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Abstract— This paper investigates reconfigurable intelligent
surface (RIS)-aided frequency division duplexing (FDD) com-
munication systems. Since the downlink and uplink signals are
simultaneously transmitted in FDD, the phase shifts at the RIS
should be designed to support both transmissions. Considering a
single-user multiple-input multiple-output system, we formulate
a weighted sum-rate maximization problem to jointly maximize
the downlink and uplink system performance. To tackle the
non-convex optimization problem, we adopt an alternating opti-
mization (AO) algorithm, in which two phase shift optimization
techniques are developed to handle the unit-modulus constraints
induced by the reflection coefficients at the RIS. The first tech-
nique exploits the manifold optimization-based algorithm, while
the second uses a lower-complexity AO approach. Numerical
results verify that the proposed techniques rapidly converge
to local optima and significantly improve the overall system
performance compared to existing benchmark schemes.

Index Terms— Reconfigurable intelligent surface (RIS), fre-
quency division duplexing (FDD), multiple-input multiple-output
(MIMO).

I. INTRODUCTION

RECONFIGURABLE intelligent surfaces (RISs), which

consist of a planar metamaterial structure, have recently
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emerged as a promising candidate for future wireless commu-

nication systems [1], [2], [3], [4], [5], [6]. With its ability to

dynamically control the amplitude and/or phase of incoming

signals, an RIS can modify the signal propagation and lead

to enhanced spectral efficiency and reduced power consump-

tion [1], [2], [3], [4]. For instance, when the direct link channel

between the base station (BS) and user equipment (UE) is

obstructed, the RIS can establish a virtual BS-RIS-UE link,

thereby improving the coverage of wireless communication

systems [1], [3].

When it comes to designing RIS-aided communication

systems, existing works have mainly focused on time division

duplexing (TDD) to leverage the channel reciprocity between

the downlink and uplink channels [7]. In [8], transmit power

minimization strategies were developed for the joint design of

active and passive beamforming. In [9], a weighted sum-rate

maximization problem was formulated for multi-user multiple-

input single-output (MU-MISO) systems. A low-complexity

algorithm with a two-timescale transmission protocol was

developed in [10] to maximize the achievable weighted sum-

rate for RIS-aided cell-free systems. In [11], ergodic sum

capacity maximization strategies for the downlink and uplink

were developed. Furthermore, several works have considered

single-user multiple-input multiple-output (SU-MIMO) TDD

systems [12], [13], [14], [15], [16], [17]. In [12], down-

link capacity maximization strategies were investigated, and

the reflection coefficients at the RIS were optimized in an

alternating manner. Lower-complexity optimization techniques

were developed in [13] by approximating the singular val-

ues of millimeter-wave (mmWave) channels in terms of the

reflection coefficients. In [14], hybrid beamformers and reflec-

tion coefficients were designed by exploiting the structure

of mmWave systems in the asymptotic regime where the

number of antennas at the BS and UE and the number of

RIS elements go to infinity. A reflection coefficient design

using only linear operations was developed in [15], and array

selection algorithms were developed in [16] to maximize the

capacity of each RIS-related link. In [17], strategies that

maximize the ergodic achievable rate were investigated.

Despite the advantages of TDD in designing RIS-aided

communication systems, sub-6 GHz bands in future wireless

communication systems will still remain significant due to

their broad coverage and reliability [18]. This suggests that

various future applications may still rely on frequency division
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duplexing (FDD), and RISs would inevitably be deployed in

FDD systems as well. Consequently, there is a need to study

RIS-aided FDD systems, and some recent RIS-related studies

have attempted to exploit the structure of FDD [19], [20],

[21], [22], [23]. Focusing on the downlink design, joint spa-

tial division and multiplexing approaches based on statistical

channel state information (CSI) were investigated in [19], and

a Bayesian optimization-based beamforming strategy without

CSI feedback was proposed in [20]. While existing phase shift

optimization algorithms that focus on TDD-based SU-MIMO

systems can be directly applied to optimize the reflection

coefficients for either the downlink or uplink, we will see that

designing for only one direction will generally lead to highly

suboptimal performance for the other.

One important characteristic of RIS-aided FDD systems is

that the transmissions of downlink and uplink signals occur

simultaneously in different frequency bands. In conventional

FDD systems without RISs, it is difficult to satisfy the

different demands on the downlink and uplink rates due to

the use of fixed system bandwidths. However, deploying RISs

enable one to strike a balance the between the downlink and

uplink transmissions to satisfy such demands, implying that

beyond the individual downlink or uplink design, the reflection

coefficients at the RIS should be optimized to enhance the

overall downlink and uplink system performance. A few recent

works have addressed this challenge [21], [22], [23]. In [21],

a joint optimization framework was developed for single-user

multiple-input single-output (SU-MISO) systems. An equiva-

lent circuit model was introduced in [22] to address practical

RIS design in SU-MISO systems. In [23], joint resource

allocation strategies for MU-MISO systems were proposed.

However, there is no prior work that considers the case of a

multi-antenna UE joint downlink and uplink optimization in

FDD systems.

In this paper, we focus on the FDD SU-MIMO scenario

and propose a framework to maximize the weighted sum-

rate for the downlink and uplink using a weight to control

the relative priority of the downlink and uplink transmissions.

By properly setting the weight coefficient, various system

requirements on the relative downlink and uplink rates can

be achieved. To tackle the resulting non-convex optimization

problem, we first decouple the design of the RIS reflection

coefficients from that of the transmit precoders at the BS and

UE. Subsequently, we concentrate on the optimization problem

for the RIS reflection coefficients and propose two techniques

to handle the unit-modulus constraints, which are the main

challenge for obtaining a practical solution for RIS-aided

systems. The first proposed technique employs a manifold

optimization-based algorithm that exploits the fact that the

reflection coefficients at the RIS lie on a complex circle mani-

fold. In the second, we propose a lower-complexity alternating

optimization (AO) algorithm in which the sub-problem corre-

sponding to one reflection coefficient is formulated while keep-

ing all other variables fixed, and the reflection coefficients are

optimized by iteratively solving these sub-problems. Closed-

form solutions are derived for each sub-problem, making the

proposed algorithm computationally efficient compared to the

manifold optimization-based approach.

Fig. 1. An example of an RIS-aided FDD SU-MIMO communication system
with N BS antennas, K UE antennas, and L RIS elements.

Our numerical results verify the convergence of the pro-

posed algorithms, and we demonstrate that the proposed joint

downlink and uplink designs significantly improve the overall

system performance compared to existing benchmarks. The

downlink and uplink rate regions with respect to the weight

coefficients are also investigated to verify the effectiveness of

the proposed joint optimization framework.

The rest of this paper is organized as follows. In Section II,

the system model for the assumed RIS-aided FDD SU-MIMO

system is presented. In Section III, the problem formulation

and algorithm design are investigated, and the two phase shift

optimization techniques are proposed in Section IV. Numerical

results for the proposed algorithms are provided in Section V,

and we conclude the paper in Section VI.

