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Abstract— Downlink reconfigurable intelligent surface (RIS)-
assisted multi-input-multi-output (MIMO) systems are consid-
ered with far-field, near-field, and hybrid-far-near-field channels.
According to the angular or distance information contained in
the received signals, 1) a distance-based codebook is designed
for near-field MIMO channels, based on which a hierarchical
beam training scheme is proposed to reduce the training
overhead; 2) a combined angular-distance codebook is designed
for hybrid-far-near-field MIMO channels, based on which
a two-stage beam training scheme is proposed to achieve
alignment in the angular and distance domains separately. For
maximizing the achievable rate while reducing the complexity,
an alternating optimization algorithm is proposed to carry
out the joint optimization iteratively. Specifically, the RIS
coefficient matrix is optimized through the beam training process,
the optimal combining matrix is obtained from the closed-
form solution for the mean square error (MSE) minimization
problem, and the active beamforming matrix is optimized by
exploiting the relationship between the achievable rate and
MSE. Numerical results reveal that: 1) the proposed beam
training schemes achieve near-optimal performance with a
significantly decreased training overhead; 2) compared to the
angular-only far-field channel model, taking the additional
distance information into consideration will effectively improve
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the achievable rate when carrying out beam design for near-field
communications.

Index Terms— Beam training, codebook, multi-input-multi-
output (MIMO), near-field communications (NFC), reconfig-
urable intelligent surface (RIS).

I. INTRODUCTION

MILLIMETER wave (mmWave) communications (30 -

300 GHz) and Terahertz (THz) communications (0.1

- 10 THz) have been recognized as promising candidate

technologies for future B5G/6G networks to realize the

communication goals of ultra-wide bandwidth and ultra-high

transmission rate [1], [2], [3]. Although possessing extremely

high bandwidth, mmWave and THz communication suffer

from high propagation losses due to penetration, reflection and

diffraction, resulting in a reduced link budget compared to that

in the sub-6 GHz scenario [4].

To tackle the problems caused by high-frequency commu-

nications, reconfigurable intelligent surface (RIS) technology

has received extensive research attention due to its dis-

tinctive capability of restructuring the wireless propagation

environment and establishing additional reliable reflection-

based links between the base station (BS) and the user [5],

[6]. RISs consist of numerous passive controllable reflecting

elements that can adjust the phase shift of incident signals

with extremely low power consumption, and thus have been

regarded as one of the main enabling solutions to achieve green

communication and coverage extension for next-generation

wireless systems [7].

The low-cost and low-complexity characteristics of RIS

reflecting elements have also promoted the emergence of

extremely large-scale RIS to realize higher array gain.

However, with an increase in the number of RIS reflecting

elements, the boundary separating the near-field commu-

nication (NFC) region and far-field communication (FFC)

region becomes more distant from the RIS, making the

near-field region non-negligible [8], [9], [10]. In contrast to

the plane wave model in the far-field region, the electro-

magnetic structure in the near-field region is fundamentally

different and the spherical wave model should be used [8].

The spherical-wave propagation model for NFC contains

both angular and distance information, which allows the

resulting beam patterns to focus on a specific point [9].

Thus, NFC can utilize the new dimension of distance

1536-1276 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 08,2025 at 04:33:36 UTC from IEEE Xplore.  Restrictions apply. 



12532 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 9, SEPTEMBER 2024

to realize more precise signal enhancement, interference

management and user localization for RIS-assisted wireless

networks [11], [12], [13], [14].

However, reliable phase shift design for RIS-assisted

communication systems relies heavily on accurate channel

state information (CSI), which is challenging to obtain due to

the passive property of RISs. In addition, the massive number

of RIS elements in a multi-input-multi-output (MIMO) system

will also lead to extremely large pilot overhead and high

channel estimation complexity. The authors in [15] proposed

a two-stage channel estimation procedure in XL-RIS-aided

mmWave system to decrease pilot use and computational com-

plexity, where the angular-domain parameters and cascaded

angular-polar-domain parameters are estimated separately.

A hybrid-field XL-RIS-aided channel model was considered

in [16], where the unknown visual region issues caused by the

random blockages were taken into consideration. A near-field

channel estimation and localization algorithm was proposed

in [17] for XL-RIS THz system, leveraging the second-order

Fresnel approximation derived from the near-field channel

model. Compared to cascaded channel estimation based on

least squares or minimum mean squared error, codebook-

based beam training has been widely adopted for mmWave

or THz communication systems [18], [19], [20]. The beam

training method can obtain CSI by estimating the physical

directions of channel paths rather than the entire channel,

thus realizing lower complexity. Moreover, beam training can

directly achieve reliable beamforming by selecting a phase-

shift vector from among a set of pre-defined “codewords”

during the training procedure, and thus is considered to be

an efficient approach to acquire CSI in RIS-assisted wireless

communication systems [21], [22], [23]. Existing codebook

design and beam training schemes cannot be directly applied

to RIS-assisted NFC systems or hybrid FFC & NFC systems.

Codebooks designed for FFC are mainly based on angular

information, which is reasonable because the distance from

any point on the transmitter to any point on the receiver

can be considered equal, and the phase of electromagnetic

waves received by different antennas is a linear function of

the antenna index in FFC. However, in NFC, the phase of

the electromagnetic waves received by different antennas is

no longer a linear function of the antenna index, but is related

to the distance between specific two points at the receiving

and transmitting ends. In addition, channel responses can be

decomposed into the Kronecker product of two vectors related

to angle of arrival (AoA) and angle of departure (AoD) in FFC,

which is no longer applicable in NFC due to the coupling

between angle and distance, bringing more difficulties to the

design of near-field codebooks.

Furthermore, in RIS-assisted communication systems, BS-

RIS link and RIS-user link may be in either far-field or

near-field situations, so there may be a mixture of far and

near fields. In such cases, the degree of difficulty of codebook

design will increase because it is necessary to comprehensively

consider the channel conditions of the two links, and as

a result, the size of the codebook will also become large.

Designing an efficient and accurate beam training method is

also a challenge.

A. Prior Works

1) Channel Modeling for NFC: Signals in the far field of

an array lead to planar wavefronts that produce linear phase

variations and negligible amplitude differences across the

array. However, the situation is different for near-field signals.

In order to achieve better performance through reasonable

resource allocation, accurate channel models are essential for

NFC. Hybrid-field channel modeling schemes were studied in

[24] and [25], where the far-field and near-field components

are separately estimated. A polar-domain representation for

near-field channel models was proposed in [26], accounting

for the information in both the angular and distance domains.

Considering the different multi-path characteristics observed

by antennas at different distances in large-scale MIMO NFC

systems, the authors in [27] proposed a non-stationary distance

modeling framework.

2) Beam Training Schemes: The beam training process is

implemented by searching for the optimal beam from multiple

predefined directional beams (codewords). For beam training,

testing all codewords in the codebook during the training

process is the most straightforward approach. However, the

codebook and the resulting training overhead can be extremely

large for large-scale massive MIMO systems, especially

when considering both angular and distance information

in NFC. The authors in [18] proposed a new hierarchical

codebook to achieve uniform beam alignment performance

with low overhead for mmWave communication systems.

For mmWave and sub-THz systems with multiple users,

[4] and [19] proposed hierarchical beamforming training

strategies to carry out simultaneous training for multiple

users. Aiming at overcoming the resolution limit of directional

angle estimation, [28] proposed a codebook-based beam

search approach for mmWave massive MIMO transmissions.

