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WMMSE-Based Rate Maximization for
RIS-Assisted MU-MIMO Systems

Hyuckjin Choi™, Member, IEEE, A. Lee Swindlehurst

Abstract— Reconfigurable intelligent surface (RIS) technology,
given its ability to favorably modify wireless communication
environments, will play a pivotal role in the evolution of future
communication systems. This paper proposes rate maximization
techniques for both single-user and multiuser MIMO systems,
based on the well-known weighted minimum mean square
error (WMMSE) criterion. Using a suitable weight matrix, the
WMMSE algorithm tackles an equivalent weighted mean square
error (WMSE) minimization problem to achieve the sum-rate
maximization. By considering a more practical RIS system model
that employs a tensor-based representation enforced by the
electromagnetic behavior exhibited by the RIS panel, we detail
both the sum-rate maximizing and WMSE minimizing strategies
for RIS phase shift optimization by deriving the closed-form
gradient of the sum-rate and the WMSE with respect to the
RIS phase shift vector. Our simulations reveal that the proposed
rate maximization technique, rooted in the WMMSE algorithm,
exhibits superior performance when compared to other bench-
marks.

Index Terms— RIS, MU-MIMO, SU-MIMO, WMMSE, rate
maximization.

I. INTRODUCTION

HE main objective of fifth and sixth generation (5G/6G)
communication systems is to provide large signal band-
widths by targeting high-frequency carriers [1], [2], [3], [4],
[5]. However, high-frequency channels, with their strong line-
of-sight (LoS) characteristics, face the issue of blockages [6].
This may necessitate the deployment of reconfigurable intel-
ligent surfaces (RISs) that can offer cost-effective and
energy-efficient solutions to enhance coverage [7], [8], [9].
An RIS, composed of a large number of passive elements,
can adjust the direction of reflected signals and illuminate
shadowed areas with low power consumption.
A multitude of RIS communication techniques, e.g. channel
estimation, joint beamforming, and localization, are currently
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under extensive development [10], [11], [12], [13], [14], [15],
[16], [17], [18]. In particular, joint beamforming methods
that simultaneously optimize the base station (BS) precoder
and the RIS phase shifts have been devised [13], [14], [15],
[16], [17], [19], [20], [21], [22], [23], [24], [25]. Within
the context of RIS-assisted communication systems, however,
primary attention has been given to multiple-input single-
output (MISO) systems in which the user terminals have only
one antenna. For the MISO case, the receive (Rx) signal power
can be converted into a quadratic form relative to the RIS
phase shifts [13], rendering problems more tractable. However,
systems in which the users possess multiple Rx antennas
present more significant challenges.

In rate maximization problems, the achievable rate for
multiple-input multiple-output (MIMO) systems cannot be
expressed in a quadratic form with respect to the RIS
phase shift. Consequently, several heuristic techniques have
been proposed, including steering the RIS with incidence
and reflection angles [26], the sum-path-gain-maximization
(SPGM)-based algorithm [27], and the iterative distance mini-
mization (IDM) algorithm [28]. While the RIS phase shifts
are typically optimized iteratively, a stationary point can
be evaluated element-wise for the rate maximization prob-
lem [16], [17]. Machine learning (ML) approaches have also
been exploited to optimize RIS systems [29], [30], [31], [32].

The weighted minimum mean square error (WMMSE)
algorithm is another rate maximization technique used for the
RIS-assisted multiuser MIMO (MU-MIMO) systems, whose
goal is to design the transmit (Tx) beamformer to minimize
the weighted mean squared error (WMSE), which is equivalent
to maximizing the sum-rate for a particular choice of the
weight matrix. In the joint Tx beamformer and RIS phase shift
optimization, the WMMSE-based majorization-minimizaiton
(MM) method was used to update the RIS phase shifts in [22]
and [23]. The stationary points of the WMSE were exploited
for the RIS phase adjustment by ignoring the unit-modulus
constraint in [24] or considering an upper bound on the
WMMSE in [25]. These approaches however do not provide
an optimal solution for the rate maximization problem since,
unlike the Tx beamformer design, minimizing the WMSE does
not necessarily maximize the sum-rate when it comes to the
RIS phase shift optimization.

To achieve better sum-rate performance for MU-MIMO
systems, in this paper we propose a sum-rate maximization
technique. While using the WMMSE beamformer at the BS,
the proposed RIS optimization method relies on the gradient of
the sum-rate rather than the WMSE. Unlike using the WMSE
stationary points in [24] and [25], setting the gradient of the
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sum-rate to zero in the proposed method always guarantees
an increase in the sum-rate. Although finding the sum-rate
stationary point poses a challenge, we tackle this problem by
the gradient descent algorithm. It will be shown in Section V
that the proposed method gives the best performance.

Another contribution of our work is that we develop our
technique based on a generalized RIS system model that can be
articulated through a tensor representation. Conventional RIS
system models fall short in accommodating high-rank channels
with respect to a single RIS element. In contrast, the tensor
expression can deal with RIS channels whose rank is greater
than one, a plausible scenario provided by an examination
of RIS operational characteristics [33]. For the tensor-based
channel model, previous WMSE minimization techniques [23],
[24] cannot be directly applied. Thus, in addition to the
sum-rate maximization technique, we derive the best WMSE
minimization technique for the tensor-based channel model.
Moreover, as an example of an ML-based approach, we imple-
ment a convolutional neural network (CNN)-based algorithm
for our scenario of interest. The contributions of this paper are
summarized as follows:

1) A generalized tensor-based RIS system model is pro-
posed, and techniques for finding the optimal RIS
configuration are developed within the generalized sys-
tem model.

2) The gradient of the sum-rate with respect to the RIS
phase shift vector is derived for the tensor-based RIS
system model.

3) The WMSE minimization method is derived for the
tensor-based RIS system model.

4) Experimental results are provided to compare the two
WMMSE-based algorithms, one that maximizes the sum
rate and another that minimizes the WMSE, together
with other benchmarks.

The paper is structured as follows. Section II first develops
the generalized tensor-based channel model for RIS-assisted
MU-MIMO systems and defines the sum-rate maximization
problem. Section III provides detailed derivations of the pro-
posed techniques that maximize the sum-rate or minimize the
WMSE based on the WMMSE criterion. We also describe
the CNN-based approach in this section. Section IV derives
techniques for the special case of SU-MIMO systems, and
Section V showcases various experimental results for the rate
maximization techniques for both SU-MIMO and MU-MIMO
systems. Concluding remarks follow in Section VI.