Notation: Lower and upper boldface letters represent

column vectors and matrices. The element-wise conjugate,

transpose, and conjugate transpose of a matrix A are denoted

by A∗, AT, and AH, respectively. For a square matrix A,

det(A), tr(A), and A−1 are respectively the determinant,

trace, and inverse of A. The quantities A(i, :) and [A]i,j
denote the i-th row and the (i, j)-th entry of the matrix A,

respectively. The notation diag(a) represents a diagonal matrix

whose diagonal elements correspond to the entries of the

vector a. The �2-norm of a vector a and the Frobenius-norm

of a matrix A are respectively denoted by ‖a‖2 and ‖A‖F.

A circularly symmetric complex Gaussian distribution with

mean vector μμμ and covariance matrix K is represented using

CN (μμμ,K). The quantities 000m, 000m,n, and Im represent the

m×1 all-zero vector, the m×n all-zero matrix, and the m×m
identity matrix, respectively. The expressions |a|, a∗, arg(a),
and Re(a) represent the magnitude, conjugate, angle, and real

part of a complex number a, respectively. The Kronecker

product is defined as ⊗, and ◦ denotes the Hadamard product.

Standard “big-O” notation is indicated by O(·).

II. SYSTEM MODEL

We consider the RIS-aided FDD SU-MIMO scenario

depicted in Fig. 1, where the BS deploys N antennas and

serves the UE with K antennas. The RIS consists of L purely

passive elements. The RIS is connected to the BS via a

controller that allows the BS to control the RIS elements to

achieve the desired signal reflection.

As in [13] and [21], the direct link channels between the

BS and UE are assumed to be completely blocked by an
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obstacle. In the downlink transmission, the BS transmits ND
s

data streams to the UE where ND
s ≤ min(N, K). Let the

signal vector transmitted from the BS be sD ∈ C
ND

s ×1, which

satisfies E
[
sDsH

D

]
= IND

s
. The received signal at the UE is

then given by

yD = HH
DΘΘΘGDFDsD + nD, (1)

where FD ∈ C
N×ND

s represents the precoding matrix

employed at the BS satisfying ‖FD‖2
F ≤ PD,max with maxi-

mum downlink transmit power PD,max, HH
D ∈ C

K×L is the

channel from the RIS to the UE, GD ∈ C
L×N is the channel

from the BS to the RIS, and nD ∼ CN (000K , σ2
DIK) is an

additive white Gaussian noise (AWGN) vector at the UE with

noise variance σ2
D. The L× L reflection coefficient matrix of

the RIS is defined as ΘΘΘ = diag
(
[θ1, · · · , θL]T

)
with |θ�| = 1,

� = 1, · · · , L.

Similarly, in the uplink transmission, the UE transmits

NU
s data streams to the BS where NU

s ≤ min(N, K). Let

sU ∈ C
NU

s ×1 be the signal vector sent from the UE satisfying

E
[
sUsH

U

]
= INU

s
. Note that, due to its design, the reflection

response of the RIS varies with frequency [24], [25], [26],

[27]. Nevertheless, if the RIS elements are properly designed

and the gap between the two frequencies is not too large,

it is possible to achieve a constant phase offset in the RIS

response at the two frequencies [27]. Taking the frequency

spectrum of LTE band 1 as an example, the frequency ranges

for the downlink and uplink are respectively 2.11-2.17 GHz

and 1.92-1.98 GHz, which are not too far apart [19], [28].

Hence, we assume the reflection coefficient matrix in the

uplink channel is Θ̃ΘΘ = ejθdΘΘΘ, where θd ∈ [0, 2π) denotes

the bulk phase difference in the reflection response between

the downlink and uplink. Then, the received signal at the BS

is represented by

yU = GH
UΘ̃ΘΘHUFUsU + nU

= ejθdGH
UΘΘΘHUFUsU + nU, (2)

where FU ∈ C
K×NU

s denotes the precoding matrix employed

at the UE satisfying ‖FU‖2
F ≤ PU,max with maximum uplink

transmit power PU,max, GH
U ∈ C

N×L is the channel from the

RIS to the BS, HU ∈ C
L×K is the channel from the UE to

the RIS, and nU ∼ CN (000N , σ2
UIN ) is an AWGN vector at the

BS with noise variance σ2
U. Since our proposed techniques do

not rely on any specific channel model, we do not specify the

BS-RIS and RIS-UE channels in this section. Specific choices

for these channels based on the popular geometric channel

model will be given to describe the simulation scenarios in

Section V-A.

By defining the effective downlink and uplink channels

as Heff,D = HH
DΘΘΘGD and H̃eff,U = ejθdGH

UΘΘΘHU =
ejθdHeff,U, the downlink achievable rate RD and uplink

achievable rate RU are given by

RD = log2 det
(
IK +

1
σ2

D

Heff,DFDFH
DHH

eff,D

)
,

RU = log2 det
(
IN +

1
σ2

U

H̃eff,UFUFH
UH̃H

eff,U

)
= log2 det

(
IN +

1
σ2

U

Heff,UFUFH
UHH

eff,U

)
. (3)

III. PROBLEM FORMULATION AND ALGORITHM DESIGN

A. Problem Formulation

In FDD, due to the simultaneously transmitted downlink and

uplink signals, the precoders at the BS and UE and reflection

coefficients at the RIS should be designed to jointly maximize

the downlink and uplink rates. In (3) we observe that the same

reflection coefficient matrix ΘΘΘ appears in both RD and RU

irrespective of the value of θd. Therefore, we formulate the

following weighted sum-rate maximization problem for the

downlink and uplink as [21] and [23]

(P1) : max
FD,FU,ΘΘΘ

RWSR = ηRD + (1 − η)RU (4)

s.t. ‖FD‖2
F ≤ PD,max, (5)

‖FU‖2
F ≤ PU,max, (6)

ΘΘΘ = diag
(
[θ1, · · · , θL]T

)
, (7)

|θ�| = 1, � = 1, · · · , L, (8)

where η ∈ [0, 1] is the weight coefficient that controls the

relative priority between the downlink and uplink.

The objective function (4) is the weighted sum of non-

concave functions RD and RU with respect to the reflection

coefficient matrix ΘΘΘ, and the unit-modulus constraints in (8)

are non-convex. Furthermore, the precoding matrices FD and

FU are coupled with ΘΘΘ, making the optimization problem

(P1) difficult to solve. To address these issues, we adopt

the AO algorithm. For a fixed ΘΘΘ, problem (P1) can be

decomposed into downlink and uplink sub-problems, and the

optimal transmit precoders can be obtained using eigenmode

transmissions [29]. For fixed FD and FU, (P1) must be solved

with respect to ΘΘΘ alone, and we propose two optimization

techniques to tackle the unit-modulus constraints.

