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Extending periodic automorphisms of
surfaces to 3-manifolds

Y1 N1, CHAO WANG, AND SHICHENG WANG

In the orientable category, we show that, if a finite group G acts
on a closed surface ¥ so that each element of it is extendable over
the 3-sphere S? as a diffeomorphism with respect to a fixed em-
bedding ¥ — 53, then G is extendable over S as a group action
with respect to some other embedding ¥ — S°. Degree one maps
are involved in the proof. Based on it, we classify all periodic au-
tomorphisms of closed surfaces that are extendable over S3.
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We work in the smooth category, mainly consider oriented manifolds, and
use Aut(-) to denote the orientation-preserving automorphism group of a
manifold.
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Let X be a compact oriented surface and M be an oriented 3-manifold,
where ¥ and M are possibly disconnected. An element f in Aut(X) is ez-
tendable over M with respect to an embedding e : > — M if there exists
an element f’ in Aut(M) such that f’oe =eo f. A subgroup G in Aut(X)
is extendable over M with respect to an embedding e : ¥ — M if there is
a group monomorphism ¢ : G — Aut(M) such that ¢(h) o e = e o h for any
h € G. An element f (respectively subgroup G) in Aut(X) is extendable over
M if f (resp. G) is extendable over M with respect to some embedding
> —+ M. When G is generated by a periodic map f, we also say that f is
periodically extendable.

Let 3, be a closed oriented surface of genus g. We are interested in the
following question.

Question 1.1. If an orientation-preserving automorphism [ of order n
on X4 is extendable w.r.t. some embedding e; : Xy — S3, is f periodically
extendable w.r.t. another embedding e3 : Xg — S3¢

Question 1.1 has the positive answer, indeed we prove a more general
result.

Theorem 1.2. A finite subgroup G in Aut(X,) is extendable over S if
and only if there is an embedding e : $g — S® so that each element of G is
extendable over S with respect to e.

Theorem 1.2 follows from Theorem 1.3. Both the statement and the
proof of Theorem 1.3 involve degree one maps between 3-manifolds. For
closed connected oriented 3-manifolds M and M’, M’ is 1-dominated by M,
denoted by M > M’, if there exists a degree one map M — M’.

Theorem 1.3. Given an integral homology 3-sphere M and a finite sub-
group G in Aut(X,), if there is an embedding e : ¥y — M so that each ele-
ment of G is extendable over M with respect to e, then there exists an integral
homology 3-sphere M' so that M =, M' and G is extendable over M’'.

Note that on the set of integral homology 3-spheres the relation “=,” is
a partial order relation (see Proposition 2.4). Moreover, for a given M there
are only finitely many M’ satisfying M >, M’ (see [BRW] and [Liu]).

In Theorem 1.3, passing to another 3-manifold M’ is necessary, and in
Question 1.1, S2 can not be replaced by another 3-manifold. Even we start
from S3, to get the required embedding in the conclusion of Theorem 1.3,



Extending periodic automorphisms of surfaces to 3-manifolds 891

degree one maps are still essentially involved. The example below is an il-
lustration of Question 1.1 and Theorem 1.3.

Example 1.4. First recall for each complete hyperbolic 3-manifold M with
finite volume, Iso(M), the isometry group of M, has finite order, and more-
over any finite group action on M can be conjugated into Iso(M) by the
Geometrization Theorem and Orbifold Theorem (see [Th, Pe|] and [BMP]).

(1) The right side of Figure 1 shows an embedded handlebody H,y; in
some 3-ball in S3, where H, ¢+1 is presented as g 1-handles attached on a solid
torus H. Let X441 = 0Hy44. There is a 27 /g-rotation r, of 53 which keeps
H, Hy.y, X441 invariant setwise and acts freely on them. Let f; = r¢|s, .,
which is shown in Figure 1. Clearly f, is periodically extendable over 53
w.r.t. the inclusion map.

Lete: Hypq — 53 be the embedding shown on the left side of Figure 1,
where e(H) is a regular neighborhood of a figure-8 knot in S3. One may
assume that the handlebody e(H,41) stays in the interior of a thicker regular
neighborhood H* of the figure-8 knot. Since r,| g is isotopic to the identity,
there is a diffeomorphism F' on H* so that F oe|sy,,, =eo fy and Flag-
is the identity. So F' can extend to the whole S by the identity on the
complement of H*, and f, is extendable over S 3 w.r.t. e as a diffeomorphism.

