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Decision-Directed Hybrid RIS Channel Estimation
With Minimal Pilot Overhead
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Abstract— To reap the benefits of reconfigurable intelligent sur-
faces (RIS), channel state information (CSI) is generally required.
However, CSI acquisition in RIS systems is challenging and often
results in very large pilot overhead, especially in unstructured
channel environments. Consequently, the RIS channel estimation
problem has attracted a lot of interest and also been a subject
of intense study in recent years. In this paper, we propose a
decision-directed RIS channel estimation framework for general
unstructured channel models. The employed RIS contains some
hybrid elements that can simultaneously reflect and sense the
incoming signal. We show that with the help of the hybrid RIS
elements, it is possible to accurately recover the CSI with a pilot
overhead proportional to the number of users. Therefore, the
proposed framework substantially improves the system spectral
efficiency compared to systems with passive RIS arrays since
the pilot overhead in passive RIS systems is proportional to the
number of RIS elements times the number of users. We also
perform a detailed spectral efficiency analysis for both the
pilot-directed and decision-directed frameworks. Our analysis
takes into account both the channel estimation and data detection
errors at both the RIS and the BS. Finally, we present numerous
simulation results to verify the accuracy of the analysis as well as
to show the benefits of the proposed decision-directed framework.

Index Terms— Reconfigurable intelligent surfaces, channel esti-
mation, sensing, decision-directed, spectral efficiency analysis.

I. INTRODUCTION

RECONFIGURABLE intelligent surfaces (RIS) are a

novel technology that has changed the conventional

long-standing perspective that wireless channels are an

uncontrollable part of the environment. RISs are planar

arrays composed of elements whose electromagnetic reflec-

tion coefficients can be adaptively configured to shape the

wireless channel in beneficial ways. As such, they can be

deployed to improve the system throughput, network coverage,

or energy efficiency [1], [2]. However, the exploitation of this

channel-shaping ability generally requires RIS-related channel

state information (CSI), which is challenging to obtain since

the number of RIS elements can be very large, and the RIS

elements are often constructed as passive devices without

active radio-frequency (RF) chains or computational resources.

Therefore, the RIS channel estimation problem has been a
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subject of intense study in the last few years [3]. The literature

of RIS channel estimation can be divided into two categories

including structured and unstructured channel estimations.

While structured channel estimation considers models that

are parameterized by the angles of arrival (AoAs), angles of

departure (AoDs), and complex gains of the propagation paths,

unstructured channel estimation methods assume more generic

channels described by arbitrary complex coefficients.

Numerous results on structured RIS channel estimation have

been reported, for example in [4], [5], [6], [7], [8], [9], [10],

[11], [12], [13], [14], [15], [16], [17], and [18], where the

sparsity property of high-frequency (e.g., millimeter-wave,

or “mmWave”) channels are exploited to reduce the pilot

overhead. For example, the studies in [4], [5], [6], [7], [8],

[9], [10], [11], and [12] formulated the cascaded mmWave

channel estimation problem as a sparse signal recovery prob-

lem so that various compressive sensing techniques can be

exploited to recover the channel parameters, e.g., distributed

orthogonal matching pursuit (OMP) [4], iterative atom pruning

based subspace pursuit (IAP-SP) [5], atomic norm mini-

mization [7], Newtonized orthogonal matching pursuit [8],

alternating direction method of multipliers (ADMM) [10],

and the hybrid multi-objective evolutionary paradigm [12].

Several other system scenarios and designs were investigated

in [11], [13], [14], [16], and [17]. More specifically, the work

in [11] considers low-precision analog-to-digital converters

(ADCs) at the BS and derives a linear channel estimator.

The authors in [14] exploited the sparse structure of mmWave

channels to derive a Cramér-Rao lower bound (CRB) for the

channel parameters, which is then optimized to design an RIS

reflection pattern. The effect of beam squint was taken into

account in [17] and a twin-stage orthogonal matching pursuit

(TS-OMP) algorithm was developed to estimate the channel

parameters. The double-structured angular sparsity of cascaded

channels was exploited in [13] and [16] to both reduce the

pilot overhead and improve the estimation performance. The

work in [18] developed a maximum likelihood (ML) channel

estimation framework for estimating the line-of-sight (LoS)

user-RIS channel. Exploiting the fact that the channel angles

vary much slower than the channel gains, the authors in [15]

proposed a two-timescale parametric estimation strategy which

estimates all the channel angles and gains in the first coherence

block, and then only re-estimates the channel gains in the

remaining coherence blocks.

Unlike the aforementioned works where all the RIS ele-

ments are assumed to be passive, some other structured

channel estimation studies in [19], [20], [21], [22], [23], [24],

and [25] assume that the RIS contains a small number of
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active elements that can operate in sensing mode to estimate

partial CSI, which is then exploited together with the sparsity

structure of mmWave channels to reconstruct the full CSI.

While compressed sensing (CS) methods were used in [19]

and [20], some other techniques were employed in [21], [22],

and [23], e.g., signal parameters via rotational invariance tech-

nique (ESPRIT) and multiple signal classification (MUSIC)

in [21] and [23] and deep residual networks in [22]. Unlike

the methods in [19], [20], [21], [22], and [23] that require

both uplink and downlink training signals, the work in [24]

developed a variational inference-sparse Bayesian learning

channel estimator that uses only the uplink training signals

and exploits the received signals at both the RIS and the

BS. In [25], a single-active element, referred to as a wireless

beacon, is used at the RIS to obtain partial CSI based on which

a hybrid structured sparsity expectation-maximization (EM)

algorithm was developed to make the formulated CS problem

tractable and efficiently achieve the sparse channel recovery.

On the other hand, unstructured RIS channel estimation has

also been rigorously investigated in many works, e.g., litera-

ture [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36],

[37], and [38]. For single-user systems, the works in [26] and

[27] used a binary reflection strategy where only one reflecting

element is turned on in each time slot. It was then shown

in [28] and [29] that turning on all the RIS elements at the

same time and using a discrete Fourier transform (DFT) matrix

as the reflecting pattern provides better performance compared

to the binary reflection strategy. Similar results were also

reported for the case of multiple users in [30]. Additionally, the

study in [31] examines the reflecting pattern design problem

while imposing the restriction that the phase shifts are limited

to a finite set of discrete values. For multi-user systems, the

work in [32] exploits known spatial correlation at both the

BS and the RIS as well as other statistical characteristics of

multi-specular fading to derive Bayesian channel estimators.

The work in [36] assumes a low-rank RIS-BS channel and

develops a two-stage algorithm based on matrix factorization

and matrix completion. Some other methods such as matrix-

calibration-based factorization and parallel factor tensor

decomposition were used in [33], [34], and [35], respectively.

More general channel models were considered in [37] and

[38] where two- and three-phase estimation approaches were

proposed, respectively. While both of these latter approaches

require the same pilot overhead, the two-phase approach

outperforms the other thanks to the alleviation of error prop-

agation. Unlike the common approach in which the cascaded

CSI is estimated to optimize the RIS configuration, the authors

in [39] and [40] proposed a codebook-based approach where

the RIS configuration is selected from a pre-defined codebook.

For each codebook configuration, only the effective channel

is estimated to evaluate the performance of that configuration.

The configuration giving the best performance is then selected

for the data transmission phase. Although the training over-

head of this approach is independent of the number of RIS

elements, it scales with the codebook size.

All of the aforementioned methods fall into the class of

pilot-directed (PD) channel estimation, i.e., only pilot signals

are used for channel estimation. In this paper, we focus on a

different class, referred to as decision-directed (DD) channel

estimation, where both pilot and data signals are exploited

for the channel estimation task. Compared to PD, the DD

approach can help significantly reduce the pilot overhead.

Joint channel estimation and data detection was studied

in [41], [42], [43], and [44] where sparsity-structured and

unstructured channels were considered in [41], [42], [43],

and [44], respectively. However, these works all assumed

passive RISs. In this paper, we consider a recent hybrid RIS

structure [45], [46], [47] in which the RIS elements can

simultaneously reflect and sense the incoming signal, and

we develop a DD channel estimator that can be used for

unstructured channels where AoA/AoD information cannot be

exploited. The novelty of the approach lies in the application

of hybrid RIS for unstructured channel estimation, and the

use of DD to reduce the pilot overhead. It should be noted

that the hybrid RIS structure in [19], [20], [21], [22], [23],

and [24] can only operate in either reflecting or receiving

mode, while the hybrid RIS structure in [45], [46], and [47]

can simultaneously reflect and absorb the incoming signal.

The contributions of our paper are summarized as follows:
• Based on the hybrid RIS structure, we first develop

a two-phase pilot-directed (PD) channel estimation

approach. The estimation strategy is similar to that

in [38] but we show that the pilot overhead is lower for

multiuser systems.

• Next, we propose a two-phase DD channel estimation

framework and we show that with the help of the hybrid

RIS elements, it is possible to accurately recover the

CSI with a pilot overhead only proportional to the

number of users. Therefore, the proposed DD framework

substantially improves the system spectral efficiency

(SE). More specifically, in the channel estimation stage,

the users transmit a sequence including both pilot and

data symbols where the number of pilot symbols is the

same as the number of users. The RIS uses some sensor

elements with RF chains to recover the data symbols,

and then forwards the detected data symbols to the BS

for cascaded channel estimation. For the BS to accurately

estimate the CSI, the RIS phase shifts must be varied.