B. Optimization of FD and FU With Given ΘΘΘ

When ΘΘΘ is fixed, (P1) can be decoupled into separate

downlink and uplink sub-problems. The downlink sub-problem

for (P1) is given by

max
FD

RD

s.t. ‖FD‖2
F ≤ PD,max. (9)

In this problem, the optimal FD can be obtained by the

singular value decomposition (SVD) of the effective downlink

channel and the water-filling power allocation. Denoting the

truncated SVD of the effective downlink channel as Heff,D =
ŨDΣ̃ΣΣDṼH

D with ṼD ∈ C
N×ND

s , the optimal FD is given by

F�
D = ṼDP

1
2
D, (10)

where PD = diag
([

p�
D,1, · · · , p�

D,ND
s

]T
)

denotes the down-

link power allocation matrix with p�
D,i representing the optimal

amount of power allocated to the i-th data stream obtained by

the water-filling power allocation. Specifically, p�
D,i is given

by p�
D,i = max(1/pD,0 − σ2

D/[Σ̃ΣΣD]i,i, 0) for i = 1, · · · , ND
s ,

where pD,0 satisfies
∑ND

s
i=1 p�

D,i = PD,max.
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Similarly, the uplink sub-problem for (P1) is given by

max
FU

RU

s.t. ‖FU‖2
F ≤ PU,max. (11)

The optimal FU can be computed as in (10), i.e.,

F�
U = ṼUP

1
2
U, (12)

where ṼU ∈ C
K×NU

s is the right singular matrix of

the truncated SVD Heff,U = ŨUΣ̃ΣΣUṼH
U, and PU =

diag
([

p�
U,1, · · · , p�

U,NU
s

]T
)

is the uplink power allocation

matrix obtained by the water-filling power allocation. The

uplink power allocated for the i-th data stream is given by

p�
U,i = max(1/pU,0 − σ2

U/[Σ̃ΣΣU]i,i, 0) for i = 1, · · · , NU
s ,

where pU,0 satisfies
∑NU

s
i=1 p�

U,i = PU,max.

C. Optimization of ΘΘΘ With Given FD and FU

For fixed FD and FU, (P1) must be optimized with respect

to the reflection coefficients at the RIS:

(P2) : max
ΘΘΘ

RWSR (13)

s.t. ΘΘΘ = diag
(
[θ1, · · · , θL]T

)
, (14)

|θ�| = 1, � = 1, · · · , L. (15)

The non-convex constraints (15) still make it challenging to

find the optimal solution for this problem. We tackle this issue

in the following section.

IV. PROPOSED PHASE SHIFT OPTIMIZATION TECHNIQUES

In this section, we propose two techniques to optimize

the reflection coefficients at the RIS in (P2) to simultane-

ously improve the downlink and uplink system performance.

In the first technique, we adopt a manifold optimization-based

algorithm by leveraging the fact that the reflection coefficients

at the RIS lie on the complex circle manifold. For the second,

we develop a lower-complexity AO technique in which an

effective closed-form solution for each reflection coefficient

is derived. The relative computational complexity of the two

methods will be compared.

A. Manifold Optimization

As discussed in the previous section, the main obstacle

to solving (P2) is the presence of unit-modulus constraints

in (15), making the optimization problem highly non-convex.

Fortunately, these unit-modulus constraints form the com-

plex circle manifold ML
cc = {θθθ ∈ C

L : |θ1| = · · · =
|θL| = 1} [30], which is a Riemannian manifold. The key

advantage of dealing with the Riemannian manifold is that

optimization methods applicable in the Euclidean space, such

as gradient descent, can also be employed on Riemannian

manifolds. Therefore, we adopt the Riemannian conjugate

gradient (RCG) algorithm to obtain a stationary point for (P2).

The RCG algorithm is the generalization of the conjugate

gradient method to the Riemannian manifold space, and it

can efficiently tackle optimization problems with non-convex

constraints such as the unit-modulus constraints [13], [17],

[21]. To implement the RCG-based algorithm, the following

three steps must be implemented.

1) Compute Riemannian Gradient: The Riemannian gradi-

ent corresponds to the direction of maximum ascent of the

objective function at the point θθθ = [θ1, · · · , θL]T ∈ ML
cc,

while being restricted within its tangent space. It can be com-

puted by the orthogonal projection of the Euclidean gradient

onto the tangent space. On the complex circle manifold, the

Riemannian gradient of objective function (13) is expressed as

gradθθθ RWSR = ∇θθθRWSR − Re (∇θθθRWSR ◦ θθθ∗) ◦ θθθ, (16)

where ∇θθθRWSR represents the Euclidean gradient of RWSR

with respect to θθθ. To compute the Riemannian gradient (16),

∇θθθRWSR = η∇θθθRD+(1−η)∇θθθRU must be found. Note that

once ∇θθθRD =
[

∂RD
∂θ1

, · · · , ∂RD
∂θL

]T

is obtained, the computa-

tion of ∇θθθRU is straightforward. By applying the chain rule

in [31], the partial derivative of RD with respect to the �-th

reflection coefficient θ� can be represented by

∂RD

∂θ�
= tr

(
∇Heff,DRD ·

∂HH
eff,D

∂θ∗�

)

+ tr
(

(∇Heff,DRD)H · ∂Heff,D

∂θ∗�

)
. (17)

In the complex differentials, θ� and θ∗� can be treated as

independent variables [32], from which it is obvious that
∂Heff,D

∂θ∗
�

= 0, and only computation of the first term in (17) is

required. We first derive the Euclidean gradient of RD with

respect to Heff,D in the following proposition.

Proposition 1: The Euclidean gradient ∇Heff,DRD is

∇Heff,DRD

=
1

ln 2 · σ2
D

Heff,DFD

(
IND

s
+

1
σ2

D

FH
DHH

eff,DHeff,DFD

)−1

FH
D.

(18)

Proof: See Appendix A. �
The remaining part in (17), i.e., the partial derivative of

HH
eff,D with respect to θ∗� , can be computed by

∂HH
eff,D

∂θ∗�
= (h′

D,� ⊗ GD(�, :))H, (19)

where h′
D,� denotes the �-th column of HH

D. Based on (18)

and (19), the partial derivative of RU with respect to θ� can be

similarly obtained by denoting the �-th column of GH
U as g′

U,�.

2) Transport: Let d(t) be the search direction at the point of

the t-th iteration θθθ(t)
. In the manifold optimization, it is likely

that the search directions d(t) and d(t+1) will lie in different

tangent spaces, and the transport operation is introduced to

address this issue. The transport operation enables mapping

the tangent vector from one tangent space to another. In the

case of the complex circle manifold ML
cc, the vector transport

is given by

Tθθθ(t)→θθθ(t+1)

(
d(t)

)
� d(t) − Re

(
d(t) ◦ θθθ(t+1)∗

)
◦ θθθ(t+1),

(20)
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Algorithm 1 RCG-Based Algorithm for Problem (P2)

1: Initialization: θθθ(0)
, d(0) = − gradθθθ(0) RWSR, and set

t = 0
2: repeat
3: Choose the Armijo backtracking line search step size

τ (t)

4: Find the next point θθθ(t+1)
using the retraction in (22)

5: Compute the Euclidean gradient ∇θθθ(t+1)RWSR

according to (17)

6: Compute the Riemannian gradient gradθθθ(t+1) RWSR

according to (16)

7: Compute the transport of d(t) according to (20)

8: Calculate the conjugate direction d(t+1) according

to (21)

9: t ← t + 1
10: until ‖ gradθθθ(t) RWSR‖2 ≤ ε

11: Output: θθθ� = θθθ(t)

which maps the tangent vector d(t) at the point θθθ(t)
to the

tangent space at the point of the next iteration θθθ(t+1)
.