Notation: Lower- and upper-case boldface letters are used
to represent column vectors and matrices, respectively, while
calligraphic upper-case boldface letters are tensors. The conju-
gate, inverse, transpose, and conjugate (Hermitian) transpose
of matrix A are A*, A~!, AT and AH, respectively. The
transpose of the matrix inverse A~! is A~". The determinant
and trace of matrix A are denoted as det(A) and tr(A).
The diagonal matrix whose diagonal elements are formed by
the vector a is denoted as diag{a}. The N x N identity
matrix is represented as Iy. The symbol ® represents the
Kronecker product. The notation Unif.[z,, z;] indicates that a
random variable X is uniformly distributed in z, < X < 3.
The complex multivariate Gaussian distribution for a vector
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Fig. 1. System model considered in this paper. The BS has M antennas, the
RIS has L elements, and K UEs have N antennas each.

whose elements are independent and have identical variance
is written as CN(m, 021y ), with mean vector m € CN*!
and variance o2

Multiplication between a tensor A € CM*NXL and a
matrix B € CN*K ig defined as A x; B € CMxKxL
(in this case, ¢ = 2), where the i-th dimension of tensor
A is combined with the first dimension of matrix B. The
multi-dimensional Hadamard product ®; combines the i-th
dimension of A € CM*N and the first dimension of B €
CN*L a3 A ®; B € CM*NXL (in this case, i = 2), where the
n-th slab of A ®, B is the outer product of the n-th column of
A and the n-th row of B. The dimension shrinkage of tensor
A € CM*1xL g denoted as [A] € CM*L, where dimensions
with size one disappear.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We first provide the system and channel models for the
direct and RIS-assisted channels in Section II-A. We briefly
discuss the scope of this work in Section II-B and define the
problem of interest in Section II-C.

A. System and Channel Models

We focus on a single-cell downlink system with a single
RIS and K users (UEs), as shown in Fig. 1 (a). The BS has
M antennas, each UE has N antennas, and the RIS has L
purely passive elements. We consider a multi-path channel
model for the direct and RIS channels. The direct channel
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Hg x € CM*N for the k-th UE is modeled as
Pa
Hawx = Y wnau (03, 005,)a

Pa=1

N (@, $ip.)s (D

which consists of P, j, channel paths between the BS and the
k-th UE. The path gain in (1) is 7 ,,. As shown in Fig. 1 (b),
azimuth/elevation angles of arrival and azimuth/elevation
angles of departure for the p,-th channel path are given
as 92"; s 9%8;) s f,:ff;a, and gbf’;a, respectively. We assume
that the path gain follows the complex Gaussian distribution
Viepa ~ CN(0, Beu(du,k,p, /dBU rer) ~“*PV72 ), Where dpu k. p,
is the distance of the p,-th channel path from the BS to the
k-th UE, By is the path gain at the reference distance dpuy ret,
and agy p, is the pathloss exponent for the p,-th channel path.
The BS and UE antennas and the RIS elements are assumed
to be configured with a uniform planar array (UPA) structure.
For the BS, the array response vector is defined as

(ehor ever)

[1 eijOb(ehm) sin(0*) 6]2“ (Mpor— 1)CO§(9h“r)bln(9vu)]T
® [1 6JT cos(6™") .. eg 27Td(M\cr 1)005(0"”)] (2)
where A represents the signal wavelength, and d denotes
the antenna spacing, which is assumed to be d = % in

this paper. The number of antennas in the horizontal and
vertical directions are My, and M., respectively, and the
total number of BS antennas is M = M, X Mye. The UPA
vectors ay (6", 0¥°) and ar, (6", §¥*") for the UE and RIS are
similarly defined with N = Npor X Nyer and L = Lpor X Lyer.

Most previous works have relied on the following RIS-
assisted channel model for the k-th UE:

ik = Fr®Gr .k, 3)

where Fr € CM*L defines the BS-to-RIS channel, Gg . €
CL*N is the RIS-to-UE channel, and ® = diag{¢}
diag[¢1 -+ ¢r]T represents the RIS phase shift matrix.
Since the BS-to-RIS channel is shared by all UEs, the BS-
to-RIS channel is not written with the UE index k. We can
also express the conventional model in (3) as

L
Hi, = Z OefR (8R k.0 “4)
=1
where the /-th column of Fy is fi ¢, and the /-th row of Gg i,
is 8 g o-

Since the BS-to-RIS channel fr ¢ and the RIS-to-UE chan-
nel gr ¢ for the k-th UE and the /-th RIS element are the
sum of channel paths, the RIS-assisted channel can be further
expressed as

Pe i
R k= Z Pe (Z fr Z,pb> Z gg‘{,kl,;%

pp=1 pe=1
L P,
E E § fR &PbgR kl,pe | 2 (5)
=1 pr=1p.=1

where B, is the number of channel paths between the BS and
RIS, and P, is the number of channel paths between the
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RIS and k-th UE. However, the conventional channel model
has not taken into account the RIS physical response €2, ,_,
which can vary for each pair of incoming and outgoing channel
paths [33]. With the RIS physical response €2, ., the RIS-
assisted channel is given as

HY' ), = Z¢£ Z Z Uy v fR L8Rt | (©)

pp=1p.=1
where the summations over pb and pc are no longer separable.

By denoting Hg x,r = Z Zp:—kl Qpbypchlypbg;r{,k,é,pc’
the RIS-assisted channel in (4) can be rewritten as

HY', = Z $eHR ke, (7

where the /-th RIS channel HR,;M in (7) is no longer a rank-
one matrix for P, > 1 and P.; > 1, which means that the
conventional model in (3) is not generally applicable. Only
when the RIS physical response €2, . is constant for different
pairs of (py, p.) will the rank of Hg j ¢, equal one.

To provide a more generalized representation, we define an
RIS channel tensor Hg i, whose ¢-th slab Hg . is given
by [Hrx(:,¢,:)] = Hgr ke Using the RIS channel tensor,
we can represent the RIS-assisted channel in (7) as

HY') = [Hrx x2 4] (8)

In cases where the RIS channel Hg j ¢ associated with the
{-th RIS element has rank greater than one, the tensor-based
representation in (8) offers a tractable algebraic formulation.

Without considering the RIS physical response €2, , . the
RIS channel tensor Hy j, for the k-th UE can be expressed as

P,
Mk = (Z Yo 21 (05, 03" E(qs;itqsm))
pr=1

N (@ O

o Z Vepear (0%, . 015, )a

pc=1

)

9

where the path gains -, —and ~j, are distributed as
Vo ~ CN(07ﬁBR(dBR,pb/dBR,ref)_aBRﬁpb) and Vk,pe ~
CN(0, Bru(dru,k,p. /dru rer) ~*#< ). The meanings of these
variables are consistent with the variables explained after (1).