However, these codebooks are designed for the far-field case.

Considering the spherical wavefront propagation model for

NFC, [20], [29] proposed two-phase beam training methods

to sequentially perform the beam sweeping in the angular

and distance domains. The authors in [30] proposed a

novel spatial-chirp codebook and subsequently proposed a

slope-domain-based hierarchical update policy, where the

upper-layer beam searching range was uniformly divided into

several sub-ranges.

3) Beam Training Design for RISs: To implement beam

training for RIS-based systems, one must first construct an

appropriate RIS codebook based on information about the

cascaded channel. Then, based on the information obtained

during the training phase, the RIS selects the optimal

codeword from the predesigned codebook to perform passive

beamforming. For RISs with massive numbers of elements,

highly efficient beam training schemes with good performance

are required to reduce the training overhead. The authors in

[22] first proposed a hierarchical codebook-generating method

using pattern synthesis, then provided a hierarchical beam

training method using two multi-mainlobe codewords in each

layer. To train multiple users at the same time, a multi-lobe

beam training mechanism was proposed in [31] based on

the BS-RIS joint codebook, thus achieving reduced overhead.
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A multi-beam training method was proposed for a RIS-assisted

multiuser system in [32], by dividing the RIS into multiple

sub-surfaces and designing multi-beam directions over time.

Although [23], [33], [34] proposed beam training schemes for

RIS-assisted NFC systems, only limited scenarios with single-

antenna users were considered.

B. Motivation and Contributions

As the size of the RIS increases, the near-field region

becomes non-negligible. In NFC, CSI is not only related

to the angle but also distance, thus the acquisition of

CSI becomes very important for proper beam design. The

methods for obtaining CSI can be roughly classified into

two categories: channel estimation and beam training [34].

In this article, we consider the use of beam training to

simultaneously estimate the channel parameters and perform

passive beamforming [35], which is simpler than performing

channel estimation first and then separately determining the

optimal beamforming.

Although there are numerous beam training schemes for

FFC, codebook and beam training design for NFC are still in

their infancy, especially for RIS-assisted systems. Moreover,

the effect of different channel modeling methods for FFC

and NFC has not been well investigated. In order to fill

this gap, in this article we focus on four different channel

models for downlink MIMO RIS-aided systems. Furthermore,

we design codebooks and beam training schemes for near-field

and mixed-far-near-field channels, which are further used for

RIS reflecting coefficient optimization. The main contributions

of our work are listed as follows:
1) We consider four different channel models for a

downlink RIS-assisted MIMO system, namely, i) FF:

far-field model for both BS-RIS and RIS-user links; ii)

NF: near-field model for BS-RIS link, far-field model

for RIS-user link; iii) FN: far-field model for BS-RIS

link, near-field model for RIS-user link; iv) NN: near-

field model for both BS-RIS and RIS-user links. Here,

the assumption of far-field propagation leads to a planar-
wave channel model, while near-field propagation leads

to a spherical-wave channel model.

2) According to the angular or distance information

contained in the received signals, we design i) a

distance-based codebook for the NN channel model,

based on which we propose a hierarchical beam training

scheme to reduce the training overhead; ii) a combined

angular-distance codebook for NF and FN channel

models, based on which we propose a two-stage beam

training scheme to achieve alignment in the angular and

distance domains separately.

3) To maximize the achievable rate, we propose an

alternating optimization (AO) algorithm to carry out

the joint optimization of the RIS coefficients and the

transmit and receive beamformers in an iterative manner.

Specifically, the RIS coefficient matrix is obtained by the

proposed beam training schemes, the optimal combining

matrix at the user is obtained from the closed-form

solution for the mean square error (MSE) minimization

problem, and the active beamforming matrix at the BS

is optimized by exploiting the relationship between the

achievable rate and the MSE.

4) We present numerical results revealing that: i) the

proposed hierarchical and two-stage beam training

approaches yield achievable rate performance similar to

the exhaustive search (ES) method while significantly

reducing the training overhead; ii) compared to angular-

only far-field channel models, the achievable rate

is improved by exploiting the additional distance

information when performing the beam design for NFC.
The organization for the rest of this article is as follows.

In Section II, we describe the proposed RIS-assisted MIMO

system and the four considered channel models. In Section III,

we design different codebooks for the different channel

models based on the angular or distance information in the

received signals. In Section IV, we propose an AO algorithm

to carry out the joint optimization in an iterative manner

for maximizing the achievable rate. In particular, two beam

training algorithms are proposed in Section IV-A based on

the predesigned codebooks, the combining matrix optimization

is given in Section IV-B, and the active beamforming matrix

optimization is described in Section IV-C. Simulation results

and conclusions are given in Section V and Section VI,

respectively.

II. SYSTEM MODEL

We consider a RIS-assisted downlink communication

scenario, where a single multi-antenna BS serves a multi-

antenna user. The direct path between the BS and the user

is assumed to be blocked due to the existence of propagation

obstacles. The BS is equipped with an NB-element uniform

linear array (ULA) of antennas, and the user is equipped with

an NU-element ULA. The RIS consists of a uniform planar

array (UPA) with M = MxMy passive reflecting elements,

where Mx and My denote the number of elements along the

horizontal axis and vertical axis, respectively.

Four different channel models are considered for the

RIS-assisted communication system, as shown in Fig. 1.

Specifically, these four channel models are respectively

abbreviated as (a) FF: far-field model for both BS-RIS and

RIS-user links; (b) NF: near-field model for BS-RIS link,

far-field model for RIS-user link; (c) FN: far-field model

for BS-RIS link, near-field model for RIS-user link; (d)

NN: near-field model for both BS-RIS and RIS-user links.

We assume that the system operates at a frequency of

fc, so the wavelength of the signal is λc = c
fc

. Denote

the array spacing as d, which we will assume here to be

d = λc/2. Denote the array apertures of the BS, RIS and

user as DB , DR and DU , respectively. For the BS and

the user with ULAs, the array apertures are calculated as

DB = (NB − 1) d and DU = (NU − 1) d, respectively;

for the RIS with a UPA, the array aperture is calculated

as DR =
√

[(Mx − 1) d]2 + [(My − 1) d]2. The comparison

between the far-field region and near-field region in RIS-

assisted systems is summarized in TABLE I, including the

Rayleigh boundary when d = λc/2.
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Fig. 1. Different channel models for RIS-assisted communication system.

TABLE I

COMPARISON BETWEEN THE FAR-FIELD AND NEAR-FIELD REGIONS IN RIS-ASSISTED SYSTEMS

A. Channel Model

In order to explore the differences among the four channel

scenarios in terms of signal model, beam design, transmission

performance, etc., we first provide mathematical descriptions

of the models below. More specifically, we will first present

the far-field model for the BS-RIS and RIS-user channels,

then give the near-field model for the BS-RIS and RIS-user

channels, and finally obtain the cascaded channel models for

the four channel scenarios mentioned above.

1) Far-Field Channel Model: When the far-field channel

model is considered, the channel between the BS and RIS

is characterized by the Saleh-Valenzuela channel model [36],

given by

Gfar
B,R =

√
MNB

LB

LB−1∑
l=0

βlaR

(
αA

l , ϕA
l

)
aH

B

(
αD

l

)
, (1)

where LB is the number of paths between the BS and RIS,

β0 represents the complex gain of the line-of-sight (LoS)

component, βl (1 ≤ l ≤ LB − 1) denotes the complex gain of

the l-th non-line-of-sight (NLoS) path [37], αA
l and ϕA

l denote

the azimuth and elevation AoA associated with the RIS, αD
l

denotes the AoD associated with the BS, and aR

(
αA

l , ϕA
l

)
and aB

(
αD

l

)
are the array response vectors associated with

the RIS and the BS, respectively.