We point out that changing the RIS phase shifts does not

affect data detection by the sensing RIS elements, and

thus both data recovery at the RIS and channel estimation

at the BS are guaranteed. We also explain why accurate

CSI recovery is not guaranteed when the DD approach is

applied at the BS and the RIS has no sensing elements.

• We then perform a detailed spectral efficiency (SE)

analysis for both the PD and DD frameworks for single-

user systems. Our analysis takes into account both the

channel estimation and data detection errors at the RIS

and the BS, and thus accurately reflects the uncertainty

of RIS-assisted data detection in the DD framework. It is

observed that there is often a crossing point at which the

DD framework outperforms the PD one, and so the anal-

ysis can be used to decide when the PD or DD approach

should be used. Finally, we present numerous simulation

results to verify the accuracy of the SE analysis as well

as to show the benefits of the proposed DD framework.
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The rest of this paper is organized as follows: Section II

presents the considered system model. The pilot directed and

decision-directed channel estimation frameworks are presented

in Section III and Section IV, respectively. We perform the

spectral efficiency analysis in Section V. Section VI shows

simulation results and finally Section VII concludes the paper.

Notation: Upper-case and lower-case boldface letters denote

matrices and column vectors, respectively. Scalars xij and

[X]ij both denote the element at the ith row and jth column of

a matrix X. Vectors xi and X:,i both denote the ith column

of a matrix X, while Xk,: denotes the k-th row of X. The

notation Xi:j,k:� represents the sub-matrix of X that includes

rows i to j and columns k to �. The expectation, variance,

and covariance of random quantities are denoted by E[·],
Var[·], and Cov[·], respectively. Depending on the context,

the operator | · | is used to denote the absolute value of a

number, or the cardinality of a set. The �2-norm of a vector is

represented by ‖·‖. The transpose and conjugate transpose are

denoted by [·]T and [·]H , respectively, j is the unit imaginary

number satisfying j2 = −1, N (·, ·) and CN (·, ·) represent the

real and the complex normal distributions respectively, where

the first argument is the mean and the second argument is

the variance or the covariance matrix. The i-th element of the

set A is indicated by A(i). The Q-function that quantifies the

tail distribution of a standard normal random variable is given

by Q(·).

II. SYSTEM MODEL

We consider an uplink RIS-assisted MIMO system in which

a BS with M antennas serves K single-antenna users under

the assistance of an N -element RIS. Let Hd ∈ C
M×K ,

H ∈ C
M×N , and G ∈ C

N×K denote the direct channel

from the users to the BS, the channel from the RIS to the

BS, and the channel from the users to the RIS, respectively.

The RIS contains a number of sensing elements equipped

with radio-frequency (RF) chains as illustrated in Fig. 1.

These sensing elements are able to simultaneously reflect and

sense the impinging signal. Let A denote the index set of the

sensing elements, so that A ⊂ {1, . . . , N}, and let NA be

the number of sensing elements, i.e., NA = |A|, where it

is assumed that K ≤ NA � N . We also let B denote the

index set of the regular elements without sensing capability.

This implies A ∩ B = ∅ and A∪B = {1, . . . , N}. Without

loss of generality, we assume that the indices in A and B are

sorted in an ascending order, i.e., A(1) < . . . < A(NA) and

B(1) < . . . < B(N − NA).
Define the channel matrices Hd

Δ= [hd,1, . . . , hd,K ] and

G Δ= [g1, . . . , gK ], so that the received signal at the BS is

modeled as1

yBS =
√

P

K∑
k=1

Hc,k diag
([

[0.8]1
ρ

])[
[0.8]1

φ

]
sk + nBS (1)

where φ = [φ1, . . . , φN ]T is the phase shift vector of the RIS,

Hc,k = [hd,k, H diag (gk)] ∈ C
M×(N+1) is the cascaded

1In this paper, we focus on a narrowband system model. However, the
proposed approach can be directly applied to OFDM systems by adopting
our channel estimator separately to each subcarrier.

Fig. 1. Sensing-RIS-assisted multi-user MIMO system.

channel of the k-th user, P is the transmit power, and ρ
Δ=

[ρ1, . . . , ρN ]T with 0 ≤ ρn ≤ 1 if n ∈ A, otherwise ρn = 1.

Hence, ρ2
n is the portion of the power of the impinging signal

that is reflected by the n-th RIS element. For convenience,

we use the notation ρA = [ρA1 , . . . , ρANA ]T where ρAi
Δ= ρA(i)

for i = 1, . . . , NA, and ηA = [ηA
1 , . . . , ηA

NA ]T where ηA
i =√

1 − (ρAi )2. Hence, (ηA
i )2 represents the amount of signal

power absorbed by the RIS element A(i) for the purpose of

sensing.

With NA sensing elements at the RIS, the received signal

at the RIS is given as

yRIS =
√

P diag (ηA) diag (φA)
K∑

k=1

gA
k sk + nRIS , (2)

where gA
k = [gAk,1, . . . , gAk,NA ]T with gAk,i

Δ= gk,A(i). In this

paper, it is important to note that the superscripts (·)A and

(·)B are used to imply variables that are associated with the

sensing and reflecting RIS elements, respectively.

We assume an uplink communication protocol with two

stages including a channel estimation stage followed a data

transmission stage. After the channel estimation stage, the

RIS phase shifts are optimized and configured before the data

transmission stage begins. It should be noted that during the

channel estimation stage, data detection occurs at the RIS since

the users transmit both pilot and data symbols during this

stage. During the data detection stage, in order to minimize

power consumption at the RIS, the sensing function of the

hybrid RIS elements is turned off and the incoming signal is

completely reflected.

III. PILOT-DIRECTED CHANNEL ESTIMATION

In this section, we present a two-phase pilot-directed

approach for estimating the cascaded channel matrices

Hc,1, . . . , Hc,K . Since all the users experience the same

RIS-BS channel, i.e. the same channel matrix H, the total

number of channel elements to be estimated is M(K +
N) + N(K − 1) [37], [38]. Let Ak = H diag (gk), then

we have Ak = A1 diag (λk) where λk,n = gk,n/g1,n for

k = 2, . . . , K and n = 1, . . . , N . Note that λ1 = 1N .

Therefore, it suffices to estimate Hd, A1, and λ2, . . . , λK .

Our two-phase estimation strategy is similar to that in [38]

where Hc,1 = [hd,1, A1] is estimated in phase 1 and

hd,2, . . . , hd,K and λ2, . . . , λK are estimated in phase 2.
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Fig. 2. Illustration of the proposed channel estimation framework. The upper
and lower diagrams are for the PD and DD approaches, respectively.

However, unlike the work in [38], which considers an RIS

with passive elements only, our work here considers a hybrid

RIS structure as presented above. In this section, we assume

that only pilot signals are used for the channel estimation.

For notational convenience, let T1 = {1, . . . , τ1} and T2 =
{τ1+1, . . . , τ1+τ2} where τ1 and τ2 are the length of phase 1

and phase 2, respectively. An illustration of the PD approach

is given in the upper diagram of Fig. 2.

A. Phase 1

In this phase, we estimate Hc,1 = [hd,1, A1]. One selected

user transmits a pilot vector of length N + 1, while the other

users remain idle. Without loss of generality, we set the index

of the typical user to 1. The received signal at the BS in this

phase is given as

yBS
t =

√
PHc,1 diag

([
[0.8]1

ρ

])[
[0.8]1
φt

]
s1,t + nBS

t .

Since Hc,1 contains N + 1 columns, we need at least τ1 =
N + 1 time slots to accurately estimate Hc,1. For simplicity,

we can set the pilot vector as S1,T1 = 1T
τ1

and the RIS

phase shift matrix Φ = [φ1, . . . , φτ1
] is chosen so that

[1τ1 ,Φ
T ]T = Vτ1 where Vτ1 is the DFT matrix of size

τ1 × τ1. This means [1,φT
t ]T is the t-th column of Vτ1 .

Then, the cascaded channel Hc,1 can be estimated via standard

methods, such as for example the least-squares (LS)2:

Ĥc,1 =
1√
Pτ1

YBS
:,T1

ΦH
τ1

diag
([

[0.8]1
ρ

])−1

= Hc,1 +
1√
Pτ1

NBS
:,T1

ΦH
τ1

diag
([

[0.8]1
ρ

])−1

. (3)

The received signal at the sensing elements of the RIS is

yRIS
t =

√
P diag (ηA) diag (φA

t )gA
1 + nRIS

t (4)

and so the sensed portion of the channel gA
1 can be estimated

as

ĝA
1 =

1√
Pτ1

diag (ηA)−1
τ1∑

t=1

ψt, (5)

where ψt = diag (φA
t )−1yRIS

t is the received signal compen-

sated by the phase rotation at the sensing elements of the RIS.

