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Abstract—A reconfigurable intelligent surface (RIS) is a
prospective wireless technology that enhances wireless channel
quality. An RIS is often equipped with passive array of elements
and provides cost and power-efficient solutions for coverage
extension of wireless communication systems. Without any radio
frequency (RF) chains or computing resources, however, the RIS
requires control information to be sent to it from an external
unit, e.g., a base station (BS). The control information can be
delivered by wired or wireless channels, and the BS must be
aware of the RIS and the RIS-related channel conditions in order
to effectively configure its behavior. Recent works have introduced
hybrid RIS structures possessing a few active elements that can
sense and digitally process received data. Here, we propose the
operation of an entirely autonomous RIS that operates without
a control link between the RIS and BS. Using a few sensing
elements, the autonomous RIS employs a deep Q network (DQN)
based on reinforcement learning in order to enhance the sum rate
of the network. Our results illustrate the potential of deploying
autonomous RISs in wireless networks with essentially no network
overhead.

Index Terms—Autonomous RIS, DQN, deep learning, MU-
MISO, rate maximization, wireless communication.

I. INTRODUCTION

A reconfigurable intelligent surface (RIS) is an innovative
technology that has the ability to shape a wireless channel in
beneficial ways thanks to the use of adjustable reflecting ele-
ments [1], [2]. They can be used for various purposes, such as
improving network throughput, coverage, or energy efficiency.
It is commonly assumed that RISs are essentially passive
arrays without radio-frequency (RF) chains and computing
resources, and are fully controlled by an external entity such
as a base station (BS). To reap the benefits of RISs, channel
state information (CSI) is also generally required. However,
CSI estimation in passive RIS systems is challenging, often
requiring a high pilot overhead that can significantly reduce
the spectral efficiency [3], [4]. In addition, the requirement of a
control link through a wired cable or wireless channel limits the
deployment flexibility of RISs and increases the complexity of
the system installation, configuration, and maintenance costs.
In some circumstances, establishing such a control link may
be infeasible, for example, when an RIS is only temporarily
deployed to an area.

Recently, hybrid RIS structures have been introduced in
which the RIS elements are able to simultaneously reflect and
sense the incoming signal [5]-[7]. Such structures pave the
way for a new methodology where an RIS can “sense-then-
shape” the environment itself. The benefit of hybrid RISs in

Autonomous RIS [ passive element w/o RF chain

M Sensing clement w/ RF chain

CuWﬂnk
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Fig. 1: Illustration of an autonomous RIS-assisted system.

terms of pilot overhead reduction has been recently reported
in [7], [8]. Motivated by these recent advances, we study the
concept of an autonomous RIS as depicted in Fig. 1, which is
self-configured instead of being fully controlled by a remote
BS, thus maximizing the deployment flexibility as well as
simplifying the system configuration. Since an autonomous RIS
is self-configured, the BS can operate using conventional pro-
tocols, e.g., estimating the effective instantaneous CSI and then
performing combining/precoding. This approach is thus more
practical than the one that the BS estimates the instantaneous
cascaded CSI, jointly optimizes the combining/precoding and
the phase shifts of the RIS, and then forwards the solution to
the RIS via a control link [9], [10].

The proposed autonomous RIS employs a hybrid RIS with
some sensing elements and processing capability to self-
configure its phase shifts using a deep Q network (DQN)
[11]. DQN is a reinforcement learning method that is useful
when the state, e.g., a received signal, is strongly related
to the channel environment, and the action, e.g., the RIS
configuration, changes the channel environment. Since it is
impractical to define the received signals and wireless channels
in discrete sets, DQN is widely used for communication system
developments, where a deep neural network is used to create a
continuous-valued Q table [9], [10], [12]. Without any control
link, the partial observations provided by the RIS sensing
elements are the only information available to the autonomous
RIS. The key contribution of the paper is a method to convert
the partial observations of the hybrid RIS into an estimate of
the sum rate, which serves as the reward or Q value of the
reinforcement learning-based DQN.
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The paper is organized as follows. In Section II, we present
a cluster-based channel model suitable for describing time
variations due to changing positions of the clusters and mobile
user equipment (UE). Section III provides the RIS system
model and defines the observations from a few RIS sensing
elements. Using the RIS observations, we develop a method
for evaluating the sum-rate in Section IV. Section V details
the proposed DQN approach, and Section VI illustrates its per-
formance using simulation results. Concluding remarks follow
in Section VII.

