessian determinant estimates for u, and Holder estimates for w.

For the singular Abreu equation, the dependence of the right-hand side on D?u creates
two new difficulties in applying the regularity theory of the linearized Monge-Ampere
equation. The first difficulty lies in obtaining the a priori lower and upper bounds for
det D?u, which is a critical step in applying the regularity results of the linearized Monge-
Ampere equation. The appearance of D?u has very subtle effects on the Hessian determ-
inant estimates. The second author [Le6] obtained the Hessian determinant estimates for
the case f = —div (|Du|?2>Du) in two dimensions with ¢ > 2 by using a special algebraic
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structure of the equation. In a recent work of the second and the fourth authors [LZ], the
Hessian determinant estimates for the case 1 < g < 2 were established by using partial
Legendre transform. The second difficulty, granted that the bounds 0 < 1 < det D%u <
A < co have been established, consists in obtaining Holder estimates for w in the lin-
earized Monge-Ampere equation (1.4), which has no lower order terms on the left-hand
side. This requires certain integrability condition for the right-hand side, as can be seen
from the simple equation Aw = f. In previous works [CG, GN1, GN2], classical regu-
larity estimates for linearized Monge-Ampere equation were obtained for L" right-hand
side. This integrability breaks down even in the case f = —Au (where ¢ =2, b=10
and ¢ = 0), which is a priori at most L'*# for some small constant e(A, A, n) >0 (see
[DES, F, Sc]). With the Holder estimates for the linearized Monge-Ampere equation with
L2+ right-hand side in [LN2], the second author [Le6] established the solvability of
(1.1) for the case f = —div (|Du|?"2Du) in two dimensions with ¢ > 2. When 1 < ¢ < 2,
f = —div (|Du|972Du) becomes more singular in D?u and hence it has lower integrabil-
ity (if any). However, in two dimensions, the second and the fourth authors [LZ] solved
the second boundary value problem (1.1) for f = —div (|Du|972Du) + c(x, u) for any
g > 1 under suitable assumptions on ¢ and the boundary data. The proof was based
on the interior and global Holder estimates for linearized Monge-Ampere equation with
the right-hand being the divergence of a bounded vector field which were established
in [Le4, Le5]. The solvability of the singular Abreu equations (1.1) in higher dimen-
sions, even the simplest case f = —Au, has been widely open. Only some partial results
were obtained in [Le7] under either a smallness condition (such as replacing f = —Au by
f = —06Au for a suitably small constant 6 > 0) or a radial symmetry condition.

1.2. Statements of the main results

The purpose of this paper is to solve the higher dimensional case of (1.1). We will first
consider the case that the right-hand side has no drift term b - Du. This case answers in the
affirmative the question raised in [LZ, Page 6]. In fact, we can establish the solvability for
singular Abreu equations that are slightly more general than (1.1) where div (| Du|9"2Du)
is now replaced by div (D F (Du)) for a suitable convex function F. Our first main theorem
states as follows.

Theorem 1.1 (Solvability of the second boundary value problem for singular Abreu equa-
tions in higher dimensions). Let Q C R" be an open, smooth, bounded and uniformly
convex domain. Letr > n. Let F € WZZU’Z (R™) be a convex function. Assume that ¢ € C3(Q)
and y € C3 (Q) with mingg ¥ > 0. Consider the Sfollowing second boundary value problem
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for a uniformly convex function u:

Z U'D;jw = —div(DF(Du)) +c(x,u) in Q,
i j=1

w = (det D*u)~! in Q, (1.5)
u=¢ on 0Q,
w =y on 0Q.

Here (U'V) = (det D*u)(D*u)~", and ¢(x,z) < 0.
(i) Assume ¢ € C*(Q xR) where a € (0, 1). Then, there exists a uniformly convex solu-
tion u € W4 (Q) to (1.5) with
lullwer @ < C

for some C > 0 depending on Q, n, a, F, r, ¢, ¢ and .
Moreover, if F € C*»%(R") where ag € (0, 1), then there exists a uniformly convex
solution u € C*P(Q) to (1.5) where B = min{«, ap} with

||”||C4,ﬁ(§) <C

for some C > 0 depending on Q, n, a, ay, F, ¢, ¢ and .
(ii) Assume c(x,z) = c(x) € LP(Q) with p > n where c(x) < 0. Then, for s = min{r, p},
there exists a uniformly convex solution u € W**(Q) to (1.5) with
||Mllw4,s(g) < C
for some C > 0 depending on Q, n, p, F, r,s, ||cllLr(q), ¢ and .

We will prove Theorem 1.1 in Section 4.

We also discuss the solvability and regularity estimates of (1.1) in the case that the
right-hand side has more general lower order terms and no sign restriction on c. We mainly
focus on the most typical case that the right-hand side has a Laplace term:

n
Z UijDijw =—Au+b-Du+c(x,u) in Q,

i,j=1
w = (det D*u)™! in Q, (1.6)
u =g on 09,
w =y on 0Q.

Here, (U"/) = (det D?u)(D?u)~". Our second main result is the following theorem.

Theorem 1.2 (Solvability of the second boundary value problem for singular Abreu equa-
tions with lower order terms in high dimensions). Let Q c R"(n > 3) be an open, smooth,
bounded and uniformly convex domain. Assume that ¢ € C3(Q) and ¢ € C3(Q) with
mingg Y > 0. Consider the second boundary value problem (1.6) with c¢(x,z) = c(x).
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() IfbeC¥(Q;R") and c € C*(Q) where a € (0, 1), then there exists a uniformly convex
solution u € C*(Q) to (1.6) with

||Mllc4a(§) <C

for some C > 0 depending on &, n, «, ”b”Ca(ﬁ)’ “C”Ca(ﬁ)’ wand .

(i) If b € L=¥(Q;R") and ¢ € LP(Q) with p > 2n, then there exists a uniformly convex
solution u € WP (Q) to (1.6) with

lullwar @ <C
for some C > 0 depending on Q, n, p, ||b||L~(), |lc|lLr (@), ¢ and .

We will prove Theorem 1.2 in Section 5. Furthermore, in two dimensions, when
|Ib]| L~ (q) is small, depending on €, and ¢, the conclusions of Theorem 1.2 still hold;
see Remark 5.5.

The lack of non-positivity of ¢ in (1.6) can raise more difficulties in the L*-estimate
and the use of Legendre transform in the Hessian determinant estimates. Compared to
the weakest assumption ¢ € L”(Q) with p > n in [Le2], we need p > 2n in Theorem
1.2(i7). However, in two dimensions, this assumption can be weakened provided stronger
conditions on b are imposed, but ||b||z~(q) can be arbitrarily large. This is the content of
our final main result.

Theorem 1.3 (Solvability of the second boundary value problem for singular Abreu equa-
tions with lower order terms in two dimensions). Let Q C R2 be an open, smooth, bounded
and uniformly convex domain. Assume that ¢ € C*(Q) and € C3(Q) with mingg ¥ > 0.
Consider the second boundary value problem (1.6). Assume that b € C'(Q;R") with
div(b) < Wz(g)z, and c(x,z) = c(x) € LP(Q) with p > 2. Then there exists a uniformly
convex solution u € WP (Q) to (1.6) with

lullwar ) < C
for some C > 0 depending on Q, p, b, ||c||Lr (), ¢ and .
The proof of Theorem 1.3 will be given in Section 6.

Remark 1.4. Some remarks are in order.

(1) Theorem 1.1 applies to all convex functions F(x) = |x|9/q (¢ > 1) on R" for which
(1.5) becomes (1.1) when b = 0. Note that, if 1| < g < 2, then |x|? € Wi)cr (R™) for all
n<r<n/(2-gq), whileifq > 2, we have |x|9 € W;Z(R")for allr > n.

(2) By the Sobolev embedding theorem, the solutions u obtained in our main results at
least belong to C3P (Q) for some 8 > 0.

(3) The condition div (b) < ﬁz(g)z in Theorem 1.3 is due to the method of its proof in

obtaining a priori L™ estimates that uses a Poincaré type inequality on planar convex
domains in Lemma 6.2.
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Remark 1.5. We briefly relate the hypotheses in our existence results to concrete examples
in applications.

(1) Theorem 1.1 applies to the approximation problem of the variational problem
inf/ Fo(x,u(x), Du(x)) dx 1.7
Q

among certain classes of convex competitors, say, with the same boundary value ¢ on
dQ, where Fy(x,z,p) = F(p) + F (x, z) with F being convex and ¢(x,z) = aF Gz (x,2) <

0. The case F = 0 is applicable. One particular example is Fy(x, z,p) = F(x 7) =
(|x|2 /2 - z) det D?v(x) where v is a given function, which arises in wrinkling patterns
in floating elastic shells in elasticity [T].

(2) Consider now Fo(x,z,p) = F(x,z). Denote c(x,z) = % (x,7). We note that without the
condition c(x,z) < 0, (1.7) might not have a minimizer. (For example, if F(x, z) = 2°
50 ¢(x,z) = 3z% > 0, then the infimum value of (1.7) is —c0 if ¢ # 0.) On the other
hand, when the assumption c(x, z) < 0 holds, a solution to (1.7) always exists: One
solution is the maximal convex extension of ¢ from 082 to Q. The existence results in
Theorem 1.1 imply that when F (x, z) is perturbed by convex functions of Du (such as
F(Du) where F is convex) and det D*u (such as —log det D?u), critical points of the
resulting functionals, under appropriate boundary conditions, always exist, and this
heuristically means that the resulting functionals continue to have minimizers.

(3) Theorem 1.2 applies to (1.6) with right-hand side —Au + 1. This expression arises
from the Rochet-Choné model with quadratic cost Fy(x,z,p) = |p|?/2 —x - p + z, due
to

_Zaa aFO(x u, Du ))+—(x u,Du) = -Au+n+1.
-xl Pi

Remark 1.6. Given our existence results concerning (1.1), one might wonder if the solu-
tions found are unique. In general, for the fourth-order equations, we can not obtain the
uniqueness of solutions by using the comparison principle. However, for equations of the
type (1.1), we can obtain uniqueness in some special cases by exploring their very par-
ticular structures, using integral methods, and taking into account the concavity of the
operator log det D?>u and the convexity of |x|9/q (g > 1) or F in general. For example,
we can infer from the arguments in [Le6, Lemma 4.5] that the uniqueness of (1.1) holds
when b = 0 and c(x, z) satisfies the following monotonicity condition:

(c(x,2) —c(x,2)(z=2) >0 forallxeQ and z,%Z€R.