2For simplicity, we assume the LS approach in this paper, but our proposed
channel estimation framework is general and not restricted to a specific type
of channel estimation approach. A different channel estimator can easily be
adopted instead of the LS approach.

Note that since a passive RIS is assumed in [38]„ there is no

estimation of gA
1 . Here, we can obtain an estimate of gA

1 as

in (5) which will be exploited in phase 2 for estimating the

cascaded channel of the other users.

B. Phase 2

In this phase, the typical user remains idle while the other

users transmit pilot sequences. Since hd,1 and A1 have been

estimated in phase 1, we will estimate hd,2, . . . , hd,K and

λ2, . . . , λK during phase 2. The received signal at the BS

can be decomposed as

yBS
t =

√
P

K∑
k=2

(
hd,k + AB

1 diag (φB
t )λB

k

+ AA
1 diag (ρA) diag (φA

t )λA
k

)
sk,t + nBS

t (6)

where AA
1 and AB

1 are matrices whose columns are drawn

from A1 with indices A and B, respectively, λA
k =

[λA
k,1, . . . , λA

k,NA ]T and λB
k = [λB

k,1, . . . , λB
k,NB ]T where

λA
k,i

Δ= λk,A(i) and λB
k,i

Δ= λk,B(i).

1) Estimating λA
2 , . . . , λA

K: This is done at the RIS. Since

λA
k,i = gAk,i/gA1,i, the parameters λA

2 , . . . , λA
K are defined as

long as GA = [gA
1 , . . . , gA

K ] is known. Note that the first

column of GA has been estimated using (5) in phase 1. The

signal received at the RIS in phase 2 is given as

yRIS
t =

√
P diag (ηA) diag (φA

t )GA
:,2:KS2:K,t + nRIS

t .

(7)

The sub-matrix GA
:,2:K can be estimated by the RIS as follows:

ĜA
:,2:K =

1√
P

diag (ηA)−1ΨT2S
H
2:K,T2

(S2:K,T2S
H
2:K,T2

)−1

(8)

where ΨT2 = [ψτ1+1, . . . , ψτ1+τ2
]. In (8), to obtain an

estimate of GA
:,2:K , we left- and right-multiply ΨT2 by

1√
P

diag (ηA)−1 and SH
2:K,T2

(S2:K,T2S
H
2:K,T2

)−1 to cancel

the effect of the received power scaling and pilot signal,

respectively. Thus, an estimate of λA
k,i can be obtained as

λ̂A
k,i = ĝAk,i/ĝA1,i, (9)

where ĝA1,i has been estimated in phase 1 as in (5).

2) Estimating hd,2, . . . , hd,K and λB
2 , . . . , λB

K: This is

accomplished at the BS. Let

Bt = [IM , AB
1 diag (φB

t )],

υk = [hT
d,k, (λB

k )T ]T ,

fAk,t = AA
1 diag (ρA) diag (φA

t )λA
k ,

then the received signal at the BS in (6) can be written in the

following form:

yBS
t =

√
P

K∑
k=2

(Btυk + fAk,t)sk,t + nBS
t

=
√

P ((ST
2:K,t ⊗ Bt)υ + FA

t S2:K,t) + nBS
t

=
√

P (Qtυ + ỹBS
t ) + nBS

t (10)
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where υ = [υT
2 , . . . , υT

K ]T , Qt = ST
2:K,t ⊗ Bt, FA

t =
[fA2,t, . . . , fAK,t], and ỹBS

t = FA
t S2:K,t. Stacking the received

signals {yBS
t } in (10) with t ∈ T2 on top of each other, we have

the following

vec
(
YBS

:,T2

)
−
√

P vec
(
ỸBS

:,T2

)
=

√
PQυ + nBS (11)

where Q = [QT
τ1+1, . . . , QT

τ1+τ2
]T . Note that υ is the vector

we need to estimate and the size of Q is Mτ2×(K−1)(M +
N − NA). Therefore, in order to accurately recover υ, two

conditions should be satisfied: Mτ2 ≥ (K−1)(M +N −NA)
and rank(Q) = M + N −NA. An estimate of υ can be then

obtained as

υ̂ =
1√
P

Q†
(
vec
(
YBS

:,T2

)
−
√

P vec
(
ỸBS

:,T2

))
. (12)

If M ≥ N − NA, we need at least τ2 = 2(K − 1) time

slots to recover υ and if M < N − NA, we need at least

τ2 = K − 1 +
⌈

(K−1)(N−NA)
M

⌉
time slots to recover υ.

When M ≥ N − NA, in the two time slots τ1 + 2(k −
2) + 1 and τ1 + 2(k − 2) + 2, only user-k transmits while the

other users stay idle. The matrix Q becomes a block-diagonal

matrix and so the solution in (12) can be decomposed into

K − 1 separate expressions as follows:

υ̂k

=
1√
P

[
[1.15]sk,τ1+2(k−2)+1Bτ1+2(k−2)+1

sk,τ1+2(k−2)+2Bτ1+2(k−2)+2

]†

×
([

[1.15]yBS
τ1+2(k−2)+1

yBS
τ1+2(k−2)+2

]
−
√

P

[
[1.15]ỹBS

τ1+2(k−2)+1

ỹBS
τ1+2(k−2)+2

])
.

(13)

The scaling parameters λA
2 , . . . , λA

K and λB
2 , . . . , λB

K

associated with the sensing and reflection-only elements are

sequentially estimated in (9) and (12), respectively. The esti-

mation of λB
2 , . . . , λB

K depends on the estimates λ̂
A
2 , . . . , λ̂

A
K

as the term vec
(
ỸBS

:,T2

)
constructed from λ̂

A
2 , . . . , λ̂

A
K is sub-

tracted from the received signal vec
(
YBS

:,T2

)
in (12). The work

in [38] does not follow this procedure but directly estimates all

scaling parameters from the received signal vec
(
YBS

:,T2

)
since a

passive RIS structure was assumed. In the following, we show

that the pilot overhead of our sensing-based PD approach is

generally lower than that of the PD approach in [38].

C. Overall Training Overhead

Since the pilot overhead in phase 1 is τ1 = N + 1 and

in phase 2 is τ2 = 2(K − 1) if M ≥ N − NA, or τ2 =
K − 1 +

⌈
(K−1)(N−NA)

M

⌉
otherwise, the total pilot overhead

of the proposed sensing-based PD approach will be

τp = τ1 + τ2

=

⎧⎨
⎩

N + 2K − 1, if M ≥N−NA,

N + K +
⌈

(K − 1)(N − NA)
M

⌉
, otherwise.

(14)

The pilot overhead of the approach in [38] is also N +
2K − 1 when M ≥ N . However, when M < N , it is

N + K +
⌈

(K−1)N
M

⌉
, which is clearly no less than N + K +⌈

(K−1)(N−NA)
M

⌉
in (14) since NA > 0.

Although the pilot overhead in (14) is less than K(N + 1)
as required by the generic LS channel estimator at the BS, it is

still proportional to the number of RIS elements N , which can

be excessively large. In the following section, we propose a

DD channel estimation approach whose pilot overhead is only

proportional to the number of users K.

IV. DECISION-DIRECTED CHANNEL ESTIMATION

In this section, we propose a two-stage DD channel esti-

mation approach to substantially reduce the pilot overhead,

and thus improve the system SE. An illustration of this DD

approach is given in the lower diagram of Fig. 2. As in the

PD approach above, there are also two phases as detailed in

what follows.

A. Phase 1

Similar to the PD approach, here we also use τ1 = N + 1
time slots to estimate Hc,1 with the typical user active and the

other users remaining idle. However, unlike the PD approach

where all of the N +1 time slots are used for pilot signals, the

DD approach uses only the first time slot to transmit a pilot

symbol and the remaining N time slots are for transmitting

data symbols.

1) Estimating gA
1 : The received signal at the RIS in the

first time slot with the pilot symbol s1,1 = 1 is given in (4),

and so an estimate of gA
1 can be obtained as

ĝA
1 =

1√
P

diag (ηA)−1 diag (φA
1 )−1yRIS

1 . (15)

2) Data Detection for User 1 in Time Slots 2, . . . , τ1: The

received signal is

yRIS
t =

√
P diag (ηA) diag (φA

t )gA
1 s1,t + nRIS

t . (16)

From (16), it can be seen that the effect of the phase shift

vector φA
t is merely a phase rotation of the noiseless received

signal. Since φA
t is known at the RIS, it can be used by the

RIS to detect the data symbols s1,t as follows:

ŝ1,t = arg min
s∈S

∥∥yRIS
t −

√
P diag (ηA) diag (φA

t )ĝA
1 s
∥∥2
(17)

where S denotes the set of constellation points. Thus, even

when the phase shift vector φA
t varies in different time slots,

it is still possible for the RIS to accurately recover the data

symbols since the effect of φA
t can be easily taken into account

as in (17). As will be explained later in Section IV-D, this

accurate data recovery is not possible when the RIS has no

sensing elements and the DD strategy is applied at the BS.
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3) Estimating Hc,1: The detected data symbols {ŝ1,t}
in (17) will be forwarded3 by the RIS to the BS through a

control link so that the BS can use these detected symbols to

estimate the cascaded channel matrix Hc,1 as follows:

Ĥc,1 =
1√
Pτ1

YBS
:,T1

diag (̂sT1)
−1ΦH

τ1
diag

([
[0.8]1

ρ

])−1

.