If (9) holds, the /¢-th slab of RIS channel
[Hrk(:,¢,:)] = Hgr ke becomes a rank-one matrix, which
boils down to the conventional model in (3). As mentioned
above, however, the RIS physical response should be modeled
as € 2‘;‘,@“&‘,9""‘ 03 ) as defined' in equations (10)
and (11) of [33], since the RIS reacts differently to signals
with different angles of arrival th"‘ and ¢, and angles
of departure 9h°rc and ), . Given this more general RIS
response, the channel tensor Hg j, is formed as

hor ver phor ver
Hee = Z Z w"i”bvpc Pb’¢Pb’9 k,pc? 0 ,pc)
pb=1pc=1

ISince the exact form of §(@hor, gver, ghor

o Pons O3 e O, ) is complicated,
we omit it and refer to [33].
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X (an (05, 0 )al (5, o))

2 (ar (O, 015, )aN (1., 655.)) » (10)

where the gain of each channel path ~;,, , is dis-
tributed as Vi p, p. ~ CN(0, Br(dBR,p, /dBR rer) 070 +
Bru(dRU & p. / ARU rer) ~*®VPe ). Note that the rank of the (-th
slab of the RIS channel in (10) cannot be greater than P, P 1.

With the RIS channel tensor in (8), the overall channel to
the k-th UE can be formulated as

HkZHd,k-i-H%ffk:Hd,k—i-[[HR,k xo0].  (11)

The Rx signal at the k-th UE can thus be expressed as
yvi = Hi'x + 1y = (Hap, + [Hrr x2 ¢6])"x +ng, (12)

where the Tx signal at the BS is denoted by x, and the noise
at the k-th UE is represented by ny ~ CN(0,021y) with
variance 2. The Tx signal x consists of the data symbols for
all UEs, which can be written as

K K
x=Y x, =) Bidy=Bd,
k=1 k=1

where By, € CM*N and d;, € CN*! are the beamformer and
the data symbols for the k-th UE. The overall beamformer
matrix and symbol vector are given as B = [B; --- Bg]
and d = [d] --- d%]". The data symbols are assumed to be
uncorrelated: E[dd"] = Ixy.

13)

B. MISO/SIMO Systems

When the UE has a single antenna, the conventional RIS-
assisted channel in (3) can be represented as

hy', = Fri®gh , = Fro diag{gr s }¢.

Denoting the RIS channel without the RIS phase shift as
Hg ; = Fgrdiag{gr}, the RIS-assisted channel in (14)
becomes

(14)

eff
hR,k; = HR,k¢a

which is the same as (8) since the third dimension of Hpg j
is unity. This clearly shows that, even when the RIS reacts
selectively to each channel path, we can still rely on the
conventional RIS channel model in (3) for MISO systems. This
also holds for single-input multiple-output (SIMO) systems.
Thus, we develop RIS optimization techniques only for the
MIMO case taking the tensor-based RIS channel model in (8)
and (10) into account.

15)

C. Problem Objective

For the system model in (12), our interest is to maximize
the sum-rate R = Zle R, by solving the following problem

(P1): max R
B

17"'7BK,¢
s.t. Tr(BBY) = B,
‘¢€|2 = 17 Ve € {1a---7L}a
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where Fiy is the total Tx power at the BS, and the RIS phase
shift element ¢, has unit modulus. The achievable rate for the
k-th UE is defined as [34]

Ry = logdet(Iy + Ry "H}' Ry, Hy,)
=logdet(Iy + BYH,R-'H}IB,),

e (16)
where the covariance matrix of the Tx signal for the k-th UE
is Ry, = E[x;x}]] = BxBY, and the covariance matrix of

the inter-user interference and noise terms is evaluated as

R, = ZHEBiB?Hk + oIy, (17)
i#k
The k-th UE channel Hy, in (16) and (17) is given in (11).
In the proposed method, we tackle (P1) by alternately opti-
mizing the beamformers By, ..., B and the RIS phase shift
vector ¢. The WMMSE algorithm is a popular approach for
solving the sum-rate maximization problem [35], [36]. In the
following sections, we develop RIS optimization methods
exploiting the WMMSE algorithm.

III. WMMSE-BASED RIS PHASE SHIFT OPTIMIZATION

To maximize the sum-rate, the RIS phase shift vector
¢ should be optimized jointly with the beamformer B.
We exploit the well-known WMMSE beamformer for B.
Specifically, at each iteration of the WMMSE algorithm, the
beamformer for the k-th UE, before the power normalization,
is computed as [35]

1M>
i=1

x Hy AW, (18)

which is the solution of the WMMSE problem. In (18), the
MMSE filter A, € CNY*Y and the weight matrix W €
CN*N are given as

S Tr(ATW,A,) )
Ey/c2

K
B, = (Z H,APW, A H! +

K —1

A, = BI'H, (Z HIB,BI'H, + a,%IN> (19)
i=1

and

W), =1y + B{H;R; 'H]'B;. (20)

Note that each iteration of the WMMSE beamformer neces-
sitates computation of the MMSE filter Aj; and weight
matrix Wy for all k. Once the beamformers for all UEs
are determined, the power normalization factor is given by
b= Tr(]gléH)’ where B = [B; --- Bg], and the WMMSE

beamformer becomes

B)YMMSE _ 3B, . 1)

While the main objective of the WMMSE beamformer is
to maximize the sum-rate, the RIS phase shift vector ¢ can
be designed to either maximize the sum-rate or minimize
the WMSE. Section III-A develops a GD-based technique
for maximizing the sum-rate, and Section III-B tackles the
problem of minimizing the WMSE. Section III-C introduces
a CNN-based approach to represent the performance of ML-
based techniques which are being widely considered for future
wireless communication systems.
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A. Sum-Rate Maximization

To maximize the sum-rate with the GD algorithm, we need
to derive the gradient of the sum-rate with respect to ¢. We first
derive a recursive form of the sum-rate gradient that will be
used for the algorithm’s iterative updates. Then, we obtain
the initial gradient, which then fully defines the recursive
form.

1) Gradient of the Achievable Rate: To evaluate the gradi-
ent, we reformulate the achievable rate for the k-th UE in (16)
as

Ry = log det (IN +BY (Hay, + [He, x2 ¢])R;!
X (Hak + [Hrx X2 ¢]])HBk)
= log det (IN + B [Hy xo Y[R,
x [ 2 "By, )
= log det (IN + [y %o IR, [y x5 w]]H) 22)
where the concatenated channel tensor is given as
Hy = [Hay : Mg € CMXEFDXN
and the concatenated RIS phase shift vector is written as
¥ =[147]" ectruxi,

These quantities enable us to write [Hy x2 ¥] = Hqy +
[Hr i x2@]. To simplify the following derivations, we define
the effective channel as

Hi = Hy xq Bj, € CVX DN,

(23)

(24)

(25)

The following property is useful to further describe the achiev-
able rate for the k-th UE.

Property 1: The product of the three-dimensional tensor A
and vector b in the second dimension of \A can be represented
as

[A x2b] = [[A( Db [AG:LN)b o -]
= [[[A(:’:vl)ﬂ [[A(:7:7N)H } (I®b)7
and the following also holds:
[A x5 b] = [[A(L )] [AQ2,;)]">  --]"
— (Tob") [[A1,:)]" [AE:)]" -],

indicating that the block-expanded vector (I®b) can be shifted
to either the left or right side.