For a UPA with Mx and My elements (MxMy = M ) on

the horizontal and the vertical axes respectively, the RIS array

response vector is given by

aR (α,ϕ) =
1√
M

[
1, · · · , e−j 2πd

λc
(Mx−1) sin α sin ϕ

]T

⊗
[
1, · · · , e−j 2πd

λc
(My−1) cos ϕ

]T

, (2)

where 0 ≤ x ≤ (Mx − 1) and 0 ≤ y ≤ (My − 1), and ⊗ is

the Kronecker product. For the ULA with NB elements at the

BS, the array response vector is expressed as [38]

aB (α) =
1√
NB

[
1, · · · , e−j(NB−1) 2πd

λc
sin α

]T

, (3)
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where 0 ≤ nb ≤ (NB−1). Since the response vector of a ULA

is constant in the elevation domain, we omit the parameter ϕ
in the response vector of the BS in (3).

Similarly, the channel between the RIS and user in the far-

field region is given by

Gfar
R,U =

√
MNU

LU

LU−1∑
l=0

βlaU

(
αA

l

)
aH

R

(
αD

l , ϕD
l

)
, (4)

where LU is the number of paths between the RIS and user,

αA
l denotes the azimuth AoA associated with the user, αD

l and

ϕD
l denote the azimuth and elevation AoD associated with the

RIS respectively, and the array response vectors aR

(
αD

l , ϕD
l

)
and aU

(
αA

l

)
can be generated similarly to (2) and (3).

Remark 1: Assume that the number of RIS elements is far
larger than the number of BS and user antennas. When the
far-field channel model is considered (no matter whether the
BS-RIS link or the RIS-user link follows the far-field model),
the rank r of the cascaded BS-RIS-user channel satisfies
r ≤ min {LB, LU}, and we say that the channel has r degrees
of freedom (DoFs) [39]. Thus, the dimension of the transmitted
signal vector should satisfy q ≤ r ≤ min {LB, LU}. When
environmental scattering is absent and no NLoS paths are
present, the rank of the cascaded channel is 1.

2) Near-Field Channel Model: For communications in the

near-field domain, we consider a three-dimensional topology.

In FFC, the signal propagation paths from transmitters to

receivers can be regarded as parallel to each other if they share

the same AoA. However, in NFC, the angle distribution is also

related to the distance between specific points of transmitters

and receivers. Assume that all the BS antennas are located on

the x-axis, where the coordinate of the midpoint of the BS

array is denoted as (0, 0, 0). Thus, the coordinate of the nb-th

antenna at the BS can be denoted as

qB (nb) = (ñbd, 0, 0) , (5)

where ñb = nb − NB−1
2 .

Similarly, assume that all of the user antennas are parallel

to the x-axis, where the coordinate of the midpoint of the user

array is (xU, yU, zU). Thus, the location of nu-th antenna at

the user can be denoted as

qU (nu) = (xU + ñud, yU, zU) , (6)

where ñu = nu − NU−1
2 .

Assume that all elements of the RIS are parallel to the XY-

plane. Denote the coordinate of the midpoint of the RIS as

(xR, yR, zR). Thus, the coordinate of the (mx, my)-th element

of the RIS can be expressed as

qR (mx, my) = (xR + m̃xd, yR + m̃yd, zR) , (7)

where m̃x = mx − Mx−1
2 and m̃y = my − My−1

2 . Further,

assume that the location and topology of the RIS are known.

Based on the above geometry, the LoS link for the near-field

channel between BS and RIS can be modeled as [40]

Gnear
B,R =

[
g1

B,R, · · · ,gmxy

B,R , · · · ,gM
B,R

]T

, (8)

where gmxy

B,R =
[
κmxy,1e

−j 2π
λc

dB
mxy,1 , · · · ,

κmxy,NBe
−j 2π

λc
dB

mxy,NB

]T

and κmxy,nb
∝ 1

dB
mxy,nb

denotes the

free-space large-scale path loss between the nb-th antenna of

the BS and the (mx, my)-th element of the RIS. The distance

between the nb-th antenna of the BS and the (mx, my)-th
element of the RIS is given by

dB
mxy,nb

= ‖qB (nb) − qR (mx, my)‖2 , (9)

which can be expanded as

dB
mxy,nb

=
√

(xR + m̃xd − ñbd)2 + (yR + m̃yd)2 + z2
R

=
√

rB
mxy

2 + (ñbd)2 − 2ñbdrB
mxy

sinαB
mxy

sinϕB
mxy

(a)≈ rB
mxy

− ñbd sin αB
mxy

sin ϕB
mxy

+
(ñbd)2

(
1 − sin2 αB

mxy
sin2 ϕB

mxy

)
2rB

mxy

, (10)

with rB
mxy

denoting the distance between (0, 0, 0) and the

(mx, my)-th element of the RIS, αB
mxy

, ϕB
mxy

denoting the

corresponding azimuth and elevation angle, respectively, and

(a) is obtained based on the first-order Taylor expansion√
1 + x = 1 + 1

2x − 1
8x2 + O (

x3
)
.

Similarly, the LoS near-field channel between the RIS and

user can be modeled as

Gnear
R,U =

[
g1

R,U, · · · ,gnu

R,U, · · · ,gNU
R,U

]T

, (11)

where gnu

R,U =
[
κnu,1e

−j 2π
λc

dU
nu,1 , · · · , κnu,Me−j 2π

λc
dU

nu,M

]T

and κnu,mxy
∝ 1

dU
nu,mxy

denote the free-space large-scale path

loss between the nu-th antenna of the user and the (mx, my)-
th element of the RIS. The distance between the nu-th antenna

of the user and the (mx, my)-th element of the RIS is given

by

dU
nu,mxy

= ‖qU (nu) − qR (mx, my)‖2 , (12)

which can be approximated as

dU
nu,mxy

≈ rU
mxy

− ñud sinαU
mxy

sin ϕU
mxy

+
(ñud)2

(
1 − sin2 αU

mxy
sin2 ϕU

mxy

)
2rU

mxy

, (13)

with rU
mxy

denoting the distance between the midpoint of the

user array and the (mx, my)-th element of the RIS, αU
mxy

,

ϕU
mxy

denoting the corresponding azimuth and elevation angle,

respectively.

Remark 2: When both the BS-RIS and RIS-user links are
in the near-field region, the rank of the cascaded LoS channel
is r = min {NB, NU, M}, which will be much larger than
1 in the case of large-scale arrays, even in the absence of
NLoS paths. Thus, one of the main advantages of near-field
communications is that they possess higher DoFs and can
support q (q > 1) data streams without relying on abundant

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 08,2025 at 04:33:36 UTC from IEEE Xplore.  Restrictions apply. 



12536 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 9, SEPTEMBER 2024

environmental scattering,1 thus providing enhanced DoF in
RIS-aided NFC [43].