As the update rule for the search direction after obtaining

the Riemannian gradient (16), the conjugate gradient method

is used in the RCG algorithm, and the search direction d(t+1)

is given by

d(t+1) = − gradθθθ(t+1) RWSR + γ(t)Tθθθ(t)→θθθ(t+1)

(
d(t)

)
,

(21)

where γ(t) can be chosen as the Polak-Ribiere parameter [30].

3) Retraction: Let τ (t) be the step size for the search

direction d(t) at the point θθθ(t)
. Note that the step size can

be found using the Armijo backtracking line search [30], and

the related parameters can be set adaptively. When the point

on the manifold moves by τ (t)d(t) along the tangent vector,

it may not be on the manifold itself. To tackle this problem, the

retraction operation is employed to map the updated point back

onto the manifold. Consequently, the updated point θθθ(t+1)
can

be computed as

θθθ(t+1) = R
(
θθθ(t) + τ (t)d(t)

)
, (22)

where R(·) denotes the retraction operation, which is given by

R(θθθ) =
[

θ1

|θ1|
, · · · ,

θL

|θL|

]T

. (23)

The overall RCG-based algorithm is summarized in

Algorithm 1, which is guaranteed to converge to a stationary

point for (P2) [30].

Based on Algorithm 1, we summarize the overall algorithm

to find the effective solution of (P1) in Algorithm 2. The

RIS reflection coefficients are first initialized, and then the

precoders at the BS and UE are computed based on this

initial value. The estimate of the reflection coefficients is

then updated by Algorithm 1, and the precoders are obtained

accordingly. The algorithm terminates if the increment in

the objective function (4) is less than some predetermined

threshold ε.

Algorithm 2 Proposed Manifold Optimization-Based

Algorithm for Problem (P1)

1: Input: GD,HD,GU,HU, σD, σU.

2: Initialization: Set s = 0, and randomly generate θθθ(0)
,

and obtain the optimal F(0)
D and F(0)

U for the channel

realization

3: repeat
4: Compute θθθ(s+1)

based on Algorithm 1 with fixed

F(s)
D and F(s)

U

5: Compute F(s+1)
D and F(s+1)

U according to (10)

and (12) with fixed θθθ(s+1)

6: s ← s + 1
7: until ‖R(s+1)

WSR − R
(s)
WSR‖2 ≤ ε

8: Output: θθθ� = θθθ(s),F�
D = F(s)

D ,F�
U = F(s)

U

B. Low-Complexity AO

In this subsection, we propose a low-complexity AO tech-

nique for solving (P2), where sub-problem (P2) with respect

to the �-th reflection coefficient θ� is formulated with all

other reflection coefficients fixed. A closed-form solution

for each sub-problem is derived, from which the effective

solution of (P2) can be obtained by iteratively solving these

sub-problems.

Denote G′
D = GDFD = [g′

D,1, · · · ,g′
D,L]H ∈ C

L×ND
s and

H′
U = HUFU = [h′

U,1, · · · ,h′
U,L]H ∈ C

L×NU
s . Taking a

procedure similar to that in [12], the objective function (13)

can be rewritten with respect to θ� given {θi, i 
= �}L
i=1, i.e.,

f�(θ�) = ηfD,�(θ�) + (1 − η)fU,�(θ�), � = 1, · · · , L, where

fD,�(θ�) and fU,�(θ�) are expressed as

fD,�(θ�) = log2 det
(
IK + θ�A−1

D,�BD,� + θ∗�A
−1
D,�B

H
D,�

)
+ log2 det(AD,�)

� f ′
D,�(θ�) + log2 det(AD,�),

fU,�(θ�) = log2 det
(
IN + θ�A−1

U,�BU,� + θ∗�A
−1
U,�B

H
U,�

)
+ log2 det(AU,�)

� f ′
U,�(θ�) + log2 det(AU,�), (24)

with AD,� ∈ C
K×K , AU,� ∈ C

N×N , BD,� ∈ C
K×K , and

BU,� ∈ C
N×N given by (25), as shown at the bottom of

the next page. Since f ′
D,�(θ�) and f ′

U,�(θ�) only depend on

θ�, the equivalent problem of (P2) with respect to θ� can be

formulated as

(P3) : max
θ�

f ′
�(θ�) = ηf ′

D,�(θ�) + (1 − η)f ′
U,�(θ�) (26)

s.t. |θ�| = 1. (27)

To proceed, it is necessary to investigate properties related

to A−1
D,�BD,� and A−1

U,�BU,� since the objective function (26)

is largely affected by these matrices.1 Note that the rank of

both A−1
D,�BD,� and A−1

U,�BU,� is upper bounded by 1 since

1Although there exist additional matrices A−1
D,�B

H
D,� and A−1

U,�B
H
U,�

in (26), only the properties of A−1
D,�BD,� and A−1

U,�BU,� are required for the

reformulation of f ′
D,�(θ�) and f ′

U,�(θ�). For instance, this can be checked
by following the procedure in Appendix B.
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rank (BD,�) = rank (BU,�) = 1, and if the rank of either of

these matrices is zero, the corresponding parts of (26) become

independent of θ�. For instance, if the rank of A−1
D,�BD,�

is zero, i.e., A−1
D,�BD,� = 000K,K , f ′

D,�(θ�) is independent of

θ�, and the solution to (P3) can be obtained by maximizing

f ′
U,�(θ�) only.

When both matrices are rank-one, two sub-cases are possi-

ble depending on whether or not the matrices are diagonaliz-

able. According to [12], it can be shown that diagonalizable

A−1
D,�BD,� and A−1

U,�BU,� are equivalent to tr
(
A−1

D,�BD,�

)

=

0 and tr
(
A−1

U,�BU,�

)

= 0.

1) Diagonalizable A−1
D,�BD,� and A−1

U,�BU,�: In this case,

both matrices can be decomposed by an eigenvalue decompo-

sition (EVD):

A−1
D,�BD,� = UD,�ΛΛΛD,�U−1

D,�,

A−1
U,�BU,� = UU,�ΛΛΛU,�U−1

U,�, (28)

where ΛΛΛD,� = diag(λD,�, 0, · · · , 0) and ΛΛΛU,� =
diag(λU,�, 0, · · · , 0), each with only a single non-zero

eigenvalue λD,� and λU,�, respectively. Before proceeding

further, let (c′D,�)
T and (c′U,�)

T denote the first rows of

CD,� = UH
D,�AD,�UD,� and CU,� = UH

U,�AU,�UU,�, and let

cD,� and cU,� denote the first columns of C−1
D,� and C−1

U,�,

respectively. Following [12] and using some mathematical

manipulations, f ′
D,�(θ�) and f ′

U,�(θ�) can be rewritten as

f ′
D,�(θ�) = log2(1 + |λD,�|2(1 − c′D,�1cD,�1) + 2Re(θ�λD,�)),

f ′
U,�(θ�) = log2(1 + |λU,�|2(1 − c′U,�1cU,�1) + 2Re(θ�λU,�)),

(29)

where c′D,�1 and c′U,�1 are the first elements of (c′D,�)
T and

(c′U,�)
T, and cD,�1 and cU,�1 are the first elements of cD,�

and cU,�, respectively. The detailed procedure to derive (29)

is provided in Appendix B.