Using Property 1 with Hy,,, = [H(n,:,:)]. The rate for
the k-th UE can be represented as

Ri = logdet {IN + [ﬂ;fl'lﬁ e I:IE,Nw

X Rg: [I:IIljﬂb*

}T

HY ] | 26

Before expanding (26) further, we first state the following
lemma.
Lemma 1: For any arbitrary matrices A and B with proper
dimensions, the following holds:
M
det (I+A™BA) = [ (1 +a)Pran),

m=1

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 8, AUGUST 2024

where A = [a; --- ay], and
B, m=1,
P, = 1 P iam_1a, 1P
m—1 " T T 5 m ?é 1.
1 -+ amfleflam_l
Proof: The proof is provided in Appendix A. ]

Using Lemma 1, Ry in (26) can be transformed into a semi-
quadratic form as

N
Ry = Z log (1 + wTﬁk,nPtnﬁE’M[;*) , (27)

n=1

where the matrix P is defined recursively as

Pi,
R;, n=1,
_ T
= 1 Pkl,n—ng,n—ldj*,l/} Hk;n*IPtn—l 1
bl T, Pl ER g T
+17b kn—141Fk n—1 k,n—l’l?b
(28)

Introducing  an  auxiliary  function q,ijn(d:) =
¢TH;€,,'P§”HEJ. *, the achievable rate in (27) can be
again rewritten as

N
Ry = > log (1+apn(w)). (29)
n=1

Due to its recursive structure, the auxiliary function q,’cjn(df)
can be represented as

%2, ()
= ¢Tﬁk,iptnﬂgg’¢*
= ¢ Hy P, H] 9"
¢ H P, HY Y He Py, Y T
144 Hy, o PL,_HI "
g () - e (D6, 5 ()
’ L+q., " ()
From (27), the gradient of R, can be evaluated as
N N n,n
VyRi =) Vylog (1 + q,z;:;w)) = m

n=1 n=1 k.n

(30)

(€29)
where V,pq,i’il('c,b) is derived using (30):
Vapd;?, (1)
L+ a5 (@)
n—1,7
dy, n71(1/’) i1
— ot Vel (¥)
L+ g, 0 w)
i,n—1 n—1,j
B 1 (P)Gen 1) o i
) -1 ;1 : 2v¢qk,n1_’1 H(4).
(1+a 1 @)

= Vg, (¥) N ()

(32)
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The gradient of q,ijn(zp) in (32) clearly shows that we need to
evaluate Vg7, 1, Vapdi 1, Vpayn ys and Vg M
to compute Vg, The first gradient Vq;”) is derived in
the following section.

_2) Evaluation of First Gradient: The first auxiliary function
a7 (P) = ’I/JTH]C’Z‘R;::HEJ’(#* is a fractional function of ),

-1 . . . i\J

where R is also a function of . The gradient of ¢, (¢)
is then evaluated as

Vapaih ()
= Vy (¥ HLR; H g
= I:IkZR%klI:IEﬂ/’* + [[V¢R7€: X1 I:I’l:e[‘z,l/]]]ﬁll;‘lj,l/)*

(@) H, ,R;'HI 4"
— [VyRa, <1 Ry HE 9] RH o7
b) — 1+ *
® Hy R H 9
) 9 %
B - S L, - 8 R, 'H},
[[[3¢1 § L4 k] o R )

x Ry TH! 7, (33)
where (a) holds because VIPR%: = — (V¢Rﬁk X1 ngT) X3
R;L:, and (b) is from

0
_9 g, ] |

My "
The partial derivative matrix ainﬁk € CN*N is the (-th slab
of va’ﬁk c CNX(L+1)><N. J

To derive V4Rp,, we reformulate the effective noise
covariance matrix Ry, as

Ri, = 02Iy + > (Hay + [Hrx x2 6])"B;
i#k

x B (Ha y + [Hrx %2 ¢])

oIy + Y [Hy x2 Y] BB [Hy x5 9]

0
V’lprlk = I:adleﬁk Lol (34)

ik
= ool + Z[[ﬂk,i <o YII [Hpi x2 ]
ik
- . H
=0 Iy + Z [Hyi1% - Hy i Y]
ik

x [Hyi1% - Hyi v

=02Iy + (In @ ¢") Z ()1 ﬁk,i,N]H
itk
x [Hy,in Hi v (In ® ). (35)

Most of the derivation in (35) follows the procedure in (22).
The dimension-reduced matrix I:Ik,i,n in (35) is defined as
I:I;m»,n = [[’H/g,i(:, :,n)]. The partial derivative of the effective
noise covariance matrix in (35) is given as

0 e -
R, =(In® H; ; Hy ;
0 Iy @ );[ ki1 kN

x [Hp.in Hy, v (In ®eq), (36)

where e, is the unit vector with one only at the ¢-th position
and zeros elsewhere.
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As we evaluate the gradient of the first auxiliary function
g (), all the terms Viyq,”) (n € {1,...,N}) necessary
to compute the gradient of the achievable rate V., R, for the
k-th UE can be generated, which completes the derivation of
gradient of the sum-rate V4R = S | VR

With the gradient of the sum-rate and the learning rate [3,
the concatenated RIS phase shift vector ¢ can be updated as

Y =P+ B(VyR)),

with the projection function P () = exp{jZ(1)} such that
1) satisfies the unit-modulus constraint. Given the definition
of 1) in (24), the RIS phase shift vector ¢ can be derived as

¢ = ¢2:(L+1)/¢1a

where 9,1, ) denotes the vector containing the second to
the (L + 1)-th elements of 1. The sum-rate in (27) preserves
the optimality even when dividing 1 by ;. We refer to the
proposed GD method as MaxR-WMMSE, whose specifics are
outlined in Algorithm 1.

MaxR-WMMSE is the joint optimization algorithm for the
BS beamformer B and the RIS phase shifts ¢. Since the sum-
rate is a non-convex function, it is difficult to find the global
optimum. Nevertheless, the convergence to a local optimum
can be proved from the following

(37)

(38)

RBHD ¢y > R(BM, 1) (39)

and

R(B(Hl),qﬁ(tﬂ)) > ’R(B(Hl),¢(t)). (40)
Given RIS phase shifts ¢(t), (39) implies that the WMMSE
algorithm leads to an increase in the rate in each iteration.
Even under the unit-modulus constraint, MaxR-WMMSE con-
verges to a local optimum since MaxR-WMMSE ensures (40)
as shown in the following theorem.

Theorem 1: There always exists (3 for the projection P(-)
and the gradient (V4R)* such that the following holds:

R(P(¢+ B(VsR)")) = R(9)- (41

Proof: The proof is provided in Appendix B. ]
By setting ¢\"* = P(¢(t) + B(VgeR)*) with proper S,
it is clear that (40) holds for MaxR-WMMSE.