3) Cascaded Channel Model: Denote the phase-shift matrix

of the RIS as Θ = diag
(
φ1, · · · , φm, · · · , φM

)
, with φm =

e−jθm , θm ∈ [0, 2π) denoting the phase-shift coefficient of

the m-th RIS element. Therefore, the cascaded channels of

the four scenarios mentioned above can be expressed as

1) HFF = Gfar
R,UΘGfar

B,R, (14a)

2) HNF = Gfar
R,UΘGnear

B,R , (14b)

3) HFN = Gnear
R,UΘGfar

B,R, (14c)

4) HNN = Gnear
R,UΘGnear

B,R . (14d)

B. Signal Model

We assume that fully-digital beamforming is adopted at the

BS, and thus the BS transmitted signal is given by

s = Wx, (15)

where x ∈ C
q×1 is the symbol vector, satisfying E

[
xxH

]
=

Iq, and W ∈ C
NB×q is the beamforming matrix.

Assuming the receiver adopts a linear combiner, the received

signal at the user is given by

y = UHHWx + UHn, (16)

where U ∈ C
NU×q is the combining matrix, H ∈

{HFF,HNF,HFN,HNN} is the cascaded channel between

the BS and the user based on the specific channel model,

and n ∈ CN (
0, σ2INU

)
is additive white Gaussian noise

(AWGN).

The maximum achievable data rate (bits/s/Hz) for the user

is given by

R (W,Θ) = log2

∣∣INU + HWWHHHσ−2
∣∣ , (17)

where |X| represents the determinant of the matrix X.

Remark 3: Equation (17) characterizes the maximum
achievable rate when the optimal combiner at the user, denoted
as Uopt, is adopted. Given {W,Θ}, closed-form solutions for
Uopt can be obtained, as detailed in the sequel.

III. RIS CODEBOOK DESIGN

The precise design of the RIS coefficient matrix requires

accurate channel information, which is difficult to obtain due

to the passivity of RISs. Therefore, in this article, we consider

exploiting beam training, which can perform channel estima-

tion and RIS coefficient optimization simultaneously. To begin

with, in this section, we will first design codebooks for

different channel models. Based on the information contained

in the received signals, angular-domain and distance-based

codebooks are designed for FF and NN models respectively,

while a combined angular-distance (AD) codebook is designed

for NF and FN models. Each column in the designed codebook

corresponds to one candidate RIS passive beamforming vector.

1In this article, we mainly consider the transmission of LoS path to compare
the performance of far- and near-field communications in a non-scattering
environment, i.e., LB = LU = 1. This setting is to demonstrate that NFC
can support multiple data streams and have higher DoFs in the same non-
scattering environments. In this case, only a single RF chain is required in FFC

due to the low rank of far-field channels [41], and 2q RF chains are required

in NFC to achieve the same performance as fully-digital beamforming [42].

A. Angular-Domain Codebook for FF

In this subsection, we consider an angular-domain codebook

that is universal in the far-field domain. Generally, existing RIS

codebooks for FF channel models aim at aligning the beam to

the strongest propagation path to maximize the beamforming

gain. Ignoring weak paths, the signal at the user can be written

as

yFF = β0
′UHaU

(
αA

0

)
aH

R

(
αD

0 , ϕD
0

)
diag (φ)

× aR

(
αA

0 , ϕA
0

)
aH

B

(
αD

0

)
Wx + UHn, (18)

where β0
′ denotes the complex gain of the cascaded

LoS channel. By substituting the array response vectors

aR

(
αD

0 , ϕD
0

)
and aR

(
αA

0 , ϕA
0

)
into (18), the user’s signal can

be reformulated as

yFF = β0
′UHaU

(
αA

0

)

×
M∑

m=1

e−j(θm+νA
m−νD

m)aH
B

(
αD

0

)
Wx + UHn, (19)

where νA
m = 2πd

λc

[
(mx − 1) sinαA

0 sinϕA
0 + (my − 1) cos ϕA

0

]
and νD

m = 2πd
λc

[
(mx − 1) sinαD

0 sin ϕD
0 + (my − 1) cos ϕD

0

]
.

Thus, the optimal RIS phase-shift coefficients are

θm = νD
m − νA

m. All candidate angle pairs on the beam

grid should be considered when accurate channel state

information is unavailable, which is one of the primary

principles for far-field codebook design.

Assume that U and W have already been designed to

align with the strongest path [23], and focus on coefficient

optimization at RIS for codebook design. U and W can be

designed with the channel information obtained through beam

training, and we will show how U and W can be obtained

later. Thus, the RIS codebook for the FF channel model can

be designed as [32], [34]

FFF =
[
b (β1, δ1) , · · · ,b

(
βmx

, δmy

)
, · · · ,b

(
βMx

, δMy

) ]∗
,

(20)

where βmx
= 2mx−Mx−1

Mx
with mx = 1, · · · , Mx, δmy

=
2my−My−1

My
with my = 1, · · · , My , and b (β, δ) is the

following far-field steering vector

b (β, δ) =
[
1, · · · , e−j 2πd

λc
(Mx−1)βδ

]T

⊗
[
1, · · · , e−j 2πd

λc
(My−1)δ

]T

. (21)

Each column of FFF is a candidate beam codeword for the

RIS in the far-field domain. This angular-domain codebook

design makes full use of the angular information of the far-

field paths.

B. Distance-Based Codebook Design for NN

Angular-only far-field codebooks are not applicable to near-

field channels, even if only one or the other of the BS-RIS

and RIS-user links is in the near-field domain because both

distance and angular information are embedded in the received

signal. Therefore, novel codebooks are required to match the

channels in the near-field region. When both the BS-RIS link

and RIS-user link are in the near-field domain, the combined
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signal at the user is given by (22), shown at the bottom of the

page, where νnu,m,nb
= 2π

λc

(
dU

nu,m + dB
m,nb

)
, determined by

the sum of the distances from the BS to RIS and from the RIS

to the user.

Define the following array steering vector related to the

distance

f (x, y, z)=exp
[
−j

2π

λc

(
r1,1,· · ·, rmx,my

, · · · , rMx,My

)]T

,

(23)

where (x, y, z) denotes the coordinate of the BS or the

user, and rmx,my
= ‖(x, y, z) ,qR (mx, my)‖2. Gener-

ally, the height of the BS or the user is constant. Therefore,

for the design of the near-field codebooks, we mainly consider

the exploration of x and y, and the z component in f (x, y, z)
will be omitted hereafter.

Definition 1: {x1, · · · ,xM} and {y1, · · · ,yN} are two
sets of vectors with the same dimension. The 
 operator is
defined as follows for vectors of equal dimensions:

[x1, · · · ,xM ] 
 [y1, · · · ,yN ]
= [x1 	 y1, · · · ,x1 	 yN , · · · ,xM 	 yN ] , (24)

where 	 denotes the Hadamard product.
We use a pair of coordinates to represent the rectangular

sampling range on the XY-plane as
(
xk

min, yk
min

)
and(

xk
max, y

k
max

)
, where xk

min (yk
min) and xk

max (yk
max) are the

minimum and the maximum x (y)-coordinate of the sampling

points respectively, and k ∈ {B, U} indicates the BS or user.

Denote the number of points sampled on the x-axis and y-axis

as Sx and Sy , respectively. Taking the corresponding distance

between the sampling points into account, the codebook at the

RIS for the NN channel model is given by

FNN =
[
f
(
xU

1 , yU
1

)
, · · · ,f

(
xU

sx
, yU

sy

)
, · · · , f

(
xU

Sx
, yU

Sy

)]∗


[
f
(
xB

1 , yB
1

)
, · · · , f

(
xB

sx
, yB

sy

)
, · · · , f

(
xB

Sx
, yB

Sy

)]∗
,

(25)

where xk
sx

and yk
sx

are given by

xk
sx

= xk
min +

(
sx − 1

2

)
xk

max − xk
min

Sx
, sx = 1, · · · , Sx,

(26a)

yk
sy

= yk
min +

(
sy − 1

2

)
yk
max − yk

min

Sy
, sy = 1, · · · , Sy.