Notation: Upper-case and lower-case boldface letters are
used to indicate matrices and column vectors, respectively. The
element-wise absolute value of vector a is represented as |a|.
The p-norm of vector a is ||al,. The indicator operator [a]
is defined as [a], = [a} ab ---]"/|la||% for p — oo. The i-th
element of vector a and the i-th row of matrix A are given
as [a]; and [A], ., respectively. A partial vector formed from
elements of vector a using the set of indices Z is defined as
[a]z. The matrices AT and A denote the transpose and the
conjugate transpose of A, respectively. The discrete Fourier
transform (DFT) of matrix A is given by DFT{A}, where the
DFT is performed column-wise. The set of complex numbers
is denoted as C.

II. CHANNEL MODEL

We consider a system with an M-antenna BS serving K
single-antenna UEs with the help of an /N-element RIS. We
assume the cluster-based channel model, where there is no
direct channel between the UEs and the BS. Our model
considers signals arriving at the autonomous RIS from both
the BS and UEs. The channel between the k-th UE and the
RIS is modeled as

Ly—1

hy = >

£=0

VR
Pro—1
[=0  (drep)”
where f. is the carrier frequency, « is the pathloss exponent,
Py is the reference channel power, and L is the number of
distinct channel paths, each of which can arrive via multiple
reflections. The delay 7;; of channel path ¢ is given by
Tho = 2525—1 dip/c where c is the speed of light, and
di.ep represents the length of the p-th segment of the ¢-th
channel path for the k-th UE. The uniform planar array (UPA)
response at the RIS is defined as
an(03r 04r) =

hor ver

[1 edmeos(0y7) sin(0y7,) ...

e AT (0%, 010, (1)
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where 92?2 and 07 are the zenith and azimuth angles of arrival
(ZoA/AoA) for the ¢-th channel path of the k-th UE.
The BS-to-RIS channel is modeled as

Lr—1
Hp — i v i ferne
= Pro—1
£=0 Hpibe (dR7[7;,,)a

x ag (01, O )an (657)  (3)

where the segment lengths dR ¢, and the delay 7R are defined
similarly to (1). We assume a uniform linear array (ULA) at the
BS whose response ag(-) € C**? can be found as in (2) with
Npor = 1, and the ZoA/AoA and zenith of departure (ZoD) are
0}1‘{}, Ok, and ¢’,, respectively. The positions of the clusters,
BS, RIS, and UE nodes define the parameters of the channels,
including the lengths of the channel segments and the ZoDs,
AoAs, and ZoDs of the channel paths. Time-variations in the
positions of the clusters and UEs produce channel variations.
In Section VI, we describe the model assumed for cluster and
UE motion in the numerical studies.

III. SYSTEM MODEL

The effective uplink (UL) channel for the k-th UE is given
as

by, = Hy, diag (v)hy, 4)

where v is the RIS phase shift vector defined as v = [e/¥1
- N Let H=[hy,..., 0] € CM*E be the effective
uplink channel matrix. We assume reciprocity, so the downlink
channel matrix is H? = [p,..., b | € CE*XM,
In a time division duplex (TDD) system, the downlink (DL)
signal received at the k-th UE is written as

i, = b Fs + ng, Q)

where the DL precoding matrix F consists of K precoding
vectors F = [f} fx], and the DL symbol vector is
given as s = [s sk|T. The noise at the k-th UE
is zero-mean Gaussian with variance J?L, which we denote
as ny ~ CN(0,02). We assume that the DL symbols are
randomly generated and satisfy E[ss'] = PgsIx, where Pgs
is the BS transmit power, and I is a K x K identity matrix.