Denote the singular values of an arbitrary n × n complex

matrix A by ρ1(A) ≥ · · · ≥ ρn(A). To exploit the structure

of (29), we provide the following lemma to identify an upper

bound for |λD,�|.
Lemma 1: The quantity |λD,�| is upper bounded by

ρ1

(
A−1

D,�

)
ρ1 (BD,�).

Proof: Since A−1
D,�BD,� is a rank-one matrix, an upper

bound for |λD,�| can be found as follows:

|λD,�| =
∣∣∣tr(

A−1
D,�BD,�

)∣∣∣
(a)

≤
K∑

k=1

ρk

(
A−1

D,�

)
ρk (BD,�)

(b)
= ρ1

(
A−1

D,�

)
ρ1 (BD,�) , (30)

where (a) follows from Von Neumann’s trace inequality [33],

and (b) holds since BD,� is rank-one. �
Note that ρ1

(
A−1

D,�

)
is equivalent to the smallest singular

value of AD,�, i.e., ρK (AD,�), since AD,� is symmetric.

To further investigate the upper bound of |λD,�|, we provide

the following lemma related to the smallest singular value of

AD,�.

Lemma 2: If ND
s < K − 1, the smallest singular value of

AD,� is given by ρK (AD,�) = 1.
Proof: Define X =

∑L
i=1,i�=� θih′

D,i(g
′
D,i)

H and Y =
h′

D,�(g
′
D,�)

H, which form AD,� as in (25). The maximum ranks

of X′ = XXH and Y′ = YYH are given by rank (X′) = ND
s

and rank (Y′) = 1, and we consider these maximum values

to obtain the tightest bound for ND
s . Let the eigenvalues of

an arbitrary n × n Hermitian matrix A be λ1(A) ≥ · · · ≥
λn(A). According to Weyl’s inequality [34], an upper bound

for λK (X′ + Y′) is given by

λK (X′ + Y′) ≤ λi (X′) + λK+1−i (Y′) , i = 1, · · · , K.

(31)

When i = ND
s +1, (31) can be simplified to λK (X′ + Y′) ≤

0 when ND
s < K − 1, resulting in λK (X′ + Y′) = 0 due to

the positive semi-definiteness of X′ + Y′, which implies that

λK (AD,�) is only affected by IK as clearly shown in (25).

Hence, λK (AD,�) = 1, and thereby ρK (AD,�) = 1, which

completes the proof. �
From Lemma 2, the upper bound (30) can be simplified to

ρ1 (BD,�), which is equivalent to ‖BD,�‖F because the other

singular values of BD,� are zero. Similarly, it can be shown

that |λU,�| is upper bounded by ρ1

(
A−1

U,�

)
ρ1 (BU,�), which

can be simplified to ‖BU,�‖F when NU
s < N − 1.

AD,� = IK +
1

σ2
D

⎛⎝ L∑
i=1,i�=�

θih′
D,i(g

′
D,i)

H

⎞⎠ ⎛⎝ L∑
i=1,i�=�

θih′
D,i(g

′
D,i)

H

⎞⎠H

+
1

σ2
D

h′
D,�(g

′
D,�)

Hg′
D,�(h

′
D,�)

H,

AU,� = IN +
1

σ2
U

⎛⎝ L∑
i=1,i�=�

θig′
U,i(h

′
U,i)

H

⎞⎠ ⎛⎝ L∑
i=1,i�=�

θig′
U,i(h

′
U,i)

H

⎞⎠H

+
1

σ2
U

g′
U,�(h

′
U,�)

Hh′
U,�(g

′
U,�)

H,

BD,� =
1

σ2
D

h′
D,�(g

′
D,�)

H

⎛⎝ L∑
i=1,i�=�

θ∗i g
′
D,i(h

′
D,i)

H

⎞⎠ ,

BU,� =
1

σ2
U

g′
U,�(h

′
U,�)

H

⎛⎝ L∑
i=1,i�=�

θ∗i h
′
U,i(g

′
U,i)

H

⎞⎠ . (25)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 08,2025 at 04:30:44 UTC from IEEE Xplore.  Restrictions apply. 



LEE et al.: JOINT DOWNLINK AND UPLINK OPTIMIZATION 9065

Based on the above discussion, |λD,�| and |λU,�| are upper

bounded by ‖BD,�‖F and ‖BU,�‖F under the respective con-

ditions ND
s < K − 1 and NU

s < N − 1. According to (25),

‖BD,�‖F and ‖BU,�‖F are strongly affected by the gains of

the RIS-related channels. Note that the RIS will usually be

deployed to extend signal coverage and support weak or distant

users, implying that |λD,�| and |λU,�| can be assumed to be

sufficiently small. For this reason, we apply the first-order

Taylor approximation log(1 + x) ≈ x around x = 0 in (29)

which, after removing irrelevant terms involving θ�, leads to

the following approximation of problem (P3):

(P4) : max
θ�

f ′′
� (θ�) = ηRe(θ�λD,�) + (1 − η)Re(θ�λU,�)

s.t. |θ�| = 1. (32)

In the following proposition, we derive the closed-form solu-

tion to (P4).

Proposition 2: The optimal solution to (P4) is given by

θ�
� = exp(−j arg(φ�)), (33)

where φ� is given in (38), as shown at the bottom of the next
page.

Proof: The objective function of (P4) can be rewritten by

the weighted sum of cosine functions

f ′′
� (θ�) = η|λD,�| cos(arg(θ�) + arg(λD,�))

+ (1 − η)|λU,�| cos(arg(θ�) + arg(λU,�)) (34)

= A cos(arg(θ�) + φ�). (35)

Applying the trigonometric identity cos(α+β) = cos α cos β−
sinα sin β to (34) and (35) yields

A cos(φ�) = η|λD,�| cos(arg(λD,�))
+ (1 − η)|λU,�| cos(arg(λU,�)), (36)

A sin(φ�) = η|λD,�| sin(arg(λD,�))
+ (1 − η)|λU,�| sin(arg(λU,�)). (37)

From (36) and (37), tan(φ�) can be derived, and it can be

shown that φ� is equivalent to (38), as shown at the bottom

of the next page. Hence, the maximum value of (35) can be

achieved when θ� is given as (33), which completes the proof.

Note that the amplitude A in (35) can be directly computed

based on (36) and (37), and this solution is substituted into

the original objective function for (P3). �
2) Non-Diagonalizable A−1

D,�BD,� or A−1
U,�BU,�: According

to [12], it can be verified that if A−1
D,�BD,� or A−1

U,�BU,�

is non-diagonalizable, either f ′
D,�(θ�) or f ′

U,�(θ�) becomes

independent of θ�, and the solution to (P3) can be obtained

by maximizing only the diagonalizable part, i.e., θ�
� =

exp(−j arg(λU,�)) or exp(−j arg(λD,�)). If both matrices are

non-diagonalizable, any choice of reflection coefficients is

optimal, e.g., θ�
� = 1 without loss of generality.

3) Summary: The proposed low-complexity AO technique

for solving (P2) is summarized in (39), as shown at the

bottom of the next page, and the overall low-complexity

AO-based algorithm for (P1) is described in Algorithm 3.