(26b)

The size of the codebook will increase with the number of

sampling points in each direction, and the accuracy of the

RIS beamforming will improve correspondingly.

C. Combined AD Codebook Design for Hybrid FFC & NFC

In this section, we consider hybrid cascaded channel

models, where one side of the RIS is in the far-field and the

other is in the near-field. As such, the link on one side of

RIS only needs to consider angular information, while the link

on the other side needs to consider both angular and distance

information. Taking the FN channel model as an example, i.e.,

with the BS-RIS link in the far-field and the RIS-user link in

the near-field, the received signal at the user is given by

yFN = UHGnear
R,U diag (φ)Gfar

B,RWx + UHn. (27)

By substituting Gnear
R,U in (11) and Gfar

B,R in (1) into (27), yFN

can be expanded into the following form

yFN =
β0λc

4π
√

M
UH

[ M∑
m=1

1
dU
1,m

e−j(θm+νA
1,m), · · · ,

M∑
m=1

1
dU

NU,m

e−j(θm+νA
NU,m)

]T

aH
B

(
αD

0

)
Wx+UHn,

(28)

where

νA
nu,m =

2π

λc

[
(mx − 1) d sinαA

0 sinϕA
0

+ (my − 1) d cos ϕA
0 + dU

nu,m

]
. (29)

Similar to the assumptions above for FF channels, we assume

that the transmit or receive beam related to the far-field link has

been designed to align with the steering vector of the strongest

path. That is to say, W has been aligned to aH
B

(
αD

0

)
when

designing the RIS codebook.

Considering the array response in both the distance and

angular domains, we define the array steering vector as

c (x, y, β, δ) =
[
e−j 2π

λc
d1,1 , · · · , e−j 2π

λc
dMx,My

]T

	
{[

1, · · · , e−j 2πd
λc

(Mx−1)βδ
]T

⊗
[
1, · · · , e−j 2πd

λc
(My−1)δ

]T
}

, (30)

where dmx,my = ‖(x, y, z) ,qR (mx, my)‖2 and z is assumed

to be fixed and known.

yNN =
(

λc

4π

)2
UH

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M∑
m=1

1
dU
1,mdB

m,1
e−j(θm+ν1,m,1) · · ·

M∑
m=1

1
dU
1,mdB

m,NB

e−j(θm+ν1,m,Nb)

...
...

M∑
m=1

1
dU

nu,mdB
m,1

e−j(θm+νnu,m,1) · · ·
M∑

m=1

1
dU

nu,mdB
m,NB

e−j(θm+νnu,m,NB)

...
...

M∑
m=1

1
dU

NU,mdB
m,1

e−j(θm+νNU,m,1) · · ·
M∑

m=1

1
dU

NU,mdB
m,NB

e−j(θm+νNU,m,NB)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Wx + UHn, (22)
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A codebook design for hybrid cascaded channel models

should cover not only the angular region of all possible signals,

but their distances as well. Therefore, based on the received

signal model given in (27), the codebook for hybrid cascaded

channel models should be designed to include the following

two components.

1) Angular-Domain Sweeping, Similar to FFC: To align the

phase on the FFC side, the full angular range will be covered

in the predesigned codebook. Therefore, the first component

of the RIS codebook for hybrid cascaded channel models is

given by

F1
Hb =

[
b (β1, δ1) , · · · ,b

(
βmx , δmy

)
, · · · ,b

(
βMx , δMy

) ]∗
,

(31)

where βmx = 2mx−Mx−1
Mx

with mx = 1, · · · , Mx,

δmy
= 2my−My−1

My
with my = 1, · · · , My .

2) Distance-Domain Sampling, Similar to NFC: For each

given angle pair β and δ, all possible sampling points in

the feasible range should be included to align the phase on

the NFC side. Therefore, the second component of the RIS

codebook for hybrid cascaded channel models is given by

F2,k
Hb =

[
f
(
xk

1 , yk
1

)
, · · · , f

(
xk

sx
, yk

sy

)
, · · · , f

(
xk

Sx
, yk

Sy

) ]∗
,

(32)

where xk
sx

and yk
sx

, k ∈ {B, U}, are defined as in (26).

In particular, k = B for the NF case, and k = U for the

FN case.

Accordingly, the codebook at the RIS for hybrid cascaded

channel models can be designed as

FNF = F1
Hb 
 F2,B

Hb , (33a)

FFN = F1
Hb 
 F2,U

Hb , (33b)

where 
 is given in Definition 1.

IV. AO-BASED ALGORITHM FOR MAXIMIZING RATE

We aim to maximize the achievable rate by jointly

optimizing the combining matrix U at the user, the digital

beamforming matrix W at the BS, and the reflecting coefficient

matrix Θ at the RIS. Suppose each passive beamforming

vector at the RIS is selected from the predesigned codebooks.

Therefore, the mathematical form of the optimization problem

can be given as

(P) max
W,φ

R (W,diag (φ)) , (34a)

s.t. ‖W‖2
F ≤ Pmax, (34b)

φ ∈ F , (34c)

where F ∈ {FFF,FNF,FFN,FNN} in (34c) is the

predesigned codebook based on the specific channel model.

To handle the highly-coupled non-convex problem in (34),

we propose an alternating optimization algorithm in this

section, where three sub-problems will be solved in an iterative

manner. First, based on the predesigned codebooks, different

beam training schemes will be proposed to perform the

channel estimation and the RIS optimization for the specific

Fig. 2. Illustration for the proposed hierarchical beam training procedure.

channel models. Second, a closed-form solution for the receive

combining matrix at the user is obtained. Finally, the active

beamforming problem is solved by exploiting the relationship

between the achievable rate and the mean square error. Details

for solving these sub-problems are given in the following

subsections.

A. Beam Training Design for RIS

1) Angular-Domain Beam Sweeping for FF: The most

direct method to perform beam training for this case is

sweeping through all possible angles if the resulting training

overhead is acceptable. The size of the FF codebook in (20)

depends on the number of RIS reflecting elements. Based on

the given angle pair
〈
βmx , δmy

〉
, the corresponding codeword

is b
(
βmx

, δmy

)
, and the achievable rate can be calculated as

R
(
W, diag

(
b
(
βmx

, δmy

)))
, (35)

with given beamforming matrix W. The optimal codeword

is selected as the one that yields the maximum rate after

sweeping through all candidate codewords in (20).

2) Hierarchical Beam Training Scheme for NN:
From (25) and (26), we see that the NN codebook size

is determined by the number of sampled points on the x-axis

and y-axis. The beam training overhead can be reduced by

reducing the codebook size (i.e., increasing the step size

between the codebook samples), but this will reduce the

performance of the beam training. In order to solve this

problem, we design a hierarchical beam training approach

that consists of several different levels of sub-codebooks.

These sub-codebook levels are determined using different

sampling ranges and sampling step sizes.