B. WMSE Minimization
To define the WMSE, the symbol error matrix is first defined
as
Er = (dj, — dg)(dg — dj)H

= (Apyr — di)(Aryr — di)", (42)

where the symbol is estimated using the linear combiner Ay,
as dp = A,ygk. Given (42), the WMSE for the k-th UE is
defined as

Ex = Tr {E[W,Ex]} . 43)
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Algorithm 1 MaxR-WMMSE

INITIALIZE By, Vk € {1,...,K} and ¢
REPEAT
WMMSE beamformer: By, Vk € {1,..., K}
Ap— (19), Vke{l,...,K}
Wi — (20), Vke{1,...,K}
B, — (18), Vke {1,...,K}
Normalize By,...,Bg as in (21)

RIS Gradient Update: ¢

V4R =0
for k=1:K
q';c’fl «— (33)-(36), V1,5 € {17 o ,N}
for n=2:N
Vydl? () — (32), Vi, € {n,...,N}
end N Ve ()
TGeim
VyR — VyR+ Xt Trgrg)
end

Learning Rate Adaptation (bisection method)
ﬁmax = 100, ﬁmin =0
for i =1:30
6 = (ﬂmax + ﬂmin)/2
wnew - eXP{34(¢ + ﬁva)}
if R(Ypen) > R(V)
ﬁmin =
else
ﬁmax = ﬁ
end
end
Y — P+ B(VyR))
¢ = ¢2:(L+1)/¢1
UNTIL CONVERGENCE
RETURN By, Vk e {1,..., K} and ¢

Our goal is to choose the RIS phase shift vector ¢ under the
unit-modulus constraint in order to minimize the WMSE:

K
(P2) : min Z‘Sk
4 k=1
st o> =1, Vee{1,...,L}.

We solve (P2) using the Lagrangian dual formulation

(P2’) : min/\ L(d, A1y \e),

sALyeees

where the Lagrangian is defined as

K L
LA, ) =Y &+ Nelloe* —1).  (44)
k=1 (=1

The mean squared error (MSE) required to compute the
objective in terms of the optimal RIS phase shift vector ¢ can
be written as

K
E[E.] = [REM RII;;I,i,Q ] Ie")

i=1

x(Io¢") [R;@F,i,l Ry

T ...]T

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 72, NO. 8, AUGUST 2024

K
+ Z(I ®¢") Ryin Rz ] ! Hy;
i—1
K ~ ~ ~
+ HE’Z [Rk,i,l Rk,i,Q o ] (I ® ¢)

- - H
~(Ie¢" Ryt Rigo
— R Rz -] @ @) + Oy.
The detailed derivation of E[Eg] is given in Appendix C.

The MSE for the k-th UE in (45) is quadratic in the vector
¢, which allows for the following compact WMSE expression:

(45)

N K
e — TH SH
= Z ¢ RiinWiRy ;¢

n;l i;l ~ ~

+ Z Z¢HRE,i,nHk,iWk(l, n)
n;l ZI:(.I ~ N

T Z Z Wi (n, 5)H1k{,iRk,i,n¢

1

N N
- Z ¢HRII;I,k,an(:7 n) — Z Wi(n, :)Rk»k’n(ﬁ + Od"
1 n=1

1

3
Il
i

3
Il

(46)

Given the WMSE in (46), the gradient of the Lagrangian
L(¢d,A1,...,Ar) in (P2’) can be obtained as

K N K ~ -
- Z {Z Z RZ,i,?LWERkT,i,7L¢

where A = diag{A} with Lagrange multipliers A =
[A1 -+ Ar]T. From (47), the unconstrained stationary point
for (P2’) is obtained as

K N K -1
o= (L3 SR WL, )

k=1n=1i=1
K N ~ K } )
% {Z Z (Rllik,n - ZREMHM> Wk(:,n)} .
k=1n=1 i=1
(43)

Since the elements of the optimized RIS phase shift vector
¢* will not in general adhere to the unit-modulus constraint,
we modify the result as ¢ = P(¢*). In the alternating
optimization, the RIS phase shift vector ¢ in (48) is updated
given estimates of the MMSE filter A, weight matrix W
of the WMMSE problem, and WMMSE beamformer By.
Previous studies on WMSE minimization have varied in their
methods for determining A [23], [24]. Our approach aligns
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Fig. 2. Structure of CNN-WMMSE network.
Algorithm 2 MinE-WMMSE
INITIALIZE By, VE € {1,..., K} and ¢
REPEAT
WMMSE beamformer: B, Vk € {1,...,K}

Ay — (19), Vke{l,...,K}
Wi — (20), VEe{1,...,K}
B, — (18), Vke{l,...,K}
Normalize By, ...,Bg as in (21)

RIS phase shift vector: ¢
o — (48),(49)
¢ =P(¢")
UNTIL CONVERGENCE
RETURN By, Vk e {1,...,K} and ¢

with the method presented in [23], which has been empirically
established as the most effective strategy. The coefficient A is
obtained as [23]

Aet

I, (49)

Pmax

where pmax is the largest eigenvalue of 215:1 22]21
Zfil RZMWEREM We refer to the alternating optimiza-
tion as MinE-WMMSE, which is summarized in Algorithm 2.

Regarding convergence, MinE-WMMSE does not always
satisfy (40) since minimizing the WMSE is not equivalent to
maximizing the sum-rate for the given RIS phase shift. Instead,
the convergence of MinE-WMMSE is numerically investigated
in Section V-B.

C. CNN-Based Approach

ML approaches have emerged as promising strategies for
optimizing the RIS phase shifts, capitalizing on their ability
to process extensive datasets and train complex algorithms.
In this context, deep neural network (DNN) and reinforcement
learning (RL) methodologies are predominantly used [29],
[30], [31], [32]. The RL framework excels in environments
where the action-policy is intricately tied to the evolving state,
where the RIS phase shifts and channel state information (CSI)
can be conceptualized as actions and states, respectively. Our
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§ f:\': fullyConnect (64)
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----- -
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v v
B, ke{l,..., S e e ) '
Fig. 3. Flowchart of CNN-WMMSE algorithm.

interest in this paper, however, centers on rate maximization
with perfect CSI. In this case, a DNN-based method proves to
be more appropriate, and we employ a CNN-based approach,
distinguished for its ability to distill channel features from the
CSIL

The CNN structure we employed for the experiment is
shown in Fig. 2. The CNN structure takes the direct and RIS
channels, after applying the beamformer By, as dual inputs.
The fully-connected layers combine the features extracted
from two convolutional layers and determine the RIS phase
shifts. To optimize its performance, the CNN is jointly
combined with the WMMSE beamformer as in Fig. 3. To max-
imize the sum-rate, the loss function is defined as

R(@") —R(g"), (50)

where R(¢") and R(¢“*") are the previous and present
sum-rates, respectively. We refer to the above CNN-based
method as the CNN-WMMSE algorithm.

