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Decision-Directed Hybrid RIS Channel Estimation
With Minimal Pilot Overhead
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Abstract— To reap the benefits of reconfigurable intelligent sur-
faces (RIS), channel state information (CSI) is generally required.
However, CSI acquisition in RIS systems is challenging and often
results in very large pilot overhead, especially in unstructured
channel environments. Consequently, the RIS channel estimation
problem has attracted a lot of interest and also been a subject
of intense study in recent years. In this paper, we propose a
decision-directed RIS channel estimation framework for general
unstructured channel models. The employed RIS contains some
hybrid elements that can simultaneously reflect and sense the
incoming signal. We show that with the help of the hybrid RIS
elements, it is possible to accurately recover the CSI with a pilot
overhead proportional to the number of users. Therefore, the
proposed framework substantially improves the system spectral
efficiency compared to systems with passive RIS arrays since
the pilot overhead in passive RIS systems is proportional to the
number of RIS elements times the number of users. We also
perform a detailed spectral efficiency analysis for both the
pilot-directed and decision-directed frameworks. Our analysis
takes into account both the channel estimation and data detection
errors at both the RIS and the BS. Finally, we present numerous
simulation results to verify the accuracy of the analysis as well as
to show the benefits of the proposed decision-directed framework.

Index Terms— Reconfigurable intelligent surfaces, channel esti-
mation, sensing, decision-directed, spectral efficiency analysis.

I. INTRODUCTION
ECONFIGURABLE intelligent surfaces (RIS) are a
novel technology that has changed the conventional

long-standing perspective that wireless channels are an
uncontrollable part of the environment. RISs are planar
arrays composed of elements whose electromagnetic reflec-
tion coefficients can be adaptively configured to shape the
wireless channel in beneficial ways. As such, they can be
deployed to improve the system throughput, network coverage,
or energy efficiency [1], [2]. However, the exploitation of this
channel-shaping ability generally requires RIS-related channel
state information (CSI), which is challenging to obtain since
the number of RIS elements can be very large, and the RIS
elements are often constructed as passive devices without
active radio-frequency (RF) chains or computational resources.
Therefore, the RIS channel estimation problem has been a
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subject of intense study in the last few years [3]. The literature
of RIS channel estimation can be divided into two categories
including structured and unstructured channel estimations.
While structured channel estimation considers models that
are parameterized by the angles of arrival (AoAs), angles of
departure (AoDs), and complex gains of the propagation paths,
unstructured channel estimation methods assume more generic
channels described by arbitrary complex coefficients.

Numerous results on structured RIS channel estimation have
been reported, for example in [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], and [18], where the
sparsity property of high-frequency (e.g., millimeter-wave,
or “mmWave”) channels are exploited to reduce the pilot
overhead. For example, the studies in [4], [5], [6], [7], [8],
[9], [10], [11], and [12] formulated the cascaded mmWave
channel estimation problem as a sparse signal recovery prob-
lem so that various compressive sensing techniques can be
exploited to recover the channel parameters, e.g., distributed
orthogonal matching pursuit (OMP) [4], iterative atom pruning
based subspace pursuit (IAP-SP) [5], atomic norm mini-
mization [7], Newtonized orthogonal matching pursuit [8],
alternating direction method of multipliers (ADMM) [10],
and the hybrid multi-objective evolutionary paradigm [12].
Several other system scenarios and designs were investigated
in [11], [13], [14], [16], and [17]. More specifically, the work
in [11] considers low-precision analog-to-digital converters
(ADCs) at the BS and derives a linear channel estimator.
The authors in [14] exploited the sparse structure of mmWave
channels to derive a Cramér-Rao lower bound (CRB) for the
channel parameters, which is then optimized to design an RIS
reflection pattern. The effect of beam squint was taken into
account in [17] and a twin-stage orthogonal matching pursuit
(TS-OMP) algorithm was developed to estimate the channel
parameters. The double-structured angular sparsity of cascaded
channels was exploited in [13] and [16] to both reduce the
pilot overhead and improve the estimation performance. The
work in [18] developed a maximum likelihood (ML) channel
estimation framework for estimating the line-of-sight (LoS)
user-RIS channel. Exploiting the fact that the channel angles
vary much slower than the channel gains, the authors in [15]
proposed a two-timescale parametric estimation strategy which
estimates all the channel angles and gains in the first coherence
block, and then only re-estimates the channel gains in the
remaining coherence blocks.

Unlike the aforementioned works where all the RIS ele-
ments are assumed to be passive, some other structured
channel estimation studies in [19], [20], [21], [22], [23], [24],
and [25] assume that the RIS contains a small number of
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active elements that can operate in sensing mode to estimate
partial CSI, which is then exploited together with the sparsity
structure of mmWave channels to reconstruct the full CSIL
While compressed sensing (CS) methods were used in [19]
and [20], some other techniques were employed in [21], [22],
and [23], e.g., signal parameters via rotational invariance tech-
nique (ESPRIT) and multiple signal classification (MUSIC)
in [21] and [23] and deep residual networks in [22]. Unlike
the methods in [19], [20], [21], [22], and [23] that require
both uplink and downlink training signals, the work in [24]
developed a variational inference-sparse Bayesian learning
channel estimator that uses only the uplink training signals
and exploits the received signals at both the RIS and the
BS. In [25], a single-active element, referred to as a wireless
beacon, is used at the RIS to obtain partial CSI based on which
a hybrid structured sparsity expectation-maximization (EM)
algorithm was developed to make the formulated CS problem
tractable and efficiently achieve the sparse channel recovery.

On the other hand, unstructured RIS channel estimation has
also been rigorously investigated in many works, e.g., litera-
ture [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36],
[37], and [38]. For single-user systems, the works in [26] and
[27] used a binary reflection strategy where only one reflecting
element is turned on in each time slot. It was then shown
in [28] and [29] that turning on all the RIS elements at the
same time and using a discrete Fourier transform (DFT) matrix
as the reflecting pattern provides better performance compared
to the binary reflection strategy. Similar results were also
reported for the case of multiple users in [30]. Additionally, the
study in [31] examines the reflecting pattern design problem
while imposing the restriction that the phase shifts are limited
to a finite set of discrete values. For multi-user systems, the
work in [32] exploits known spatial correlation at both the
BS and the RIS as well as other statistical characteristics of
multi-specular fading to derive Bayesian channel estimators.
The work in [36] assumes a low-rank RIS-BS channel and
develops a two-stage algorithm based on matrix factorization
and matrix completion. Some other methods such as matrix-
calibration-based factorization and parallel factor tensor
decomposition were used in [33], [34], and [35], respectively.
More general channel models were considered in [37] and
[38] where two- and three-phase estimation approaches were
proposed, respectively. While both of these latter approaches
require the same pilot overhead, the two-phase approach
outperforms the other thanks to the alleviation of error prop-
agation. Unlike the common approach in which the cascaded
CSI is estimated to optimize the RIS configuration, the authors
in [39] and [40] proposed a codebook-based approach where
the RIS configuration is selected from a pre-defined codebook.
For each codebook configuration, only the effective channel
is estimated to evaluate the performance of that configuration.
The configuration giving the best performance is then selected
for the data transmission phase. Although the training over-
head of this approach is independent of the number of RIS
elements, it scales with the codebook size.

