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Abstract—Due to the simultaneous downlink and uplink trans-
missions in reconfigurable intelligent surface (RIS)-empowered
frequency division duplexing (FDD) communication systems, it
is necessary to design the RIS phase shifts to balance the perfor-
mance of both directions at the same time. Focusing on a single-
user multiple-input multiple-output system, we aim to maximize
a weighted sum-rate for the downlink and uplink. To address
the resulting non-convex optimization problem, we employ an
alternating optimization (AO) algorithm, which includes two
techniques for optimizing the phase shifts at the RIS. A manifold
optimization-based algorithm is applied for the first technique,
and a lower-complexity AO approach is developed for the second.
Our numerical results demonstrate that the proposed algorithms
lead to substantial enhancement of the entire system compared
to existing baseline schemes.

I. INTRODUCTION

In recent years, reconfigurable intelligent surfaces (RISs)
have drawn great interest for future wireless communication
systems. An RIS can intelligently manipulate the characteris-
tics of incoming signals, such as amplitude and phase, thereby
leading to desired signal propagation [1]–[4].

Most of previous works related to RIS-empowered com-
munication systems have assumed time division duplexing
to take advantage of the reciprocal relationship between the
downlink and uplink channels [5]–[9]. However, it is important
to note that sub-6 GHz bands will still be frequently employed
in future wireless communication systems due to their wide
coverage and reliability [10], implying that the deployment of
RISs in frequency division duplexing (FDD) systems would
be inevitable.

In RIS-empowered FDD systems, an important character-
istic is that the downlink and uplink signals are transmitted
at the same time in separate frequency bands. Since the
RIS lacks the capability for baseband processing, it affects
signal reflection irrespective of the frequency band [11]. This
implies that, as long as the difference between the downlink
and uplink frequency bands is not extremely large, the same
phase shifts are applied at the RIS for both the downlink
and uplink transmissions. Consequently, in order to enhance
the performance of both the downlink and uplink systems
simultaneously, the optimization of RIS phase shifts should
consider both directions, and some recent works have at-
tempted to address this problem [12]–[14]. For single-user

Fig. 1: An illustration of an RIS-empowered FDD SU-MIMO
communication system. The BS and UE are equipped with
N antennas and K antennas, and the RIS is composed of L
passive elements.

multiple-input single-output (SU-MISO) systems, two-way
designs were developed in [12]. Furthermore, a practical RIS
model was considered in [13] for SU-MISO systems. In [14],
joint optimization strategies for multi-user MISO systems were
developed. However, to the best of our knowledge, no prior
work has addressed the two-way design for cases involving
multi-antenna user equipment (UE) in FDD systems.

In this paper, we aim to solve the weighted sum-rate maxi-
mization problem for the downlink and uplink in FDD single-
user multiple-input multiple-output (SU-MIMO) systems. To
tackle the problem, we develop two techniques to optimize the
RIS reflection coefficients based on an alternating optimiza-
tion (AO) approach. The first technique utilizes a manifold
optimization-based algorithm, while for the second technique a
lower complexity AO algorithm is developed. From the numer-
ical results, we verify that the overall system performance can
be substantially enhanced by the proposed joint optimization
frameworks compared to existing baseline schemes.

II. SYSTEM MODEL

We investigate an RIS-empowered FDD SU-MIMO system
such as that illustrated in Fig. 1, where the base station (BS)
with N antennas communicates with a single UE equipped
with K antennas. A single RIS composed of L passive
elements is also present, allowing the BS to achieve favorable
signal propagation through a controller connected to the BS.
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We assume that the channels between the BS and UE are
entirely blocked, as in [7], [12].