The CNN-WMMSE conducts the back propagation for
every iteration of the WMMSE algorithm such that the net-
work in Fig. 2 can adapt to the WMMSE beamformer update.
While this methodology significantly enhances beamforming
performance, it also introduces considerable overhead.

IV. ADAPTATION TO SU-MIMO SYSTEMS

Although the techniques described above were developed
for the MU-MISO case, we show in this section that they can
be easily adapted to the SU-MIMO scenario as well. In the
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numerical examples in Section V-A, we will show that the
technique developed here works slightly better for the SU-
MIMO case than previous state-of-the-art algorithms. For SU-
MIMO systems, (P1) can be represented as

1
(P1’) :max logdet <1N + 2BHHHHB>
B,$ fop4

st.  Tr(BBY) = E,
|¢Z‘2 = 17 Ve € {17'~~7L}7

where the beamformer B and the channel H are both M x N
matrices. Since the channel H is the sum of the direct channel
H, and the RIS channel [Hgr X2 @], the channel H changes
with the RIS phase shift vector ¢.

The singular value decomposition (SVD)-based beamformer
with water-filling power allocation is known to be optimal for
SU-MIMO systems [37]. With the given RIS phase shift vector
¢, the channel H can be decomposed as H = UDV, from
which the optimal beamformer B is given as

= U\/diag{[p{ - pNlb

where the allocated power [p} - pNJ\rsatlsﬁes the transmit
power constraint in (P1’) such that Z _1Pi = E. In many
previous works, the RIS phase shift vector ¢ is alternately
optimized with the SVD-based beamformer [17], [26], [27],
[28] to generate the system operating parameters.

For SU-MIMO systems, the WMMSE beamformer can still
be evaluated using Egs. (18)-(21). Thus, we provide two
GD-based algorithms for comparison: GD-SVD based on the
SVD beamformer, and GD-WMMSE based on the WMMSE
beamformer. The RIS phase shifts are optimized with either
beamformer, as detailed below.

For a given beamformer B, the achievable rate in (P1°) can
be written as

(51

1
R = logdet (IN + ;BH(Hd + [[HR X9 (N])

n

X (Hd + [[HR X9 ¢]])HB)

1
= log det (IN +—=
o

n

BY[H x2 ¢][H ><2¢]]HB>
= log det (IN + %[[7:( X P][H x3 ¢]]H>

N

= log (1 + wTﬁnPiﬂm*) : (52)
n=1

where H = [Hq : Hg] € CM*XUEADXN and op = [1: ¢] €

CEA+DXT are the concatenated tensor and vector, respectively.

The channel tensor H and the beamformer matrix B are

combined as H = H x; B*. The channel matrix H,, can

be found from the channel tensor as H,, = [H(n,:,:)]. The
matrix P in (52) is given as
1
72:[]\7’ n= 17
1_ n _ . T
P = n P HY "¢ H, Pr

pl  _Tnolins . . n#l
" 149 H,PL HE g 7

(53)
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_.- Multiple antennas

Multiple elements

(0,0,0)

Multiple antennas

Fig. 4. Simulation scenario for the SU-MIMO and MU-MIMO systems. The
UEs are uniformly distributed in a 50m X 30m area, where the height of BS
is 35 m, and the height of RIS is 15 m.

As in Section III-A, the achievable rate R can be suc-
cinctly expressed with the auxiliary function g7 (ep) =
Y H,PLH " as

N
R=" log(1+q;" (%)), (54)

n=1

for which the gradient is evaluated as
qun n )

V4R = 55
WP Z T+ g (35
The auxiliary function ¢%7(e)) and its gradient Vq%7 (1)

have the same recursive structure as in (30) and (32), respec-
tively. The first gradient of the auxiliary function ¢%7 (1)) is
evaluated as
i 1
Vwaj () = *H HH"b )

'Il

Voo Ly, H'y" = (56)
which is used to compute all auxiliary function values required
for calculating the gradient in (55). The gradient of the
achievable rate updates the concatenated RIS phase shift vector

1 as

Y =P+ B(VyR)), (57)

and the RIS phase shift vector ¢ can be recovered as ¢ =

Yo (41)/V1-

V. SIMULATION RESULTS

For the numerical studies, we consider the scenario shown
in Fig. 4, where the BS is located at (0,0,35) m, the RIS
is at (50,0,15) m, and the UEs are uniformly distributed
within a 50m x 30m area. Given a UE location, the direct
and RIS channels Hy and Hpi can be evaluated using (1)
and (10). For the k-th UE, the indices associated with the
LoS paths are p, = 1 and (pp,p.) = (1,1), and the indices
for the NLoS paths are {2,..., P, 1} and {(pp, pc)|(Pb, Dc) #
(L,1),pp €{1,...., Po},pc €{1,..., P i} }. The distance of
the LoS path d} s is determined by the distance between the
Tx and Rx nodes, and the distances associated with the NLoS
paths are randomly generated as dnpos = dros + dy, Where
d,, ~ Unif.[0, 0.4d} os]. The pathloss exponents are 2.5 for the
LoS paths and 3.0 for the NLoS paths. The default number of
channel paths is 16 The default Tx power is 30 dBm, and the
noise variance a is -104 dBm for the simulations.
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Fig. 5. SU-MIMO achievable rates versus number of RIS elements, with 8 BS
antennas and 4 UEs.

In the following sections, we present the performance of
the proposed algorithms for both SU-MIMO and MU-MIMO
scenarios. Section V-A applies various RIS optimization tech-
niques specifically developed for the SU-MIMO case, and
Section V-B provides analyses of the WMMSE-based algo-
rithms for MU-MIMO systems.

A. Experiments for SU-MIMO Systems

For the SU-MIMO case, we assess the performance of
several algorithms, including the element-wise (EW) update
algorithms EW-TR [16] and EW-SV [17], the SPGM-based
approach [27], the WMSE-up method of [25], IDM [28], and
the array steering technique in [26]. We refer to our proposed
GD methods based on the SVD and WMMSE beamformers as
GD-SVD and GD-WMMSE, respectively. The EW algorithms
derive the optimal RIS phase shift for one RIS element in
a closed form at a time while holding the other RIS phase
shifts fixed. Since EW-SV assumes the rank of the RIS
channel Hg ;¢ in (7) is one, the solution is given using the
largest singular value. The EW-TR approach, however, does
not restrict the RIS channel to be a rank-one matrix and
instead derives the solution using the trace operation. The
SPGM approach adopts sum-path-gain maximization as the
target of the RIS phase shift optimization [27]. The WMSE-
up approach of [25] is a WMMSE-based technique, but the
stationary point is derived for the upper bound of the WMSE.
The IDM methodology minimizes the distance between the
RIS-assisted channel and the optimal channel state [28]. The
array steering technique is a method that aligns the RIS phase
shift vector with the directions of incoming and outgoing
signals [26].