The difference compared to the manifold optimization-based

algorithm lies in the optimization of the reflection coefficients,

Algorithm 3 Proposed Low-Complexity AO-Based Algorithm

for Problem (P1)

1: Input: GD,HD,GU,HU, σD, σU

2: Initialization: Set t = 0, and randomly generate θθθ(0)
,

and obtain the optimal F(0)
D and F(0)

U for the channel

realization

3: repeat
4: for � = 1 → L do
5: Compute AD,�,AU,�,BD,�, and BU,� according

to (25)

6: Obtain θ
(t+1)
� according to (39)

7: end for
8: Compute F(t+1)

D and F(t+1)
U according to (10)

and (12) with fixed θθθ(t+1)

9: t ← t + 1
10: until ‖R(t+1)

WSR − R
(t)
WSR‖2 ≤ ε

11: Output: θθθ� = θθθ(t),F�
D = F(t)

D ,F�
U = F(t)

U

which are updated individually using the derived closed-form

expressions.

Remark 1: In the manifold optimization-based algorithm,

monotonic convergence is guaranteed since in every sub-

problem the objective function (4) is monotonically increas-

ing, and (4) is upper bounded by finite channel capacities

corresponding to the downlink and uplink channels. Hence,

given that (4) is differentiable, the manifold optimization-

based algorithm is guaranteed to converge to a stationary

point [35]. In the low-complexity AO approach, the closed-

form solution (33) is derived from the approximated problem

(P4), which in theory eliminates the convergence guarantee.

However, the update procedures for the downlink and uplink

precoders always maximize their corresponding sub-problems,

implying that at least a point near local optima can be obtained.

The convergence behavior of the proposed algorithms will be

discussed in Section V-B.

C. Generalized Scenarios
Throughout this paper, we have focused on a scenario

involving a single BS communicating with a single UE

in FDD. However, our proposed algorithms can be easily

extended to the following more general scenarios:
• Multiple FDD links where a single BS serves multiple

UEs: In this scenario, the BS communicates with several

UEs simultaneously on distinct downlink and uplink

frequencies, for example using orthogonal frequency divi-

sion multiplexing (OFDM). In this case, the objective

function (4) can be extended to incorporate a weighted

sum-rate for all UEs, and the proposed algorithms can be

directly applied since there is no interference among the

different links. The computation of the precoders at the

BS and all UEs using eigenmode transmissions would be

implemented as before. For the manifold optimization,

the Euclidean gradient of the new objective function can

be computed by aggregating the individual Euclidean

gradients corresponding to each UE, and thus it too

can be implemented using the same approach described

previously. Although the number of the closed-form

expressions needed for the low-complexity AO approach
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may increase, these additional terms can be derived in a

straightforward way.

• Multiple BSs where different service providers exploit
distinct frequency bands: This scenario is a further gen-

eralization of the prior one, and the optimization can

be performed similarly. However, in this case the opti-

mization would require sharing global CSI among all

entities involved in the optimization, and the RIS would

be operated for a common purpose rather than for a

specific service provider.

D. Complexity Analysis

For simplicity, we assume (ND
s , NU

s ) � (N, K) ≤ L to

compare the complexity between the proposed algorithms.

1) Manifold Optimization-Based Algorithm: To opti-

mize FD or FU, the worst-case complexity is given

by O(NK min(N, K)). The complexity for implementing

the RCG-based algorithm is dominated by computing the

Euclidean gradient ∇θθθRWSR. For the downlink part, the

required complexities to compute ∇Heff,DRD and
∂HH

eff,D
∂θ∗

�
are

given by O(3NKND
s ) and O(NK). The complexity for the

multiplication between ∇Heff,DRD and
∂HH

eff,D
∂θ∗

�
is O(N2K).

Therefore, the complexity to compute ∇θθθRD is O(N2KL).
Similarly, for the uplink part, the required complexity to

compute ∇θθθRU is O(NK2L). In the retraction operation,

the step size τ (t) should be searched for at each iteration,

and the complexity is O(L). Thus, the total complexity for

the manifold optimization-based algorithm can be shown to

be O(Iout,1Iin(N2KL + NK2L)), where Iout,1 denotes the

number of outer iterations for the entire algorithm until RWSR

converges after all variables are updated, and Iin denotes the

number of inner iterations for the RCG-based algorithm given

FD and FU.

Remark 2: In general, the number of outer iterations

increases with L accounting for the enlarged search dimension.

However, in the manifold optimization-based algorithm, the

effect of increasing L is mitigated by the inner iterations to

optimize the reflection coefficients.

2) Low-Complexity AO-Based Algorithm: The complexity

required to compute G′
D and H′

U given FD and FU are

O(N2L) and O(K2L), respectively. The worst-case com-

plexity for computing λD,� and λU,� can be shown to be

O(3K3 + 2N2K) and O(3N3 + 2K2N), respectively. After

obtaining λD,� and λU,�, θ�
� are computed by the closed-form

expressions which have a negligible complexity. Therefore,

the total cost for the low-complexity AO-based algorithm

is O(Iout,2(3(N3 + K3) + 2NK(N + K))L), where Iout,2

denotes the number of outer iterations until RWSR converges.
3) Comparison: Assuming N = K, the complexities

for the manifold optimization-based and low-complexity

AO-based algorithms are given by O(Iout,1IinN3L) and

O(Iout,2N
3L), respectively. Due to the additional Iin term

required to implement the RCG-based algorithm, the com-

plexity of the manifold optimization is larger than that of the

low-complexity AO approach.

V. NUMERICAL RESULTS

A. Simulation Scenario

In this section, we investigate the performance of the

proposed algorithms for maximizing the weighted sum-rate for

the downlink and uplink transmissions. The BS and UE are

assumed to be equipped with a uniform linear array (ULA),

while the RIS is modeled as a uniform planar array (UPA)

with Lh horizontal rows and Lv vertical columns. We assume

N = 16 BS antennas, K = 8 UE antennas. The locations

of the BS, RIS, and UE are set to be (0 m, 0 m), (750 m,

5 m), and (800 m, 0 m), respectively. The downlink and

uplink carrier frequencies are fD = 2.135 GHz and fU =
1.945 GHz. With the noise spectral density −174 dBm/Hz

and the bandwidth 10 MHz, the noise variance is set as

σ2
D = σ2

U = −104 dBm. Unless otherwise specified, the

weight coefficient is taken to be η = 0.5, the number of RIS

elements is L = 100 with Lh = Lv = 10, and the maximum

downlink and uplink powers are PD,max = 27 dBm and

PU,max = 23 dBm. We further adopt the 3GPP distance and

frequency dependent path-loss model given by [23] and [36]

PL (d, f) [dB]=28+22 log10

(
d

d0

)
+20 log10

(
f

f0

)
, (40)

where d is the link distance, f is the carrier frequency, and

d0 = 1 m and f0 = 1 GHz respectively denote the reference

distance and frequency.

We adopt the geometric channel model [22], [37], which

for the downlink BS-RIS channel GD can be written as2

GD =

√
NL

MD
G

MD
G∑

m=1

αD,maR(δD
G,m, γD

G,m)(aB(ωD
G,m))H, (41)

2While we assume a geometric channel model for the simulations, the
proposed algorithms do not rely on this assumption.