As illustrated in Fig. 2, we divide the sampling range

parallel to the XY-plane into four sub-ranges in each layer, and

find the range corresponding to the optimal codeword as the

sampling range of the next layer. More particularly, in the l-th
layer, the rectangular sampling range defined by the coordinate

pairs
(
xk

min, yk
min

)
and

(
xk

max, y
k
max

)
, k ∈ {B, U}, is divided

into the following four sub-ranges:

1)
(
xk

min, yk
min

)
,
(
xk

min + xΔ, yk
min + yΔ

)
, (36a)
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2)
(
xk

min + xΔ, yk
min

)
,
(
xk

max, y
k
min + yΔ

)
, (36b)

3)
(
xk

min + xΔ, yk
min + yΔ

)
,
(
xk

max, y
k
max

)
, (36c)

4)
(
xk

min, yk
min + yΔ

)
,
(
xk

min + xΔ, yk
max

)
, (36d)

where xΔ = 1
2

[
xk

max − xk
min

]
and yΔ = 1

2

[
yk
max − yk

min

]
.

Therefore, the sub-codebook for sub-range i of B and sub-

range j of U in the l-th layer, denoted by FNN (l, i, j) , i, j =
1, 2, 3, 4, can be generated based on (25). Each column

in FNN (l, i, j) corresponds to a codeword φl,i,j,s, with s
denoting the column index in sub-codebook FNN (l, i, j).
Based on the given beamforming matrix W and codeword

φl,i,j,s, the achievable rate can be calculated as

R
(
W, diag

(
φl,i,j,s

))
. (37)

In fact, R can be calculated based on the corresponding

received signal strength without accurate channel information.

By adopting the ES method, the optimal codeword can be

obtained for the first layer, as well as the optimal sampling

sub-range pair 〈i, j〉, which will be the sampling range in the

next layer. This process is repeated until the maximum number

of layers L is reached.

Algorithm 1 Hierarchical Beam Training Scheme for NN

Input: sampling range x(y)k
min(max), k ∈ {B, U}, number of

sampled points in each layer Sx and Sy , maximum layer

Lmax.

Output: Θopt, Ropt.

1: Initialization: l = 1, x(y)k
min(max) (l) = x(y)k

min(max),

k ∈ {B, U}, Ropt = 0.

2: repeat
3: Divide the sampling ranges corresponding to both the

BS and the user into four sub-ranges according to (36);

4: Generate sub-codebooks FNN (l, i, j) , i, j = 1, 2, 3, 4,

based on (25), where i is the sampling sub-range index

for B and j is the sampling sub-range index for U;

5: Based on the received signal strength, calculate the

corresponding R (W,Θ) for each codeword;

6: Find the maximum R (W,Θ), the corresponding code-

word Θopt, and the corresponding optimal sampling

sub-range index pair 〈i, j〉;
7: Update x(y)Bmin(max) (l + 1) = x(y)Bmin(max) (l, i);
8: Update x(y)Umin(max) (l + 1) = x(y)Umin(max) (l, j);
9: l ← l + 1;

10: until l = Lmax.

The hierarchical beam training procedure is summarized

in Algorithm 1. We define the size of the codebook as the

number of candidate codewords, i.e., the number of column

vectors. There are 16 sub-codebooks in each layer, and the

size of each sub-codebook is (SxSy)2. Therefore, with a given

maximum number of training layers L, the training overhead

can be calculated as 16L (SxSy)2. For the same sampling

grid resolution and hence beam training accuracy, the training

overhead of ES will be 4L+1 (SxSy)2.

3) Two-Stage Beam Training Scheme for FN and NF:
The size of codebooks FNF and FFN is determined by the

product of the number of RIS elements and the number of

sample points, which can be extremely large especially for

large RISs. Thus, while ES is a straightforward way to find

the optimal codeword from the predefined codebooks, the

training overhead and consumed time can be unacceptable.

We therefore propose a two-stage beam training scheme for

the FN and NF channel models. Specifically, all candidate

angles are swept through in stage one, and the distance is

determined in stage two based on the selected direction. The

details are given as follows.

Stage 1: Angular-domain beam sweeping: In the first stage,

we aim to find the optimal beamforming angle based on

the far-field codebook given in (20), with the objective of

maximizing the achievable rate in (17). All sampled angles

will be swept through in this stage, and the one yielding

the maximum achievable rate will be selected. Therefore, the

selected indices in the angular-domain sweeping stage can be

expressed mathematically as

〈mx, my〉opt

= argmax
{
b
(
βmx

, δmy

) ∈ FFF

∣∣R (
W,Θmx,my

) }
,

(38)

where Θmx,my
= diag

(
b
(
βmx

, δmy

))
. Denote the optimal

index pair as
〈
m′

x, m′
y

〉
.

Stage 2: Distance-domain sampling: In NFC, the beam can

be designed to point at a particular location, rather than just a

specific angle. Thus, in the second stage, we aim to determine

the optimal focusing point for the optimal direction. With a

given angle pair
〈
m′

x, m′
y

〉
, the selected sampling point in the

distance domain can be determined by〈
xk

sx
, yk

sy

〉
opt

= argmax
{(

xk
sx

, yk
sy

)
∈ Dk

∣∣∣R(
W,Θxk

sx
,yk

sy

)}
, (39)

where Dk is the sampling range for k, k ∈ {B, U}, and

Θxk
sx

,yk
sy

= diag
(
c
(
xk

sx
, yk

sy
, βm′

x
, δm′

y

))
.

Similar to the analysis in Section IV-A2, we adopt a

hierarchical beam training scheme in this stage to strike a

balance between the training overhead and accuracy. Thus,

the two-stage beam training procedure is summarized in

Algorithm 2. The overhead of the proposed two-stage beam

training scheme is M +4LSxSy , while that of the ES method

is M × 4LSxSy .

Remark 4: The proposed beam training algorithms can be
easily extended to scenarios with multiple users by dividing
the RIS into multiple sub-surfaces, where each sub-surface
implements the proposed beam training schemes to realize
beam alignment for each user.

B. Closed-Form Solution for U
With the estimated channel information acquired through

the beam training, we can perform the BS beamforming and

the user combining design. Although the combining matrix
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Algorithm 2 Two-Stage Beam Training Scheme for Hybrid

Cascaded Channel Models

Input: Mx, My , sampling range x(y)k
min(max), k ∈ {B, U},

number of sampled points in each layer Sx and Sy ,

maximum layer Lmax.

Output: Θopt, Ropt.

1: Initialization: mx = 1, my = 1, Ropt = 0.

2: Stage 1:
3: Generate sub-codebook F1

Hb based on (31);

4: repeat
5: repeat
6: if R

(
W,Θmx,my

)
> Ropt then

7: Ropt = R
(
W,Θmx,my

)
;

8: 〈mx, my〉opt = 〈mx, my〉;
9: end if

10: mx ← mx + 1;

11: until mx = Mx;

12: my ← my + 1.

13: until my = My;

14: Stage 2:
15: repeat
16: Divide the sampling ranges corresponding to the BS

(NF Case) or the user (FN Case) into four sub-ranges

according to (36);

17: Generate sub-codebooks F2
Hy (l, i) , i = 1, 2, 3, 4, based

on (32), where i is the sampling sub-range index for B

(NF Case) or U (FN Case);

18: Generate FNF/FN =
{F1

Hb

}
〈mx,my〉opt


 F2,k
Hb ;

19: Based on the received signal strength, calculate the

corresponding R
(
W,Θxk

sx
,yk

sy

)
for each codeword;

20: Find the maximum R
(
W,Θxk

sx
,yk

sy

)
, the correspond-

ing codeword Θopt, and the corresponding optimal

sampling sub-range index i;
21: Update x(y)k

min(max) (l + 1) = x(y)k
min(max) (l, i);

22: l ← l + 1;

23: until l = Lmax.