In the downlink, the signal sent from the BS is expressed
as sD ∈ CND

s ×1 with E
[
sDs

H
D

]
= IND

s
, where ND

s ≤
min(N,K) denotes the number of data streams from the BS.
Then, the downlink received signal at the UE is represented by

yD = HH
DΘΘΘGDFDsD + nD, (1)

where FD ∈ CN×ND
s is the downlink precoder at the BS

satisfying tr(FDF
H
D) ≤ PD,max with PD,max representing

maximum downlink transmit power at the BS, HH
D ∈ CK×L

is the downlink channel between the RIS and the UE, GD ∈
CL×N is the downlink channel between the BS and the RIS,
and an additive white Gaussian noise (AWGN) vector at the
UE is denoted by nD ∼ CN (000K , σ2

DIK) with noise variance
σ2
D. The matrix consisting of the reflection coefficients at the

RIS is modeled as ΘΘΘ = diag
(
[θ1, · · · , θL]T

)
with |θℓ| = 1,

ℓ = 1, · · · , L.
In the uplink, the signal transmitted from the UE is ex-

pressed as sU ∈ CNU
s ×1 with E

[
sUs

H
U

]
= INU

s
, where

NU
s ≤ min(N,K) is the number of data streams from the

UE. Note that the RIS is not able to execute local signal
processing, and since the difference between the downlink and
uplink carrier frequencies is assumed to not be too great [11],
[12], the reflection coefficient matrix ΘΘΘ in (1) is also applied
to the uplink transmission. The uplink received signal at the
BS is therefore given by

yU = GH
UΘΘΘHUFUsU + nU, (2)

where FU ∈ CK×NU
s is the uplink precoder at the UE

satisfying tr(FUF
H
U) ≤ PU,max with PU,max representing

maximum uplink transmit power at the UE, GH
U ∈ CN×L is

the uplink channel between the RIS and the BS, HU ∈ CL×K

is the uplink channel between the UE and the RIS, and an
AWGN vector at the BS is denoted by nU ∼ CN (000N , σ2

UIN )
with noise variance σ2

U.
The downlink and uplink achievable rates RD and RU can

be represented by

RD = log2 det

(
IK +

1

σ2
D

Heff,DFDF
H
DH

H
eff,D

)
RU = log2 det

(
IN +

1

σ2
U

Heff,UFUF
H
UH

H
eff,U

)
, (3)

where Heff,D = HH
DΘΘΘGD and Heff,U = GH

UΘΘΘHU respec-
tively denote the effective downlink and uplink channels.

III. PROBLEM SETTING AND ALGORITHM DEVELOPMENT

A. Problem formulation
Due to the simultaneous downlink and uplink transmissions

in FDD, we aim to maximize the weighted sum-rate for the
downlink and uplink as [12], [14]

(P1) : max
FD,FU,ΘΘΘ

RWSR = ηRD + (1− η)RU (4)

s.t. tr(FDF
H
D) ≤ PD,max, (5)

tr(FUF
H
U) ≤ PU,max, (6)

ΘΘΘ = diag
(
[θ1, · · · , θL]T

)
, (7)

|θℓ| = 1, ℓ = 1, · · · , L, (8)

where η ∈ [0, 1] denotes a weight coefficient that allows for
the adjustment of the relative importance of the downlink and
uplink rates. To tackle this non-convex problem, we employ
an AO-based approach. Specifically, we first decompose (P1)
into distinct downlink and uplink sub-problems for a fixed ΘΘΘ,
and the optimal downlink and uplink precoders can be derived
using eigenmode transmissions [15]. For fixed FD and FU, we
propose two techniques for optimizing ΘΘΘ.

B. Precoder designs for given RIS phase shifts

For a given ΘΘΘ, (P1) boils down to solving the downlink and
uplink sub-problems separately. The downlink sub-problem for
(P1) is

max
FD

RD

s.t. tr(FDF
H
D) ≤ PD,max. (9)

Let Heff,D = ŨDΣ̃ΣΣDṼ
H
D represent the truncated singular value

decomposition (SVD) of Heff,D where ṼD ∈ CN×ND
s . Then,

the optimal FD for this problem can be obtained by

F⋆
D = ṼDP

1
2

D, (10)

where PD = diag

([
p⋆D,1, · · · , p⋆D,ND

s

]T)
is the power allo-

cation matrix. The optimal power level assigned to the i-th data
stream, p⋆D,i, is the result of the water-filling power allocation
p⋆D,i = max(1/pD,0 − σ2

D/[Σ̃ΣΣD]i,i, 0) for i = 1, · · · , ND
s ,

where pD,0 is set such that
∑ND

s
i=1 p

⋆
D,i = PD,max. The uplink

sub-problem for (P1) can be similarly defined, and the optimal
FU can be obtained by following the same procedure as
in (10).