All of the aforementioned methods fall into the class of
pilot-directed (PD) channel estimation, i.e., only pilot signals
are used for channel estimation. In this paper, we focus on a
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different class, referred to as decision-directed (DD) channel
estimation, where both pilot and data signals are exploited
for the channel estimation task. Compared to PD, the DD
approach can help significantly reduce the pilot overhead.
Joint channel estimation and data detection was studied
in [41], [42], [43], and [44] where sparsity-structured and
unstructured channels were considered in [41], [42], [43],
and [44], respectively. However, these works all assumed
passive RISs. In this paper, we consider a recent hybrid RIS
structure [45], [46], [47] in which the RIS elements can
simultaneously reflect and sense the incoming signal, and
we develop a DD channel estimator that can be used for
unstructured channels where AoA/AoD information cannot be
exploited. The novelty of the approach lies in the application
of hybrid RIS for unstructured channel estimation, and the
use of DD to reduce the pilot overhead. It should be noted
that the hybrid RIS structure in [19], [20], [21], [22], [23],
and [24] can only operate in either reflecting or receiving
mode, while the hybrid RIS structure in [45], [46], and [47]
can simultaneously reflect and absorb the incoming signal.
The contributions of our paper are summarized as follows:

o Based on the hybrid RIS structure, we first develop
a two-phase pilot-directed (PD) channel estimation
approach. The estimation strategy is similar to that
in [38] but we show that the pilot overhead is lower for
multiuser systems.

o Next, we propose a two-phase DD channel estimation
framework and we show that with the help of the hybrid
RIS elements, it is possible to accurately recover the
CSI with a pilot overhead only proportional to the
number of users. Therefore, the proposed DD framework
substantially improves the system spectral efficiency
(SE). More specifically, in the channel estimation stage,
the users transmit a sequence including both pilot and
data symbols where the number of pilot symbols is the
same as the number of users. The RIS uses some sensor
elements with RF chains to recover the data symbols,
and then forwards the detected data symbols to the BS
for cascaded channel estimation. For the BS to accurately
estimate the CSI, the RIS phase shifts must be varied.
We point out that changing the RIS phase shifts does not
affect data detection by the sensing RIS elements, and
thus both data recovery at the RIS and channel estimation
at the BS are guaranteed. We also explain why accurate
CSI recovery is not guaranteed when the DD approach is
applied at the BS and the RIS has no sensing elements.

e We then perform a detailed spectral efficiency (SE)
analysis for both the PD and DD frameworks for single-
user systems. Our analysis takes into account both the
channel estimation and data detection errors at the RIS
and the BS, and thus accurately reflects the uncertainty
of RIS-assisted data detection in the DD framework. It is
observed that there is often a crossing point at which the
DD framework outperforms the PD one, and so the anal-
ysis can be used to decide when the PD or DD approach
should be used. Finally, we present numerous simulation
results to verify the accuracy of the SE analysis as well
as to show the benefits of the proposed DD framework.
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The rest of this paper is organized as follows: Section II
presents the considered system model. The pilot directed and
decision-directed channel estimation frameworks are presented
in Section III and Section IV, respectively. We perform the
spectral efficiency analysis in Section V. Section VI shows
simulation results and finally Section VII concludes the paper.

Notation: Upper-case and lower-case boldface letters denote
matrices and column vectors, respectively. Scalars x;; and
[X];; both denote the element at the ith row and jth column of
a matrix X. Vectors x; and X.; both denote the ith column
of a matrix X, while X, . denotes the k-th row of X. The
notation Xj;.; 1., represents the sub-matrix of X that includes
rows ¢ to j and columns k to ¢. The expectation, variance,
and covariance of random quantities are denoted by E[],
Var[-], and Cov[-], respectively. Depending on the context,
the operator | - | is used to denote the absolute value of a
number, or the cardinality of a set. The ¢5>-norm of a vector is
represented by ||-||. The transpose and conjugate transpose are
denoted by [-]7 and [, respectively, j is the unit imaginary
number satisfying j% = —1, N(-,-) and CN/ (-, -) represent the
real and the complex normal distributions respectively, where
the first argument is the mean and the second argument is
the variance or the covariance matrix. The ¢-th element of the
set A is indicated by A(7). The Q-function that quantifies the
tail distribution of a standard normal random variable is given

by Q(-).

II. SYSTEM MODEL

We consider an uplink RIS-assisted MIMO system in which
a BS with M antennas serves K single-antenna users under
the assistance of an N-element RIS. Let Hy € CM*K,
H ¢ CMXN_ and G € CN*K denote the direct channel
from the users to the BS, the channel from the RIS to the
BS, and the channel from the users to the RIS, respectively.
The RIS contains a number of sensing elements equipped
with radio-frequency (RF) chains as illustrated in Fig. I.
These sensing elements are able to simultaneously reflect and
sense the impinging signal. Let .4 denote the index set of the
sensing elements, so that A C {1, , N}, and let N4 be
the number of sensing elements, i.e., N4 = |A|, where it
is assumed that K < N4 < N. We also let B denote the
index set of the regular elements without sensing capability.
This implies A N B= @ and AUB = {1, ..., N}. Without
loss of generality, we assume that the indices in A and B are
sorted in an ascending order, i.e., A(1) < ... < A(N4) and
B(1) <...<B(N — Ny).

Define the channel matrices Hy 2 hq1, ...,

A
G = [gl, ce
modeled as'

- @ZH ang ([051) [0

where ¢ = [¢1, ...
H.; = [hq, Hdiag(g)] €

hde and
, 8K, so that the received signal at the BS is

] sp+n® (1)

o) N]T is the phase shift vector of the RIS,
CMx(N+1) ig the cascaded

'In this paper, we focus on a narrowband system model. However, the
proposed approach can be directly applied to OFDM systems by adopting
our channel estimator separately to each subcarrier.
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RIS | Plain element w/o RF chain
[ M Sensor element w/ RF chain
Control link :H
Base j7 & hdz User 2
Station | | A :
U;ZrK
Fig. 1. Sensing-RIS-assisted multi-user MIMO system.

channel of the k-th user, P is the transmit power, and p E
[p1, -+, pn]T with 0 < p,, < 1if n € A, otherwise p, = 1.
Hence, p?2 is the portion of the power of the impinging signal
that is reflected by the n-th RIS element. For convenience,
we use the notation p# = [p1 sy P )T where pft 2 pAG)
fori=1,..., Ny, and n* = [nft, ..., nj(‘,A}T where nt =
V1= (p)2. Hence, (7)? represents the amount of signal
power absorbed by the RIS element A(7) for the purpose of
sensing.

With N4 sensing elements at the RIS, the received signal
at the RIS is given as

K
5= \/ﬁdiag( ) diag ( (;SA Z gits, +nt ()
k=1

where g7' = [g,“:‘)l, ce g,éNA]T with gﬁi 2 Gk, A(i)- In this
paper, it is important to note that the superscripts (-)** and
(-)B are used to imply variables that are associated with the
sensing and reflecting RIS elements, respectively.

We assume an uplink communication protocol with two
stages including a channel estimation stage followed a data
transmission stage. After the channel estimation stage, the
RIS phase shifts are optimized and configured before the data
transmission stage begins. It should be noted that during the
channel estimation stage, data detection occurs at the RIS since
the users transmit both pilot and data symbols during this
stage. During the data detection stage, in order to minimize
power consumption at the RIS, the sensing function of the
hybrid RIS elements is turned off and the incoming signal is
completely reflected.

III. PILOT-DIRECTED CHANNEL ESTIMATION

In this section, we present a two-phase pilot-directed
approach for estimating the cascaded channel matrices
H.:, ..., H, k. Since all the users experience the same
RIS-BS channel, i.e. the same channel matrix H, the total
number of channel elements to be estimated is M (K +
N) 4+ N(K — 1) [37], [38]. Let A, = Hdiag(gy), then
we have A, = A;diag(Ag) where A\, ,, = gxn/g1,, for
k=2 ...,K and n = 1, , N. Note that A; = 1pn.
Therefore, it suffices to estimate Hy, A, and As, ..., Ak.