(18)

where ŝT1 = [1, ŝ1,2, . . . , ŝ1,τ1 ]. Thus, in phase 1, with the

help of the sensing elements, we use only one time slot for

pilot signalling, i.e., τ1 = 1, while the other N time slots are

used for data transmission. The BS is still able to accurately

recover the cascaded channel matrix Hc,1 as long as the data

symbols are correctly detected by the RIS.

B. Phase 2
We divide phase 2 into two sub-phases that we refer to as 2a

and 2b. Sub-phase 2a is associated with the time frame T2a =
τ1+1, . . . , τ1+K−1 where user 1 is idle and users 2 through

K transmit their pilot signals. Sub-phase 2b is associated with

the time frame T2b = τ1 +K, . . . , τ1 + τ2 where all the users

transmit data symbols.
1) Estimating gA

2 , . . . , gA
K and λA

2 , . . . , λA
K: Pilot signals

are transmitted in the first K − 1 time slots of phase 2, from

τ1+1 to τ1+K−1, so the sub-matrix GA
:,2:K = [gA

2 , . . . , gA
K ]

can be estimated by the RIS as follows:

ĜA
:,2:K =

diag (ηA)−1ΨT2aS
H
2:K,T2a

(S2:K,T2aS
H
2:K,T2a

)−1

√
P

,

(19)

where ΨT2a = [ψτ1+1, . . . , ψτ1+K−1]. Similar to (8),

to obtain an estimate of GA
:,2:K , in (19) we left-

and right-multiply ΨT2a by 1√
P

diag (ηA)−1 and

SH
2:K,T2a

(S2:K,T2aS
H
2:K,T2a

)−1 to cancel the effect of the

received power scaling and pilot signal, respectively.

Furthermore, an estimate of λA
k,i can be obtained as

λ̂A
k,i = ĝAk,i/ĝA1,i.
2) Detecting Data: For the remaining time slots from τ1 +

K to τ1 + τ2 in sub-phase 2b, all K users can transmit data,

and the received signal at the RIS is

yRIS
t =

√
P diag (ηA) diag (φA

t )GAst + nRIS
t .

The RIS can use yRIS
t and ĜA = [ĝA

1 , . . . , ĝA
K ] to detect the

users’ transmitted data st, which is a conventional MIMO data

detection problem. Similarly, the effect of φA
t is merely the

phase rotation of the noiseless received signal, and so it is

feasible for the RIS to accurately recover the data symbols as

φA
t varies in time.
3) Estimating hd,2, . . . , hd,K and λB

2 , . . . , λB
K: Since the

typical user also transmits data during sub-phase 2b, the

received signal at the BS can be re-written in the following

form:

yBS
t − Hc,1 diag

([
[0.8]1

ρ

])[
[0.8]1
φt

]
s1,t

=
√

P

K∑
k=2

(Btυk + fAk,t)sk,t + nBS
t

3In fact, it suffices for the RIS to forward only the indices of the detected
data symbols {ŝ1,t}.

=
√

P ((ST
2:K,t ⊗ Bt)υ + FA

t S2:K,t) + nBS
t

=
√

P (Qtυ + ỹBS
t ) + nBS

t , (20)

where t ∈ T2. Note that s1,t = 0 for for t ∈ T2a since user 1 is

idle during sub-phase 2a. Then, we can use a similar technique

as in the PD approach for estimating υ, but we need to replace

sk,t with ŝk,t for t ∈ T2b.

C. Overall Training Overhead
The overall training overhead for the proposed decision-

directed approach is τp = K since phase 1 and phase 2

require only 1 and K − 1 time slots for pilot signalling,

respectively. The BS is guaranteed to accurately recover the

channel matrices as long as the data symbols are correctly

detected by the RIS. Although only the typical user transmits

in phase 1 and thus the spectral efficiency will not be as

large as if all the users were transmitting, we will show in

the numerical results that the proposed DD approach can still

result in an increase in the spectral efficiency compared with

the PD approach.

D. Comparison With a Passive RIS and DD at the BS
In the proposed DD method, the BS can accurately recover

the cascaded channel matrices when the data symbols are

correctly detected by the RIS. Here, we explain why an

alternative scenario in which the RIS has no sensing elements

and the DD strategy is applied at the BS cannot guarantee

accurate CSI estimation. To show this, it is enough to consider

the case with only one user, where the received signal at the

BS is given as

yBS
t = Hc,1φtst + nBS

t .

To accurately recover Hc,1, the phase shift vector φt must

vary for different time slots t in order to make ΦT1 =
[φ1, . . . , φτ1

] full-rank. However, if we change φt, the effec-

tive channel ft = Hc,1φt changes as well. A pilot signal is

sent in the first time slot, and the BS can only estimate the

effective channel f1. With an estimate of f1, the BS cannot

guarantee correct detection of data symbols in subsequent time

slots 2, . . . , τ1 since the effective channels in these time slots

are different from f1 due to the change in φt. For the effective

channel to remain unchanged, the phase shift vector φt must

be time-invariant, but in this case the matrix ΦT1 would be

rank-1, which prevents recovery of the cascaded channel Hc,1.

This is unlike the proposed DD channel estimation framework

presented above where the data symbols can be accurately

recovered by the RIS even when the phase shift vector of the

RIS changes in time.

V. SPECTRAL EFFICIENCY ANALYSIS

In this section, we perform a spectral efficiency analysis for

both the PD and DD approaches. We consider an RIS-aided

system where the BS has one antenna serving one user without

a direct channel. We assume D-PSK data signalling, i.e., s ∈
S = {exp

(
jπ 2�+1

D

)
} for � ∈ {0, . . . , D − 1} with the Gray

code mapping data bits to data symbols. We also assume that

the data symbols are equally likely. Let ai = higi be the

cascaded channel where gi and hi are the channels from the
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user and the BS to the i-th element of the RIS, respectively.

It is assumed that gi ∼ CN (0, σ2
g) and hi ∼ CN (0, σ2

h) are

independent of each other. Let a = [a1, . . . , aN ]T so that the

received signal at the BS can be written as

yBS =
√

PaHφs + nBS. (21)

Let â = a + ε be the estimated cascaded channel where ε =
[ε1, . . . , εN ]T is the channel estimation error. Given the â, the

RIS coefficients φ in the data transmission phase are chosen

to maximize the effective channel strength, i.e.,

maximize
{φ}

|âHφ|2 subject to |φi| ≤ 1 ∀i = 1, . . . , N,

which has the optimal solution

φ�
i = ej�(âi). (22)

The received signal at the BS in the data transmission phase

will then be

yBS =
√

P

N∑
i=1

a∗
i e

j�(ai+εi)s + nBS =
√

P

N∑
i=1

zis + nBS

(23)

where zi
Δ= a∗

i e
j�(ai+εi). Thus we have

zi,�
Δ= �{zi} =

|ai|2 + �{aiε
∗
i }√

|ai|2 + 2�{aiε∗i } + |εi|2
,

zi,�
Δ= �{zi} =

�{aiε
∗
i }√

|ai|2 + 2�{aiε∗i } + |εi|2
.

A. Pilot-Directed
For the pilot-directed method, the SE is given as [48], [49]

SEPD =
τc − τp

τc
(1 − BERPD) log2(D), (24)

where τc and τp are the lengths of the coherence block and the

pilot sequence, respectively. In the PD approach, the first N
time slots are used for channel estimation (i.e., τp = N ), and

we assume without loss of generality that the pilot signal is an

all-ones vector. Assuming a DFT matrix of size N is used to

configure the RIS phase shifts during the channel estimation

phase, we have that εi ∼ CN
(
0,

NBS
0

PN

)
. The CSI errors {εi}

are also i.i.d.. and uncorrelated with ai. We will compute the

PD bit error rate BERPD, which requires the distribution of

the effective channel f =
∑N

i=1 zi.

We first obtain the following approximate means

μzi,�
Δ= E[zi,�]

(a)
≈ E

[
|ai|2
]
+ �{E[aiε

∗
i ]}√

E[|ai|2] + 2�{E[aiε∗i ]} + E[|εi|2]
(b)
=

σ2
a√

σ2
a + σ2

ε

(25)

μzi,�
Δ= E[zi,�]

(c)
≈ �{E[aiε

∗
i ]}√

E[|ai|2] + 2�{E[aiε∗i ]} + E[|εi|2]
(d)
= 0 (26)

where the approximations (a) in (25) and (c) in (26) are

obtained by applying a first-order Taylor expansion around the

means E
[
|ai|2
]
, E
[
|εi|2
]
, and E[aiε

∗
i ]. Similar approximations

were also used in [50]. The results (b) in (25) and (d)

in (26) hold since E[aiε
∗
i ] = 0. Note here that we denote

σ2
a

Δ= E
[
|ai|2
]

and σ2
ε

Δ= E
[
|εi|2
]
. Similarly, we can obtain

the following variances

σ2
zi,�

Δ= Var[zi,�] = E[z2
i,�] − E[zi,�]2 ≈ 7σ4

a + σ2
aσ2

ε

2(σ2
a + σ2

ε )
(27)

σ2
zi,�

Δ= Var[zi,�] = E[z2
i,�] − E[zi,�]2 ≈ σ2

aσ2
ε

2(σ2
a + σ2

ε )
(28)

where σ2
a = σ2

gσ2
h and we have used the following results:

E
[
a2

i,�
]

= E
[
(hi,�gi,� − hi,�gi,�)2

]
=

1
2
σ2

hσ2
g =

1
2
σ2

a,

E
[
a4

i,�
]

= E
[
(hi,�gi,� − hi,�gi,�)4

]
=

3
2
σ4

hσ4
g =

3
2
σ4

a.