In Fig. 5, we evaluate the achievable rate for each technique
as a function of the number of RIS elements. The proposed
GD-SVD approach, which combines the GD method with the
SVD beamformer, demonstrates the best performance together
with EW-TR. There is a significant performance gap between
EW-TR and EW-SV due to the rank-one channel model
assumed by EW-SV. The SPGM approach uses the alternating
direction method of multipliers (ADMM) for the suboptimal
problem, and slowly approaches optimal performance as the
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Fig. 6. Achievable rates for SU-MIMO system techniques versus number of
channel paths, 8 BS antennas, 4 UEs, 64 RIS elements.

number of RIS elements increases. Fig. 5 also contrasts the two
WMMSE-based techniques: i) GD-WMMSE, which involves
our proposed GD method based on the WMMSE beamformer,
and i) WMSE-up in [25], based on a stationary point of the
WMSE upper bound. GD-WMMSE significantly outperforms
WMSE-up since the latter confines its search to the WMSE
upper bound. IDM performs well with a small number of
RIS elements, but its efficacy declines as the number of
RIS elements increases since the lower bound used in IDM
becomes less tight. The array steering technique is suitable
for a large number of RIS elements, although it does not offer
advantages when compared to the other techniques.

The superior performance of GD-SVD and EW-TR for
different numbers of channel paths is clearly evident from
Fig. 6. For sparse channels with a small number of paths,
GD-WMMSE and WMSE-up also show performance close
to GD-SVD. The lower bound derived in the IDM algorithm
is tight for a small number of paths and it outperforms the
SPGM-based algorithm. However, in rich scattering environ-
ments with many paths, SPGM achieves better performance.
The array steering technique is also effective in sparse channel
conditions, and while EW-SV exhibits consistent performance
enhancement as the number of channel paths increases, it gen-
erally lags in performance compared to the other techniques.

The computational complexity of the various techniques in
the SU-MIMO case is detailed in Table I. In this table, the
number of BS antennas is M, the number of UE antennas is [V,
and the number of RIS elements is L. For SU-MIMO systems,
the SVD beamformer has lower complexity and achieves
higher rate than the WMMSE beamformer as in Figs. 5 and 6.
For the RIS phase shift optimization in SU-MIMO systems, the
GD method seems to have the highest complexity, proportional
to N°. However, IDM has highest order of complexity in L.
Since the number of RIS elements is usually assumed to be
much larger than the number of UE antennas, the complexity
of the GD method may be tolerable for practical scenarios.

B. Experiments for MU-MIMO Systems

Since the SVD-based beamformer is not directly applicable
for MU-MIMO systems, we focus on the RIS phase shift
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TABLE I
COMPUTATIONAL COMPLEXITY OF RIS TECHNIQUES FOR SU-MIMO SYSTEMS

Algorithm Complexity
Beamformer |5 VD + Water filling 4MN?+ MLN + 1 N?
WMMSE M3+ N3 +2M2N + 6MN? + MLN
GD 2MN?+ M2N + N3+ 2L2N* + 2LN® + MLN?
EW-TR ML?N + M3L +4M?LN
RIS phase EW-SV ML?N +2M3L +4M? LN
optimization SPGM M?N + MLN? + LN?3
WMSE-up 2MN + L
IDM L*

25
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Fig. 7. MU-MIMO sum-rate versus number of UEs, 8 BS antennas, 32 RIS
elements, 4 UE antennas each.

optimization algorithms based on the WMMSE beamformer:
i) MaxR-WMMSE, maximizing the sum-rate, ii) MinE-
WMMSE, minimizing the WMSE, and iii) CNN-WMMSE,
learning the network to maximize the sum-rate. In Figs. 7-11
we investigate two scenarios, i.e., with and without the direct
channel paths, where the solid lines are the experiments with
the direct channel paths, and the dashed lines are the results
without the direct channel paths.

In Fig. 7, the sum-rate performance is analyzed in terms
of the number of UEs. If direct channel paths exist, the
RIS without optimization does not provide much gain, only
0.3326 bits per channel use (bpcu) higher than the no-RIS
case. However, the improvement is about 2.44 bpcu for the
WMMSE-based methods, a 7x improvement. The performance
difference among the WMMSE-based methods is clear in
the scenario without direct channel paths. For this scenario,
MaxR-WMMSE provides the highest sum-rate although the
gap is not significant.

Fig. 8 depicts the sum-rate for various algorithms versus
the number of BS antennas. Al WMMSE-based approaches
perform similarly for this case, and we see the same perfor-
mance enhancement as the number of BS antennas increases.
On the contrary, there is a significant difference in performance
as the number of RIS elements varies, as shown in Fig. 9.
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Fig. 8.  MU-MIMO sum-rate versus number of BS antennas, 4 UEs, 32 RIS
elements, 4 UE antennas each.
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Fig. 9. MU-MIMO sum-rate versus number of RIS elements, 8 BS antennas,
4 UEs with 4 antennas each.

In particular, the performance of MaxR-WMMSE improves
rapidly with a larger number of RIS elements. Unlike the case
with an increasing number of UEs, we empirically observe
that increasing the size of the RIS does not increase the
number of local optima, and MaxR-WMMSE can effectively
identify the correct gradient for the optimization by leveraging
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TABLE II
COMPUTATIONAL COMPLEXITY OF RIS TECHNIQUES FOR MU-MIMO SYSTEMS
Algorithm Complexity
Beamformer | WMMSE K(M3 + KN3 +2KM?N + 6 KMN?)
RIS phase MaxR K(@2KMN?+ KM2N + L3N + 2L2N* + 2LN® + MLN?)
optimization MinE 3K2LN® 4+ 2K?MLN? + L3

30

n
(6]
T

n
o
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Fig. 10. MU-MIMO sum-rate versus number of UE antennas, 8 BS antennas,
4 UEs, 32 RIS eclements.

the derivative of the sum-rate when the number of RIS
elements is large. Despite its simple structure in Fig. 2, CNN-
WMMSE delivers RIS gain comparable to MinE-WMMSE.
However, as explained in Section III-C, CNN-WMMSE is
associated with a significant overhead. There is a slight
improvement in sum rate without optimization, but the gain
is much lower than what can be obtained with the proposed
algorithms.

We also compare the performance with the number of UE
antennas and Tx power level in Figs. 10 and 11, respectively.
The overall tendency for these cases is the same as in Fig. 7,
i.e., the performance of the WMMSE-based approaches is
comparable when the direct channels exist, while MaxR-
WMMSE exhibits the best performance without the direct
channels. All these results highlight the superiority of MaxR-
WMMSE in scenarios involving blockages.