C. RIS phase shifts design for given precoders

For given FD and FU, the optimization problem of (P1)
with respect to ΘΘΘ is given by

(P2) : max
ΘΘΘ

RWSR (11)

s.t. ΘΘΘ = diag
(
[θ1, · · · , θL]T

)
, (12)

|θℓ| = 1, ℓ = 1, · · · , L. (13)

Due to the unit-modulus constraints (13), which make the
problem highly non-convex, obtaining the optimal solution
for (P2) is not straightforward. In the following section, we
develop two optimization techniques to handle this issue.

IV. PROPOSED RIS PHASE SHIFTS DESIGNS

In this section, we develop two optimization techniques to
obtain a practical solution for (P2). The first is a manifold
optimization-based algorithm, while the second employs a
lower-complexity AO technique obtained by deriving a prac-
tical closed-form expression for each RIS phase shift.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 08,2025 at 04:34:23 UTC from IEEE Xplore.  Restrictions apply. 



A. Manifold optimization

To solve (P2), the main challenge is to tackle the unit-
modulus constraints (13). Fortunately, using the fact that the
constraints (13) form a complex circle manifold M = {θθθ ∈
CL : |θ1| = · · · = |θL| = 1} [16], we can obtain a practical
solution for (P2) by employing the Riemannian conjugate
gradient (RCG) algorithm, which is the generalized conjugate
gradient method adapted to the Riemannian manifold space
and guarantees to convergence to a stationary point [16].

To implement the RCG-based algorithm, the Euclidean gra-
dient of objective function RWSR = η∇θθθRD + (1− η)∇θθθRU

is derived to obtain the Riemannian gradient of RWSR.
From here on, we focus on the computation of ∇θθθRD =[
∂RD

∂θ1
, · · · , ∂RD

∂θL

]T
, and ∇θθθRU can be computed in the same

way. Applying the chain rule in [17], the derivative of RD in
terms of θℓ can be expressed as

∂RD

∂θℓ
=tr

(
∇Heff,D

RD ·
∂HH

eff,D

∂θ∗ℓ

)

+ tr

(
(∇Heff,D

RD)
H · ∂Heff,D

∂θ∗ℓ

)
. (14)

From the complex differentials, it is possible to treat θℓ and
θ∗ℓ as independent variables [18], implying that ∂Heff,D

∂θ∗
ℓ

= 0,
and the second term in (14) becomes zero. In the following
proposition, we first derive ∇Heff,D

RD.

Proposition 1. The Euclidean gradient ∇Heff,D
RD is

∇Heff,D
RD =

1

ln 2 · σ2
D

Heff,DFD

(
IND

s
+

1

σ2
D

FH
DH

H
eff,DHeff,DFD

)−1

FH
D.

(15)

Proof. The proof is based on the arguments in [[17], Theorem
1 and Lemma 3].

Next, the derivative of HH
eff,D in terms of θ∗ℓ is given by

∂HH
eff,D

∂θ∗ℓ
= (h′

D,ℓ ⊗GD(ℓ, :))
H, (16)

where h′
D,ℓ is the ℓ-th column of HH

D, GD(ℓ, :) represents
the ℓ-th row of GD, and ⊗ denotes the Kronecker product.
Defining the ℓ-th column of GH

U as g′
U,ℓ, the derivative of RU

in terms of θℓ can be computed by following (15) and (16).
The details of the RCG-based algorithm can be found in [7],

[12], [16], and we describe the entire algorithm for obtaining
the solution to (P1) in Algorithm 1. If the objective function
(4) does not increase beyond the designed threshold ϵ, the
algorithm terminates.

B. Low-Complexity AO

In this subsection, we develop a low-complexity AO tech-
nique to obtain a practical solution for (P2). Specifically, the
sub-problem of (P2) with respect to each reflection coeffi-
cient is formulated, and a closed-form expression is derived
for each sub-problem. By iteratively updating the reflection
coefficients, (P2) can be effectively solved.