In particular, this implies that the solutions in Theorem 1.1 (ii) are unique, and the solu-
tions in Theorems 1.2 and 1.3 are unique provided that b = 0. To the best of our knowledge,
the uniqueness for (1.1) when b # 0 is an interesting open issue.

1.3. On the proofs of the main results

Let us now say a few words about the proofs of our main results using a priori estim-
ates and degree theory. We focus on the most crucial point that overcomes the obstacles
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encountered in previous works: obtaining the a priori Holder estimate for w = (det D%u)™!
in higher dimensions, once the Hessian determinant bounds on u have been obtained. In
this case, global Holder estimates for Du follow. Here, we use a new equivalent form (see
Lemma 2.1) for the singular Abreu equation to deal with the difficulties mentioned in
Section 1.1. In particular, in Theorem 1.1, instead of establishing the Holder estimate for
w, we establish the Holder estimate for 7 = we” (P The key observation is that 7 solves
a linearized Monge-Ampere equation with a drift term in which the very singular term

div (DF(Du)) = trace(D>F(Du)D*u)

no longer appears. Thus, the proof of Theorem 1.1 reduces the global higher order deriv-
ative estimates for (1.5) to the global Holder estimates of linearized Monge-Ampere
equations with drift terms. To the best of the authors’ knowledge, these global Holder
estimates with full generality are not available in the literature. In the case of Theorems
1.2 and 1.3, the drift terms are also Holder continuous. However, they do not vanish on the
boundary and this seems to be difficult to prove Holder estimates for 7 at the boundary, not
to mention global Holder estimates. We overcome this difficulty by observing that each of
our singular Abreu equation is in fact equivalent to a family of linearized Monge-Ampére
equations with drifts. In particular, at each boundary point x,

7% (x) = w(x)eF(DM(X))*DF(DM(XO))'(DM(x)*Du(xo))*F(Du(xo))

solves a linearized Monge-Ampere equation with a Holder continuous drift that vanishes
at xo. This gives pointwise Holder estimates for *° (and hence for 1) at xy. Combining
this with interior Holder estimates for linearized Monge-Ampere equations with bounded
drifts, we obtain the global Holder estimates for 77 and hence for w. Section 3 will discuss
all these in detail.

For reader’s convenience, we recall the following notion of pointwise Holder continu-

ity.
Definition 1.7 (Pointwise Holder continuity). A continuous function v € C (Q) is said to
be pointwise C* (0 < a < 1) at a boundary point xo € 0Q, if there exist constants 5, M > 0

such that
[v(x) —v(x0)| < M|x —x0|* forallx € QN Bs(xp).

Throughout, we use the convention that repeated indices are summed.

The rest of the paper is organized as follows. In Section 2, we establish a new equival-
ent form for the singular Abreu equations which transform them into linearized Monge-
Ampere equations with drift terms, and the dual equations under Legendre transform. The
global Holder estimates for the linearized Monge-Ampére equation with drift terms, under
suitable hypotheses, will be addressed in Section 3. With these estimates, we can prove
Theorem 1.1 in Section 4. The proofs of Theorems 1.2 and 1.3 will be given in Sections 5,
and 6, respectively. In the final Section 7, we discuss (1.1) with more general lower order
terms, and present a proof of Theorem 3.2 on global Holder estimates for solutions to the
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linearized Monge-Ampere equation with a drift term that are pointwise Holder continuous
at the boundary.

2. Equivalent forms of the singular Abreu equations

In this section, we derive some equivalent forms for the following general singular Abreu
equations:

{U[jDijw = ~div(DF(Du)) + Q(x,u, Du), in L, 2.1

w = (det D*u)™! in Q,

where U = (U"7) = (det D*u)(D*u)™!, F € WIZO’C"(R"), and Q is a function on R” X R X R™.

2.1. Singular Abreu equations and linearized Monge-Ampére equations with drifts
Our key observation is the following lemma.

Lemma 2.1 (Equivalence of singular Abreu equations and linearized Monge-Ampere
equations with drifts). Assume that a locally uniformly convex function u € W;‘O’CS (Q)

(s > n) solves (2.1). Then

n= weF(Du)

satisfies
UijD,-jr] — (det D’u)DF(Du) - Dn = ¢ PY Q(x, u, Du). 2.2)

Proof. Let (u'/) = (D?u)~' =wU. By computations using D; U/ =0 and w = (det D?u)~!,
we have

UYD;;w = D;(UYD;w) = D;(u” D;(logw)) = =D (u" D;(log det D*u))

and
D; [u" D; (F(Du))| = div (DF(Du)). (2.3)

It follows that equation (2.1) can be written as
D;(u"Di{) = ~Q(x,u, Du) 24)

where
¢ =logdet D*u — F(Du).

In other words, in (2.1), the singular term
div (DF(Du)) = trace(D*F (Du)D?u)

can be absorbed into the left-hand side to turn it into a divergence form equation.
Next, observe that { = —logn, and

D;¢ = -Din/n = —=D;ndet D*ue™F (P



On the singular Abreu equations 11

Thus (2.4) becomes
Q(x,u,Du) = =D ;(u"’ D;{)

=D; (uif detDzue‘F(D“)Dm)
= D, (U1 i)
=UYD; (e_F(D”)D,-n) (using the divergence free property of (U/))
=UYD;ne P — U Dine™" PY Dy F(Du) Dy ju
= U D;ne™F P — (det D*u)e " P DF(Du) - Dn.

Therefore, (2.2) holds, and the lemma is proved. ]

Remark 2.2. In general, (2.1) is not the Euler-Lagrange equation of any functional. How-
ever, the introduction of

n= weF(Du) — (det D2M)_1€F(Du)
in Lemma 2.1 has its root in an energy functional. Indeed, when Q = 0, (2.1) becomes
D;;(U" (det D*u)™") + div (DF (Du)) =0,

and this is the the Euler-Lagrange equation of the Monge-Ampére type functional

/(F(Du)—logdetDzu)dx=/log((detDzu)"e”D“))dx.
Q Q

Remark 2.3. Tuking F(x) = |x|9/q with g > 1 in Lemma 2.1 where x € R", we find that
an equivalent form of

Ui-iDijw = —div (|Dul?">Du) + Q(x,u, Du), w = (detD*u)~!

is
|Duld

UijD,-jn — (det D*u)|Du|97>Du - Dy = Q(x,u, Du)e 4 , (2.5)

where
|Dul4

n:we q

Lemma 2.1 shows thatnp = wel (PW) where u is a solution of (2.1), satisfies a linearized
Monge-Ampere equation with a drift term. This fact plays a crucial role in the study
of singular Abreu equations in higher dimensions in latter sections. Once we have the
determinant estimates for det D”u for the second boundary value problem of (2.1), we can
estimate u in C%(Q) provided the boundary data is smooth. This gives nice regularity
properties for the right-hand side of (2.2) (and particularly, (2.5)) and the drift on the left-
hand side. Then the higher regularity estimates for (2.1) can be reduced to global Holder
estimates for the following linearized Monge-Ampere equation with a drift term:

UYDiin+b-Dn+ f(x)=0. (2.6)

This is the content of Section 3.
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2.2. Singular Abreu equations under the Legendre transform

In this section, we derive the dual equation of (2.1) under the Legendre transform in any
dimension. After the Legendre transform, the dual equation is still a linearized Monge-
Ampere equation.

Denote the Legendre transform u* of u by

u*(y) =x-Du—u, wherey=Du(x)€ Q" =Du(Q).

Then
x=Du’(y), andu(x)=y Du’(y)—u"(y).

Proposition 2.4 (Dual equations for singular Abreu equations). Let u € W;’CS (Q) (s >n)
be a uniformly convex solution to (2.1) in Q. Then in Q* = Du(Q), its Legendre transform
u”* satisfies the following dual equation

uDi; (w* + F(y)) =Q (Du’,y-Du* —u*,y). 2.7)
Here (u*'7) is the inverse matrix of D*u*, and w* = log det D*u*.

Proof. When (2.1) is a Euler-Lagrange equation of a Monge-Ampere type functional, we
can derive its dual equation from the dual functional as in [LZ, Proposition 2.1]. Here for
the general case, we prove it by direct calculations. Note that for the case that the right-
hand side has no singular term, the dual equation has been obtained in [Le2, Lemma 2.7].
We include a complete proof here for reader’s convenience.

For simplicity, let d = det D?u and d* = det D?>u*. Then d(x) = d*~'(y) where y =
Du(x). We will simply write d = d*~! with this understanding.

We denote by (u'/) and (u*/) the inverses of the Hessian matrices D?u = (D;;u) =

(afgx ) and D%u* = (D;ju*) = (6(3 By ) respectively. Let (U*7) = (det D?u*)(u*'7) be
the cofactor matrix of D?u*.
Note that w = d~! = d*. Thus
Ow _0d" Oy _od" 04
ox;  Oyr dx;  oye MM T ey

Dle:

Clearly,
od* 0
s—1 * *
— = —(logd®) =D, w",
Iy 3yk( gd’) = Dy,

from which it follows that

Dy,w=Dyw (U
Similarly,

Duw—( 9y, —D w)u*l’.