The limited number of RIS sensing elements enables the RIS
to obtain partial information about the UL and DL channels,
The signal from the BS to the RIS is given as

lyrlz, = [Hr]z, . Fs +nrz,, (6)

where 7, is the set of indices corresponding to the sensing
elements, the noise term ng 7, is distributed as CN(0, O’?LI‘ISO,
and |Z,]| is the cardinality of Z,. The received signal at the RIS
from the k-th UE is given by

vilz, = [hilz, zk + 15 7., )

where zj, is the UL symbol from the k-th UE with transmit
power E[|zx|?] = Pug. The noise ny 7, is also assumed to be
distributed as CA/(0,021/7,)).

In the following section, we propose a method for evaluating
the sum-rate using only the partial observations from the RIS
sensing elements. The derived sum-rate will then be used to
form the DQN reward.
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IV. PROPOSED SUM-RATE EVALUATION
A. Observation Recovery

The full-dimensional RIS received signals yg from the BS
and yj from the k-th UE are necessary for the sum-rate
evaluation. From (3), yr can be represented as

yr = HgFs + ng
Lr—1

- v1P0 e—jQchTR./z
=0 H Rﬁ (dR,&p)a
xaR(H%f”rb "Rerz)a (o1, )Fs+nR
Lr—1
Z Br.car (08, 0%") + nr, (®)
by introducing fr ¢ = PR’ZQ{IT” e‘jQ”f“Tvaa}BI(qSﬁefz)Fs
[1,=5 (dr,ep)®

In (8), the parameters BM,G%"’%, and QVRefE fully define the
channel. The partial observation in (6) can be written as

Lr—1
=Y Brilar(Oyr 05z, + nrz,, (9

which still contains information about S ¢, 01", and 6}",. If
the channel parameters BR,g,H{‘ﬂ, and 0", can be extracted
from (9), it is possible to reconstruct (8) assuming the noise is
not excessive.

The ZoA/AoA 6, and )", can be inferred using the
orthogonal matching pursuit (OMP) algorithm [13]. The au-
tocorrelation matrix for OMP can be expressed as

rlz. [YrIL.]

which can be obtained by a sample average. The OMP algo-
rithm gives the estimated ZoA/AoA é}’{’} and é;{fe from Ry,.
With AoAs obtained by OMP, the remaining channel parameter
Br,¢ can be computed as

Ry, =E|[[y (10)

A 1 or ver
Bre = 7. |[ a(0",, 0% )12 [yrlz.
1
~ Br.e + 7 |[ a(0x",, 0" nr 7. (an

With the estimated parameters 0';{”[,9“” and fg g, the full-
dimensional RIS received signal from the BS is recovered as

Lr—1

Ir= > Brear(O,0").

£=0

12)

The full-dimensional received signal from the k-th UE can be
obtained using the same procedure.

B. Sum-Rate Evaluation Method
The DL sum-rate defined as

R:ilog 14+ Pes|h frl? (13)
e ek Poslbjfu]? + o2

can be used as the DQN reward. However, the autonomous RIS

cannot directly calculate the sum-rate in (13) since it requires

precise CSI. The autonomous RIS therefore has to evaluate the

sum-rate relying on the sensed observations from the RIS.
We first define the observation

2 = yg diag {v}ys (14)

with the RIS received signals yr and yj that are recovered in

Section IV-A. Assuming perfect recovery of yr and yy, the
observation is expanded as

2, =(HgrFs + ng)? diag {v}(hzy +ny)
=s"FUH] diag {v}h,2), + s"FTH] diag {v}n,

+ nk diag {v}hyz + ni diag {v}ny. (15)