Algorithm 1 Proposed Algorithm for (P1) Based on Manifold
Optimization

1: Input: GD,HD,GU,HU, σD, σU.
2: Initialization: Set t = 0, generate the initial θθθ(0), and

compute F
(0)
D and F

(0)
U according to (10)

3: repeat
4: With fixed F

(t)
D and F

(t)
U , compute θθθ(t+1) using the

RCG-based algorithm
5: With fixed θθθ(t+1), compute F

(t+1)
D and F

(t+1)
U accord-

ing to (10)
6: t← t+ 1
7: until ∥R(t+1)

WSR −R
(t)
WSR∥2 ≤ ϵ

8: Output: θθθ⋆ = θθθ(t),F⋆
D = F

(t)
D ,F⋆

U = F
(t)
U

Following [6], the achievable rates RD and RU in (3) can
be reformulated with respect to θℓ. For example, RD can be
rewritten by

RD = log2 det
(
IK + θℓA

−1
D,ℓBD,ℓ + θ∗ℓA

−1
D,ℓB

H
D,ℓ

)
+ log2 det(AD,ℓ)

≜ gD,ℓ(θℓ) + log2 det(AD,ℓ), (17)

where AD,ℓ ∈ CK×K and BD,ℓ ∈ CK×K can be found in
(18) and (19) at the top of the next page with given G′

D =

GDFD = [g′
D,1, · · · ,g′

D,L]
H ∈ CL×ND

s . Similarly, RU can be
rewritten as RU = gU,ℓ(θℓ) + log2 det(AU,ℓ), where AU,ℓ ∈
CN×N and BU,ℓ ∈ CN×N can be defined as in (18) and (19)
with given H′

U = HUFU = [h′
U,1, · · · ,h′

U,L]
H ∈ CL×NU

s .
By removing the irrelevant terms with respect to θℓ, the

sub-problem of (P2) can be formulated as

(P3) : max
θℓ

gℓ(θℓ) = ηgD,ℓ(θℓ) + (1− η)gU,ℓ(θℓ) (20)

s.t. |θℓ| = 1. (21)

To derive the solution to (P3), we analyze properties related to
the matrices A−1

D,ℓBD,ℓ and A−1
U,ℓBU,ℓ on which the objective

function (20) depends. From (18) and (19), it is obvious that
the rank of both A−1

D,ℓBD,ℓ and A−1
U,ℓBU,ℓ cannot exceed one

since BD,ℓ and BU,ℓ are rank-one. If the rank of A−1
D,ℓBD,ℓ

or A−1
U,ℓBU,ℓ is zero, the corresponding components of (20)

become independent of θℓ. In the following, we analyze the
scenarios where both matrices are rank-one, and the solution
depends on whether these matrices are diagonalizable or not.
Note that identifying that A−1

D,ℓBD,ℓ and A−1
U,ℓBU,ℓ are diag-

onalizable is equivalent to showing that tr
(
A−1

D,ℓBD,ℓ

)
̸= 0

and tr
(
A−1

U,ℓBU,ℓ

)
̸= 0 [6].

1) Diagonalizable case: In this case, an eigenvalue decom-
position can be applied to both matrices:

A−1
D,ℓBD,ℓ = UD,ℓΛΛΛD,ℓU

−1
D,ℓ

A−1
U,ℓBU,ℓ = UU,ℓΛΛΛU,ℓU

−1
U,ℓ, (22)

where ΛΛΛD,ℓ = diag(λD,ℓ, 0, · · · , 0) and ΛΛΛU,ℓ =
diag(λU,ℓ, 0, · · · , 0), with sole non-zero eigenvalues
λD,ℓ and λU,ℓ, respectively. By defining the first rows
of CD,ℓ = UH

D,ℓAD,ℓUD,ℓ and CU,ℓ = UH
U,ℓAU,ℓUU,ℓ as
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AD,ℓ = IK +
1

σ2
D

 L∑
i=1,i ̸=ℓ

θih
′
D,i(g

′
D,i)

H

 L∑
i=1,i ̸=ℓ

θih
′
D,i(g

′
D,i)

H

H

+
1

σ2
D

h′
D,ℓ(g

′
D,ℓ)

Hg′
D,ℓ(h

′
D,ℓ)

H, (18)