U is not present in the objective function (17), it will have

an impact on the BS beamforming design and the achievable

rate. Therefore, we derive the optimal combining matrix U
at the user below. The principle of combining matrix design

is to recover the original transmitted signals, which can be

transformed into a mean square error (MSE) minimization

problem. The MSE matrix of the user is given by

E = E

[
(y − x) (y − x)H

]

=
(
UHHW − Iq

) (
UHHW − Iq

)H
+ σ2UHU, (40)

and thus the mathematical form of the combining matrix

optimization problem can be written as

(P1) min
U

Tr (E) . (41)

With given W and Θ, the optimal solution U of

problem (41) can be obtained by solving ∂Tr (E)/∂U = 0,

where
∂Tr(E)

∂U = 2
(
HWWHHH + σ2INU

)
U−2HW. After

some simple derivations, the optimal combining matrix U is

found to be

Uopt =
(
HWWHHH + σ2INU

)−1
HW, (42)

which is necessary for the optimal value of W to achieve the

maximum of (17).

C. Active Beamforming Matrix Optimization

To solve the transmit beamforming optimization problem,

we introduce an auxiliary matrix F 
 0, and reformulate the

original optimization as follows by exploiting the relationship

between the achievable rate and the MSE [44]

(P′) max
F,W,φ

f (F,W, φ) ,

s.t. (34b), (34c), (43)

where f (F,W, φ) is given by

f (F,W, φ) = log |F| − Tr (FE) . (44)

The optimal F of problem (43) can be obtained by solving

∂f/∂F = 0, which is given by F = E−1. With given F, U and

φ, the beamforming optimization problem can be expressed by

substituting E into (44) and removing the constant terms:

(P2) min
W

Tr
(
WHHHUFUHHW

)− 2Tr
(� (

FUHHW
))

s.t. (34b), (45)

which is a convex optimization problem and its optimal

solution can be obtained using standard methods.

D. Overall Algorithm

The overall alternating optimization algorithm for maximiz-

ing the achievable rate is summarized in Algorithm 3, where

the optimal solutions in each iteration are the inputs for the

next iteration. First, with given U(t) and Θ(t) at the t-th iter-

ation, the optimal Θ(t+1) can be obtained by carrying out the

beam training scheme based on Algorithm 2 or Algorithm 1.

The estimated channel information can also be obtained in

this step. Then, with given Θ(t+1) and W(t), we calculate

and update the combining matrix U(t+1) according to (42).

Although U is not included in the expression of the objective

function in (17), it will serve as input for the next step in

solving W. Last, with given U(t+1), Θ(t+1) and W(t), we first

obtain the reformulated objective function by substituting E(t)

in (40) into (44), and then obtain the optimized beamforming

matrix W(t+1) by solving problem (45). This process is

repeated until a maximum number of iterations is reached or

the convergence condition is satisfied. The proposed algorithm

is summarized in Fig. 3.

The computational complexity of the beam training mainly

comes from sorting, which requires O (M) operations

for angular-domain beam sweeping, O
(
16L (SxSy)2

)
operations for the hierarchical beam training scheme,

and O (M + 4LSxSy) operations for the two-stage beam

training algorithm. Solving problem (P1) for the combining

matrix involves matrix inversion, leading to a computational

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 08,2025 at 04:33:36 UTC from IEEE Xplore.  Restrictions apply. 



LV et al.: RIS-AIDED NEAR-FIELD MIMO COMMUNICATIONS: CODEBOOK AND BEAM TRAINING DESIGN 12541

Fig. 3. Illustration for the proposed algorithm.

complexity of O (
N3

U

)
[45]. According to [46], the worst-

case complexity for solving problem (P2) is O (
q3N3

B

)
using efficient interior-point methods. Thus, the overall

computational complexity of the proposed algorithm is

O (
I3

(
M + q3N3

B + N3
U

))
for FF with angular-domain

beam sweeping, O (
I3

(
16L

(
SxSy + q3N3

B + N3
U

)))
for NN with hierarchical beam training, and

O (
I3

(
M + 4LSxSy + q3N3

B + N3
U

))
for NF and FN with

two-stage beam training, with I3 representing the number of

iterations required for the convergence of Algorithm 3.

Algorithm 3 Alternating Optimization-Based Algorithm for

Maximizing Achievable Rate

Input: R (W,Θ), maximum iteration times T , convergence

threshold ζ.

Output: Uopt, Θopt, Wopt.

1: Initialization: t = 0, U(t), Θ(t), W(t), R(t) (W,Θ).
2: while t ≤ T and Γ ≥ ζ do
3: For given U(t) and W(t), perform beam training based

on Algorithm 2 or Algorithm 1, and obtain Θ(t+1);

4: For given Θ(t+1) and W(t), calculate and update

U(t+1) according to (42);

5: For given U(t+1), Θ(t+1) and W(t), update W(t+1) by

solving problem (45);

6: Calculate R
(
W(t+1),Θ(t+1)

)
;

7: Calculate Γ = |R(W(t+1),Θ(t+1))−R(W(t),Θ(t))|
|R(W(t),Θ(t))| ;

8: t ← t + 1;

9: end while

V. NUMERICAL RESULTS

The simulation configurations listed in TABLE II are used

unless stated otherwise. The following parameter settings

were used when executing the beam training schemes for

both the hierarchical beam training algorithm for the NN

channel model and the second beam training stage for

hybrid cascaded channel models. For hierarchical beam

training, the sampled range in each direction is set as

[−1000λc, 1000λc]. For example, denote the coordinate

of the BS antenna midpoint as (xBS, yBS, zBS), where

TABLE II

SIMULATION CONFIGURATIONS

zBS is fixed. The sampled ranges of the BS in the

x- and y-directions are [xBS − 1000λc, xBS + 1000λc] and

[yBS − 1000λc, yBS + 1000λc], respectively. The same applies

to the sampled ranges of the user. The numbers of sampled

points for hierarchical beam training in the x- and y-directions

are both set as Sx = Sy = 2. The simulation results are

obtained by averaging over 500 channel realizations.

To compare the impact of different channel modeling

methods and validate the effectiveness of proposed approach,

we conduct numerical simulations on the following schemes:
• NN, Perfect CSI: upper bound, where RIS beamforming

is performed with perfect CSI [47];

• NN, Hierarchical: NN channel model, proposed distance-

based codebook and hierarchical beam training scheme;

• NN, Uniform ES: NN channel model, the whole sampled

range is uniformly divided into several sub-ranges, and

the optimal codeword is obtained by exhaustive search2;

• NN, Mismatch: NN channel model, angular-domain

codebook and beam sweeping;

• NF/FN, Two-stage: hybrid-far-near-field channel model,

proposed combined AD codebook and two-stage beam

training scheme;

• FF, Angular-domain: FF channel model, angular-domain

codebook and beam sweeping.
To determine the number of training layers of the

hierarchical beam training scheme, we show the relationship

between the achievable rate and the number of training layers

in Fig. 4. It can be seen that when Lmax ≥ 12, the achievable

rate no longer increases with Lmax. Although the achievable

rate only improves slightly from Lmax = 2 to Lmax = 12,

we set the total number of training layers hereafter as Lmax =
12 for better performance. Also, we depict the achievable rate

obtained by the ES approach when the number of sampled

points is set as 8 and 16 in each direction. The size of the NFC

codebook is (SxSy)2, so it can be extremely large for large Sx

and Sy . Thus, we only considered two scenarios with small

Sx and Sy to compare the performance between the proposed

hierarchical beam training and ES approaches. Note that we

divide the whole sampling range into two sub-ranges in each

direction, so there are 4 sampled points in each direction when

2If the sampling step is too small, the cost of the exhaustive search is
unacceptable for the communication system. Therefore, here we divide the
entire sampling range into 16 equal intervals in the x and y directions,
respectively.
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Fig. 4. Achievable rate vs. training layers of hierarchical beam training
scheme.