It can be seen that the means and variances μzi,� , μzi,� , σ2
zi,� ,

and σ2
zi,� above are the same for different indices i. Therefore,

for convenience in the rest of the PD-SE analysis, we drop the

index i for these values.

Since the {ai} and {εi} are i.i.d., then the {zi} are also

i.i.d.. Using the central-limit theorem, for large N we have

f� =
∑N

i=1 zi,� ∼ N (Nμr� , Nσ2
z�) and f� =

∑N
i=1 zi,� ∼

N (Nμz� , Nσ2
z�). Note that we have Cov[f�, f�] = 0 since

the {zi} are i.i.d, and Cov[zi,�, zi,�] = 0.

Let ỹ = ys∗ =
√

Pf + ñ be the rotated received signal, and

define rỹ =
√

ỹ2
� + ỹ2

� and θỹ = �(ỹ) = arctan(ỹ�/ỹ�).
Then the joint pdf of rỹ and θỹ is given as

p(rỹ, θỹ)

=
rỹ

2π
√

(PNσ2
z� + N0/2)(PNσ2

z� + N0/2)

× exp

{
−1

2

[
(rỹ cos θỹ−

√
PNμz�)2

PNσ2
z� +N0/2

+
(rỹ sin θỹ)2

PNσ2
z� +N0/2

]}
.

(29)

Since the data symbols are equally likely, to compute the

BER, we can assume that any one of the data symbols was

transmitted, and we choose S(0). The probability that the

detected symbol is S(�) given S(0) was transmitted is

pPD�
Δ= P[ŝ = S(�) | s = S(0)]

=
∫ ∞

0

∫ (2�+1)π
D

(2�−1)π
D

p(rỹ, θỹ)dθỹdrỹ. (30)

Thus, the BER is given as

BERPD =
1

log2(D)

D∑
�=1

pPD� ebit(0, �), (31)

where ebit(0, �) is the number of bit differences between

symbols S(0) and S(�).
Theorem 1: At high SNR, BERPD can be approximated as

BERPD

≈ 2
log2(D)

Q

⎛
⎝ π

√
PNσa tan θ

4
√(

PN
(
1 − π2

16

)
σ2

a+ N0
2

)
tan2 θ + N0

2

⎞
⎠ .

(32)

Proof: See Appendix A. �
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B. Decision-Directed

The SE of the decision-directed approach is given as

SEDD =
(

τd,1(1 − BERDD1) + τd,2(1 − BERDD2)
τc

)
log2(D)

(33)

where τd,1 and BERDD1 are the data transmission length and

the BER in the channel estimation stage. Similarly, τd,2 and

BERDD2 are the data transmission length and the BER in the

data transmission stage. Thus, for the DD spectral analysis

analysis, we need to compute BERDD1 and BERDD2 to obtain

SEDD. While BERDD1 is simple to obtain and can be computed

exactly, obtaining an exact value BERDD2 is much more

challenging and thus we provide an accurate approximation.

To simplify the analysis, we assume the RIS has only one

active receiver element, which we take to be element N .

We further assume that this element completely absorbs the

incoming signal power during the channel estimation stage and

is then turned off in the data transmission stage. In the first

time slot, a pilot signal s1 = 1 is transmitted to generate the

following received signal at the RIS: yRIS1 =
√

PgN + nRIS
1 ,

and so an estimate of gN can be obtained as ĝN = yRIS1 /
√

P =
gN + 1√

P
nRIS

1 . From the second time slot to the (N − 1)-th
time slot, data symbols are transmitted and the received signal

at the RIS is yRISt =
√

PgNst + nRIS
t , t = 2, . . . , N − 1.

An equalizer based on ĝN is used by the RIS to detect the

symbols as

s̃t =
yRISt√
P ĝN

=
√

PgNst + nRIS
t√

PgN + nRIS
1

, t = 2, . . . , N − 1 (34)

To evaluate the BER of (34), we consider the rotated signal

s̄t = s̃ts
∗
t =

√
PgN + ñRIS

t√
PgN + nRIS

1

. (35)

Since the error rates are the same for different time indices t,
we drop the subscript t for convenience. Let rs̄ =

√
s̄2
� + s̄2

�
and θs̄ = arctan(s̄�/s̄�), whose joint pdf can be obtained as

follows [51]:

p(rs̄, θs̄) =
rs̄(σ4

yRIS − P 2σ4
g)

πσ8
yRIS

(
1 + r2

s̄

σ2
yRIS

−
2Pσ2

grs̄ cos θs̄

σ4
yRIS

)−2

,

where σ2
yRIS = Pσ2

g + NRIS
0 . The probability that the detected

symbol is S(�) given that S(0) was transmitted is

pDD1� =
∫ ∞

0

∫ (2�+1)π
D

(2�−1)π
D

p(rs̄, θs̄)dθs̄drs̄. (36)

Similar to (31), we can compute BERDD1 using pDD1� in (36).

Next we compute BERDD2. Let ŝ = [1, ŝ2, . . . , ŝN−1]T be

the detected data symbol vector forwarded to the BS by the

RIS, where ŝt = arg mins∈S |s− s̃t|2. Let Φ = VN−1 be the

phase shift matrix of the RIS during the channel estimation

stage. The BS uses ŝ to obtain an estimate of the cascaded

channel as follows:

â∗
i =

1
N − 1

aHΦdiag (s) diag (̂s)−1ΦH
i,: + ñ∗

i (37)

= a∗
i +

1
1 − N

aHΦdiag (ξ)ΦH
i,: + ñ∗

i︸ ︷︷ ︸
ε∗i

(38)

where ξ = [ξ1, . . . , ξN−1]T with ξt = 1−stŝ
∗
t . Note that ξ1 =

0 since s1 = 1 is a known pilot signal. The noise terms ñ∗
i =

1√
P (N−1)

nT diag (̂s)−1ΦH
i,: are i.i.d. for different indices i and

the channel estimation error term is ε∗i = δ∗i + ñ∗
i where

δ∗i =
1

1 − N
aHΦdiag (ξ)ΦH

i,:. (39)

From (39), it can be seen that the channel estimation error

depends on the data symbols detected at the RIS.

Our DD-SE analysis will rely on the results in Lemma 1

presented next.

Lemma 1: Let μξ
Δ= E[ξt], μ|ξ|2

Δ= E

[
|ξt|2
]
, and μξ2

Δ=

E

[
(ξt)

2
]
, then we have

μξ = 1 − pDD10 + pDD1D
2

− 2

D
2 −1∑
d=1

pDD1d cos
(

2πd

D

)
, (40)

μξ2 = 1 − pDD10 + 3pDD1D
2

+ 2

D
2 −1∑
d=1

pDD1d

[
cos
(

4πd

D

)
− 2 cos

(
2πd

D

)]
, (41)

μ|ξ|2 = 4pDD1D
2

+ 4

D
2 −1∑
d=1

pDD1d

[
1 − cos

(
2πd

D

)]
. (42)

Proof: See Appendix B. �
To obtain the BERDD2, we will compute the means and

variances of the real and imaginary parts of the effective

channel f =
∑N−1

i=1 zi during the data transmission stage,

which are μf�
Δ= E[f�] and μf�

Δ= E[f�], σ2
f�

Δ= Var[f�]

and σ2
f�

Δ= Var[f�].
1) Computing the Means μf� and μf� : Since μf� =∑N−1
i=1 μzi,� and μf� =

∑N−1
i=1 μzi,� , we need to compute

μzi,� and μzi,� . Similar to (25) and (26), we use a first-order

Taylor expansion to obtain an approximation of μzi,� and

μzi,� as follows:

μzi,� ≈ E
[
|ai|2
]
+ �{E[aiε

∗
i ]}√

E[|ai|2] + 2�{E[aiε∗i ]} + E[|εi|2]
, (43)

μzi,� ≈ �{E[aiε
∗
i ]}√

E[|ai|2] + 2�{E[aiε∗i ]} + E[|εi|2]
. (44)

Since

E[aiε
∗
i ] = E[aiδ

∗
i ] =

1
1 − N

E

[
N−1∑
n=1

aia
∗
nΦn,: diag (ξ)ΦH

i,:

]
(a)
=

1
1 − N

E

[
|ai|2Φi,: diag (ξ)ΦH

i,:

]
=

σ2
a

1 − N

N−1∑
t=2

E[ξt] =
N − 2
1 − N

σ2
aμξ, (45)

we have E[�{aiε
∗
i }] = N−2

1−N σ2
aμξ and E[�{aiε

∗
i }] = 0. The

equality (a) in (45) holds because E[aia
∗
n] = 0 for all i �= n.
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Substituting E[�{aiε
∗
i }] = N−2

1−N σ2
aμξ and E[�{aiε

∗
i }] =

0 into (43) and (44) gives us the mean of zi,� and zi,� as

follows:

μzi,� ≈
σ2

a + N−2
1−N σ2

aμξ√
σ2

a + 2N−2
1−N σ2

aμξ + σ2
ε

and μzi,� ≈ 0, (46)

where σ2
a

Δ= E
[
|a|2
]

and σ2
ε

Δ= E
[
|εi|2
]

= σ2
δi

+σ2
ñi

. To obtain

σ2
ε , we need to find σ2

δi
and σ2

ñi
, which represent the variance

of δi and ñi, respectively. The variances σ2
δi

and σ2
ñi

are given

as follows:

σ2
δi

=
σ2

a

(N − 1)
tr
(
E

[
diag (ξ)ΦH

i,:Φi,: diag (ξ∗)
])

=
σ2

a

(N − 1)

N−1∑
t=2

E
[
|ξt|2
]

=
N − 2

(N − 1)
σ2

aμ|ξ|2

and σ2
ñi

= NBS
0

P (N−1) . Hence, the variance of ε is

σ2
ε =

P (N − 2)σ2
aμ|ξ|2 + NBS

0

P (N − 1)
. (47)

2) Compute the Variances σ2
f� and σ2

f� : The variance of

f� and f� are

σ2
f� =

N−1∑
i=1

Var[zi,�] + 2
∑
i<t

Cov[zi,�, zt,�], (48)

σ2
f� =

N−1∑
i=1

Var[zi,�] + 2
∑
i<t

Cov[zi,�, zt,�]. (49)

Since Var[zi,�] = E[z2
i,�]−E[zi,�]2 and Var[zi,�] = E[z2

i,�]−
E[zi,�]2, and since E[zi,�] and E[zi,�] are already given

in (46), we now need to obtain E[z2
i,�] and E[z2

i,�]. Similar

to (25) and (26), we use a first-order Taylor expansion to obtain

an approximation of E[z2
i,�] and E[z2

i,�] as follows:

E
[
z2
i,�
]
≈ E
[
|ai|4
]
+ 2E

[
|ai|2�{aiε

∗
i }
]
+ E
[
�{aiε

∗
i }2
]

E[|ai|2] + 2�{E[aiε∗i ]} + E[|εi|2]
,

(50)

E
[
z2
i,�
]
≈ E

[
�{aiε

∗
i }2
]

E[|ai|2] + 2�{E[aiε∗i ]} + E[|εi|2]
. (51)

The first term in the numerator of (50) is E
[
|ai|4
]

=
4σ4

a. The second term in the numerator of (50) can be

obtained by computing E
[
|ai|2aiε

∗
i

]
since E

[
|ai|2�{aiε

∗
i }
]

=
�{E
[
|ai|2aiε

∗
i

]
}. We have

E
[
|ai|2aiε

∗
i

]
= E
[
|ai|2aiδ

∗
i

]
=

1
1 − N

E

[
N−1∑
n=1

|ai|2aia
∗
nΦn,: diag (ξ)ΦH

i,:

]
(a)
=

1
1 − N

E

[
|ai|4Φi,: diag (ξ)ΦH

i,:

]
=

1
1 − N

4σ4
a

N−1∑
t=2

E[ξt] =
N − 2
1 − N

4σ4
aμξ, (52)

which is a real number, and so E
[
|ai|2�{aiε

∗
i }
]

=
N−2
1−N 4σ4

aμξ. The equality (a) in (52) holds because

E
[
|ai|2aia

∗
n

]
= 0 for all i �= n.

We exploit the following relations:

|aiε
∗
i |2 = �{aiε

∗
i }2 + �{aiε

∗
i }2, (53)

�{(aiε
∗
i )

2} = �{aiε
∗
i }2 −�{aiε

∗
i }2, (54)

to obtain E
[
�{aiε

∗
i }2
]

(the last term in the numerator of (50))

and E
[
�{aiε

∗
i }2
]

(the numerator term of (51)) as follows:

E
[
�{aiε

∗
i }2
]

=
E
[
|aiε

∗
i |2
]
+ �
{
E
[
(aiε

∗
i )

2
]}

2
, (55)

E
[
�{aiε

∗
i }2
]

=
E
[
|aiε

∗
i |2
]
−�
{
E
[
(aiε

∗
i )

2
]}

2
. (56)

To retrieve E
[
�{aiε

∗
i }2
]

and E
[
�{aiε

∗
i }2
]

in (55) and (56),

we need to find E
[
|aiε

∗
i |2
]

and E
[
(aiε

∗
i )

2
]
. The term

E
[
|aiε

∗
i |2
]

is given by

E
[
|aiε

∗
i |2
]

= E
[
|aiδ

∗
i |2
]
+ E
[
|aiñ

∗
i |2
]

= E
[
|aiδ

∗
i |2
]
+

σ2
aNBS

0

P (N − 1)
(57)

where

E
[
|aiδ

∗
i |2
]

=
E

[∣∣∣aiaHΦdiag (ξ)ΦH
i,:

∣∣∣2]
(N − 1)2

=
E

[
tr
{
|ai|2ΦHaaHΦdiag

(
ΦH

i,:

)
ξξH diag (Φi,:)

}]
(N − 1)2

(a)
=

tr
{
ΦH diag (αi)Φdiag

(
ΦH

i,:

)
RξξH diag (Φi,:)

}
(N − 1)2

(b)
=

N − 2
(N − 1)2

σ4
a

(
(N + 2)μ|ξ|2 + 3(N − 3)μ2

ξ

)
. (58)

The equality (a) in (58) is obtained by defining RξξH =
E
[
ξξH
]

and letting αi be a vector whose ith-element is

4σ4
a and whose other elements are σ4

a. The equality (b) in (58)

is obtained by simply calculating the trace in the equality

(a) by noting that the diagonal elements of RξξH are μ|ξ|2
and the off-diagonal elements are approximately μξ.

The term E
[
(aiε

∗
i )

2
]

is given by

E
[
(aiε

∗
i )

2
]

= E
[
(aiδ

∗
i )2
]

=
E

[(
aiaHΦdiag (ξ)ΦH

i,:

)2
]

(N − 1)2

=
E

[
tr
{

a2
i diag

(
Φ∗

i,:

)
ΦT a∗aHΦdiag

(
ΦH

i,:

)
ξξT
}]

(N − 1)2

(a)
=

tr
{

4σ4
a diag

(
Φ∗

i,:

)
ΦT diag (ei)Φdiag

(
ΦH

i,:

)
RξξT

}
(N − 1)2

(b)
=

N − 2
(N − 1)2

4σ4
a

(
μξ2 + (N − 3)μ2

ξ

)
. (59)

Similar to (58), the equality (a) in (59) is obtained by

defining RξξT = E
[
ξξT
]

and letting ei be a one-hot vector

whose ith-element is 1 and whose other elements are zero.

The equality (b) in (59) is obtained by simply calculating

the trace in the equality (a) by noting that the diagonal
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elements of RξξH are μξ2 and the off-diagonal elements are

approximately μ2
ξ .

We now need to compute the covariances Cov[zi,�, zt,�]
and Cov[zi,�, zt,�], which are given by

Cov[zi,�, zt,�] = E[zi,�zt,�] − E[zi,�]E[zt,�]
Cov[zi,�, zt,�] = E[zi,�zt,�] − E[zi,�]E[zt,�].

Since E[zi,�] and E[zi,�] have been computed earlier, we need

to find E[zi,�zt,�] and E[zi,�zt,�] which can be approximated

as follows:

E[zi,�zt,�] ≈ E
[
(|ai|2 + �{aiε

∗
i })(|at|2 + �{atε

∗
t })
]√

E[κi,t]
, (61)

E[zi,�zt,�] ≈ E[�{aiε
∗
i }�{atε

∗
t }]√

E[κi,t]
, (62)

where κi,t is given in (60), as shown at the bottom of the

page. The expansion of κi,t also includes the numerator terms

in (61) and (62), thus to obtain E[zi,�zt,�] and E[zi,�zt,�],
it suffices to compute the expectation of all the terms in (60),

which are given in detail in Appendix B.

Finally, we approximate the distribution of f� and f� as

Gaussian with the above approximate means and variances,

and so BERDD2 can be obtained in the same manner as

in (29) – (31).