Our two-phase estimation strategy is similar to that in [38]
where H.; = [hq1, A;] is estimated in phase 1 and
hgo, ..., hgx and Ag, ..., Ag are estimated in phase 2.
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Data transmission phase
Channel estimation phase (after RIS beamforming configuration)
Phase 1 Phase 2
=
g userl
E 3
=
)
<
a userK
=~
Phase | Phase 2
Phase 2a Phase 2b
=
=3
§ user 1
-
s
2
<
a userK
a
pilot transmission data transmission (detected by the sensing RIS)
no transmission (idle) data transmission (detected by the BS)
Fig. 2. Tllustration of the proposed channel estimation framework. The upper

and lower diagrams are for the PD and DD approaches, respectively.

However, unlike the work in [38], which considers an RIS
with passive elements only, our work here considers a hybrid
RIS structure as presented above. In this section, we assume
that only pilot signals are used for the channel estimation.
For notational convenience, let 73 = {1, ..., 71} and 75 =
{m1+1, ..., 1+72} where 71 and 75 are the length of phase 1
and phase 2, respectively. An illustration of the PD approach
is given in the upper diagram of Fig. 2.

A. Phase 1

In this phase, we estimate H, 1 = [hg 1, A4]. One selected
user transmits a pilot vector of length N + 1, while the other
users remain idle. Without loss of generality, we set the index
of the typical user to 1. The received signal at the BS in this
phase is given as

_ JPH, , ding ({[0;3]1]) {[0211

Since H.; contains N + 1 columns, we need at least 7 =
N + 1 time slots to accurately estimate H, ;. For simplicity,
we can set the pilot vector as S;7; = 17 and the RIS
phase shift matrix ® (@1, ..., ¢, ] is chosen so that
1,,®"]" = V, where V, is the DFT matrix of size
71 x 71. This means [1,¢]]7 is the ¢-th column of V.
Then, the cascaded channel H, ; can be estimated via standard
methods, such as for example the least-squares (LS)*:

ket

—1

The received signal at the sensing elements of the RIS is
yi'® = VPdiag (n) diag (¢7)gi +nj @)

and so the sensed portion of the channel g7* can be estimated
5A

as
1 -1
= E P 5
g1 /*‘PT1 ty ( )

where 1, = diag (¢7') "1y is the received signal compen-
sated by the phase rotatlon at the sensing elements of the RIS.

BS
} S1¢+ 1.

YB

diag (n

2For simplicity, we assume the LS approach in this paper, but our proposed
channel estimation framework is general and not restricted to a specific type
of channel estimation approach. A different channel estimator can easily be
adopted instead of the LS approach.
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Note that since a passive RIS is assumed in [38],, there is no
estimation of gi'. Here, we can obtain an estimate of gf' as
in (5) which will be exploited in phase 2 for estimating the
cascaded channel of the other users.

B. Phase 2

In this phase, the typical user remains idle while the other
users transmit pilot sequences. Since hq ; and A; have been
estimated in phase 1, we will estimate hq», ..., hq x and
Ao, ..., Ax during phase 2. The received signal at the BS
can be decomposed as

K
= VP (hay+ Af diag (¢7)A7
k=2

+ A{ diag (p*) diag (¢7 )N ) s + 0B (6)

where Af' and A® are matrices whose columns are drawn
from A; with indices A and B, respectively, )\f =
[/\kl,.. )\kNA]T and AP = [)\kl,..., 1T where
M = Mg and )‘k SN kB0

1) Estzmatmg )\2 AR o ThlS is done at the RIS. Since
)\k , = Ok z/gl,i, the parameters )\2 s e )\ are defined as
long as G* = [gf, ..., gft] is known. Note that the first
column of GA has been estimated using (5) in phase 1. The
signal received at the RIS in phase 2 is given as

yH8 = VP diag (n™

B
NN

) diag (¢7') G xSkt T+ nf'®
(N

The sub-matrix Gf‘Q: x can be estimated by the RIS as follows:

AA
G:,2:K

—1

1 . _
= —— diag (n*) ", S 1 (SaknShk.T,)

VP
®)

where U7, = [¢Tl+1, <oy Yo 4] In (8), to obtain an
estimate of G+ T9.k» we left- and right-multiply ¥z, by
5 diag (n A1 and SEy 1 (So:k, 1,88k 7,)7" to cancel
the effect of the received power scaling and pilot signal,

respectively. Thus, an estimate of )‘7@41‘ can be obtained as

N = g/ ots )
where g{}i has been estimated in phase 1 as in (5).
2) Estimating hq, ..., hax and X5, ... AB: This is

accomplished at the BS. Let
B, = Ly, Af diag (¢7)],
Uk = [hd ko ()\B)T]T
i’y = A diag (p) diag (¢7)AL,

then the received signal at the BS in (6) can be written in the
following form:

K
= \/TDZ(Btvk + f,:}t)sk7t +n?
k=2

= VP((ST., @ B)v + F{'Sa.cs) + 1

= VP(Quv + %) + n* (10)
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where v = [v3, ..., vE]", Q = S, ® By, F/ =
[f5, ..., f¢,). and § ”BS = F#Ss.x+. Stacking the received

signals {y®¥} in (10) W1th te ’Tg on top of each other, we have
the following

vec (YBSTQ) — /P vec (S?BSE) = \/IBQU + nBs (11
where Q = [QL ., ..., QTIJFTZ] . Note that v is the vector
we need to estimate and the size of Q is M7y x (K —1)(M +
N — N4). Therefore, in order to accurately recover v, two
conditions should be satisfied: Mo > (K —1)(M +N —N4)

and rank(Q) = M + N — N 4. An estimate of v can be then
obtained as

R 1 5
U= ﬁQT (Vec (YBSTZ) — \/ﬁvec(YE%)) .
If M > N — Ny, we need at least 79 = 2(K — 1) time
slots to recover v and if M < N — N4, we need at least
n=K-—-1+ [ww time slots to recover v.

When M > N — N, in the two time slots 7 + 2(k —
2)+1 and 71 + 2(k — 2) 4 2, only user-k transmits while the
other users stay idle. The matrix Q becomes a block-diagonal
matrix and so the solution in (12) can be decomposed into
K — 1 separate expressions as follows:

12)

~

Uk

1 |:[1 A5]sp 7, 1o(k— 2)+1Br 420k 2)+1]T

VP sk t2k—2)+2Br f2k—2)42
115 T+2(k 2+ _ /P (1. 15} Tl+2(k 241 |
7—1+2(k 2)+2 y7—1+2(k 2)+2
(13)
The scaling parameters )\54, cee /\ﬁ and )\QB, e /\?{

associated with the sensing and reflection-only elements are
sequentially estimated in (9) and (12), respectively. The esti-
Ak
as the term vec (YBST2) constructed from )\;4, ..., A is sub-
tracted from the received signal vec (Y?%, ) in (12). The work
in [38] does not follow this procedure but directly estimates all
scaling parameters from the received signal vec (YBS 2) since a
passive RIS structure was assumed. In the following, we show
that the pilot overhead of our sensing-based PD approach is
generally lower than that of the PD approach in [38].

mation of )\2 R\ % depends on the estimates )\2 y .-

C. Overall Training Overhead

Since the pilot overhead in phase 1 is 7, = N + 1 and
in phase 2 is 7 = 2(K — 1) if M > N — Ny, or 75 =
K -1+ (K_l)(+NA)-‘ otherwise, the total pilot overhead
of the proposed sensing-based PD approach will be

Tp =T1+ T2
N +2K -1,

TYN+K+ {(K_l)](\]j_NA)

if M>N—Nyu,

-‘ , otherwise.

(14)
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The pilot overhead of the approach in [38] is also N +

2K — 1 when M > N. However, when M < N, it is

N+ K+ {(K;;)N—‘, which is clearly no less than N + K +

(K—1)(N—Na)
M

in (14) since N4 > 0.

Although the pilot overhead in (14) is less than K (N + 1)
as required by the generic LS channel estimator at the BS, it is
still proportional to the number of RIS elements N, which can
be excessively large. In the following section, we propose a
DD channel estimation approach whose pilot overhead is only
proportional to the number of users K.