Hence, using
UV =det D%u - u/ = (d*)™! Dy,yu’,
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and the fact that U* = (U*"/) is divergence-free, we obtain

g )
U'Dijw = (d")" Dy,y u'u—D;w
ij Yiyj oy,

0
=(d") " (7—D,w)
6yj 7
— (d*)—l i (D w*U*kj)
ay] Yk
= (4" UMDy, 0"
= M*ijDijw*. (28)
On the other hand, by (2.3), we have

div (DF(Du)) = Dy, [u" Dy, (F(Du))]

gi 0 |, .0
_ o xlj *  xki
=u" — |ufu™ ' — (F
ayr |V 3yk( 2
= u*iijiyj (F(y)). (2.9)

Combining (2.8) with (2.9) and recalling (2.1), we obtain
WD (' + F(y)) = 0(x,u(x), Du(x)) = Q (Du*,y - Du* — ", y),

which is (2.7). The lemma is proved. [

3. Holder estimates for linearized Monge-Ampeére equation with drifts

In this section, we study global Holder estimates for the linearized Monge-Ampere equa-
tion with drift

U'D;iv+b-Dv = f in Q,
{ Y 4 (3.1)

v=¢ on 0Q,

where U = (U") = (det D%u)(D*u)"" and b : Q — R" is a vector field.

When there is no drift term, that is b = 0, global Holder estimates for (3.1) were
established under suitable assumptions on the bounds 0 < A < det D?u < A on the Hessian
determinant of u, and the data. In particular, the case f € L"(Q) was treated in [Lel,
Theorem 1.4] (see also [LN1, Theorem 4.1] for a more localized version) and the case
f € L"**2(Q) was treated in [LN2, Theorem 1.7].

We would like to extend the above global Holder estimates to the case with bounded
drift. In this case, the interior Holder estimates for (3.1) were obtained as a consequence
of the interior Harnack inequality proved in [Le3, Theorem 1.1]. Note that Maldonado
[M] also proved a Harnack’s inequality for (3.1) with different and stronger conditions on
b.

Therefore, to obtain global Holder estimates for (3.1) with a bounded drift b, it remains
to prove the Holder estimates at the boundary. Without further assumptions on b, this
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seems to be difficult with current techniques. However, when b is pointwise Holder con-
tinuous, and vanishes at a boundary point xo, we can obtain the pointwise Holder continu-
ity of v at x¢. This can be deduced from the following result, which is a drift version of
[Lel, Proposition 2.1].

Proposition 3.1 (Pointwise Holder estimate at the boundary for solutions to non-uni-
formly elliptic, linear equations with pointwise Holder continuous drift). Assume that
Q c R" is a bounded, uniformly convex domain. Let ¢ € C*(0Q) for some « € (0, 1),
and g € L(Q). Assume that the matrix (a'l) is measurable, positive definite and satisfies
det(a) > 1in Q. Letb € L*®(Q;R"). Letv € C(Q) N WIZO’Z(Q) be the solution to

aijDijv+b -Dv =ginQ, v=¢ondQ.
Suppose there are constants u,t € (0, 1), and M > 0 such that at some xo € 0L, we have
|b(x)| < M|x —xp|* forall x € QN B (xp). (3.2)

Then, there exist §, C depending only on A,n, a, i, 7, M, ||b|| L~ (q), and Q such that

min{a,u}
|o(x) = v(x0)| < Clx = xo| ™1+ (|lgllca(aq) + lIgllLn (@) for all x € QN Bgs(xo).

We will prove Proposition 3.1 in Section 3.1.
Once we have the pointwise Holder estimates at the boundary, global Holder estimates
for (3.1) follow. This is the content of the following theorem.

Theorem 3.2 (Global Hdolder estimates for solutions to the linearized Monge-Ampere
equation with a drift term that are pointwise Holder continuous at the boundary). Assume
that Q@ C R" is a uniformly convex domain with boundary dQ € C3. Let u € C(Q) N C%(Q)
be a convex function satisfying

A<detD’u<A in Q

for some positive constants A and A. Moreover, assume that u|sg € C3. Let (U') =
(det D%u)(D?u)~". Letb € L™ (Q;R™) with ||b||~q) < M, f € L"(Q) and ¢ € C*(6Q)
for some a € (0, 1). Assume that v € C(Q) N let;ﬁ (Q) is a solution to the following lin-
earized Monge-Ampére equation with a drift term

UYD;juv+b-Dv = f in Q,
v=¢ on 0Q.
Suppose that there exist y € (0,a], § > 0 and K > 0 such that
[v(x) —v(x0)| < K|x —x9|” forallxg € 0Q, and x € Q N Bg(xp). (3.3)

Then, there exist a constant B € (0, 1) depending on n, A, A, y and M, and a constant
C > Odepending only on Q, u|sa, 4, A, n, a, vy, 6, K and M such that

00) = 0] < Cle = ¥ (llgllcean + 1 fllney ), Y.y € @
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The proof of Theorem 3.2 is similar to that of [Lel, Theorem 1.4] for the case without
a drift. For completeness and for reader’s covenience, we present its proof at the end of
the paper in Section 7.

Remark 3.3. It would be interesting to prove the global Holder estimates in Theorem 3.2
without the assumption (3.3).

In Section 3.2, we will apply Theorem 3.2 to establish the global Holder estimates for
Hessian determinants of singular Abreu equations provided that the Hessian determinants
are bounded between two positive constants; see Theorem 3.4.

3.1. Pointwise Holder estimates at the boundary
In this section, we prove Proposition 3.1.

Proof of Proposition 3.1. The proof is similar to that of [Lel, Proposition 2.1]. Due to the
appearance of the drift b and the pointwise Holder continuity condition (3.2), we include
the proof for reader’s convenience.
Let
K =|b||z~(0), and L = diam(Q).

In this proof, we fix the exponent
y = min{a, u}/2.

However, the proof works for any exponent y € (0, 1) such that y < min{a, 1}, and in this

case, we replace the exponent % in the proposition by %

Clearly ¢ € CY(9Q) with |l¢llcr(aq) < C(a, i, L)||¢llcese)- By considering the
equation satisfied by (||¢llcraq) + 18]l (Q))‘lv, we can assume that

lellcr o) + gl @) =1,
and it suffices to prove that, for some 6 = 6(n, A, @, 7, K, M, u, Q) > 0, we have
[v(x) —v(x0)| < C(n, A, a, 7, K, M, p, Q)|x —xo|# for all x € QN Bs(xp).
Moreover, without loss of generality, we assume that
QcR"N{x, >0}, xg=0¢€dQ.

Since det(aij ) = 4, by the Aleksandrov-Bakelman-Pucci (ABP) estimate for elliptic, linear
equations with drifts (see [GT, inequality (9.14)]), we have

lollz= () < llelli=(a)

n-2 n n
+diam(9){exp [nznwn /Q(l * deltlzlzif))dx] - 1} H(det(;w

< Gy (3.4
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for a constant Co(n,4, K, L) > 1. Here we used w,, = |B;(0)], and [l¢|lc»aq) + lIgllzr (@) =
1. Hence, for any € € (0,77)

lv(x) —v(0) = &| < 3Cy :=C. 3.5
Consider now the functions
Y (x) :=v(x) —v(0) £ & + C1x(02)xn

where
k(82) := (inf{y, : y € QN dBs,(0)}) "

in the region
A:=QnN B (0)

where 6, < 1 is small to be chosen later.
The uniform convexity of  gives

inf{y, : y € QN B4 (0)} > C;'53 (3.6)
where C, depends on the uniform convexity of Q. Thus,
k(62) < C265°.

Note that, if x € dQ with |x| < 6; (&) := &'/ (< 7) then, we have from lleller gy <1
that
[v(x) = 0v(0)] = le(x) —(0)] < x|” < &. (3.7

It follows that, if we choose ¢, < 1, then from (3.5) and (3.7), we have
Y- <0,¢: >0o0ndA.

From (3.2), we have
Ib| < M&y in A,

and therefore
a’Dij_+b-Dy_ =g —Cik(62)b- e, > —|g| — ClczMag‘*z inA,

where e, = (0,---,0,1) € R™.
Similarly,

aVDijs +b - Dy = g+ Cik(62)b - e, < |g| + CLCMSE ™ in A.
Again, applying the ABP estimate for elliptic, linear equations with drifts, we obtain

U < C(n, 4, K, L)diam(A) ”g + clczMa';‘ZH < Ca(n K M. Q.7 )0} in 4.

Ln(A

In the above inequality, we used ||g|/z»(4) < 1 and

llg + C1CaM* 2|1 (ay < lgllnca) + CLC2MSL || < C(n, A, K, M, Q. 7, )64~
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Similarly, we have

Ui > —C(n, A, K, L)diam(A) ”g + ClczMag‘an > ~Cy(n, A, K, M, Q,7, )6" in A.

(A)
-
We now restrict € < C3” ~ so that
61 =& < [e/C3]VH.
Then, for 6, < 61, we have C35’2J < g, and thus,

l[v(x) —v(0)] < 2e+ C1k(52)x, inA.

Therefore, choosing 6, = 81, we find

[v(x) —v(0)] <2+ C1k(62)x, < 2e+ ZC;ZCan inA.
2
Summarizing, we obtain the following inequality
lo(x) —v(0)| < 2&+ %m < 26 +2C 1 Cre Y x| 3.8)
for all x, ¢ satisfying the following conditions
x| <61(e) =7, &< Cﬁ =cl. (3.9)

Let us now choose € = |x|7*2. Then the conditions in (3.9) are satisfied as long as

y2
|x| < min{c,” , 1} :=¢.

With this choice of ¢, and recalling (3.8), we have
lo(x) = 0(0)] < (2+2C;C)|x|72  forall x € QN By(0).

The proposition is proved. ]

3.2. Singular Abreu equations with Hessian determinant bounds

In this section, we apply Theorem 3.2 to establish the global Holder estimates for Hes-
sian determinants of singular Abreu equations provided that the Hessian determinants are
bounded between two positive constants. This is the content of the following theorem.

Theorem 3.4 (Holder continuity of Hessian determinant of singular Abreu equations
under Hessian determinant bounds). Assume that Q C R" is a uniformly convex domain
with boundary dQ € C3. Let F € Wlicr (R™) for some r > n, and let g € L°(Q) where s > n.
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Let ¢ € C*(Q) and ¢ € C%(Q) with mingg ¥ > 0. Assume that u € WS (Q) is a uniformly
convex solution to the singular Abreu equation:

U D;jw = —div (DF(Du)) + g(x), in Q,

w = (det D%u)™! in Q,
u =g on 0Q,
w =y on 09,

where U = (U'V) = (det D>u) (D*u)~". Suppose that, for some positive constants A and A,
we have

A<detD’u<A in Q.