VI. NUMERICAL RESULTS

In this section, we present various numerical results to verify

our SE analysis and to show the benefits of the proposed

DD channel estimation framework. We use a general channel

model with hd,k =
√

βUB
k h̃d,k, gk =

√
βUR

k g̃k, H =√
βRBH̃ where h̃d,k ∼ CN (0,ΣUB

k ), g̃k ∼ CN (0,ΣUR
k ),

and H̃ = (ΣB)1/2H̄(ΣR)1/2. In our simulations, we employ

the simple exponential spatial correlation model [52]; more

general correlation models can be found in [53]. The elements

of H̄ are i.i.d. and normally distributed as CN (0, 1). The

large-scale fading coefficients are βUB
k = β0(dUB

k /d0)−αUB
,

βUR
k = β0(dUR

k /d0)−αUR
, βRB = β0(dRB/d0)−αRB

where

αUB, αUR, αRB are the respective path loss exponents, and

dUB
k , dUR

k , dRB are the respective distances between user-k
and the BS, user-k and the RIS, and the RIS and BS. We set

β0 = −20 dB as the path loss at the reference distance

d0 = 1m, αUB = 5, αUR = αRB = 2.2, and the coherence

block length at τc = 500 symbols. If not specifically stated, the

noise power is set to −169 dBm/Hz and a bandwidth of 1 MHz

is assumed. The number of elements with active receivers at

the RIS is taken to be equal to the number of users, and the

sensing elements are assumed to be uniformly distributed over

the surface.4

4Given a number of sensing elements much less than the total number of
the surface elements, it would be interesting topic for future work to find an
optimal strategy for distributing the sensing elements based for example on
the distribution of the channel.

Fig. 3. SE comparison with K = M = 1 and N = 50.

Fig. 4. SE comparison with K = M = 1, N varies, and P = 5 dBm.

It is important to note that when there is only one user, the

proposed hybrid PD channel estimation approach coincides

with the passive PD approach in [38] because only phase 1 is

required for the channel estimation and we should set ρAi = 1.

Therefore, in case of K = 1, the PD performance presented in

this section represents both the proposed hybrid PD approach

and the passive one in [38]. However, for the case of multiple

users, phase 2 of the two approaches is different and will lead

to different performance as will be shown later.

First, we numerically validate our derived analytical SE

expressions in Figs. 3 and 4. Here, we set both the user-RIS

and RIS-BS distances to 100 m. In Fig. 3, the SE is evaluated

for 50 RIS elements versus the transmit power for the cases

of 8-PSK and 16-PSK modulation. It is observed that when

the transmit power is low, i.e., at low signal-to-noise ratios

(SNR), the SE of the PD approach is higher than for DD, but

the situation reverses as the SNR grows. This is because the

channel estimation performance of the DD approach strongly

depends on the data detection performance at the RIS; at

higher SNRs the data symbols detected by the RIS are more

reliable and this results in better channel estimation and higher

spectral efficiency. There is a critical SNR point at which the

κi,t = |ai|2|at|2 + 2|ai|2�{atε
∗
t } + |ai|2|εt|2 + 2|at|2�{aiε

∗
i } + 4�{aiε

∗
i }�{atε

∗
t }

+ 2�{aiε
∗
i }|εt|2 + |εi|2|at|2 + 2|εi|2�{atε

∗
t } + |εi|2|εt|2. (60)
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Fig. 5. Performance comparison for K = 1, M = 8, N = 50, ρAi = 0.5, and 16-PSK.

Fig. 6. Coded BER performance with P = 10 dBm, K = 1, M = 8,
N = 50, and 16-PSK signalling.

DD approach begins to perform better than PD, which in this

scenario is about 4-dBm and 8-dBm for 8-PSK and 16-PSK,

respectively. It can also be seen from Fig. 3 that our analytical

SE approximations match well with the numerical results and

accurately predict the performance crossover point. Thus the

analytical SE can be used in the system design to determine

the crossing point and decide whether the PD or DD approach

should be used.

We evaluate the SE of the PD and DD approaches as the

number of RIS elements N increases in Fig. 4, where the

transmit power is fixed at 5-dBm. It is interesting to observe

that increasing the number of RIS elements can actually lead

to a reduction in SE for the PD framework, since the pilot

overhead of the PD approach grows proportionally with N
leading to a reduction in the number of time slots available

for data transmission. On the other hand, the pilot overhead

of the DD framework does not depend on the number of RIS

elements, and thus the DD approach does not suffer from SE

reduction as N increases. Again, our analysis accurately pre-

dicts the performance crossover point, which is an important

factor for the system design.

In Figs. 5, 6, and 7 we also consider a single user scenario

but the BS is equipped with multiple antennas. After the

channel estimation stage, the phase shift vector φ of the RIS is

optimized to maximize the effective channel strength ‖ĥd,1 +
Â1φ‖2, which is solved by semi-definite relaxation (SDR).

Fig. 5 shows the channel estimation, bit error rate (BER),

and spectral efficiency performance for M = 8, N = 50,

ρAi = 0.5, and 16-PSK signalling with different noise power

levels and user transmit powers. The normalized mean-squared

error (NMSE) is computed as E
[
‖Ĥc,1 − Hc,1‖2

F/‖Hc,1‖2
F

]
.

The results in Fig. 5a show that the PD method achieves a

better channel estimate and BER than DD, but this gain is

offset by the increased training overhead for either higher

transmit power or a lower noise figure when the DD method

can reliably decode the data at the RIS.

In Fig. 6 we present a BER comparison between the PD and

DD approaches considering both uncoded and coded systems

for different noise levels at the sensing RIS. The coded system

employs a rate 1/2 convolutional code. It can be seen that as

the noise power at the sensing RIS decreases, the DD coded

BER is significantly improved compared to the DD uncoded

BER. They are also both slightly lower than the BER of the

PD method since the data detected by the sensing RIS is more

reliable in this noise regime.

Fig. 7 illustrates that there is a trade-off in the choice of

the fraction of the incident power ρAi that is reflected by the

RIS elements with active receivers. A larger ρAi means more

signal power is reflected and less is sensed by the RIS. When

the amount of signal power sensed by the RIS is too small, the

noise at the RIS may dominate the received signal and cause

data detection errors, which in turn leads to lower channel

estimation accuracy and SE. One the other hand, if the amount

of signal power sensed by the RIS is large so as to efficiently

recover the data symbols at the RIS, the signals reflected from

the RIS to the BS will be weaker, which can lead to less

accurate channel estimation at the BS and a reduction in SE as

well. The trade-off is not too serious to handle for small noise

levels, but becomes more important as the SNR decreases.

For the cases considered in this example, a relatively small

value such as ρAi = 0.2 appears to provide the best system

performance.

To study the case of multiple users, we position the RIS and

BS at the locations (x, y) = (50, 50) and (x, y) = (100, 0),
respectively, and we locate the users randomly within a square

whose side length is 20m and is centered at the origin.

Simulation results for a scenario with K = 4, M = 8,

N = 200, ρAi = 0.5, and 16-PSK signalling are given in

Fig. 8. In the sub-phase 2b, we employ the conventional

zero-forcing (ZF) detector for recovering data symbols at

the RIS. To configure the RIS phase shift after the channel

estimation stage, we find the φ that maximizes the minimum

signal-to-interference plus noise ratio (SINR) using the SDR

approach as in [54]. An SE comparison is given in Fig. 8a
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Fig. 7. Spectral efficiency of the DD approach as ρAi varies, P = 10 dBm,
K = 1, M = 8, N = 50, and 16-PSK signalling.

Fig. 8. Performance comparison with K = 4, M = 8, N = 200, ρAi = 0.5,
and 16-PSK.

and the corresponding BER and NMSE performance is given

in Figs. 8b and 8c, respectively. It is seen from Fig. 8a that

the SE of the DD method is much higher than that for PD

because data is also sent in the channel estimation stage of

the DD method while only pilot signals are used in the PD

approaches.

It is also observed in Fig. 8a that the SE of the typical user

is much higher than that of the other users since the typical

user has more data transmission slots, as can be seen from the

illustration in Fig. 2. This creates a fairness issue that can be

addressed in a number of ways. For example, the solid curves

show the result obtained by rotating the role of the typical

user among all the users over different coherence blocks, e.g.,

user k = b−K�(b− 1)/K� is assigned to be the typical user

Fig. 9. Spectral efficiency comparison versus number of sensing elements
NA with K = 4, M = 4, N = 200, ρAi = 0.5, 16-PSK signalling, transmit
power P = 30 dBm.

in coherence block b for b = 1, 2, . . .. In this approach, the

average SE of all the users will be the same and is given as

SEfair =
SEtyp + (K − 1)SEoth

K
(63)

where SEfair, SEtyp, and SEoth denote the “fair” SE, the SE of

the typical, and the SE of the other users, respectively. The SE

of the typical and other users SEtyp and SEoth are computed

as

SEU =
τc − τt,U

τc
(1 − BERU) log2(D), (64)

where U ∈ {typ, oth}, τt,U is the training overhead of

the corresponding user, and BERU is obtained numerically.

We see from Fig. 8 that an improvement compared with

the unbalanced case is obtained. In particular, the fair DD

approach yields approximately a 60% improvement in SE

performance compared to the PD approaches. In terms of BER,

the performance of the proposed PD and DD approaches is

better than that of the passive PD in [38]. This is because

the DD method obtains reliable data detection at the sensing

RIS. In addition, the channel estimate of the proposed PD

and DD methods is also observed to be more accurate than

the passive PD approach in [38] as can be seen in Fig. 8c

since in phase 2 of the proposed hybrid PD and DD methods,

the channels associated with the RIS sensing elements are

estimated directly at the RIS. Note that the fair BER and

NMSE in Figs. 8b and 8c are computed in a manner similar

to (63).