BD,ℓ =
1

σ2
D

h′
D,ℓ(g

′
D,ℓ)

H

 L∑
i=1,i ̸=ℓ

θ∗i g
′
D,i(h

′
D,i)

H

 . (19)

(c′D,ℓ)
T and (c′U,ℓ)

T and the first columns of C−1
D,ℓ and C−1

U,ℓ

as cD,ℓ and cU,ℓ, respectively, gD,ℓ(θℓ) and gU,ℓ(θℓ) can be
reformulated as [6]

gD,ℓ(θℓ) = log2(1 + |λD,ℓ|2(1− c′D,ℓ1cD,ℓ1) + 2Re(θℓλD,ℓ))
(23)

gU,ℓ(θℓ) = log2(1 + |λU,ℓ|2(1− c′U,ℓ1cU,ℓ1) + 2Re(θℓλU,ℓ)),
(24)

where c′D,ℓ1 and cD,ℓ1 represent the first entries of (c′D,ℓ)
T and

cD,ℓ, and c′U,ℓ1 and cU,ℓ1 represent the first entries of (c′U,ℓ)
T

and cU,ℓ, respectively.
For further investigation of (23) and (24), let ρ1(M) ≥
· · · ≥ ρn(M) be the ordered singular values of an arbitrary
n×n complex matrix M. The following lemma gives an upper
bound for |λD,ℓ|.

Lemma 1. An upper bound for |λD,ℓ| is given by
ρ1

(
A−1

D,ℓ

)
ρ1 (BD,ℓ).

Proof. Because A−1
D,ℓBD,ℓ is rank-one, an upper bound for

|λD,ℓ| can be represented by

|λD,ℓ| =
∣∣∣tr(A−1

D,ℓBD,ℓ

)∣∣∣ (a)≤ K∑
k=1

ρk

(
A−1

D,ℓ

)
ρk (BD,ℓ)

(b)
= ρ1

(
A−1

D,ℓ

)
ρ1 (BD,ℓ) , (25)

where (a) can be derived by Von Neumann’s trace inequality
[19], and (b) follows from BD,ℓ being rank-one.

From (18), it is observed that AD,ℓ is a symmetric matrix,
implying that ρ1

(
A−1

D,ℓ

)
is equivalent to ρK (AD,ℓ). By using

the following lemma, we can further simplify the upper bound
of (25).

Lemma 2. When ND
s < K − 1, ρK (AD,ℓ) = 1.

Proof. Denote X′ = XXH and Y′ = YYH where X =∑L
i=1,i≠ℓ θih

′
D,i(g

′
D,i)

H and Y = h′
D,ℓ(g

′
D,ℓ)

H, which form
AD,ℓ in (18). To derive the tightest bound for ND

s , we assume
X′ and Y′ have maximum rank, i.e., rank (X′) = ND

s and
rank (Y′) = 1.

Let λ1(M) ≥ · · · ≥ λn(M) be the ordered eigenvalues of
an arbitrary n×n Hermitian matrix M. By Weyl’s inequality
[20], an upper bound for λK (X′ +Y′) can be represented by

λK (X′ +Y′) ≤ λi (X
′) + λK+1−i (Y

′) , i = 1, · · · ,K.
(26)

By taking i = ND
s + 1, the right-hand side of (26) becomes

zero, implying λK (X′ +Y′) = 0 since X′ + Y′ is positive

semi-definite. Hence, from (18) it is obvious that λK (AD,ℓ)
is only affected by IK , i.e., λK (AD,ℓ) = 1, resulting in
ρK (AD,ℓ) = 1, which finishes the proof.

Based on Lemma 2, the upper bound for |λD,ℓ| can be
reduced to ρ1 (BD,ℓ), and since BD,ℓ is rank-one, it can be
shown that ρ1 (BD,ℓ) = ∥BD,ℓ∥F. Similarly, when NU

s <
N − 1, the upper bound for |λU,ℓ| is given by ∥BU,ℓ∥F.