Then, there exist constants 8,C > 0 depending only on Q, ¢, y, A, A, n, r, F, and ||g|| .7 (),
such that

||w||cﬁ(§) <C.

Proof. Since F € Wlicr (R™), by the Sobolev embedding theorem, we have F € C1-(R")
where @ =1 —n/r € (0, 1). From the Hessian determinant bounds on u«, and u = ¢ on JQ
where ¢ € C*(Q), by [LS, Proposition 2.6], we have

llull crao @) < Cr, (3.10)

where @ € (0, 1) depends on A, A, and n. The constant C; depends on Q, n, 1, A and ¢.
By Lemma 2.1, the function

70x) = w()er P10

satisfies
UijD,-jr] — (det D*u)DF(Du(x)) - Dn = g(x)e" P = £(x). (3.11)
From (3.10), we deduce that n7|gg € C? with estimate
Inllcao e < Ci(¥,C1, F). (3.12)
Step 1: Pointwise Holder continuity of  at the boundary. Fix xo € Q. Let us denote
F(y) := F(y) - F(Du(xo)) - DF(Du(x0)) - (y — Du(xo)) fory € R".

Then, we have
UijDijw(x) = —div(DF(Du(x))) + g(x) inQ.

By Lemma 2.1, the function

7 (@) = w(x)e" P
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satisfies

UV D ~ (det D*u)(DF(Du(x)) — DF(Du(x0))) - D = g(x)e” P09 = 0 (x).

(3.13)
Clearly,
1) < Ca, (3.14)
where C, depends on “F“C‘(Bq (o) and [|gllz» (-
The vector field

b(x) = (det D*u) - (DF(Du(x)) — DF(Du(x0)))
satisfies in Q the estimate

Ib(x)| < AlIDFl[ce (B, (0)) |Pu(x) = Du(xo)|* < ACI|DF||ce (B, (o) lx = xol ™,
(3.15)
where
] = aqg.

We also have ™ |so€ C* (0Q) with

7% llce1 (o) < C3(a, a0, C1, ¥, [IDFlice(se, (0))- (3.16)
Note that
det(UY) = (det D*u)"™' > A",
Hence, from (3.13), (3.15) and (3.16), we can apply Proposition 3.1 and find constants
y=ai/(a1+4) € (0, 1),
and 8, C4 > 0 depending only on n, A, A, @, F, ¢, i, and Q such that, for all x € Q N Bs(xp),
70 (x) = 17 (x0)| < Calx = x0l” (7™ lcn (ag) + 1 lLn (@) < Cslx = xol”,  (3.17)

where Cs = C4(C2 + C3).
Due to
T](X) — T]XO (x)eF(Du(xo))+DF(Du(x0))~(Du(x)—Du(x0))’

and (3.10), (3.17) implies the pointwise C? continuity of 7 at xo with estimate
[n(x) = n(xg)| < Cglx —xp|” forall x € QN Bs(xp), (3.18)

where Cg depends on Q, ¢, ¥, A, A, n, a, F and ||g|| 7).

Step 2: Global Héolder continuity of n and w. From (3.18), we can apply Theorem 3.2
to (3.11) to conclude the global Holder continuity of 7. Since w = ne (P w is also
globally Holder continuous. In other words, there exist a constant 8 € (0, 1) depending
on n,A, A, @ and F, and a constant C > 0 depending only on Q, ¢, ¥, 4, A, n, r, F and
llgllz» (@) such that

||w||cﬁ(§) <C.

The theorem is proved. ]
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4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 using a priori estimates and degree theory. With
Theorem 3.4 at hand, a key step is to establish a priori Hessian determinant estimates for
uniformly convex solutions u € W**(Q) (s > n) of (1.5).

For the Hessian determinant estimates, we will use the maximum principle and the
Legendre transform; see also [LZ, Theorem 1.2] with a slightly different proof for the
case of F(x) = |x|/q (¢ > 1) and c(x, z) being smooth.

Lemma 4.1 (Hessian determinant estimates). Let Q C R" be an open, smooth, bounded
and uniformly convex domain. Assume that ¢ € C*(Q) and € C3(Q) with mingo v > 0.
Letr,s >n. Let F € W2 "(R") be a convex function, and c¢(x, z) be a function on Q X R.
Suppose c(x,7) <0 wzth c € CY(QxR) where a € (0,1) or c(x,z) = c(x) € L5(Q).
Assume that u € W**(Q) is a uniformly convex solution to the second boundary value

problem N
UYDjjw = —div(DF(Du)) + c(x,u) in Q,

w = (det D%u)™! in Q,
u=¢ on 0Q,
w =y on 0Q,

where (U'7) = (det D*u)(D*u)~". Then
C™! <detD%u < (Igsizl’llﬂ)_l inQ,

where C > 0 is a constant depending on Q, n, ¢, W, F and c. In the case of ¢(x,z) = c(x) €
L*(Q), the dependence of C on c is via ||c|| L ().
Proof. From the convexity of F and u, we have
—div (DF(Du)) = —trace(D*F(Du)D*u) < 0.
This combined with ¢(x, u) < 0 yields
UijDijw = —div (DF(Du)) +c(x,u) <0 inQ.

Hence, by the maximum principle, w attains its minimum value in Q on the boundary.
Thus

w>minw=miny >0 inQ.
Q Q.

This together with det D?u = w™" gives the upper bound for the Hessian determinant:
detD*u < C; = (nf}}zn;[/)_l in Q.

From the above upper bound, by using # = ¢ on dQ together with Q being smooth and
uniformly convex, we can construct suitable barrier functions to deduce that

sup |u| + [|Dul| = @) < C2, 4.1)
Q
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where C, depends on #n, ¢, ¢ and €.
We now proceed to establish a positive lower bound for the Hessian determinant.
Let
u*(y) =x - Du(x) — u(x)

be the Legendre transform of u(x) where
y = Du(x) € Q° := Du(Q).
Then, (4.1) implies
diam(Q") + [[u"||L~ (@) < C3(n, ¢, ¢, Q). 4.2)
In view of Proposition 2.4, u* satisfies
w'Di; (w*+ F(y) =c(Du’,y-Du* —u*) inQF, (4.3)

where
(u) = (D*u*)™',  and w* = logdet Du”.

Note that, for y = Du(x) € 0Q* where x € 9, we have
w*(y) = log(det D?u(x))™" = log ¥ (x).
By the ABP maximum principle applied to (4.3), and recalling (4.2), we find

c(Du*,y - Du* —u")
(det D2y*)~'/"

1/n
/ |c(x,u)|"dx)
Q

where Cy4 depends on Q, n, ¢, ¢, F and c. Clearly, in the case of ¢(x, z) = c(x) € L5(Q),
the dependence of C4 on c is via ||c||z» (). In the above estimates, we used

sup(w” + F(y)) < sup(w” + F(y)) + C(n, diam(Q"))
o aQ

L (Q%)

= sup(w* + F(y)) + C(n, diam(Q"))
o0

< Cy

c(Du*,y-Du* —u*)
(det D2y*)~1/m

1/n
= / lc(Du*,y - Du* — u*)|" det D*u* dy)
Q*

L)
1/n

= /|c(x,u)|"detD2u*detD2udx
Q

1/n
= /|c(x,u)|”dx) .
Q

supw*(y) = sup logdet D*u* < Cs
o o

It follows that



22 Y. H. Kim, N. Q. Le, L. Wang, B. Zhou

which implies
detD’u>e >0 ingQ,

where Cs depends on , n, ¢, ¢, F and c. This is the desired positive lower bound for the
Hessian determinant, and the proof of the lemma is completed. |

Now, we can give the proof of Theorem 1.1.

Proof of Theorem 1.1. We divide the proof, using a priori estimates and degree theory,
into three steps. Steps 1 and 2 establish higher order derivative estimates for u € W**(Q)
(s > n) solutions. Step 3 confirms the existence of W**(Q) or C*# (Q) solutions via
degree theory.

In the following, we fix s > n with the additional requirement that

{ s=r in case (i),

s =min{r, p} incase (ii).

Step 1: Determinant estimates and second order derivative estimates for uniformly
convex u € W*5(Q) (s > n) solutions u of (1.5). By Lemma 4.1, we have

0<A<detD*u<A:= (rg}zn )7 inQ, (4.4)

where A depends on Q, n, F, ¢, ¢, and on either ¢ in case (i), or ||c||z»(q) in case (ii).
From (4.4) and u = ¢ on dQ where ¢ € C>(Q), by [LS, Proposition 2.6], we have

”u”Clao(ﬁ) < Cla (45)

where g € (0, 1) depends on A, A, and n. The constant C| depends on Q, n, 4, A and ¢.
With (4.4)and F € leo’cr (R™), we can use Theorem 3.4 to find By € (0, 1), and Cs > 0
depending on Q, n, F, r, ¢, ¥, ¢, such that

”wllcﬁo(ﬁ) <C(Q,n, F,r,o,4,c).

Hence det D2u = w™! € CP(Q). By the global Schauder estimates for the Monge-Ampére
equation in [TW3,S2], we have

||M||C2,BO(§) <C3(Qn, F,r,o, ¢, c). (4.6)
Combining this with (4.4), we find
C;'l, < D*u < Cyl, inQ

for some C4(Q, n, F,r, p, ¥, c) > 0. Here I,, denotes the identity n X n matrix. In other
words, the linear operator U/ D;; is uniformly elliptic with coefficients U/ bounded in
Cho (ﬁ)'
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Step 2: Global higher order derivative estimates for uniformly convex W**(Q) (s > n)
solutions u of (1.5). Denote the right-hand side of (1.5) by

f := —div (DF(Du)) + c(x, u) = —trace(D*F (Du)D*u) + ¢(x, u). 4.7
Observe that, one has the following estimate

Htrace(DzF(Du)Dzu)

L@ S CQnF.r.e..c). (4.8)

Indeed, we have

Htrace(DzF(Du)Dzu)

rLr(Q) < n2||D2u||’Lw(Q)||D2F(Du)||rLr(Q)
S”zcsr/|D2F(D14(x))|ralx (using (4.6))
Q
1
21 2 r
=n"C D*F d

<n*cia! / |ID*F(y)|"dy (using (4.4) and (4.5))
Bc, (0)

< CyA'C(n, C1, F, 1),
We consider cases (i) and (if) separately.