IV. DECISION-DIRECTED CHANNEL ESTIMATION

In this section, we propose a two-stage DD channel esti-
mation approach to substantially reduce the pilot overhead,
and thus improve the system SE. An illustration of this DD
approach is given in the lower diagram of Fig. 2. As in the
PD approach above, there are also two phases as detailed in
what follows.

A. Phase 1

Similar to the PD approach, here we also use 77 = N + 1
time slots to estimate H, ; with the typical user active and the
other users remaining idle. However, unlike the PD approach
where all of the N 41 time slots are used for pilot signals, the
DD approach uses only the first time slot to transmit a pilot
symbol and the remaining N time slots are for transmitting
data symbols.

1) Estimating gj“: The received signal at the RIS in the
first time slot with the pilot symbol s; 1 = 1 is given in (4),
and so an estimate of g{' can be obtained as

1
it = —= diag (n*)~!

A p— diag (¢7') 1 yRIS, (15)

2) Data Detection for User I in Time Slots 2, ..., 7;: The
received signal is

yi'® = VP diag (n™') diag (67 )gi's1c +nf™. (16)

From (16), it can be seen that the effect of the phase shift
vector qbf‘ is merely a phase rotation of the noiseless received
signal. Since ¢f‘ is known at the RIS, it can be used by the
RIS to detect the data symbols sq ; as follows:

) diag (¢79)&1s|”
(17)

S16= arg min HyRIS VP diag (n*
€s

where S denotes the set of constellation points. Thus, even
when the phase shift vector c;Sf‘ varies in different time slots,
it is still possible for the RIS to accurately recover the data
symbols since the effect of ¢;4 can be easily taken into account
as in (17). As will be explained later in Section IV-D, this
accurate data recovery is not possible when the RIS has no
sensing elements and the DD strategy is applied at the BS.
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3) Estimating H.,: The detected data symbols {31 ,}
in (17) will be forwarded® by the RIS to the BS through a
control link so that the BS can use these detected symbols to
estimate the cascaded channel matrix H ; as follows:

. 1 . (0.817\ "
H., = Y. diag (37,) "' @ dia ({ D :
,1 \/]37—1 71 g( Tl) g p
(18)
where 87, = [1, $12, ..., $1.-,]. Thus, in phase 1, with the

help of the sensing elements, we use only one time slot for
pilot signalling, i.e., 71 = 1, while the other N time slots are
used for data transmission. The BS is still able to accurately
recover the cascaded channel matrix H ; as long as the data
symbols are correctly detected by the RIS.

B. Phase 2

We divide phase 2 into two sub-phases that we refer to as 2a
and 2b. Sub-phase 2a is associated with the time frame 75, =
T1+1, ..., 71+ K —1 where user 1 is idle and users 2 through
K transmit their pilot signals. Sub-phase 2b is associated with
the time frame 79, = 7 + K, ..., 71 + 7> where all the users
transmit data symbols.

1) Estimating g;‘, e gé and /\54, cee /\}4}: Pilot signals
are transmitted in the first K — 1 time slots of phase 2, from
71+1 to 7 +K —1, so the sub-matrix G ok = =lgs, ..., gp
can be estimated by the RIS as follows:

R diag (n* -1

G~A2‘K _ >_1‘I’T2aS£{K,Tga(S2:K,'Z’zasé_{K’TQa)

\/F )
19)

,1/}T1+K 1]. Similar to (8),

where W7, = [, 4, ...
to obtain an estimate of G 2K in (19) we left-
and right-multiply W, by d1ag( A)~1 and
Sk 1. (S2:k 1,88 e 1, )71 1O cancel the effect of the
received power scaling and pilot signal, respectively.
Furthermore, an estimate of /\7@4,1' can be obtained as
)‘kAv gk 1/91 Pt

2 ) Detectmg Data: For the remaining time slots from 7y +
K to 71 + 7o in sub-phase 2b, all K users can transmit data,
and the received signal at the RIS is

= VP diag (n) diag (¢7')G*s; + nPs.

The RIS can use y¥S and GA = [gf*, ..., g71] to detect the
users’ transmitted data s;, which is a conventional MIMO data
detection problem. Similarly, the effect of cf);4 is merely the
phase rotation of the noiseless received signal, and so it is
feasible for the RIS to accurately recover the data symbols as
@7 varies in time.

3) Estimating hq o, ..., hq x and )\5, ceey )\?(: Since the
typical user also transmits data during sub-phase 2b, the
received signal at the BS can be re-written in the following
form:

25 _ H,  ing <[[0§]1D [[oft]l} s

K
= \/ﬁZ(Btvk + f,ft)sk,t +n?

k=2

RIS

3In fact, it suffices for the RIS to forward only the indices of the detected
data symbols {51 ¢
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= VP((ST., @ B)v + F{'Sa.c4) + 1}
= VP(Qw +3°) + 0},
where ¢ € 75. Note that s; ; = 0 for for ¢ € Ty, since user 1 is
idle during sub-phase 2a. Then, we can use a similar technique

as in the PD approach for estimating v, but we need to replace
st with 854 for t € Ty,

(20)

C. Overall Training Overhead

The overall training overhead for the proposed decision-
directed approach is 7, = K since phase 1 and phase 2
require only 1 and K — 1 time slots for pilot signalling,
respectively. The BS is guaranteed to accurately recover the
channel matrices as long as the data symbols are correctly
detected by the RIS. Although only the typical user transmits
in phase 1 and thus the spectral efficiency will not be as
large as if all the users were transmitting, we will show in
the numerical results that the proposed DD approach can still
result in an increase in the spectral efficiency compared with
the PD approach.

D. Comparison With a Passive RIS and DD at the BS

In the proposed DD method, the BS can accurately recover
the cascaded channel matrices when the data symbols are
correctly detected by the RIS. Here, we explain why an
alternative scenario in which the RIS has no sensing elements
and the DD strategy is applied at the BS cannot guarantee
accurate CSI estimation. To show this, it is enough to consider
the case with only one user, where the received signal at the
BS is given as

BS
Hc,ld)tst + Ilt .

To accurately recover H. ;, the phase shift vector ¢, must
vary for different time slots ¢ in order to make ®7,
(@1, ..., ¢,,] full-rank. However, if we change ¢;, the effec-
tive channel f; = H, ¢, changes as well. A pilot signal is
sent in the first time slot, and the BS can only estimate the
effective channel f;. With an estimate of f;, the BS cannot
guarantee correct detection of data symbols in subsequent time
slots 2 , 11 since the effective channels in these time slots
are different from f; due to the change in ¢,. For the effective
channel to remain unchanged, the phase shift vector ¢, must
be time-invariant, but in this case the matrix ®7, would be
rank-1, which prevents recovery of the cascaded channel H ;.
This is unlike the proposed DD channel estimation framework
presented above where the data symbols can be accurately
recovered by the RIS even when the phase shift vector of the
RIS changes in time.

BS
Yi

V. SPECTRAL EFFICIENCY ANALYSIS

In this section, we perform a spectral efficiency analysis for
both the PD and DD approaches. We consider an RIS-aided
system where the BS has one antenna serving one user without
a direct channel. We assume D-PSK data signalling, i.e., s €
S = {exp (]ﬂQegl)} for £ € {0, ..., D — 1} with the Gray
code mapping data bits to data symbols. We also assume that
the data symbols are equally likely. Let a; = h;g; be the
cascaded channel where g; and h; are the channels from the
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user and the BS to the i-th element of the RIS, respectively.
It is assumed that g; ~ CN(0,07) and h; ~ CN(0,0}) are
independent of each other. Let a = [a1, ..., ax]? so that the
received signal at the BS can be written as

Y = \/ﬁaHgbs + nbS.