If we assume that the BS precoder is designed sufficiently well,
e.g., using zero-forcing (ZF) or minimum mean square error
(MMSE) precoders, the inter-user interference (IUI) can be
assumed to be negligible, ie., 3., fi Hy diag {v}h;, ~
With this assumption, (15) can be further formulated as

2, ~sifHHR diag {v}hgzy + s FUHR diag {ving

+ nl diag {v}hyz + nil diag {v}ny, (16)
from which the following can be evaluated:
E[z¢[*] = Pos Puslfy Hyg diag {v}hy|* + Noy,
= PpsPuslfi'b,|* + Nop, (17)

where the expectation is taken over the DL symbol s;, UL
symbol zj, and noise signals ng and ny in the DL and UL
transmissions, respectively. The expectation in (17) can be
evaluated using a sample average. Finally, the sum-rate can
be evaluated as

e 3, (1

n

Pes|plf)2 + Not /P
:ngQ <1+ s £ " + No/ UE). (18)
k=1

2
On

The sum-rate in (18) will be close to the actual sum-rate in (13)
assuming a proper beamformer F satlsfymg D okitk 5|2 ~
0 and sufficient transmit power Pgg >> o . Section V investi-
gates more details of the proposed DQN, where the sum-rate
evaluated in (18) is used to define a reward.

V. PROPOSED DQN DESIGN

DQN is a reinforcement learning method with a deep neural
network. A flowchart for our proposed DQN is given in
Fig. 2. The RIS recovers the received signal from its sensing
elements and evaluates the sum-rate. The recovered observation
is transformed into the DQN state, the input of the DQN neural
network, and the sum-rate gives the target Q value. The DQN
neural network outputs the Q value, after which the target Q
value is updated and accumulated for DQN training. The RIS
chooses the action according to a given policy, and then the RIS
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Fig. 2: Flowchart of the proposed DQN interacting with the environment.

phase shifts are updated. As a result, the RIS channel changes,
and the BS modifies the beamformer for the given RIS channel.
We present further details about the arguments and structure of
the DQN in Sections V-A and V-B, respectively. The DQN
training process is then explained in Section V-C.

A. DON Arguments

1) Environment: The environment refers to the medium
with which the agent interacts, including the BS, the wireless
channels, and the UEs.

2) Agent: The RIS acts as the agent.

3) State: The DQN has two states including the combined
RIS observation

s1x = |DFT {diag {yl} diag {v}ys}|

s1,k ], and the RIS phase

19)

from which we obtain sy = [s11 ---
shift vector

sy = [DFT{v}|", (20)

which are the DQN inputs that go into separate pipelines of the
DOQN structure and merge to predict the Q value. The combined
observation in (19) can be represented as
. * . T
s1x ~ |DFT {diag {sifIHDY diag {vihea, }|
— | s;axDFT {diag {f'HE} diag {v}h; }|"
% . T
s;xDFT {dlag {f,?}bk} ’
* . T
= |spax diag {£}DFT {h, }|

21

where the approximation is due to the assumptions
D kitk b £, |2 ~ 0, and Pgs > o2. Since the representation
in (21) becomes a function of the concatenated RIS channel
., we use the combined observation as the state. Note that
the DFT operations in (19) and (20) convert the combined
RIS observation diag {yH} diag {v}y} and the RIS phase shift
vector v into the spatial domain. This transformation makes
the signal sparser and more informative to the DQN. Since the
absolute value varies slowly in the spatial domain and is robust
to overfitting, we take the absolute values for each state.