(i) The case of c € C*(Q x R). Recall that s = r in this case. We have from (4.8) that
f = —trace(D?F(Du)D?u) + c(x,u) € L*(Q) with estimate

Iflles@ < C(Q,n,F,r,s,o,¥,c).

By Step 1,
UijDijwzf inQ,w =y ondQ,

is a uniformly elliptic equation in w with C# (Q) coefficients. Thus, from the standard
WP theory for uniformly elliptic linear equations (see [GT, Chapter 9]), we obtain
the following W2* (Q) estimate:

”w”Wz’S(Q) < C(Q, ng,s, e, lﬁ’ C)'

Now, recalling det D>u = w™! in Q with u = ¢ on dQ, we can differentiate and apply
the standard Schauder and Calderon-Zygmund theories to obtain the following global
WS estimate of u:

lullwss @) < C(Qn, F,r,s,¢,¥,c).

Indeed, for any k € {1, ..., n} by differentiating det D%y = w! in the x; direction,
we see that D u solves the equation

UYD;j(Dru) = D(w™) € W (Q),
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(i)

which is uniformly elliptic with C#0(Q) coefficients U/ due to (4.4) and (4.6). Since
s > n, we have W3 (Q) e C%1=/5(Q). By the classical Schauder theory (see [GT,
Chapter 6] for example), we deduce that Dyu € C>P'(Q) for all k with appropri-
ate estimates, where B; = min{B, 1 — n/s}. This shows that u € C3#1(Q) and the
coefficients satisfy U/ € C LB (ﬁ). Next, for any [ € {1, ..., n}, we differentiate the
preceding equation in the x; direction to get

UD;;(Dyu) = Dyy(w™") = DUV D;jpu € L¥(Q) forall k,l € {1,...,n}.

Applying the Calderon-Zygmund estimates, we obtain Dy u € W (Q) for all k, 1 €
{1,...,n} with appropriate estimates. Consequently, u € W**(Q) with estimate stated
above.

Moreover, in the particular case that F € C2®(R"), we find that f € C?(Q) where
v € (0, 1) depends only on «, F, @y, and By with estimate

”f”cy(ﬁ) < C(Q7 n,a,q,c, ‘p7 l//) (49)

Thus, we can apply the classical Schauder theory (see [GT, Chapter 6] for example) to
(1.5) which, by Step 1, is a uniformly elliptic equation in w with C50(Q) coefficients.
We conclude that w € C%#(Q), where 8 € (0, 1) depends only on n,y and By, with
estimate

lll e @) < C(Qn a0, Foesg.).

Due to
detD*u=w" in Q u=¢ onidQ,

this implies that u € C*# (Q) with estimate
||u||c4,ﬁ(§) <C(Qn,a,ap, F,c,o,¥). (4.10)

With this estimate, we go back to f = —trace(D*F(Du)D?u) + c¢(x, u) and find that
one can actually take y = min{a, ag} in (4.9). Repeating the above process, one find
that (4.10) holds for 8 = min{a, ag}.

The case of ¢(x,z) = c(x) € LP(Q) with p > n. Recall that in this case s = min{r, p}.
Then, we have from (4.7) and (4.8) that

||f||LT(Q) < (Qv n,p, F’ r,s, o, Wa ||C||L1’ (Q))
Arguing as in the case (i) above, we obtain the following W** estimate of u:
||u||W4’~"(Q) < C(Q7 n,p, F,r,s, @, l//7 ”C”LP (Q))

Step 3: Existence of solutions via degree theory. From the C*#(Q) or W**(Q) estim-

ates for uniformly convex W**(Q) solutions u of (1.5) in Step 2, we can use the Leray-
Schauder degree theory as in [CW, TW2, Le6] to prove the existence of C*#(Q) or
W*5(Q) solutions to (1.5) as stated in the theorem. We omit details here. ]
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5. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. As in the proof of Theorem 1.1 in Section 4, we
focus on a priori estimates for smooth, uniformly convex solutions. The most crucial ones
are the Hessian determinant estimates. Without the sign of ¢, we first need to obtain the a
priori L -bound for u.

Lemma 5.1 (A priori L*-bound for uniformly convex W*” solutions). Let Q c R"(n > 3)
be an open, smooth, bounded and uniformly convex domain. Assume that ¢ € C>(Q) and
¥ € C3(Q) with mingg ¥ > 0. Assume b € L™ (Q;R"). Suppose that there exist functions
21,82 € LY (Q) and a constant 0 < m < n — 1 such that

lc(x,2)] < |g1(xX)|+lg2(x)] - [z]™  in QxR. (5.1

Assume that u € WH™(Q) is a uniformly convex solution to (1.6). Then there exists a
constant C > 0 depending on Q, n, ¢, ¥, ||b||r~(0), lg1ll1 (@), l182llL1 (@) and m such that

llull L= @) < C.
Proof. From u € W*"(Q) and the Sobolev embedding theorem, we have u € C2(Q). For

a convex function u € CZ(Q) with u = ¢ on 0Q, we have (see, e.g., [Le2, inequality (2.7)])

1/n
lull @) < ll@llL= @) + Ci (nQ ||<P||c2(sz)) (/asz ()" dS) , (5.2)

where u}, = max (0, u,,), v is the unit outer normal of dQ and dS is the boundary measure.
Thus, to prove the lemma, it suffices to prove

/a (60)"ds < Cmg b Dbl Bl sl ).

For this, we use the arguments as in the proof of [Le6, Lemma 4.2]. Observe that, since u
is convex with boundary value ¢ on 0Q, we have u, > —||D¢||;~q) and hence

luy| < ul +|D@ll=(y, and (u})" < ul) + ||D<p||zm(g) on 0Q. (5.3)
Let p be a strictly convex defining function of Q, i.e.
Q:={xeR":p(x)<0},p=00ndQand Dp # 0 on IQ.

Let
d=p+u(e’ =1).
Then, for y large, depending on n, Q and ||¢|| @> the function i is uniformly convex,

belongs to cd (ﬁ). Furthermore, as in [Le2, Lemma 2.1], there exists a constant C, > 0
depending only on 7, Q, and [|¢|| -4 @ such that the following facts hold:
() lldll s (g < C2, and detD?i > C;' > 0in Q,
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(ii) letting @ = [detDzﬁ]_l, and denoting by (U%/) the cofactor matrix of D%, we
have

699D,y g = €.

Let K (x) be the Gauss curvature at x € Q. Then, since Q is uniformly convex, we have
0<C(Q) <K(x) <C(Q) ondQ. (5.4
From the estimate (4.10) in the proof of [Le6, Lemma 4.2] with 6 = 0 and fs5 := —Au +

b - Du + ¢ which uses (i) and (ii), we obtain

+ C3,
5.5

)("—1)/"

szu’deS/(Au—b-Du—C) (u = )dx +C3 (/ (u3)" dS
Q

oQ o0Q

where C3 depends on Cy, Q and ¢.
We will estimate the first term on the right-hand side of (5.5) by splitting it into three
terms. Firstly, using uAu = div (uDu) — |Du|? and integrating by parts, we have

/Au(u—ﬂ)dxs/uAudx+C2/Audx
Q Q Q
=/ gouvdS—/|Du|2dx+C2/ uy dS
aQ Q aQ

SC((p,Cz)/ Iuv|dS—/|Du|2dx
oQ Q

< Cy(n, ¢, C2) (/ag(u::)" dS) T Cy(n, ¢, Cy) (recalling (5.3)).

(5.6)
Secondly, by integration by parts, we find
/ |Dul* dx = /(div (uDu) — ulu) dx
Q Q
= / gou,,dS—/uAudx
8Q Q
< Cs() [ uvds+ Wil [ Budvs Cs(e)
80 Q
< (C5+||u||Loo(Q))‘/(; MT, dsS + Cs. 6.7
Q

In view of (5.7) with (5.2), we can estimate

1

2
[ b Dut=w dv < 120l (0 + @) ( Ji |Du|2dx)

< Co + Co (/ (uh)" ds)" (5.8)
oQ
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where Cg depends on Q, n, ¢ and ||b|| .~ (q). Moreover, Cs depends linearly on [|b|| .~ (q).
Finally, using (5.1) and (5.2), we have

/Q—C(M—ﬁ) dx < (||u||L°°(Q)+||ﬁ||Lw(sz))/Q|g1|+|gzllulmdx

< C+Clullflg,

+1

n

<Ci+Cy (/ (u;)"ds) . (5.9)
0Q

Here C7 depends on Q, n, ¢, [[g1]l 11 (), 82111 (o) and m.
It follows from (5.3) that

/ Ky (uh)" dS < Cg(Q, ¢, ¥) +/ Kyu" ds. (5.10)
oQ o0Q

Combining (5.4)—(5.6), (5.8)—(5.10) while recalling that 0 < m <n—1 and n > 3, we
obtain

c (@) min(/// (ut)"dS < Cg +/ Ky, dS
oQ oQ oQ

n-1 ml
1+ ( / ()" dS) . ( / ()" dS) ,
o0 o0
where Cy depends on C3, Cy4, Cg, C7 and Cg. It follows that

/ wH)rds < C
90

where C depends on Q, n, ¢, ¥, [Ibll =), [1g81llL1 () 1821111 (@) and m. The proof of the
lemma is completed. ]

<Gy

Remark 5.2. We have the following observations regarding the two dimensional version

of Lemma 5.1.

(i) The above proof fails in two dimensions. This is because, in two dimensions, the right-
hand side of (5.8) is of the same order of magnitude as the left-hand side of (5.5).
Therefore, when Cg is large, plugging (5.8) into (5.5) does not give any new informa-
tion.