Following (19), it is obvious that the gains of the RIS-
related channels heavily affect the quantities ∥BD,ℓ∥F and
∥BU,ℓ∥F. Note that the RIS deployment typically aims to
expand signal coverage and provide support to users located
at longer distances or with weaker signal strengths. Conse-
quently, it is reasonable to assume that both |λD,ℓ| and |λU,ℓ|
are sufficiently small, and we employ the following first-order
Taylor approximation at (23) and (24); log(1+x) ≈ x around
x = 0. After applying the approximation and removing the
irrelevant terms with respect to θℓ, the following approximate
version of (P3) results:

(P4) : max
θℓ

hℓ(θℓ) = ηRe(θℓλD,ℓ) + (1− η)Re(θℓλU,ℓ)

s.t. |θℓ| = 1. (27)

Finally, a closed-form solution to (P4) is obtained via the
following proposition.

Proposition 2. The closed-form solution to (P4) is given by

θ⋆ℓ = exp(−j arg(ϕℓ)), (28)

where ϕℓ can be found in (31) at the top of the next page.

Proof. Using Euler’s formula, hℓ(θℓ) in (P4) can be reformu-
lated as

hℓ(θℓ) = η|λD,ℓ| cos(arg(θℓ) + arg(λD,ℓ))

+ (1− η)|λU,ℓ| cos(arg(θℓ) + arg(λU,ℓ)) (29)
= A cos(arg(θℓ) + ϕℓ). (30)

An expression for tan(ϕℓ) can be derived using the trigono-
metric identity cos(a+b) = cos a cos b−sin a sin b in (29) and
(30), and it is straightforward to show that ϕℓ is equivalent to
(31). Therefore, (30) is maximized when θℓ is given as (28),
which finishes the proof.

2) Non-diagonalizable cases: According to [6], it can
be shown that non-diagonalizable A−1

D,ℓBD,ℓ or A−1
U,ℓBU,ℓ

makes gD,ℓ(θℓ) or gU,ℓ(θℓ) irrelevant to θℓ. Hence, the so-
lution in this case can be simply derived by maximizing
the diagonalizable part, i.e., the solution is given by θ⋆ℓ =
exp(−j arg(λU,ℓ)) or exp(−j arg(λD,ℓ)). When both matrices
are non-diagonalizable, there are infinitely many solutions, and
we can set θ⋆ℓ = 1 for simplicity.
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ϕℓ = tan−1

(
η|λD,ℓ| sin(arg(λD,ℓ)) + (1− η)|λU,ℓ| sin(arg(λU,ℓ))

η|λD,ℓ| cos(arg(λD,ℓ)) + (1− η)|λU,ℓ| cos(arg(λU,ℓ))

)
, (31)

3) Summary: Throughout this subsection, the closed-form
expression for each sub-problem of (P2) is derived depending
on the properties of A−1

D,ℓBD,ℓ and A−1
U,ℓBU,ℓ. The entire

low-complexity AO-based algorithm can be implemented by
replacing the RCG-based algorithm in Algorithm 1 with the
derived closed-form expressions, from which the reflection co-
efficients are updated sequentially. We omit a formal algorithm
description due to the space limitations.

C. Complexity analysis

For the comparison of complexity between the two pro-
posed algorithms, we assume (ND

s , NU
s ) ≪ (N,K) ≤ L.

First, the complexity of the manifold optimization-based
algorithm is dominated by computation of the Euclidean
gradient ∇θθθRWSR, and the overall complexity is given by
O(Iout,1Iin(N2KL +NK2L)), where Iout,1 and Iin are the
number of outer and inner iterations for implementing the
RCG-based algorithm, respectively. For the low-complexity
AO-based algorithm, the complexity level can be demonstrated
to be O(Iout,2(3(N3 + K3) + 2NK(N + K))L) assum-
ing Iout,2 outer iterations. When N = K, the complex-
ity of the two algorithms reduces to O(Iout,1IinN3L) and
O(Iout,2N3L), respectively. This implies that the manifold
optimization-based algorithm has higher complexity than the
low-complexity AO approach due to the extra Iin term.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
algorithms. For the simulations, the carrier frequencies for
the downlink and uplink transmissions are set to be fD =
2.135 GHz and fU = 1.945 GHz. Both the BS and UE are
assumed to have a uniform linear array equipped with N = 14
and K = 6 antennas, respectively. The RIS consists of a
uniform planar array with Lh horizontal elements and Lv

vertical elements. We set the locations of the BS, RIS, and UE
as (0 m, 0 m), (800 m, 5 m), and (850 m, 0 m), respectively.
The noise variance is σ2