4) Action: The action chosen by the policy determines the
RIS phase update. The optimal policy selects the maximum Q
value as follows:

a* = arg max Q*([s1, s2], a), (22)

acA

where A = {1,...,N,} represents the set of N, possible
actions, and Q*([s1,sz2],a) is the action-value function. We
define a vector g whose a-th element is Q*([s1,s2],a), and
with the states [s1, s2] and the Q value vector ¢, we can define
the DQN as

q = foon(s1,s2). (23)
The RIS phase shifts are updated as
v = exp[jZ4(v + nAv)], (24)

where the update direction is defined as Av = Ve,-, 7 is the
step size, the action set matrix V = [V} --- vy, ] is a set of
possible update directions for the RIS phase shifts, and e, is
a one-hot vector whose only non-zero element is in position
a* and is equal to 1. In particular, we set €5« = [q]oo. In our
implementation, we will choose the action set matrix to be a
DFT matrix. Since the columns of the DFT matrix form the
basis of an /N-dimensional space, consecutive action decisions
can be interpreted as different linear combinations of the basis
vectors. Thus, even with a discrete action set, the resulting
RIS phase shift can be any vector in /N-dimensional space. To
tune the convergence of the RIS update, we use the following
adaptive learning rate

n=0.1]AR| + 0.01, 25)
where AR = R’ — R is the rate increment, and serves as a
proxy for the gradient.

5) Policy: We employ an e-greedy policy. During the initial
stages, the Q value is not reliable, so choosing the best action as
in (22) is not the best strategy. Thus initially, with probability
€, the action is randomly chosen. The value of e gradually
decreases so that the best action in (22) is more likely to be
selected in later stages.
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Fig. 3: Structure of the DQN neural network with two input pipelines.
The number of weight parameters is written on each layer.

6) Reward: Instead of directly using the sum-rate as the
reward, we propose to define the reward as the sum-rate ratio
TR = R/ / 7@, where R is the present estimated sum-rate and
R’ is the next estimated sum-rate. Maximizing the sum-rate
ratio is equivalent to maximizing the sum-rate, but it is more
robust to arbitrary scaling.

The DQN neural network works as a Q table for conventional
reinforcement learning. Since there are no labeled data for the
reinforcement learning, the DQN training needs the target Q
data. With the reward, the target Q value vector q can be
evaluated as

(o = = + 7 maxQ*([s1.s5).a) = = + 74" [ ],
(26)

where ~ is the discount factor, and q’ is the Q value vector for
the next state [s], s5]. The other elements in g are equal to those
in q. The target Q value vector q is the desired DQN output
for the next state, which trains the DQN fDQN(-). However, if
the a-th elements of q and fpgn(s1,s2) are not of the same
scale, which means [q], is too large or too small, the target
Q value vector g might not be useful for training. Thus, we
propose to use the following normalized target Q vector:

27)

where mg and ag are the sample mean and sample variance of
the elements in q. We still use the learning rate n here to change
the variance such that ¢ becomes comparable to fpon(S1, S2).
The loss function for training DQN is defined as

Loss = |[d — foon(s1,82)]ax|%, (28)

where only the difference for the a*-th element gives the DQN
loss for the backpropagation.

B. DON structure

The autonomous RIS exploits the DQN structure in Fig. 3
which is similar to [10], but the component layers are slightly
different. The DQN input states are the RIS observations and
the RIS phase shift vector in Egs. (19) and (20), and the
output is the Q value vector q whose label can be obtained
as in (26). Since gradient descent is a critical issue for the

[TTTTTTTT]
oMP SRR
Observation Recovery 2W.

Sum Rate Evaluation

RIS phase shift update

DQN Training

Fig. 4: The procedure associated with the proposed DQN for au-
tonomous RIS. Each arrow means the conducting time for every
operations. The training sample period is N./2W,, where W, is
baseband bandwidth, and N, is the sampling interval.

DQN training, we add a batch normalization layer. The dropout
layers are connected to the fully connected layers to address
the overfitting issue. The activation layer here uses the leaky
rectified linear unit (ReLU) function since the rate decrement
should be considered in the DQN training and propagated in a
negative direction [14].