Let & = a + € be the estimated cascaded channel where € =
[€1, ..., en]T is the channel estimation error. Given the &, the
RIS coefficients ¢ in the data transmission phase are chosen
to maximize the effective channel strength, i.e.,

21

ma){ijﬁrflize |af p|? subject to || <1Vi=1,..., N,

which has the optimal solution
¢y = el <0, (22)

The received signal at the BS in the data transmission phase
will then be

N N

yBS = \/}?Z arejé(aﬂrﬁ)s + kS = \/ﬁz zis +nB
i=1 1=1

(23)

A id(aite
where z; = a}e/“(@+€) Thus we have

|ai]* + R{aie}}

A
zig = R{z} = )
S S T
A S{aiei }

zig = Sz} =

V0ail? +2R{aze} + e

A. Pilot-Directed
For the pilot-directed method, the SE is given as [48], [49]

Te — T,
SEpD - P

(1 — BERpp) log, (D), (24)

Tec
where 7. and 7, are the lengths of the coherence block and the
pilot sequence, respectively. In the PD approach, the first N
time slots are used for channel estimation (i.e., 7, = N), and
we assume without loss of generality that the pilot signal is an
all-ones vector. Assuming a DFT matrix of size IV is used to
configure the RIS phase shifts during the channel estimation

phase, we have that ¢; ~ CN(0, g—i) The CSI errors {e; }
are also i.i.d.. and uncorrelated with a;. We will compute the
PD bit error rate BERpp, which requires the distribution of
the effective channel f = SV | z;.

We first obtain the following approximate means
E[z ] (i) E[|az|2] + %{E[azef]}
iR~
VE[|ail] + 2R{E[a;€e;]} + Ef[e;]?]

1>

Pz %

B (25)

g S{Elase;])
VElaiP] + 2R{Elase]]} + EliP)
(26)

where the approximations (a) in (25) and (c) in (26) are
obtained by applying a first-order Taylor expansion around the
means E[|a;|?], E[|¢;|?], and E[a;€}]. Similar approximations
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were also used in [50].
in (26) hold since E[a;€]]
= [|la;|?] and o2 £

The results (b) in (25) and (d)

= 0. Note here that we denote
U(l €
the following variances

E[|e;|?]. Similarly, we can obtain

4, .22
(o, + o050

02, £ Varlziz] = E[z5] - Elzin]* ~ 3007 + 02) (27)

o2, 2 Varfsa] = Bfeho) — Elaialf = 5 00 (29
where 07 = o707 and we have used the following results:
Elain] = E[(hingin — hisgis)’] = %0%03 = %oﬁ,
Ela} ] = E[(hingin — hisgis)'] = gaﬁas = gai.

: 2
It can be seen that the means and variances fiz, 5, [z, o> 0%, ;>

and Jgi N above are the same for different indices 7. Therefore,
for convenience in the rest of the PD-SE analysis, we drop the
index 7 for these values.

Since the {a;} and {¢;} are i.i.d., then the {z;} are also
ii.d.. Using the central-limit theorem, for large N we have
fr=N zim ~ N(Nptry, No2) and fo = 3N | zig ~
N(Np.y,NoZ2,). Note that we have Cov|[fx, f3] = 0 since
the {z;} are ii.d, and Cov|[z; %, z;,5] = 0.

Let § = ys* = V/Pf+1 be the rotated received signal, and
define r; = /% + ¢4 and 05 = £L(y) = arctan(Js/gn).
Then the joint pdf of r; and 65 is given as
p(ry, 05)

Ty

" 21 /(PNoZ, + No/2)(PNoZ, + No/2)
(rgsinf;)?
P_]\/YO'E(3 +N(]/2 '

X exp {_; (rg cos b — \/?N.uzge)Q
(29)

PNo g% + N, 0 / 2
Since the data symbols are equally likely, to compute the
BER, we can assume that any one of the data symbols was
transmitted, and we choose S(0). The probability that the
detected symbol is S(¢) given S(0) was transmitted is

PP EPE=8(0) | s =5(0)]

%) (204w

D
- A oy P90 05)d05dry. (30)

D

Thus, the BER is given as
1 D
BERe = {002 (D) pPDebi Oa‘e ) (31)
» log,(D) ;::1 v evit (0, £)

where ep;;(0,¢) is the number of bit differences between
symbols S(0) and S(¢).
Theorem 1: At high SNR, BERpp can be approximated as

BERpp

N 2 7V PNo,tan 6
logy(D) 4\/(PN (1- 7{—2) o2+ 20 tan? 0 + 2o
(32)
Proof: See Appendix A. g
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B. Decision-Directed

The SE of the decision-directed approach is given as

1 - BE 1 - BE
SEpp = (Td’l( RDDl) * Td’2( RDD2)> Ing(D)

Tec
(33)

where 74,1 and BERpp; are the data transmission length and
the BER in the channel estimation stage. Similarly, 740 and
BERpps are the data transmission length and the BER in the
data transmission stage. Thus, for the DD spectral analysis
analysis, we need to compute BERpp; and BERpp2 to obtain
SEpp. While BERpp; is simple to obtain and can be computed
exactly, obtaining an exact value BERpp2 is much more
challenging and thus we provide an accurate approximation.
To simplify the analysis, we assume the RIS has only one
active receiver element, which we take to be element V.
We further assume that this element completely absorbs the
incoming signal power during the channel estimation stage and
is then turned off in the data transmission stage. In the first
time slot, a pilot signal s; = 1 is transmitted to generate the

following received signal at the RIS: 45 = /Pgy + nPS,

and so an estimate of g, can be obtained as jy = y*5 /P =
gN + Pnﬁ‘ls From the second time slot to the (N — 1)-th
time slot, data symbols are transmitted and the received signal
at the RIS is 4?5 = /Pgns; +nMS, t =2,..., N — 1.
An equalizer based on gy is used by the RIS to detect the
symbols as

RIS RIS
Go= 2 = \FgNstJF" t=2 ..., N—-1 (34
VPix  VPyx i
To evaluate the BER of (34), we consider the rotated signal
~RIS
5 = g = VPN F AT (35)
\/>gN + ny

Since the error rates are the same for different time indices ¢,
we drop the subscript ¢ for convenience. Let r5 = /55 + 53
and 05 = arctan(Sg/Sx), whose joint pdf can be obtained as
follows [51]:

2 4 -2
rs(o? gus — P2og) (1412 2PO’§T§ cos Oy
p(T§7 95) = 3 ) - 1 ;
o RIS Uynls UyRIS

where aym = Po; + N§™. The probability that the detected
symbol 1s S(¢) glven that S(0) was transmitted is

(20417
D

oo
/0 /M p(rs, 05)d0sdrs.
D

DD1
by =

(36)
Similar to (31), we can compute BERpp; using p°! in (36).

Next we compute BERpps. Let§ = [1, 8o, .. sN_l]T be
the detected data symbol vector forwarded to the BS by the
RIS, where §; = arg min, g |s— 5|%. Let ® = V y_; be the
phase shift matrix of the RIS during the channel estimation
stage. The BS uses § to obtain an estimate of the cascaded
channel as follows:

1
ai = a’ ® diag (s) diag (é})_li’fi + 0y

f= (37)
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(38)

1
— NaH‘I> diag (€)®;". + 7]

"
€

where & = [¢1, ..., En_1]T with & = 1—5,8;. Note that £; =
0 since s; = 1 is a known pilot signal. The noise terms 7} =
mnT diag (§)71<I>f: are i.i.d. for different indices ¢ and
the channel estimation error term is €] = ¢; 4+ n; where
§* =
‘" 1-N
From (39), it can be seen that the channel estimation error
depends on the data symbols detected at the RIS.