Fig. 12 illustrates algorithm convergence for MU-MIMO
systems. As shown in Section III-A, MaxR-WMMSE con-
verges and gives the highest sum-rate. Even though MinE-
WMMSE does not guarantee a rate increase as in (40), the
numerical result in Fig. 12 nonetheless demonstrates that it
converges. Note that the performance without RIS optimiza-
tion also increases with each iteration since the WMMSE
beamformer is iteratively updated.

Finally, we analyze the complexity of the considered MU-
MIMO techniques in Table II. All the variables are the same
as in Table I, while K is the number of users. As shown
in the table, MaxR-WMMSE requires higher computational
complexity than MinE-WMMSE for MU-MIMO systems, and
its complexity increases dramatically when the number of
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Fig. 11. MU-MIMO sum-rates versus Tx power, 8 BS antennas, 4 UEs with
4 antennas each, 32 RIS elements.
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Fig. 12.  Convergence of RIS techniques for MU-MIMO systems, 8 antenna
BS, 128 RIS elements, and 4 UEs with 4 antennas each.

UE antennas increases. MaxR-WMMSE has a more reason-
able complexity with a large number of RIS elements and
small N.

VI. CONCLUSION

In this paper, we first derived a tensor-based RIS system
model that incorporates the RIS physical response. We then
proposed a novel RIS phase shift optimization technique
that maximizes the sum-rate using gradient descent. Numeri-
cal results showed that the proposed technique outperforms
existing benchmarks in both SU-MIMO and MU-MIMO
scenarios.
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The tensor-based RIS system model is very general and
it would be useful to develop more practical RIS-related
techniques for these general scenarios. Actual RIS behavior
will inevitably lead to RIS channels with rank higher than one,
and thus the tensor-based RIS model is essential to achieving
the best performance in practice.

APPENDIX A

PROOF OF LEMMA 1

Let the vector a,, represent the n-th column of matrix A.
For matrices A and B with proper dimensions, we have

det(I+ATBA)
1 +alBa; aBay aiBay
aj Ba; 1+ alBay aj Bay
= det . ’
ayBa; a} Bay 1+ ayBay |
@ (14 aTBay)
1+alBay; ajiBaj aj Bay
aiBa; 1+ ajBaj aiBay
x det . .
ayBay ayBa; 1+ ayBay |
al Ba;
1 a3 Bay [aTBa, afB TBalj]
_— a;Ba; a;Bas --- a; Ba
1+alBay 1o S LN
alBa;
= (1+afPyal)
1 +alPya, alPiaj alPyay
alPya, 1+alPyaj alPyay
x det .
aiPyay aiPya; 1+ayPyay

(58)

where P4 £ B and P £ (P — PL2oPi) The deter-
al 1 a
minant lemma for block matrices leads to (a) in (58), which
can be repeated as
det(I+ ATBA)
= (1+afPia))(1+alPyay)

TpLl Tpl TpLl
1 —|—Ta2 EB as a, 1;3 aj_g aQTPiaN
asPza; 1+a3Pzaz -+ azPyay
x det . . . . 9
Tpl Tpl TpLl
ayPsas ayPzas --- 14+ ayPgay

(59)

Pla,,al Pt . .
mAmZn=m By completing the recursive

: 1 _pl
with Pm+1 =P, - TraTPlar

extraction, the result in Lemma 1 is obtained as
M
det(T+A"BA) = [ (1 +a},Pran),

m=1

(60)

which is a multiplication of scalar values.
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APPENDIX B
PROOF OF THEOREM 1

A set of projections on the manifold along the gradient
(V4R)* can be expressed as

Co.(vor)- ={P(@+B(V4gR)")|B € R},

where we define two distinct projections ¢, ¢~ € Co,(V4R)*
as

(61)

' =P+ 5 (VeR)). BT <0 o
¢ =P(d+5 (VgR)"), B >0.
They allow the following representation:
¢" = ¢+ B(VeR)" +rt,
{qs— — ARy 1, T Y
with
=P+ A (TR - 0+ BVeR)) oy
r- =P+ 0 (VgR)") — (¢ + B(VeR)").

For any € and o = [[3(V4R)*||, we can find §* and 5~
satisfying |[r*|| = ro + € and |[r~|| = 9 — €. Then, it can
be proved that, by the gradient property, there exists 3 and ¢
for which R(¢™) > R(¢) > R(¢") holds. For such 3 and e,
we can always find §* satisfying ¢~ = P(¢ + *(V4R)").
Therefore, gradient descent on the manifold always increases
the rate with proper [3*.

APPENDIX C
DERIVATION OF MSE
By the definition, the MSE can be written as

K
{Ak (HII;I Z BZdZ + nk> — dk}
i=1

X H
X {A;€ (HEZBidank) _dk} 1
i=1

K
WS AHIB,BI'H,AY - A HIB,

i=1

E[E,] =E

—BIH A + Iy +02A AT (65)

where (a) holds because all symbols are assumed to be
independent with zero mean and unit variance, which gives
E[dd"] = I . With the definition of Hy, in (11), the MSE
in (65) can be further expanded as
K
E[E;] = Z Ar(Hyy + [Hr i x20])"B;
i=1
X Bl-H(Hdﬁk + [[HR,]C Xo ¢]])AI];I
— Ayp(Hap + [Hri x2 ¢])" By
— Bl (Hak + [Hri x2 8] A} + Iy + 05 ArA)
K
= Z Ai[Hr e x2 ¢]"B;BI [Hr i x2 ¢]A}

i=1
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K
+ Z Ar[Hr x %2 ¢]"B;BFH, Al

=1
K
+5° AHY, BB [He i x2 $JAY
i=1
— Ap[Hr i x2 ¢]" B —B|[Hr x x2 9]A} +0,

(66)

where Oy is an aggregated term that does not depend on
¢. Defining the effective channels 'Hk,i and I;I;W with the
combiner A for the k-th UE and the beamformer B; for the
i-th UE as

Hy,i
H;

(HR,k X1 Br) X3 AIl;I
BI'H, A},

(67)
(68)

(1>

the MSE for the k-th UE can be expressed as

K
E[Ex] = > [Hri x2 @] [Hri x2 ¢]

K K
+ Z[['sz X2 ¢]]HI:I]€Z + Z I:IEZII”:LK‘Z X2 @]
i=1 i=1

— [Hrk x2 @)™ — [Hip x2 6] + Op.

Using Property 1 in Section III-A, the MSE in (69) can be
further rewritten as

(69)

K
E[Ek] = Z [Rllj,m Rg,i,z ] I ®¢*)
=1
x(I¢")[RE., RE, -
K ) ) -
+> 1Ieeé") [Rii1  Ryiz -] Hiy
=1

K

+ Z I:Igz [Rk,i,l Riio - ] Iee)
=1

-(I® ¢H) [Rk,k,l Rk,k,Z ]H

— [Rexn1 Ripe -] I©6)+ Oy,

where Ry, = [[’ftk,i(n,:,:)]] and f{km = [[7i£k,i(:,:7n)]]
are shrunk matrices.

(70)
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