C. DON Training

The proposed DQN presented above is an online machine
learning approach, i.e., the DQN keeps updating its parameters
using consecutive observations obtained from the RIS sensing
elements. The processing sequence is shown in Fig. 4. The
successively accumulated data provides the expected value of
the data required for every time slot. The observation recovery
and the RIS phase shift update employ instantaneous data from
every training sample period. As a result, the DQN state and
reward can be continuously evaluated to determine the neces-
sary action. The DQN training is, however, not conducted with
every sample. The training data is stacked for a given period
and shuffled for the DQN training, which prevents overfitting.
The computational complexity of the DQN is largely influenced
by the training process. However, since actions can be selected
concurrently during training, the proposed system is relatively
unburdened by computational delay.

VI. SIMULATION RESULTS

In this section, we present simulation results to show the
effectiveness of our proposed DQN-based approach for the
considered autonomous RIS system. The BS and the RIS are
respectively located at (0,0,35) m and (—50,0,10) m, and
the UEs are randomly placed in an area of size 100 x 50 m?
centered at (0,0) m. There are two UEs, and the UE height
is fixed to 1 m. The size of the BS ULA is 4 x 1, and the
size of the RIS UPA is 4 x 8. The direct path between the
BS and UEs is assumed to be blocked. The BS employs the
MMSE precoder [15]. The first row and column of the RIS
UPA are assumed to be the sensing elements, for a total of 13
RIS receivers. The system bandwidth is 20 MHz. The BS and
UE transmit power is 30 dBm and 10 dBm, respectively.

The BS-to-RIS and UE-to-RIS channels consist of both line-
of-sight (LoS) and non-LoS (NLoS) channels, where the NLoS
channels are generated using clusters with random scattering
in an area of size 200 x 100 x 50 m?, as illustrated in Fig. ?2.
There are three clusters for each BS-to-RIS and UE-to-RIS
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Fig. 5: Sum-rates for DQNs with different levels of information. The
bold and dotted lines are for the cases of 1 m/sec and 5 m/sec UE
and cluster movement, respectively.

channel. The clusters and UEs are also assumed to move at a
fixed speed along a linear trajectory in random directions.

As explained in Section V, the autonomous RIS needs the
full-dimensional observations and the sum-rate to obtain the
DQN state and reward. To investigate the importance of each
stage, we compare three DQNs: i) aRIS_refl, with noise-
free observations and precisely known sum-rate, ii) aRIS_ref2,
with noise-free observations and the estimated sum-rate in
(18), and iii) aRIS, with the proposed evaluated sum-rate after
observation recovery as explained in Section IV-A. We also
compare these approaches with the use of random RIS phase
shifts, which does not require any channel information.

Fig. 5 shows a sum rate comparison for two scenarios where
the UEs and clusters move at speeds of 1 m/sec (bold lines)
and 5 m/sec (dotted lines), respectively. The DQN for the case
involving UE and cluster motion at 1 m/sec converges to a
higher sum rate more rapidly than the case of 5 m/sec, since
more rapidly varying channels are more challenging for DQN
adaptation. For a given UE speed, aRIS_refl achieves the best
performance since it uses perfect knowledge of the channels,
while the proposed a_RIS is comparable to aRIS_ref2 for both
low and high mobility cases. This clearly shows the potential
of autonomous RIS in practice.

VII. CONCLUSION

In this paper, we have proposed an autonomous RIS that does
not require external control. The autonomous RIS is equipped
with a few sensing elements whose measured data are used
by a DQN to find a self-configured RIS phase shift solution.
The proposed DQN updates the RIS phase shifts in a way
that enhances the sum-rate. Due to the relatively small number
of RIS sensing elements, the DQN state and reward must be
established using only partial observations. Simulation results
show that even with limited sensing information, the proposed
DQN can still enhance the RIS channel and outperform the a
random RIS configuration. Although the proposed RIS system
may not be as energy-efficient as RIS systems devoid of com-
putational resources, leveraging task-oriented hardware such

as neural network processing units (NPUs) could substantially
reduce power consumption.
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