Our DD-SE analysis will rely on the results in Lemma 1
presented next.

af’ @ diag (&) @/ (39)

Lemma 1: Let [i¢ 2 E[&], pigp

efj ) and s &
E[({t)Q], then we have

L
2rd
e =1— DDl —l—p?1 -2 png cos (;) , (40)
d=1
M§2 — 1 _png +3 D[];)l
4rd 2wd
2 ppt -2 — 41
o g o () 2o ()] o
L1
27d
gz = 4Bt +4 Z Pl {1 — cos <,§)] . (42)
d=1
Proof: See Appendix B. ]

To obtain the BERpp2, we will compute the means and
variances of the real and imaginary parts of the effective

channel f = vallzl during the data transm1ss1on stage,

which are fip, = E[ﬁ}g] and g g, 2 E[fs]. of% = Var[ng]
and o7, 2 Var|fs].

1) Computing the Means |ip, and py.: Since py, =
Zf\:l Py and ppy = Zi\;—lluziyg, we need to compute
Hz; o and p, . Similar to (25) and (26), we use a first-order
Taylor expansion to obtain an approximation of ., , and

Mz o @S follows:
E[|a;|? R{E|a;er
,Uzi% ~ |:|G/ ‘ ] + { [a’ 67,]} , (43)
U VE[aiP] + 2R{E[ai€; ]} + Efle;[?]
Cx Lok
Pz g = SHPlac)) (44)
° VE[aPT + 2R{Efaef ]} + Bl ]
Since
1 N—1
Elai]] = Elaid}] = 7= E| Y @i} @, ding (€) /"
n=1
(@ 1 128 . A H
=1 —NEUCM ®; . diag (E)(I)z}
o2 N 2 ,
TI1-N t:Z2 E[gt] _N Oa e (45)

we have E[R{a;e}}] = ¥=202p¢ and E[S{a;e;}] = 0. The
equality (a) in (45) holds because E[a;a’] = 0 for all i # n.
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Substituting E[R{a;e;}] = 2024, and E[S{a;e;}]
0 into (43) and (44) gives us the mean of z; % and z; g as
follows:

(40)

and pi., 4 =0,

A A .
where 02 = E[|a|?] and o = E[|el|2} = 03 +02 . To obtain
o, we need to find 0§ and o7 , which represent the variance

of 6 and n;, respectively. The variances ag and a~_ are given

as follows:
2
02 = ( N(’j o (E [diag (©)@1D,, diag (5*)])
]E |§t 7%#\5\2
t=2 -1
and 03 = P(xss rj- Hence, the variance of e is
P(N —2)02 NBS
o2 = PN = 20attige + N5 @7)
P(N-1)
2) Compute the Variances aff and of The variance of
fr and fg are
N—1
O’J%R = Z Var[z; »] + 2 Z Cov[zi g, ze,1),  (48)
i=1 i<t
N—1
= Z Var[z; ¢] + 2 Z Cov[z s, 21,5 (49)
i=1 i<t

Since Var[z; z] = E[2] 3] —E[z; »]* and Var[z; 5] = E[2} 4] -
E[z; 5], and since E[z; »] and E[z; 5] are already given
in (46), we now need to obtain E[27y] and E[2]]. Similar
to (25) and (26), we use a first-order Taylor expansion to obtain
an approximation of E[ z; 2] and E[2; c\] as follows:

E[la:|? ]+2§R{E[az ]}+E[Iez\ } ’
(50)

E[S{ai;}’]
Eflail?] + 2R{E[a;e;]} + Efle;|?]

The first term in the numerator of (50) is E[|a;|*] =
403. The second term in the numerator of (50) can be

obtained by computing E [|a;|a;€]] since E[|a;[*R{a;e}}] =
R{E[|a;|*a;e;]}. We have
E[|ai\2aiei] = E[|al|2a151}
1 N-1

2 * . H
T E nz::l |lail*aia, @, . diag (§) ;.

(@)

(S

1-N
N—-1
40 ZE
t=2

which is a real number,
N-—2

E[|ai‘4q)i . diag (5)‘1’5{]

—2
~lodue, (52)

and so

EUCMP%{%EZ‘}] =

= N4aau5 The equality (a) in (52) holds because
E[la;|?a;a}] = 0 for all i # n.
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We exploit the following relations:
laier |* = R{aie; }? + S{ael}?, (53)
R{(aie)?} = R{aie]}* = Saie]}?, (54)

to obtain E [%{aie;‘ IS ] (the last term in the numerator of (50))
and E[S{a;e;}?] (the numerator term of (51)) as follows:

B[] = CLed Lt ?EKM)Q] e
a;er|?] — a;er)?

To retrieve E[R{a;e;}?] and E[S{a;e}}?] in (55) and (56),
we need to find E[|a;e;[*] and E[(a;ef)?]. The term
E[|aie;[?] is given by

Ellaie; ] = E[laid; ] + E[|ain;|?]
2 n7BS
_ 5|2 UaNO
= E[|a;0}|’] +7P(N71) (57
where
]E{ a;al ® diag (&) 2}
B (N —1)2
E {tr {|ai|2<}HaaH<I> diag (@fi)ggff diag (@,:)H
- (N =12
o {@ diag ()@ diag (@] ) Regn ding (@;..) }
- (N =17
N-2
© e 1)203 (N +2)pyg2 + 3(N = 3)peg) - (58)

The equality (a) in (58) is obtained by defining Rgen =
E[¢€"] and letting ; be a vector whose ith-element is
40} and whose other elements are 2. The equality (b) in (58)
is obtained by simply calculating the trace in the equality
(a) by noting that the diagonal elements of Rgen are fu¢2
and the off-diagonal elements are approximately .

The term E[(a;€;)?] is given by

E[(aiej)ﬂ = E[(aiéf)ﬂ

E {(aiqu) diag (g)@ﬁ{ﬂ

(N —1)?
E {tr {a? diag (<I>Z:)<I>Ta*aH‘I> diag (<I>1H)££TH
(N —1)?
(@) T {403 diag (®; ) &7 diag (e;)® diag ('I>ZH) Reer }
(N —1)?
© _N-2 o (pe2 + (N — 3)u§).

S ot

(59)

Similar to (58), the equality (a) in (59) is obtained by
defining Rger = E[f&T] and letting e; be a one-hot vector
whose ith-element is 1 and whose other elements are zero.
The equality (b) in (59) is obtained by simply calculating
the trace in the equality (a) by noting that the diagonal
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elements of Rgen are jig2 and the off-diagonal elements are
approximately /7.

We now need to compute the covariances Cov[z; », 2t 3]
and Cov|z; g, 2¢ 5], which are given by

Cov(zin, zt,1) = Elzi 2z v] — El2zi w|E[2e %]

Cov(zis, 2t,5] = Elzi,52t,5] — El2i, s]E[21,5]-

Since E[z; »| and E[z; 5] have been computed earlier, we need
to find E[z; w2 x| and E[z; 52 ] which can be approximated
as follows:
E[(la:* + R{aie;})(lae]* + R{arei})]
E[5 4]
- E[S{aie] }S{aer }]
E[%i,t]

where ¢ ; is given in (60), as shown at the bottom of the
page. The expansion of s; ; also includes the numerator terms
in (61) and (62), thus to obtain E[z; nz; »| and E[z; 52 5],
it suffices to compute the expectation of all the terms in (60),
which are given in detail in Appendix B.

Finally, we approximate the distribution of fi and fg as
Gaussian with the above approximate means and variances,

and so BERpps can be obtained in the same manner as
in (29) — (31).