(ii) On the other hand, since Ce depends linearly on ||b|| .~ (), in two dimensions, one
can still absorb the right-hand side of (5.8) into the left-hand side of (5.5) as long
as ||bl|~(q) is small, depending on Q, ¢ and . In this case, we still have the L™
estimate.

(>iii) In Section 6, we will establish the L™ estimate in two dimensions under a stronger
condition on b but ||b|| .~ (@) can be arbitrarily large.

Next, we establish the Hessian determinant estimates.
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Lemma 5.3 (Hessian determinant estimates). Let u € W*?(Q) be a uniformly convex
solution to the fourth order equation

U'Djjw =~Au+b-Du+c(x) in Q

n

i,j=1
w = (det D%u)™! in Q, (5.11)
u=¢ on 0Q,
w =y on 0Q,

where (UY) = (det D?u)(D*u)~!, mingoy > 0, b € L(Q;R") and ¢ € LP(Q) with
p > 2n. Then there exists a constant C > 0 depending on Q, n, p, ¢, ¢, ||b|| =) and
llcllLr (@) such that

0<C'<detD’u<C inQ.

Proof. The proof uses a trick in Chau-Weinkove [CW]. For simplicity, denote
d:=detD?u and (u') = (D*u)~".

Let
G = deM"’

where M > 0 is a large constant to be determined later. By Lemma 5.1, we have
llull=) < Co

where Cop > 0 depends on Q, n, ¢, ¢, ||b| L~ (@), and ||c[[ 1 (q)-
1, Mu?
e

Since w = d~1, we have w = G~ . Direct calculations yield
Dijw = -G 2D;GeM" + 2MuD;uG'eM*,
D;jw=2G"D;GD,;GeM" - G2D,;GeM*
—2MuD juD;GG %M — 2MuD;uD ;GG >eM"’
+2MD;uD juG™' e + 2MuD; uG™' M + AM*u*D;uD juG' M.
Then, using U"J'G‘leM“2 = u' we have
UYD;jw=2G"*u"D;GD;G - G D;;G — 4MuG™"u"' D;uD ;G

+ 2MuijD,~uDju +2Mnu + 4M2u2u"<"DiuDju

G *u"'D;GD ;G +u" (2MuD;u — G"'D;G)(2MuD ju — G"'D;G)

-G ' D;;G +2Mu" DiuD ju +2Mnu

v

—G_luijDijG + 2MuijDiuDju +2Mnu.
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Thus, from the first equation in (5.11), we obtain
G_lu"le-jG > ZMu"jDiuDju +2Mnu+Au—b-Du —c.
Using the following matrix inequality (see, for example, [Le3, Lemma 2.8(c)])

|Dv|*>  |Duf?
trace (D2u)  Au

MUD,'UDJ‘U >

together with Au > nd'/", we find that

- Du)?> 1 1
6 uiD;G > 2P L M b D L aus 2mnu - ¢
Au T2 2
> 2VM|Du| - b| - |Dul + gd% +2Mnu - ¢
> (¢ — 2Mnu - gd%r inQ, (5.12)

provided
-
M > Z ”b”L""(Q) .

Hence, by the ABP estimate applied to (5.12) in Q where G = '™ ¢’ on 4Q, we have

1
(¢ —2Mnu — 5dn)*

supG < sup(zp_leM‘pz) +C(n,Q) 1
Q 0Q [det(G‘l(Dzu)‘l)]z @
deMuz(c - 2Mnu - %d%)J'

1
d n

= sup(y~'eM¥’) + C(n, Q)
oQ

L™(Q)

< sup(y~eM¥) 5 ¢, Hd“% (c - 2Mnu — gd%r (5.13)

oQ

Q)
Here C; depends on n, Q and Cy (via ||u|| .~ (q)). Note that, for any po > n, we have

1

n

Hd“% (c —2Mnu — gcﬁ)Jr

d" (¢ = 2Mnu)" dx)

<
L (Q) (/{CzMnuzm/z)dH

1
—2M po—n "
< / 1 A" (c - 2Mnu)"% dx
{c—2Mnu2(n/2)dﬁ} [(I’l/Z)dl/n]

/ AT (e — oMy dx| L (5.14)
{C—ZMnMZ(n/Z)dﬁ}

po—n

= (n/2)"%

We now choose pg such that

2n < po < min{n(n+2),p}.
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Lety=1- % + % Then 0 < v < 1. Moreover, from (5.13) and (5.14), we have

supG < C+C (/ d" ([e| + |ul)P° dx)n
Q Q

<C+C (/(deM"z)"y(IcI” +1) dx)"
Q

1

n

< Cy+Cy(supG)” - (/(|c|” +1) dx)
Q Q
Here C, depends on Q, M, ¢, 4, Cy1, y and p. It follows that

sup G < C3(Ca, v, llcllLr (@))-
Q

Since G = deM*’, we also get an upper bound for d = det D*u:
detD*u < C3 inQ.

It remains to establish a positive lower bound for det D?u.
Once we have the upper bound of the Hessian determinant of u, using u = ¢ on 9Q
and a suitable barrier, we obtain

sup |u| + sup |Du| < C4(Cs, ¢, Q).
Q Q
Then we can apply the Legendre transform to get the lower bound of the determinant.

According to Proposition 2.4, the Legendre transform u* of u satisfies

2
u'D;; (w* + %) =b(Du") -y +c(Du*) inQ" = Du(Q),

where u*/ = (D?u*)~" and w* = logdet D?>u*. Applying the ABP estimate to w* + % on
Q*, and then changing of variables y = Du(x) with dy = det Du dx, we obtain

b(Du*) -y + c(Du”)
(detuii)n

sup (w* + %) < sup (w* + %) + C(n)diam(Q")

Q* o0

L (Qx)

[b(Du*) -y + c(Du*)|" "
< C@Y,Cy) +C(n,Cy) ( o (det D2u*)~! dy)
= C(y,Cq) + C(n, Cy) (/ b Dt el dy)n

Q
< C(y,Cq) + C(n, Ca)(IIbll L (@) Sup [Dul +llelln@)-

In particular, we have

supw” < Cs
Q*
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where Cs > 0 depending on &, n, ¢, ¥, ||b|| L~ () and ||c||Lr (@) Since w* = log det D%u*,
the above estimate gives the lower bound for det D%u:

detD’u > e inQ,
completing the proof of the lemma. ]

Remark 5.4. If there is no first order term, b - Du on the right-hand of (1.6), we can dir-
ectly obtain Hessian determinant bounds by the same trick used in the proof of Lemma 5.3
without getting a priori L -bound of u. Moreover, these bounds are valid for all dimen-
sions.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. The proof uses a priori estimates and degree theory as in that of
Theorem 1.1. We obtain the existence of a uniformly convex solution in C‘“’(ﬁ) in case
(i), and in WP (Q) in case (ii), with stated estimates provided that we can establish these
estimates for W*P (Q) solutions. Thus, it remains to establish these a priori estimates.

Assume now u € W*P (Q) is a uniformly convex smooth solution to (1.6). By Lemma
5.1 and the assumption on ¢ in either (i) or (if), we can obtain the Hessian determinant
estimates for u by Lemma 5.3. Once we have the Hessian determinant estimates, Theorem
3.4 applies with

F(x) = |x|*/2, and g(x) = b(x) - Du(x) + c(x).

This gives the Holder estimates for w. The rest of the proof of Theorem 1.2, which is
concerned with global higher order derivative estimates, is similar to Step 2 in the proof
of Theorem 1.1(7) and (ii). We omit the details. [ ]

Remark 5.5. In two dimensions, when ||b|| .~ (q) is small, depending on Q,y and y, the
conclusions of Theorem 1.2 still hold. Indeed, in this case, by Remark 5.2, we still have
the L™ estimate in Lemma 5.1. The proof of Theorem 1.2 then follows.

6. Proof of Theorem 1.3

In this section, we will prove Theorem 1.3. As in the proof of Theorem 1.1, it suffices to
derive the a priori estimates for W*P (Q) solutions. Here, we recall that

p>2.
Theorem 1.3 can be deduced from the following Theorem 6.1.

Theorem 6.1 (A priori W*7 (Q) estimates for W (Q) solutions). Let Q c R?, ¢, ¢, b
and ¢ be as in Theorem 1.3. Assume that u € WP (Q) is a uniformly convex solution to
(1.6). Then

lullwar @ < C,

where C > 0 is a constant depending on Q, p, ¢, ¥, b and c.
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The rest of this section is devoted to the proof of Theorem 6.1.
We will first obtain the L®-bound of u and L2-bound of Du. For this, the following
Poincaré type inequality will be useful.

Lemma 6.2 (Poincaré type inequality on planar convex domains). Let Q c R? be an
open, smooth, bounded and uniformly convex domain. Assume that u € C'(Q) N C(Q)
and u|go = ¢. Then

diam(Q
/|u|2dxSC(go,diam(Q))||u||Loo(Q)+ lam( )? /|Du|2dx
Q

Proof. Note that for any one-variable function f € C!(a, b) N C°[a, b] where a < b, one
has

’ — 4)2
/ |f ()P dx < (b= a)(|f (@) +|f Bl (ap) + (b 8a)

b
/ R dx. ©.1)

Indeed, denoting c¢ := ‘”b , then using Holder’s inequality and Fubini’s theorem, one

obtains
[Firwka= [ r@ere - [ ( [ rw dr)2 dx
< 2e= @] Il - - f @ [ =0 [T 1 0P ras
~2c = @@ v = (e =@+ [T 17 OF [ x-a v

— 12 c
< 2= @] Wl - (e = afar + S5 [P ar

b — 2 c
< (b= DI @I- Wl + 22 [ 17 0P as, 62)

Similarly, we have

b b— 2 b
[ P dx < (b= )l FO) - Il + E / PR (6.3)

Combining (6.2) with (6.3), we obtain (6.1).
Next, by the convexity of Q, we can assume that there are ¢, d € R, and one-variable
functions a(x), b(x;), such that

Q={(x1,x) :c<x;<d,alx)) <x» < b(x)}.