Fig. 5. Beam training overhead vs. sampling step size in multiples of d.

Sx = Sy = 2 for hierarchical beam training. Therefore, the

proposed hierarchical algorithm achieves the same accuracy as

ES with Sx = Sy = 8 when the number of training layers is 2,

and it is also the same for Sx = Sy = 16 when the number of

training layers is 3 and for Sx = Sy = 32 when the number

of training layers is 4, which verifies the effectiveness of our

proposed approach which has significantly reduced training

costs.

The required beam training overhead of various training

algorithms for different sampling step sizes is compared in

Fig. 5. For NN channel modeling, the proposed hierarchical

near-field beam training approach greatly reduces the training

overhead compared to ES beam training, especially when the

sampling step size is small. When the step size is 160d, the

overhead of the hierarchical beam training approach is only

about 2% of that required for ES. When the step size is

500d, these two schemes have the same training overhead,

and the required number of training layers for hierarchical

beam training is 1. For hybrid FFC & NFC channel models,

hierarchical beam training always requires less overhead than

ES, regardless of the sampling step size.

Fig. 6. Convergence performance of the proposed algorithm.

Fig. 7. Normalized received signal strength.

The convergence performance of the proposed AO-based

algorithm is shown in Fig. 6. Based on the simulation

parameters provided earlier, we can calculate that both the

BS-RIS and RIS-user links are within the near-field region.

Since the NN channel model with hierarchical beam training

is more accurate since it considers both angular and distance

information of the cascaded links, it will provide a higher

achievable rate. Furthermore, it can be seen that the obtained

rate by the proposed hierarchical beam training is very

close to that of the RIS beamforming with perfect CSI,

while the computational complexity significantly reduced.

Although the uniform ES scheme is also very close to the

upper bound, its overhead is much higher than the proposed

scheme. Even though the NN channel model is adopted,

the performance obtained with mismatched beam training is

poor, because distance information is not considered. The

FF channel model has the worst performance due to the

accumulative channel estimation error of links on both sides of

the RIS.

For the NN channel model, the normalized received signal

strength is depicted in Fig. 7. We can see that the maximum
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Fig. 8. Achievable rate vs. maximum transmission power at the BS.

received power appears at coordinate (24, 0), which is exactly

where the user is located. Since the user’s antennas are

distributed parallel to the x-axis, the received signal strength is

also dispersed along the x-axis. Moreover, the RIS reflecting

elements are more distributed along the x-axis direction, which

will also lead to such a distribution of reflected signals.

Unlike FFC, NFC can achieve beam focusing, concentrating

the energy of the beam at a specific location.

In Fig. 8, we show the relationship between the achievable

rate and the power budget at the BS. As expected, regardless of

the channel model or beam training approach, the achievable

rate increases with the BS power budget. In addition, for low

BS power, NN with hierarchical beam training cannot fully

leverage its advantages for accurate channel estimation, thus

having a lower achievable rate than NF and FN. As the power

increases, the achievable rate of NN increases the fastest, and

its performance advantages become increasingly pronounced

compared to the other models. The rates achieved with the

NF and FN channel models are nearly the same for all power

levels, since the BS-RIS and RIS-user distances remain the

same, the number of antennas equipped by BS and user is the

same, and the same beam training methods are used for both.

Furthermore, the performance of the proposed hierarchical

beam training is always approximately equal to that under

perfect CSI and superior to other comparison schemes, which

verifies the effectiveness of the proposed scheme.

Fig. 9 shows the achievable rate for different numbers

of RIS reflecting elements M . The achievable rate for all

channel model and beam training approaches increases with

M , due to the higher passive array gains that can be obtained

from larger RIS. The NN channel model achieves the fastest

increase in rate as M increases since the near-field effect is

greater for larger RISs, the NN model describes the channel

more accurately, and the hierarchical beam training approach

realizes a more effective beam focusing. Furthermore, the

achievable rate obtained using the NN channel model with

angular-domain beam training will be superior to that of the FF

model due to the more accurate channel information, even if

the utilized beam training approach is not specifically designed

for the NN model.

Fig. 9. Achievable rate vs. number of RIS elements.

Fig. 10. Achievable rate vs. RIS location on z-axis.

Fig. 10 shows the achievable rate as the RIS is located at

different points in the z-direction. Note that the z coordinates

of both the BS and the user are 0. For smaller z values, the

closer the RIS is to the BS and user, the more obvious the

near-field effect. Therefore, the performance gain of adopting

NN channel models and hierarchical beam training is more

significant with smaller z, and the results are consistent with

that in Fig. 6 when z = 8. Moreover, as the distance

between the RIS and BS and the user gradually increases,

the performance gap due to different channel models and

beam training methods gradually decreases. It can be predicted

that when z is large enough, these curves will eventually

coincide, which also verifies that the near-field channel can

be approximated as the far-field channel.

The achievable rate obtained for different RIS locations

along the x-direction is depicted in Fig. 11. It is not difficult to

see that the NN channel model with hierarchical beam training

always has the highest rate, regardless of the RIS location. In

addition, for the NN channel model, a peak appears on both

the BS and user side, which is consistent with the conclusions

for FFC. For the NF channel model, the maximum achievable

rate is obtained with the RIS near the BS, due to the more

obvious near-field effect of the BS-RIS link. As the RIS moves

away from the BS, the achievable rate decreases, although this
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Fig. 11. Achievable rate vs. RIS location on x-axis.

degradation in rate slows near the user’s location. For the FN

channel model, in contrast to NF, the peak appears around

the user. When adopting the NN channel model and angular

beam training, a peak occurs only when the RIS is deployed at

an equal distance between the BS and the user, which means

that angular beam training for the NN model is only useful in

restricted scenarios.

VI. CONCLUSION

In this article, we considered four different channel models

for a RIS-assisted downlink MIMO system. According to the

angular or distance information embedded in the received

signals under these specific channel models, we designed

different codebooks to match the beam steering vectors for

the RIS. Based on the predesigned codebooks, we proposed

two beam training approaches, which were further used for

RIS coefficient optimization. More specifically, for the NN

channel model, we designed a distance-based codebook and

proposed a hierarchical beam training algorithm to realize

beam alignment while reducing the training overhead; for

the NF and FN channel models, we designed a combined

angular-distance codebook and proposed a two-stage beam

training approach to separately realize beam alignment in the

angular- and distance domains. To maximize the achievable

rate, we proposed an AO-based algorithm to carry out the

multi-resource optimization in an iterative manner. Numerical

results show that the proposed beam training approaches can

obtain achievable rate performance similar to the ES method,

while significantly reducing the training overhead. Our results

demonstrate that the use of distance in addition to angular

information can effectively improve the system performance

with near-field channels.
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