Elzi nze,n] ~ , (61)

; (62)

VI. NUMERICAL RESULTS
In this section, we present various numerical results to verify
our SE analysis and to show the benefits of the proposed
DD channel estimation framework. We use a general channel

model with hg \/ B Pha . gk \/ng, H =

V/BRBH where hy, ~ CN(0,2V®), g, ~ CN(0, TR,
and H = (X®)/2H(X™)1/2. In our simulations, we employ
the simple exponential spatial correlation model [52]; more
general correlation models can be found in [53]. The elements
of H are ii.d. and normally distributed as CA(0,1). The
large-scale fading coefficients are B2 = Bo(d}® /do)*O‘UB,

UR — Bo(dVR /do) =", BRB = By(dRB/do) " where
aB, aUR oRB are the respective path loss exponents, and
dUB dUR dRB
koo Gk

are the respective distances between user-k
and the BS, user-£ and the RIS, and the RIS and BS. We set
5o —20 dB as the path loss at the reference distance
dyp = 1m, B = 5, "R = oRB = 2.2, and the coherence
block length at 7. = 500 symbols. If not specifically stated, the
noise power is set to —169 dBm/Hz and a bandwidth of 1 MHz
is assumed. The number of elements with active receivers at
the RIS is taken to be equal to the number of users, and the
sensing elements are assumed to be uniformly distributed over
the surface.*

4Given a number of sensing elements much less than the total number of
the surface elements, it would be interesting topic for future work to find an
optimal strategy for distributing the sensing elements based for example on
the distribution of the channel.
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Fig. 4. SE comparison with K = M =1, N varies, and P = 5 dBm.

It is important to note that when there is only one user, the
proposed hybrid PD channel estimation approach coincides
with the passive PD approach in [38] because only phase 1 is
required for the channel estimation and we should set p/* = 1.
Therefore, in case of K = 1, the PD performance presented in
this section represents both the proposed hybrid PD approach
and the passive one in [38]. However, for the case of multiple
users, phase 2 of the two approaches is different and will lead
to different performance as will be shown later.

First, we numerically validate our derived analytical SE
expressions in Figs. 3 and 4. Here, we set both the user-RIS
and RIS-BS distances to 100 m. In Fig. 3, the SE is evaluated
for 50 RIS elements versus the transmit power for the cases
of 8-PSK and 16-PSK modulation. It is observed that when
the transmit power is low, i.e., at low signal-to-noise ratios
(SNR), the SE of the PD approach is higher than for DD, but
the situation reverses as the SNR grows. This is because the
channel estimation performance of the DD approach strongly
depends on the data detection performance at the RIS; at
higher SNRs the data symbols detected by the RIS are more
reliable and this results in better channel estimation and higher
spectral efficiency. There is a critical SNR point at which the

stip = lail*lac]® + 2|ai*Race;} + |ail*|ee]” + 2lar*R{ase;} + AR{ase] 1 R{arer}

+2R{aie] Hee® + [eillac® + 2l PR{arer } + [eil *ler|*.

(60)
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Fig. 6.  Coded BER performance with P = 10 dBm, K = 1, M = 8§,
N = 50, and 16-PSK signalling.

DD approach begins to perform better than PD, which in this
scenario is about 4-dBm and 8-dBm for 8-PSK and 16-PSK,
respectively. It can also be seen from Fig. 3 that our analytical
SE approximations match well with the numerical results and
accurately predict the performance crossover point. Thus the
analytical SE can be used in the system design to determine
the crossing point and decide whether the PD or DD approach
should be used.

We evaluate the SE of the PD and DD approaches as the
number of RIS elements N increases in Fig. 4, where the
transmit power is fixed at 5-dBm. It is interesting to observe
that increasing the number of RIS elements can actually lead
to a reduction in SE for the PD framework, since the pilot
overhead of the PD approach grows proportionally with N
leading to a reduction in the number of time slots available
for data transmission. On the other hand, the pilot overhead
of the DD framework does not depend on the number of RIS
elements, and thus the DD approach does not suffer from SE
reduction as N increases. Again, our analysis accurately pre-
dicts the performance crossover point, which is an important
factor for the system design.

In Figs. 5, 6, and 7 we also consider a single user scenario
but the BS is equipped with multiple antennas. After the
channel estimation stage, the phase shift vector ¢ of the RIS is
optimized to maximize the effective channel strength ||hg 1 +
A, 9|, which is solved by semi-definite relaxation (SDR).
Fig. 5 shows the channel estimation, bit error rate (BER),
and spectral efficiency performance for M = 8, N = 50,
p = 0.5, and 16-PSK signalling with different noise power

tx power P (dBm)

(b) BER

10 14 18 22 26 30 -10 -6 -2 2 6 10 14 18 22 26 30

tx power P (dBm)

(c) Spectral efficiency

Performance comparison for K =1, M =8, N = 50, p;.“ = 0.5, and 16-PSK.

levels and user transmit powers. The normalized mean-squared
error (NMSE) is computed as E[|[Hc,; — He 1|2 /[|He,1]|2].
The results in Fig. 5a show that the PD method achieves a
better channel estimate and BER than DD, but this gain is
offset by the increased training overhead for either higher
transmit power or a lower noise figure when the DD method
can reliably decode the data at the RIS.

In Fig. 6 we present a BER comparison between the PD and
DD approaches considering both uncoded and coded systems
for different noise levels at the sensing RIS. The coded system
employs a rate 1/2 convolutional code. It can be seen that as
the noise power at the sensing RIS decreases, the DD coded
BER is significantly improved compared to the DD uncoded
BER. They are also both slightly lower than the BER of the
PD method since the data detected by the sensing RIS is more
reliable in this noise regime.

Fig. 7 illustrates that there is a trade-off in the choice of
the fraction of the incident power p;“ that is reflected by the
RIS elements with active receivers. A larger pf‘ means more
signal power is reflected and less is sensed by the RIS. When
the amount of signal power sensed by the RIS is too small, the
noise at the RIS may dominate the received signal and cause
data detection errors, which in turn leads to lower channel
estimation accuracy and SE. One the other hand, if the amount
of signal power sensed by the RIS is large so as to efficiently
recover the data symbols at the RIS, the signals reflected from
the RIS to the BS will be weaker, which can lead to less
accurate channel estimation at the BS and a reduction in SE as
well. The trade-off is not too serious to handle for small noise
levels, but becomes more important as the SNR decreases.
For the cases considered in this example, a relatively small
value such as p;“ = 0.2 appears to provide the best system
performance.

To study the case of multiple users, we position the RIS and
BS at the locations (x,y) = (50,50) and (z,y) = (100,0),
respectively, and we locate the users randomly within a square
whose side length is 20m and is centered at the origin.
Simulation results for a scenario with K = 4, M = 8,
N = 200, p/* = 0.5, and 16-PSK signalling are given in
Fig. 8. In the sub-phase 2b, we employ the conventional
zero-forcing (ZF) detector for recovering data symbols at
the RIS. To configure the RIS phase shift after the channel
estimation stage, we find the ¢ that maximizes the minimum
signal-to-interference plus noise ratio (SINR) using the SDR
approach as in [54]. An SE comparison is given in Fig. 8a
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Fig. 8. Performance comparison with K = 4, M = 8, N = 200, pi = 0.5,
and 16-PSK.

and the corresponding BER and NMSE performance is given
in Figs. 8b and 8c, respectively. It is seen from Fig. 8a that
the SE of the DD method is much higher than that for PD
because data is also sent in the channel estimation stage of
the DD method while only pilot signals are used in the PD
approaches.