It is clear that d — ¢ < diam(Q) and b(x;) — a(x;) < diam(Q). Then, by (6.1) and u = ¢
on 09, we have

b(xy)
/ o) P da < 2 diam(@)lgll oy el ooy
a

(x1)
diam(Q)? /h(x')
+ —_—

3 |Dx2u(x1,x2)|2dx2.
a(xy)
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Integrating the above inequality over ¢ < x| < d yields

, diam(Q)?
[l v < 2diam(@Rlln ol + S [ Doy 6

Similarly,

. diam(Q)?
[ ax < 2diam(@Pllm @@ + SR [ Dul k69
Q Q

Combining (6.4) and (6.5), we obtain

. dlam(Q)
/ P dx < 2 diam () lll L el Ly + SAmED” / Dl dr.,
Q

completing the proof of the lemma. ]

6.1. Estimates for supg, |u| and ||Dul|;2(q)
Now we derive bounds for u and || Du/|2(q)-

Lemma 6.3 (L™ and w2 estimates). Let Q C RZ, ©, ¥, b and ¢ be as in Theorem 1.3.
Assume that u € WHP(Q) is a uniformly convex solution to (1.6). Then there exists a
constant C > 0 depending on Q, ¢, Y, b and ||c|| 1 (q) such that

lullL~@) < C and ||Dullj2q) < C.

Proof. To prove the lemma where n = 2, by (5.2) and (5.7), it suffices to prove

/6Q M%,dS < C(Q’ ‘10’ lﬂ» bs ”c”Ll(Q))7 (66)

where v is the unit outer normal of Q.
Let ii be as in the proof of Lemma 5.1 so that (i) and (ii) there are satisfied. Let K (x)
be the Gauss curvature at x € dQ. Then, as in (5.5), we have, for some C;(Q, ¢) > 0

1/2
/ Kyulds < / (A=b-Du —¢) (u—i)dx +C, (/ uids) +C 6.7)
o0Q Q oQ

Next, we will estimate the RHS of (6.7) term by term. First, from the inequality before
last in (5.6), we have

/Au(u —i) dx < C(Q,¢) (/ u dS)z —/ |Dul? dx. (6.8)
Q 0Q Q
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Using u = ¢ on 0Q, and integrating by parts, we get

/Q(b-Du)ﬁdxzfg(bﬁ) - Du dx

:/ uﬁb-vdS—/diV(bﬁ)udx

a0 Q

=/ <p12(b-v)dS—/(b'Dﬁ+ﬁdiVb)udx
a0 Q

12
< C(1+lullz~@) sc3+c3(/a uids) , (6.9)
Q

where C3 depends on Q, ¢, sup,q |bl, ||bllz~(q) and ||div bl .~ ().
Moreover,

/Q—(bﬂu)udx:%/Q—b-l)(uz)dxz%[/Q(divb)fdx—/muzb-vds].

Note that divb < ﬁ Then by Lemma 6.2 and (5.2), we have
1
5 /(div b)u? dx < C(p, diam(Q))||u| L= (q) +/ |Dul? dx
Q Q

1
2
< C(Q, ) +C(Q @) (/ uids) +/|Du|2dx.
OQ Q

1
L—(b-Du)udxz 3 [‘/g;(divb)uzdx—‘/aggozb-vdS]

1
2
<Ci+Cy (/ uids) +/|Du|2dx, (6.10)
oQ Q

where C4 depends on Q, ¢, and sup,, |b|.
Finally, as in (5.9), we get

Hence

1

2
/—c(u—ﬁ)dx§C5+C5(/ uids) , 6.11)
Q O0Q

where Cs depends on Q, ¢ and ||c|[ .1 (q)-
Combining (6.7)-(6.11), we obtain

i

1

2

1+(/ u%ds)
oQ

where Cs > 0 depends on Q, ¢, ¥/, b and |[c|| 1 (- From this, we deduce (6.6), completing
the proof of the lemma. |

C'(Q)infy / u ds < / Kyu? dS < Cs
0Q  Jon oQ
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6.2. Hessian determinant estimates for u

Lemma 6.4 (Hessian determinant estimates). Let Q C R?, ©, ¥, b and c be as in Theorem
1.3. Assume that u € W*P () is a uniformly convex solution to (1.6). Then

0<C'<detD’u<C inQ,
where C > 0 is a constant depending on Q, ¢, ¥, b and ||c||12(q)-

Proof. We first prove the lower bound of det D?u. Note that in two dimensions, we have
trace U = Au. Hence we can rewrite the first equation in (1.6) as

U D (w+ /2] = b(x) - Du(x) +¢(x) = 0(x) in Q. (6.12)

By Lemma 6.3, we have
1220 < Co

where Cy depends on Q, ¢, ¥, b and ||c[12(q)-
Applying the ABP estimate to (6.12) and using det U = det D?u, we have

2 o
sgp (w + |x| /2) < saus%)l// +C(Q)+C(Q) HW .

< C(Q,u) + CQIQl 2q) - sgp(detDQur%
< C(Q ) +C(Q)(supw)?.
Q

Therefore supg w < Cy, where C; depends on Q, ¢, ¢, b and ||c[2(q)- Consequently,
detD*u > C;' >0 inQ. (6.13)

Hence by the boundary Holder estimate for solutions of non-uniformly elliptic equations
[Lel, Proposition 2.1], we know from (6.12) that w is Holder continuous on dQ with
estimates depending only on Cy, Q and . Then by constructing a suitable barrier near the
boundary as in [Le2, Lemma 2.5], we can obtain

IDullz=q) < Ca,

where C, depends on Cy, Q, ¢ and ¢.
The upper bound of the Hessian determinant can be obtained similar as in Lemma 5.3.
Let u*(y) be the Legendre transform of u(x) where

y = Du(x) € Du(Q) := Q".

Then
diam(Q*) < C».

By Proposition 2.4 (with F(x) = |x|>/2), u* satisfies

U*ijDif( —w' - |y|2/2) = -Q(Du*) det D*u*  in Q' (6.14)
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where (U*/) = (det D>u*)(D*u*)"", and w* = log det D?u*.
Applying the ABP maximum principle to (6.14), and recalling that

w*(y) = log(det D*u(x))™! = logw(x) = logy(x) on Q"

we obtain

IA

sup(~u” = [yI*/2) < sup(-w’ - [y*/2) + C(diam(@)IIQ(Du") (et D*u) Pl 12 ar)

IA

—loglgsiznt,b +C(C)0Oll 12 ()

where we used
/ [Q(Du*)]zdewzu*dy:/[Q(x)]zdetDzu*detDzudxzf[Q(x)]zdxz||Q||§2(Q).
Q* Q Q

Therefore, we have
sup(—w*) < C;
Q*
where C3 depends on Cy, C and mingg . This implies w* > —C3 in Q*, and hence

det D’u < ¢©* inQ. (6.15)

The lemma follows from (6.13) and (6.15). (]

6.3. Proof of Theorem 6.1

Finally, we can prove Theorem 6.1 which implies Theorem 1.3.

Proof of Theorem 6.1. Once we have the determinant estimates, we can establish the higher
estimates by using the regularity of the linearized Monge-Ampere equation with drift
terms as in Section 4 and Section 5. However, in two dimensions, we can also establish
these estimates as in [Le6].

By Lemma 6.4, we have

0<A<detD’u<A inQ (6.16)

for A, A depending on Q, ¢, ¥, b, p and ||c||Lr(q). By the interior W>1*¢ estimates
for Monge-Ampere equation [DFS, F, Sc], we have D*u € L;*#(Q) for some constant
£(A,A) > 0. By the global W?!*¢ estimates for the Monge-Ampére equation [S3], there
exists a constant Co > 0 depending on , ¢, ¥, b, p and ||c||zr (q) such that

lullw2iremn gy < Co.
Let g := min{p, 1 +&(4,A)} > 1. Then

G:=—-Au+b-Du+c
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satisfies
IGllLa(@) < Ci

where C; > 0 depending on Q, p, ¢, ¢, b and ||c||Lr (q). Recall that
UijDijw =G onQ, andw=y ondQ.

By the global Holder estimate for the linearized Monge-Ampere equation [LN2] with L4
right-hand side where g > n/2, we deduce

”wnca(ﬁ) < C(Q, @, w, P, b, C)

where o € (0, 1) depends on Q, @, , p, b, ¢. The proof of W (Q) estimate for u is now
the same as that of Theorem 1.1(ii). Hence, the theorem is proved. ]

7. Extensions and the proof of Theorem 3.2

In this section, we discuss (1.1) with more general lower order terms, and present a proof
of Theorem 3.2 for completeness.

7.1. Possible extensions of the main results
The following remarks indicate some possible extensions of our main results.

Remark 7.1. From the proofs in Sections 4-6 and the L™ -estimates in Lemma 5.1, it can
be seen that some conclusions of Theorems 1.1, 1.2 and 1.3 also hold for more general
cases of ¢ = c¢(x, 7). Consider, for example,

c(x,z) = g1(x) + g2(x)h(2).

Then the following facts hold:

(1) The conclusions in Theorem 1.1(ii) hold when g, < 0, g2 < 0; g1, g2 € LP(Q) with
p >n,and h > 0with h € C*(R).

(2) The conclusions in Theorem 1.2(i) hold when g1, g, € C*(Q), and h € C*(R) with
|h(z)| < Clz|" forO <m <n-1.

(3) The conclusions in Theorem 1.2(ii) hold when gy, g» € LP (Q) with p > 2n, and h €
C*[R) with |h(z)| < Clz|" forO <m <n— 1.

(4) The conclusions in Theorem 1.3 hold when g1, g> € LP (Q) with p > 2, and h € C*(R)
with |h(z)| < Cl|z|" for0 <m < 1.

Remark 7.2. Since we use the trace of b on dQ in (6.9), it is natural to have b € C(;R™).
It would be interesting to obtain the conclusion of Theorem 1.3 for b € C(Q;R") instead
ofb € C1(Q;R™).
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7.2. Global Holder estimates for pointwise Holder continuous solutions at the boundary

In this section, we prove Theorem 3.2.