φ� = tan−1

(
η|λD,�| sin(arg(λD,�)) + (1 − η)|λU,�| sin(arg(λU,�))
η|λD,�| cos(arg(λD,�)) + (1 − η)|λU,�| cos(arg(λU,�))

)
, (38)

θ�
� =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

exp(−j arg(φ�)), if tr
(
A−1

D,�BD,�

)

= 0 and tr

(
A−1

U,�BU,�

)

= 0,

exp(−j arg(λD,�)), if tr
(
A−1

D,�BD,�

)

= 0 and tr

(
A−1

U,�BU,�

)
= 0,

exp(−j arg(λU,�)), if tr
(
A−1

D,�BD,�

)
= 0 and tr

(
A−1

U,�BU,�

)

= 0,

1, otherwise.

(39)
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where MD
G is the number of downlink paths, and αD,m is

the downlink channel coefficient of the m-th path in GD

which we assume to be independent and identically distributed

(i.i.d.) as αD,m � CN (0,PL(dBR, fD)) for the BS-RIS link

distance dBR. The array response vectors at the BS and

RIS are respectively denoted by aB(ωD
G,m) ∈ C

N×1 and

aR(δD
G,m, γD

G,m) ∈ C
L×1, and aB(ωD

G,m) is given by

aB(ωD
G,m) =

1√
N

[
1, ejωD

G,m , · · · , ej(N−1)ωD
G,m

]T

, (42)

where ωD
G,m = 2πfDaB sin(ζD

G,m)/c is the spatial frequency

of the angle of departure (AoD) assuming the speed of light is

c, the antenna spacing at the BS is aB, and the AoD is ζD
G,m.

The array response vector at the RIS aR(δD
G,m, γD

G,m) can be

written as

aR(δD
G,m, γD

G,m) = aR,v(γD
G,m) ⊗ aR,h(δD

G,m), (43)

where aR,v(γD
G,m) and aR,h(δD

G,m) represent the RIS array

response vectors along the vertical and horizontal directions,

and aR,v(γD
G,m) and aR,h(δD

G,m) are given by

aR,v(γD
G,m) =

1√
Lv

[
1, ejγD

G,m , · · · , ej(Lv−1)γD
G,m

]T

,

aR,h(δD
G,m) =

1√
Lh

[
1, ejδD

G,m , · · · , ej(Lh−1)δD
G,m

]T

, (44)

where γD
G,m = 2πfDaR,v sin(ψD

G,m)/c and δD
G,m =

2πfDaR,h cos(ψD
G,m) sin(φD

G,m)/c are the spatial frequencies

for the angles of arrival (AoAs), the vertical and horizontal

spacing of the RIS elements are aR,v and aR,h, respectively,

and the azimuth and elevation AoAs are φD
G,m and ψD

G,m,

respectively.

Similarly, the uplink RIS-BS channel GH
U can be repre-

sented by

GH
U =

√
NL

MU
G

MU
G∑

m=1

αU,maB(ωU
G,m)(aR(δU

G,m, γU
G,m))H,

(45)

where MU
G is the number of uplink paths, αU,m �

CN (0,PL(dBR, fU)) is the i.i.d. uplink channel coeffi-

cient of the m-th path, ωU
G,m = 2πfUaB sin(ζU

G,m)/c
is the AoA spatial frequency at the BS for AoA

ζU
G,m, and γU

G,m = 2πfUaR,v sin(ψU
G,m)/c and δU

G,m =
2πfUaR,h cos(ψU

G,m) sin(φU
G,m)/c are the spatial frequencies

of the AoDs at the RIS for the azimuth and elevation AoDs

φU
G,m and ψU

G,m, respectively. The RIS-UE channels HH
D and

HU can be defined similarly to (41) and (45), with MD
H and

MU
H representing the number of downlink and uplink paths

for the RIS-UE link and aU representing the antenna spacing

at the UE. For the considered scenario we set MD
G = MU

G =
MD

H = MU
H = 5 and aB = aR,v = aR,h = aU = c

2fU
. For the

BS-RIS channels, the angles ζD
G,m and ζU

G,m are randomly

generated and uniformly distributed in [−π, π), and φD
G,m,

ψD
G,m, φU

G,m, and ψU
G,m in [−π/2, π/2]. The angles related

to the RIS-UE channels are generated in the same way. Based

on the number of paths, the number of data streams is set to

be ND
s = NU

s = 5.

Fig. 2. The convergence behavior of proposed algorithms according to the
outer iterations.

B. Algorithm Convergence Behavior

Fig. 2 illustrates the averaged weighted sum-rates of the

two proposed algorithms based on 100 independent channel

realizations versus the number of outer iterations Iout. Based

on the value of Iout, the specific number of iterations for both

algorithms Iout,1 and Iout,2 can be determined according to

the predefined threshold ε. It is observed that both algorithms

converge to local optimal points. Furthermore, the weighted

sum-rates converge within 10 outer iterations, which demon-

strates the efficiency of the proposed algorithms in rapidly

finding the local optima. Note that the manifold optimization-

based algorithm jointly optimizes all of the RIS reflection

coefficients, resulting in a higher weighted sum-rate than the

lower-complexity AO algorithm.3

C. Performance Comparison

Here we compare the performance of the proposed algo-

rithms against the following baseline approaches:
• One-way AO [12]: This scheme can be viewed as a

special case of the low-complexity AO approach, where

the reflection coefficients at the RIS are optimized to only

maximize either the downlink or uplink rate. In one-

way AO (DL), the reflection coefficients are optimized

solely for maximizing the downlink system performance,

while ignoring the uplink. Conversely, for one-way AO

(UL), the reflection coefficients are optimized only for

the uplink. The remainder of the algorithm is the same

as for the low-complexity AO approach, i.e., the pre-

coding matrices FD and FU are computed based on

the corresponding updated reflection coefficients. Note

that we simultaneously consider the downlink and uplink

performance as long as the actual weight coefficient is in

the range η ∈ (0, 1).

3In Fig. 2, we only examine the convergence behavior for the outer
iterations. In the manifold-based optimization algorithm, the reflection coef-
ficients are optimized numerically, and the convergence behavior for the
inner iterations is guaranteed [30]. In the low-complexity AO approach, each
reflection coefficient is updated using a closed-form expression, and thus the
inner iterations are not needed.
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Fig. 3. Weighted sum-rate versus the number of RIS elements.

• AO with separated elements: In this approach, the L RIS

elements are partitioned into two disjoint sets of size L/2.

The reflection coefficients in one set are optimized using

one-way AO (DL) to support only the downlink, while

the other set is optimized using one-way AO (UL) for

only the uplink.

• Truncated-SVD-based-beamforming (T-SVD-BF) [13]:

This scheme approximates the singular values of the

effective channels Heff,D and Heff,U in terms of the

reflection coefficients at the RIS. The manifold optimiza-

tion is applied to update the reflection coefficients, and the

precoding matrices are subsequently optimized without

any alternating process. Note that although this scheme

originally targets the downlink design, it is also applicable

for the joint downlink and uplink case since the compu-

tation of the Euclidean gradient for the objective function

with both the downlink and uplink can be extended in a

straightforward way for the manifold optimization.