It is also observed in Fig. 8a that the SE of the typical user
is much higher than that of the other users since the typical
user has more data transmission slots, as can be seen from the
illustration in Fig. 2. This creates a fairness issue that can be
addressed in a number of ways. For example, the solid curves
show the result obtained by rotating the role of the typical
user among all the users over different coherence blocks, e.g.,
user k =b— K|(b—1)/K| is assigned to be the typical user

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 10, OCTOBER 2024

- —% - PD [39] fairness
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Spectral efficiency (b/s/Hz)
S8
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Fig. 9. Spectral efficiency comparison versus number of sensing elements
N with K =4, M =4, N = 200, pg“ = 0.5, 16-PSK signalling, transmit
power P = 30 dBm.

in coherence block b for b = 1,2,.... In this approach, the
average SE of all the users will be the same and is given as

_ SEgyp + (K — 1)SEon
- K

where SE¢air, SE¢yp, and SE1, denote the “fair” SE, the SE of
the typical, and the SE of the other users, respectively. The SE

of the typical and other users SE¢y, and SE1, are computed
as

SEfair (63)

SEy = -<—"%U (1 — BERy) log,(D),

Tc

(64)

where U € {typ,oth}, 7,y is the training overhead of
the corresponding user, and BERy is obtained numerically.
We see from Fig. 8 that an improvement compared with
the unbalanced case is obtained. In particular, the fair DD
approach yields approximately a 60% improvement in SE
performance compared to the PD approaches. In terms of BER,
the performance of the proposed PD and DD approaches is
better than that of the passive PD in [38]. This is because
the DD method obtains reliable data detection at the sensing
RIS. In addition, the channel estimate of the proposed PD
and DD methods is also observed to be more accurate than
the passive PD approach in [38] as can be seen in Fig. 8c
since in phase 2 of the proposed hybrid PD and DD methods,
the channels associated with the RIS sensing elements are
estimated directly at the RIS. Note that the fair BER and
NMSE in Figs. 8b and 8c are computed in a manner similar
to (63).

Finally, we study the effect of the number of sensing ele-
ments N 4 on the spectral efficiency in Fig. 9. The noise power
at the RIS is set to —120 dBm/Hz and the transmit power P
is 30 dBm. Interestingly, increasing the number of sensing
elements /N4 only slightly improves the spectral efficiency of
the DD approach, indicating that very few sensing elements
at the RIS are necessary to achieve the benefit of decision
direction. The SE improves more with increasing N 4 for the
proposed hybrid PD approach, since unlike the passive PD
algorithm in [38], increasing N 4 results in a reduction in the
pilot overhead of the hybrid PD approach.
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VII. CONCLUSION

In this paper, we have proposed a decision-directed channel
estimation framework for general unstructured RIS channel
models. It has been shown that with the help of some RIS
elements with active receivers, it is possible to accurately
estimate the CSI with a pilot overhead only proportional to the
number of users and thus significantly improve the spectral
efficiency compared to systems with passive RIS arrays.
We also performed an intensive spectral efficiency analysis
to verify the efficiency of the proposed DD framework. Our
analysis takes into account both the channel estimation and
data detection errors at both the RIS and the BS, and thus
accurately reflects the data detection uncertainty inherent in
the decision directed approach.

APPENDIX A
PROOF OF THEOREM 1

The symbol error rate (SER) can be approximated as
SER ~ P[jx tand — js < 0] + P[gn tan 6 + s < 0] (65)
where gnptanf — jg = 0 and gptand + yg = 0 define

the rotated decision boundaries. We have (yy tanf — gg) ~
N (ji,5%) and (jg tan 6 + §g) ~ N (ji,52) where

= \/?N,um tan 6,

5% = (PNUER

Therefore,
P[jn tan  — g < 0]
= Plggn tan 0 + g5 < 0]

]\27 >tan 0+PNJZN +%.

PNy, tan6
-Q VPNt tan . (66)
V(PNG2, + 3 )tan® 0 + PNo?2, + %
which means the SER can be approximated as
PNy, tan6
SER ~ 20 VPN jizy tam
\/(PNUE% + 20) tan? 0 + PNo2_ + 2o
(67)
At high SNRs, € is small, and we have
™
pan = Elzigp] ~ Eflail] = E[[hi||Ellg:il] = J o0, (68)
02, = Varlzig] = Elz]g] — [E[zin]]”
2
~ E[|a;|*] — E|a; 1—— o2 69
ool - Ellil? = (1- T ) 2 (©9)

Substituting (68) and (69) into (67) and using the result that
BER ~ SER/log,(D) for a Gray code at high SNRs gives
us the approximated BER in (32).

APPENDIX B
PROOF OF LEMMA 1
We have
E[&] =1 - E[s;5;], (70)
E[&7] =1 - 2E[s;57] + E[(5:87)°]. (71)
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Thus, to obtain E[¢;] and E[£7], we need to compute E[s,;3;]
and E[(s;8;)?], which are given as follows:

Stst Z pDDls
,,1 d
= poP! DD1+2 Zpgmcm( ) (72)
D—-1
E[(s:37)%] = > o (S(0)S(d)")?
d=0

L
4md
= piP! +p[§1 +2 dzl PPt cos (D) . (T3

Substituting (72) and (73) into (70) and (71), we obtain fi¢
and ,u§2 as in (40) and (41), respectively. The expectation of
|§t| is given as

E[l6f] = [l — s*] =
L1

: 2rd
=P 44y {1 — cos (g)} PP (74)
d=1

Note that in (72), (73), and (74) we have used the following
results: poPt = pZTD, S(0)S(d)* = S(0)S(d + D/2)* =

cos(4wd/D), and |S(d) — S(0)|° = |S(d + D/2) — S(0)* =
4(1 — cos (2nd/D)) ford =1, ..., D/2 — 1.
APPENDIX C

CALCULATION OF THE TERMS IN (60)

First, we have E[|a;|?|a¢|?] = 0. Using the same approach
as in (52), we obtain

E[|at|2aief] =

. -2
E[la;*acef] = = Nagug. (75)

The two terms E[|a;e;|?] and E[|a;e;]?] are equal and given
by
= ]E[|a,(5t|2} + EUGZ’FL”Q}

o2 NEs
= Blled]+ piy2yy -

E[|aiet|2]
(76)

where

]E[\aiét|2]

al
(N—1)2
E [tr {|ai|2'1>HaaH¢' diag (@{ﬁ)ggH diag (‘I’t*)H
(N —1)
tr {@H diag (a;)® diag (@{ﬁ)RgH diag (@,;)}
(N —1)2 '

72
a;a’’ @ diag (é)q’t,:‘ }

(77)
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The term E[a;efa.e;] is given as follows:
Elase; aref] = Elasa:07 6f]

E {aiataHQ diag (¢)®" a & diag (5)<I>{ﬂ
(N —=1)?

E [tr {@Taiata*qu) diag (£)® &7, diag (€) H

(N —1)?

tr { @75 diag (@) Reer diag (@7 |

(N —1)? ’

(78)

where ¥ is a matrix with 3;, = 3;; = 03 and zeroes
elsewhere. The term E[a;¢}a;¢,] is obtained as follows:

Ela€; ay et
= E[a;a; 0] 6]

E {aia:aH@ diag (£)®/ a7 ®" diag (g*)rsz;}

(N —=1)?
E [tr {@Haia;‘aaHi’ diag (£)‘I>ZH’:<I>25’: diag (¢%) H
(N —1)
tr {<I>H9<I> diag (@ﬁ)R&H diag (@t,:)}
(N —1)? ’

(79)

where €2 is a matrix with Q,; = 03, and zeroes elsewhere.
Note that we have used the same technique in (58) for
deriving (77) and the same technique in (59) for deriving (78)
and (79).

The two terms E[a;€] ;%] and E[a;€} |e;|?] are also equal
and given by

E[asel|er]?] = E[a:0716:]%] + E[a;67 |7 |2]

~ ¥~ 121 (N_z)N(]JBS 2
~ E[atél |7Lt| ] = —maa/jg. (80)
Finally, the term E[|¢;|?[€;|?] is approximated as
E[leil*|e:|’]
R[] + 261 + E [J )
~ 2B (05271 ?] + B [|72][72¢|?]
2(N —2)NG® , (IVG*)?
= —_ . 81
P(N —1)? Ua”\§\2+p2(N_1)2 (81)

The quantities E[a;07[6,] in (80) and E[|6;]?|6,[%] in (81)
are ignored in our approximation since they make a negligible
contribution to the result.
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