The proof is similar to that of [Lel, Theorem 1.4] for the case without a drift. For com-
pleteness, we include the proof which includes the following ingredients: interior Holder
estimates for linearized Monge-Ampere equations with bounded drifts, and rescalings
using a consequence of the boundary Localization Theorem for the Monge-Ampéere equa-
tion which we will recall below.

Under the assumption A < det D?u < A, the linearized Monge-Ampgre operator U/ D; ;
is elliptic, but it can be degenerate and singular in the sense that the eigenvalues of
U = (U") can tend to zero or infinity. To prove estimates for the linearized Monge-Ampére
equation that are independent of the bounds on the eigenvalues of U, as in [CG] and sub-
sequent works, we work with sections of u instead with Euclidean balls. For a convex
function u € C! (ﬁ) defined on the closure of a convex, bounded domain Q C R”, the
section of u centered at x € Q with height 4 > 0 is defined by

S (x,h) = {y €eQ: u(y) <u(x)+ Du(x) - (y —x) +h}.

Before proving the global Holder estimate, we recall the interior Holder estimate. The
following interior Holder estimate for the nonhomogeneous linearized Monge-Ampere
equation with drift terms is a simple consequence of the interior Harnack inequality
proved in [Le3, Theorem 1.1]. In [M], Maldonado proved a similar Harnack’s inequal-
ity for linearized Monge-Ampere equation with drift terms with different and stronger
conditions on b.

Theorem 7.3 (Interior Holder estimate for the nonhomogeneous linearized Monge-Ampere
equation with drift terms, [Le3]). Suppose that u € C?>(Q) is a strictly convex function in
a bounded domain Q C R" with section S,,(0, 1) satisfying

B, (0) € S4(0,1) c B, (0)
for some positive constants r| < rp, and its Hessian determinant satisfying
A< detDu <A inQ

where A and A are positive constants. Let (U7) = (det D>u)(D?u)~". Letb : §,,(0,1) —
R™ be a vector field such that ||b|| 1~ s, 0,1)) < M. Letv € Wz’”(Su(O, 1)) be a solution to

loc

UYD;jo+b-Dv=finS,(0,1).

Then, there exist constants 3y, C > 0 depending only A, \, n, ry, rp, and M such that

000 = (I < Clx = 3P (ol s, 0,00 + I llen s, 0.0 ) forallx, y € Su(0,1/2),

To bridge the interior Holder estimates in Theorem 7.3 and the boundary Holder
estimates in (3.3), we need to control the shape of sections of the convex function u that
are tangent to the boundary dQ2. The following proposition, proved by Savin in [S3] (see
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also [LS, Proposition 3.2]), provides such a tool. It is a consequence of the boundary Loc-
alization Theorem for the Monge-Ampere equation, proved by Savin in [S1, Theorem 2.1]
and [S2, Theorem 3.1].

Proposition 7.4 (Shape of sections tangent to the boundary, [S3]). Assume that Q C R" is
a uniformly convex domain with boundary Q € C3. Let u € C(Q) N C%(Q) be a convex
function satisfying

A<detD’u<A in Q

for some positive constants A and A. Moreover, assume that u|so € C>. Assume that for
some y € Q the section S, (y, h) C Q is tangent to dQ at some point xy € 09, that is,
0S8, (y, h) N OQ = xq, for some h < ho(A, A, Q, u|sq,n). Then there exists a small positive
constant ko depending on A, A, Q, u|gq and n such that

koEn C Su(y,h) =y C k' En,  koh'/? < dist(y, 0Q) < ky'h'/2,

where Ej, = hl/zAlel (0) is an ellipsoid with Ay, being a linear transformation with the
following properties

ARl 1A' < ko' [log Al; det Ay = 1.
Now, we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. By considering the equation satisfied by (||¢llcea) + | fllL7 (@) Y~ 1o,
we can assume that

lellcaan) + I fllLn @) =1,
and we need to show that
||U||CB(§) S C(A7 A’ }’l, CY, Q’ulaﬂa 77 69 K7 M)’

for some B € (0, 1) depending on n, A, A, Q, u|sq, ¥, and M.
Step 1: Holder estimates in the interior of a section tangent to the boundary. Let y € Q
with
r=ry:=dist(y,0Q) < c1(n,4, A, Q, ulsq),

and consider the maximal interior section Sy, (v, &) centered at y, that is
h=hy =sup{t| S.(y,t) C Q}.

By Proposition 7.4 applied at the point xg € 85, (y, h) N 9L, we can find a constant
ko(n, A, A\, Q, u|sa) > 0 such that

koh'? < r < kg'n'/?, (7.1)
and S, (v, h) is equivalent to an ellipsoid Ej,, that is,

koEp € Su(y,h) —y C ky'Ep,
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where
Ep == h'2A;'B1(0), with |Apll, |4, ]| < kg'|loghl; detA,=1.  (7.2)

Let
T =y+ hl/zA;I)?.

We rescale u by
#(9) = 1 [(T9) = u(y) - Du(y) - (T3 = ).

Then
A < detD%i(%) < A,

and
By, (0) c §; Bk(;l (0), Sy = 84(0,1) = h™ 2 A, (Su(y, h) — y). (7.3)
Define the rescalings 7 for v, b for b, and g for g by
5(%) == o(T%) — v(xg), b(X) = h'?A,b(T%), (&) :=hg(T%), FeSi.
Simple computations give
D(%) = h'/*(A;") Du(T%),
D%i(%) = (AN D*u(TX)A,',  D*5(%) = h(A},") D*u(T%)A;,',
and the cofactor matrix U = (U/) of D?ii satisfies
U(%) := (det D*@)(D*d)~" = (det D*u)Ap(D*u)" (Ap)' = AU(T)(Ap)".
Therefore, we find that
UUDUE = trace (UD??) = h(UijDijv)(T)E) in S;.
It is now easy to see that 7 solves
U'D;js+b-Di=g inS).
Due to (7.2), and the smallness of & (see (7.1)), we have the following bound
Bl Lo (s, < kg'h'/*[1og hl - [Ibllzss(s, (y.ny) < kg h'/*[loghlM < M.

Now, we apply the interior Holder estimates in Theorem 7.3 to § to obtain a small constant
B € (0, 1) depending only on n, A, A, kg, and M, such that

BEN-3@) < Ciln 4 A M) [z =8P {Iolls, + 18l
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for all 71,7, € §1/2 :=85(0,1/2). By (7.3), we can decrease 8 in the above inequality if
necessary, and thus assume that
2B <.

A simple computation using (7.2) gives

181l n s,y = B8l L (s, (y)-

Moreover, from (7.1) and (7.2), we infer the following inclusions regarding sections and
balls

BC2 “Ofgrl (y) - Su(ys /’l/2) c Su(yv h) c BCerlogr|(y)v (7.4)

for some ¢, € (0, 1) and C, > 0 depending on n, A, A, Q, u|5o. We also deduce that
diam(S, (y, h)) < C(n, A, A\, Q,ul|so)r |logr| <6
if
r <c3(n,A, A, Q, ulsa,d).
We now consider r satisfying the above inequality. By (3.3), we have
||17||Loo(gl) < Kdiam(S,(y, h))Y < Cs(r |logr|)?,
where C3 = C3(n, 4, A, Q, ulsa, v, K). Hence
5(21) = 5(Z22)| < C4 |71 — 2fP {(" [log r[)” + hl/zug”L"(Su(y,h))} forall z1,2, € S1n

where Cy = C4(n, 4, A, Q, uls0,0,y, K, M)
Each z € S,,(y, h/2) corresponds to a unique 7=T"'z € §; /2- Rescaling back, recalling
2B < v, and using 7| — 7, = h™'/2Aj (21 — z2), and the fact that

71 -2 < |h72AL z1 - 22l
< ky'hTVP[log 21 = z2] < Cs(n, A, A, Q, ulag)r™" Nlogr |z1 = 22l
we find
[v(z1) = v(z2)| < |z1 — 22l forall z1, 22 € Su(y, h/2), (7.5)

provided that r = 7, < ¢3 < 1 is small.
Step 2: Global Hélder estimates. We now combine (7.5) with (3.3) and (7.4) to prove

||U||C/3(Q) S C(”l, /L A, 99 M|BQa a, 6, % K7 M)
Indeed, as in (3.4), there exists a constant C.(n, 4, M, diam(€)) such that
loll = (@) < C.. (7.6)

It remains to estimate |v(x) — v(y)| /|x — y|? for x and y in Q. Let r, = dist(x, dQ) and
ry = dist(y, 0Q). Assume, without loss of generality, that r, < r,. Take xo € 0Q and
yo € 0Q such that

rx=|x—x0| andry=]y—yol.
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From (7.6) and the interior Holder estimates in Theorem 7.3, we only need to consider
the case ry, < ry < c¢3 < 1. Consider the following cases.
Case l: |x —y| < ¢ . In this case, by (7.4), we have

_TIx
[log |

Yy € B 2 (x) c Su(x7 hx/z)’

r
[log rx|

(&)
where
hy =sup{r| S, (x,1) C Q}.

In view of (7.5), we have
o) ~0O
lx =yl

Case 2: |x —y| = czm. In this case, we have

ry < cgl lx = y||log |x — y]|| . 7.7
Indeed, if
1>ry > |x—y[llog|x = yl| > |x—y|
then

1 1
ry < — |x—ylllogry| < —|x = y|[log [x — y||.
Cco c)
Due to (7.7), we have
[Xo = Yol < rx +|x =yl +7y < Co(n, A, A, Q, ulp) [x — y| [log |x — y|| .
Therefore, by (3.3), ||¢llceaq) < 1, and 28 < y < @, we obtain

lv(x) —v(¥)] < Jv(x) = v(x0)| + |v(x0) = v(yo)| + [v(yo) — v(¥)]
< C(r) +1xo = yol* + r;)
< C(lx =yl lloglx = yl)” < Clx -y,

where C = C(n,A, A, @, Q, ulga,6,v, K, M). This gives an estimate for |[v(x) — v(y)| /|x — y|?
in Case 2.
The proof of the theorem is complete. ]
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