Finally, we study the effect of the number of sensing ele-

ments NA on the spectral efficiency in Fig. 9. The noise power

at the RIS is set to −120 dBm/Hz and the transmit power P
is 30 dBm. Interestingly, increasing the number of sensing

elements NA only slightly improves the spectral efficiency of

the DD approach, indicating that very few sensing elements

at the RIS are necessary to achieve the benefit of decision

direction. The SE improves more with increasing NA for the

proposed hybrid PD approach, since unlike the passive PD

algorithm in [38], increasing NA results in a reduction in the

pilot overhead of the hybrid PD approach.
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VII. CONCLUSION

In this paper, we have proposed a decision-directed channel

estimation framework for general unstructured RIS channel

models. It has been shown that with the help of some RIS

elements with active receivers, it is possible to accurately

estimate the CSI with a pilot overhead only proportional to the

number of users and thus significantly improve the spectral

efficiency compared to systems with passive RIS arrays.

We also performed an intensive spectral efficiency analysis

to verify the efficiency of the proposed DD framework. Our

analysis takes into account both the channel estimation and

data detection errors at both the RIS and the BS, and thus

accurately reflects the data detection uncertainty inherent in

the decision directed approach.

APPENDIX A

PROOF OF THEOREM 1

The symbol error rate (SER) can be approximated as

SER ≈ P[ỹ� tan θ − ỹ� ≤ 0] + P[ỹ� tan θ + ỹ� ≤ 0] (65)

where ỹ� tan θ − ỹ� = 0 and ỹ� tan θ + ỹ� = 0 define

the rotated decision boundaries. We have (ỹ� tan θ − ỹ�) ∼
N (μ̃, σ̃2) and (ỹ� tan θ + ỹ�) ∼ N (μ̃, σ̃2) where

μ̃ =
√

PNμz� tan θ,

σ̃2 =
(

PNσ2
z� +

N0

2

)
tan2 θ + PNσ2

z� +
N0

2
.

Therefore,

P[ỹ� tan θ − ỹ� ≤ 0]
= P[ỹ� tan θ + ỹ� ≤ 0]

= Q

⎛
⎝ √

PNμz� tan θ√(
PNσ2

z� + N0
2

)
tan2 θ + PNσ2

z� + N0
2

⎞
⎠ , (66)

which means the SER can be approximated as

SER ≈ 2Q

⎛
⎝ √

PNμz� tan θ√(
PNσ2

z� + N0
2

)
tan2 θ + PNσ2

z� + N0
2

⎞
⎠ .

(67)

At high SNRs, ε is small, and we have

μz� = E[zi,�] ≈ E[|ai|] = E[|hi|]E[|gi|] =
π

4
σa, (68)

σ2
z� = Var[zi,�] = E[z2

i,�] − |E[zi,�]|2

≈ E[|ai|2] − E[|ai|]2 =
(

1 − π2

16

)
σ2

a. (69)

Substituting (68) and (69) into (67) and using the result that

BER ≈ SER/ log2(D) for a Gray code at high SNRs gives

us the approximated BER in (32).

APPENDIX B

PROOF OF LEMMA 1

We have

E[ξt] = 1 − E[stŝ
∗
t ], (70)

E
[
ξ2
t

]
= 1 − 2E[stŝ

∗
t ] + E

[
(stŝ

∗
t )

2
]
. (71)

Thus, to obtain E[ξt] and E
[
ξ2
t

]
, we need to compute E[stŝ

∗
t ]

and E
[
(stŝ

∗
t )

2
]
, which are given as follows:

E[stŝ
∗
t ] =

D−1∑
d=0

pDD1d S(0)S(d)∗

= pDD10 − pDD1D
2

+ 2

D
2 −1∑
d=1

pDD1d cos
(

2πd

D

)
, (72)

E
[
(stŝ

∗
t )

2
]

=
D−1∑
d=0

pDD1d (S(0)S(d)∗)2

= pDD10 + pDD1D
2

+ 2

D
2 −1∑
d=1

pDD1d cos
(

4πd

D

)
. (73)

Substituting (72) and (73) into (70) and (71), we obtain μξ

and μξ2 as in (40) and (41), respectively. The expectation of

|ξt|2 is given as

E

[
|ξt|2
]

= E
[
|ŝt − st|2

]
=

D−1∑
d=0

|S(d) − S(0)|2 pDD1d

= 4pDD1D
2

+ 4

D
2 −1∑
d=1

[
1 − cos

(
2πd

D

)]
pDD1d . (74)

Note that in (72), (73), and (74) we have used the following

results: pDD1d = pDD1
d+ D

2
, S(0)S(d)∗ = S(0)S(d + D/2)∗ =

cos(4πd/D), and |S(d) − S(0)|2 = |S(d + D/2) − S(0)|2 =
4(1 − cos (2πd/D)) for d = 1, . . . , D/2 − 1.

APPENDIX C

CALCULATION OF THE TERMS IN (60)

First, we have E
[
|ai|2|at|2

]
= σ4

a. Using the same approach

as in (52), we obtain

E
[
|ai|2atε

∗
t

]
= E
[
|at|2aiε

∗
i

]
=

N − 2
1 − N

σ4
aμξ. (75)

The two terms E
[
|aiεt|2

]
and E

[
|atεi|2

]
are equal and given

by

E
[
|aiεt|2

]
= E
[
|aiδt|2

]
+ E
[
|aiñt|2

]
= E
[
|aiδt|2

]
+

σ2
aNBS

0

P (N − 1)
, (76)

where

E
[
|aiδt|2

]

=
E

[∣∣∣aiaHΦdiag (ξ)ΦH
t,:

∣∣∣2]
(N − 1)2

=
E

[
tr
{
|ai|2ΦHaaHΦdiag

(
ΦH

t,:

)
ξξH diag (Φt,:)

}]
(N − 1)2

=
tr
{
ΦH diag (αi)Φdiag

(
ΦH

t,:

)
RξξH diag (Φt,:)

}
(N − 1)2

.

(77)
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The term E[aiε
∗
i atε

∗
t ] is given as follows:

E[aiε
∗
i atε

∗
t ] = E[aiatδ

∗
i δ∗t ]

=
E

[
aiataHΦdiag (ξ)ΦH

i,:a
HΦdiag (ξ)ΦH

t,:

]
(N − 1)2

=
E

[
tr
{
ΦT aiata∗aHΦdiag (ξ)ΦH

i,:Φ
∗
t,: diag (ξ)

}]
(N − 1)2

=
tr
{
ΦT ΣΦdiag

(
ΦH

i,:

)
RξξT diag

(
Φ∗

t,:

)}
(N − 1)2

, (78)

where Σ is a matrix with Σi,t = Σt,i = σ4
a and zeroes

elsewhere. The term E[aiε
∗
i a

∗
t εt] is obtained as follows:

E[aiε
∗
i a

∗
t εt]

= E[aia
∗
t δ

∗
i δt]

=
E

[
aia

∗
t a

HΦdiag (ξ)ΦH
i,:a

T Φ∗ diag (ξ∗)ΦT
t,:

]
(N − 1)2

=
E

[
tr
{
ΦHaia

∗
t aa

HΦdiag (ξ)ΦH
i,:Φt,: diag (ξ∗)

}]
(N − 1)2

=
tr
{
ΦHΩΦdiag

(
ΦH

i,:

)
RξξH diag (Φt,:)

}
(N − 1)2

, (79)

where Ω is a matrix with Ωt,i = σ4
a, and zeroes elsewhere.

Note that we have used the same technique in (58) for

deriving (77) and the same technique in (59) for deriving (78)

and (79).

The two terms E
[
aiε

∗
i |εt|2

]
and E

[
aiε

∗
i |εt|2

]
are also equal

and given by

E
[
aiε

∗
i |εt|2

]
= E
[
aiδ

∗
i |δt|2

]
+ E
[
aiδ

∗
i |ñt|2

]
≈ E
[
aiδ

∗
i |ñt|2

]
= − (N − 2)NBS

0

P (N − 1)2
σ2

aμξ. (80)

Finally, the term E
[
|εi|2|εt|2

]
is approximated as

E
[
|εi|2|εt|2

]
= E
[
|δi|2|δt|2

]
+ 2E

[
|δi|2|ñt|2

]
+ E
[
|ñi|2|ñt|2

]
≈ 2E

[
|δi|2|ñt|2

]
+ E
[
|ñi|2|ñt|2

]
=

2(N − 2)NBS
0

P (N − 1)2
σ2

aμ|ξ|2 +
(NBS

0 )2

P 2(N − 1)2
. (81)

The quantities E
[
aiδ

∗
i |δt|2

]
in (80) and E

[
|δi|2|δt|2

]
in (81)

are ignored in our approximation since they make a negligible

contribution to the result.
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