• Random phase shifts: The phase shifts at the RIS are

randomly and uniformly generated in [0, 2π), and the

precoding matrices are optimized based on eigenmode

transmission.
Fig. 3 shows the weighted sum-rate versus the number

of RIS elements L with Lh = Lv. It is observed that the

two proposed algorithms achieve the highest weighted sum-

rates regardless of the value of L, which emphasizes the

significance of jointly maximizing the downlink and uplink

system performance. When L is small, the performance gap

between the proposed algorithms becomes relatively small

due to the resulting reduction in the channel gains, and

the approximation used in the low-complexity AO technique

works well in this case. Also for small L, although T-SVD-BF

jointly considers the downlink and uplink when optimizing

the RIS reflection coefficients, the performance degradation

incurred by the approximation of the singular values of the

effective channels leads to a smaller weighted sum-rate than

optimizing the downlink only. Nevertheless, as L increases,

T-SVD-BF outperforms the one-way AO-based algorithm

since the approximation becomes more accurate, making the

joint optimization more effective. While the AO with separated

Fig. 4. Weighted sum-rate versus the downlink transmit power.

Fig. 5. The downlink and uplink rate regions for the proposed algorithms.

elements approach shows a higher weighted sum-rate than the

one-way AO-based algorithms for large L, the set of reflection

coefficients optimized for only one direction may cause severe

interference in the opposite direction, leading to a performance

degradation compared to the proposed algorithms.

Fig. 4 compares the weighted sum-rate versus PD,max for

fixed PU,max = 23 dBm. The proposed algorithms again show

the highest weighted sum-rates regardless of the value of

PD,max, which illustrates their versatility. For small PD,max,

the performance gap between the proposed algorithms and

the one-way AO (UL)-based algorithm is small since it is

better to focus on the uplink only when the downlink power

is small. Similarly, it is observed that the performance of the

one-way AO (DL)-based algorithm, which only focuses on the

downlink, improves with increasing PD,max. Although the AO

with separated elements approach outperforms the one-way

AO-based algorithms under comparable PD,max and PU,max,

the performance gap between the proposed algorithms remains

approximately constant, which emphasizes the importance of

simultaneously considering both the downlink and uplink in

optimizing the reflection coefficients.
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D. Rate Region Comparison

Lastly we investigate the rate regions for the proposed

algorithms obtained by varying η ∈ [0, 1]. The results are

shown in Fig. 5, where we see that the manifold optimization-

based algorithm achieves higher rates in all cases than the

lower-complexity AO algorithm, which is consistent with the

previous results. The maximum sum-rate RD+RU is achieved

when η is around 0.5 due to the comparable channel gains

and transmit powers for the downlink and uplink. The figure

clearly shows that the proposed algorithms can efficiently

balance the downlink and uplink performance by adjusting η.

VI. CONCLUSION

In this paper, we investigated RIS-aided FDD SU-MIMO

systems, and formulated a joint optimization framework to

maximize a weighted sum-rate for the downlink and uplink

transmissions. By adopting an AO algorithm, the precoding

matrices at the BS and UE are updated through eigenmode

transmissions. To optimize the reflection coefficients at the

RIS, techniques based on manifold optimization and a lower-

complexity AO are developed. Numerical results demonstrated

that the proposed algorithms converge quickly and achieve

better performance than existing benchmark schemes. Pos-

sible future research directions include extending the joint

optimization framework to multi-user systems and developing

optimization techniques that consider imperfect CSI.

APPENDIX

A. Proof of Proposition 1

To derive (18), we use the following theorem from [31].

Theorem 1: For an arbitrary deterministic matrix H,
an arbitrarily distributed input x, and Gaussian noise n that
is independent of x with a normalized noise covariance matrix
(e.g., an identity matrix), the following equation is satisfied:

∇HI(x;Hx + n) = HE, (46)

where I(x;y) = log det
(
I + HΣΣΣxHH

)
is the mutual infor-

mation between the transmit signal x and the received signal
y, and E = (ΣΣΣ−1

x + HHH)−1 is the minimum mean squared
error (MMSE) matrix with input covariance matrix ΣΣΣx.

From (1), the downlink received signal can be represented

by yD = Heff,DFDsD + nD = H̃eff,DsD + nD. Following

Theorem 1, the Euclidean gradient of RD with respect to

H̃eff,D is given by

∇H̃eff,D
RD =

1
ln 2 · σ2

D

H̃eff,DE, (47)

where E =
(
IND

s
+ 1

σ2
D
H̃H

eff,DH̃eff,D

)−1

is the MMSE

matrix. To obtain ∇Heff,DRD from (47), we use the following

lemma from [31].

Lemma 3: Let f be a scalar real-valued function, which
depends on B through H = ABC, where A,C are arbitrary
fixed matrices. Then, the following equation holds:

∇Bf = AH · ∇Hf · CH. (48)

Plugging in H = H̃eff,D,A = IK ,B = Heff,D, and C = FD

to Lemma 3, ∇Heff,DRD is given by

∇Heff,DRD = ∇H̃eff,D
RD · FH

D (49)

=
1

ln 2 · σ2
D

H̃eff,DEFH
D, (50)

which finishes the proof.

B. Derivation of (29)

From (24) and (28), f ′
D,�(θ�) can be rewritten as

f ′
D,�(θ�)

= log2 det(IK + θ�A−1
D,�BD,� + θ∗�A

−1
D,�B

H
D,�)

= log2 det(IK + θ�UD,�ΛΛΛD,�U−1
D,�

+ θ∗�A
−1
D,�(U

−1
D,�)

HΛΛΛH
D,�U

H
D,�AD,�)

(a)
= log2(det(U−1

D,�) det(IK + θ�UD,�ΛΛΛD,�U−1
D,�

+ θ∗�A
−1
D,�(U

−1
D,�)

HΛΛΛH
D,�U

H
D,�AD,�) det(UD,�))

= log2 det(IK + θ�ΛΛΛD,� + θ∗�C
−1
D,�ΛΛΛ

H
D,�CD,�)

= log2 det(IK + θ�ΛΛΛD,� + θ∗� λ∗
D,�cD,�(c′D,�)

T)
(b)
= log2 det(1 + θ∗� λ∗

D,�(c
′
D,�)

T(IK + θ�ΛΛΛD,�)−1cD,�)
+ log2 det(IK + θ�ΛΛΛD,�)

(c)
= log2

((
1 + θ∗� λ∗

D,� −
c′D,�1cD,�1|λD,�|2

1 + θ�λD,�

)
(1 + θ�λD,�)

)
= log2(1 + |λD,�|2(1 − c′D,�1cD,�1) + 2Re(θ�λD,�)), (51)

where (a) holds since det(U−1
D,�) det(UD,�) = 1, (b) is derived

from the fact that det(AB) = det(A) det(B) and det(Im +
CD) = det(In + DC) for C ∈ C

m×n and D ∈ C
n×m,

and (c) holds since (c′D,�)
TcD,� = 1 and |θ�|2 = 1. Similarly,

f ′
U,�(θ�) in (29) can be derived by following the procedure

in (51).
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