D = σ2
U = -104 dBm with noise

spectral density -174 dBm/Hz and bandwidth 10 MHz. The
weight coefficient is set to be η = 0.5, and the number of
data streams is ND

s = NU
s = 5. The threshold to determine

convergence of the proposed algorithms is set to be ϵ = 10−5.
We adopt the distance and frequency dependent path-loss

model from 3GPP [14], [21] given by

PL (d, f) [dB] = 28 + 22 log10

(
d

d0

)
+ 20 log10

(
f

f0

)
,

(32)
where d denotes the link distance, f represent the carrier
frequency, and the reference distance and frequency are given
by d0 = 1 m and f0 = 1 GHz, respectively.

The one-way AO algorithm from [6] and the truncated-
SVD-based-beamforming (T-SVD-BF) approach of [7] are
used as baselines for performance comparison. The one-way
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Fig. 2: Comparison of weighted sum-rate according to the
number of RIS elements.

AO approach corresponds to the case of η = 1 or 0 in
the low-complexity AO algorithm discussed in Section IV-B.
Therefore, in this scheme the reflection coefficients at the RIS
are optimized only for the downlink or uplink. In T-SVD-
BF, the singular values of the downlink and uplink effective
channels, Heff,D and Heff,U, are approximated with respect
to the reflection coefficients, and the manifold optimization is
employed to optimize the reflection coefficients. Note that in
this scheme the reflection coefficients are optimized consider-
ing both the downlink and uplink. For all baseline schemes, the
precoders at the BS and UE are updated based on eigenmode
transmissions as discussed in Section III-B.

In Fig. 2, we investigate the weighted sum-rate according
to the number of RIS elements L where Lh = Lv assuming
PD,max = 28 dBm and PU,max = 23 dBm. Regardless of
the value of L, the two proposed algorithms lead to the
highest weighted sum-rates, which demonstrates the impor-
tance of two-way design in FDD systems. Note that jointly
optimized reflection coefficients in the manifold optimization-
based algorithm result in a superior performance than the low-
complexity AO-based algorithm. Nevertheless, for small L,
the approximation applied in the low-complexity AO case is
more accurate due the reduced channel gains, and thus its
performance of relative to the manifold optimization-based
algorithm is similar. It is observed that when L is small, T-
SVD-BF shows lower weighted sum-rate than the one-way
AO with η = 1. This is because the approximation for the
singular values used in T-SVD-BF does not work well for
small L. However, as L increases, T-SVD-BF shows superior
performance than the one-way AO, which in turn enhances
the efficiency of the joint optimization for the downlink
and uplink.

In Fig. 3, we compare the weighted sum-rate according to
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Fig. 3: Comparison of weighted sum-rate according to the
downlink transmit power.

PD,max for PU,max = 23 dBm and L = 100 with Lh = Lv =
10. Similar to the previous results, the proposed algorithms
achieve the highest weighted sum-rates irrespective of the
specific value of PD,max, which verifies their adaptability and
effectiveness. The small performance gap between the one-
way AO with η = 0 and the proposed algorithms when
PD,max is small reveals that it would be better to optimize the
reflection coefficients only for the uplink when the downlink
transmit power is limited. Likewise, the weighted sum-rate
for the one-way AO with η = 1 improves dramatically with
increasing PD,max. Still, the proposed algorithms outperform
other baseline schemes for all practical ranges of PD,max.

VI. CONCLUSION

We proposed a joint optimization framework in RIS-
empowered FDD SU-MIMO systems to maximize the down-
link and uplink rates at the same time. To address the non-
convex weighted sum-rate optimization problem, we first sepa-
rated the precoder design from the reflection coefficient design,
and the precoders are updated based on eigenmode transmis-
sion. For optimizing the reflection coefficients, a manifold
optimization-based technique and a lower-complexity AO ap-
proach are developed. Our numerical results demonstrate that
the proposed algorithms outperform existing baseline schemes.
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