Figure 1: Replace the complement by a simple manifold.

On the other hand, f; is not periodically extendable w.r.t. e for large g.
Otherwise, there is a periodic map f’ in Aut(S®) so that f'oe=-eo f,.
Choose an invariant circle C' in @Hy41 as in Figure 1. Then f’ le(cy 1s a
translation of order g along a figure-8 knot in S3. This can not happen
when g is large, because the complement of the figure-8 knot has a complete
hyperbolic structure of finite volume.

The periodically extendable embedding on the right side of Figure 1
can be obtained from the embedding on the left side via a degree one map
53 — 83, which is the identity on H* and maps the complement of H* to a
solid torus.
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(2) Suppose that f is a periodic map on ¥, and f is periodically ex-
tendable w.r.t. some embedding ¥; C IN. One example of such N is 52 with
¥y C S and f being defined as in the first paragraph of Part (1). Another
example is 3; x S! for any periodic map f on X.

For a 3-ball D C N missing Y4, it is known that f extends to some f on
N as a diffeomorphism so that f |p is the identity. Then, for any 3-manifold
M, f|n—p can extend to the connected sum M#N = (M — B) U (N — D)
by the identity on M — B, where B is the interior of a 3-ball in M. So f is
extendable over M#N as a diffeomorphism.

For simplicity, assume N is irreducible and M # N. If M is a closed
orientable hyperbolic 3-manifold (M can even be an integral homology 3-
sphere), then f is not periodically extendable over M#N when the period
n is large. Otherwise, let f’ be a periodic extension of f. By the Equivariant
Sphere Theorem (see [MY]), f’ will induce a periodic map of order n on M.
Since M is hyperbolic, the map is conjugate to an isometry of order n. This
can not happen when n is large.

Via a degree one map M#N — N which is the identity on N — D and
sends M — B to D, we get back N, where f is periodically extendable w.r.t.
Y4y CN.

Note that every element in Aut(S3) is isotopic to the identity (see [Hal),
and every finite subgroup in Aut(S3) can be conjugated into SO(4) (see
[BMP, Pe]). Hence Theorem 1.2 means that, if a finite subgroup in Aut(X,)
can be realized by topological motions of S% (or R?), then it can be realized
by isometric motions of S3. Also, note that finite subgroups in Aut(%,) that
are extendable over S® with order bigger than 4(g — 1) can be classified
(see [WWZZ]). The following theorem classifies the finite cyclic subgroups
(or periodic automorphisms) in Aut(3,) that are extendable over S3 (see
Remark 4.4).

Given a finite subgroup G in Aut(X,), there is an orbifold ¥,/G deter-
mined by G. Suppose that ¥,/G has underlying space ¥, and s singular
points of indices ni,...,ns Then its orbifold fundamental group m1(X4/G)
has a presentation (see Figure 2 in Lemma 4.2)

r F:3
<al:ﬁl:-“1ar16ﬁ’h=---:’YS | H[ahﬁ%]HFYJ =1, ;:k =1L1< k< 5>-
i=1 j=1

The G-action on Y, gives an epimorphism 1 : m(X,/G) — G which is in-
jective on finite subgroups of m (¥,/G). We call such ¢ a finitely-injective
epimorphism.
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Theorem 1.5. A finite cyclic subgroup G in Aut(X,) is extendable over
S3 if and only if the orbifold Y.q/G and the finitely-injective epimorphism 1
satisfy:

(a) there exist co-prime positive integers p,q such that ny,...,ng € {p,q};

(b) if ni = n; for some i # j, then either V(i) = ¥(v;) or ¥(viv;) = 1;
(€) 71,---,7s can be partitioned into pairs ~;,~y; such that ¥(v;y;) = 1.

Two such subgroups G and G' are conjugate in Aut(Xy) if and only if they
are isomorphic and X4/G and ¥4/G' are homeomorphic as orbifolds.

Moreover, the corresponding embedded surface of such a subgroup G can
always be a Heegaard surface.

Actually, unless g = 1 and G is a free action on Y1, the conjugacy class
of G is determined by X4/G, which can be enumerated by the Riemann—
Hurwitz formula. We also have a standard form of the G-action (see Ex-
ample 4.3). As a comparison, there exist finite subgroups in Aut(X21) and
Aut(X481) which are extendable over S3, but the embedded surfaces can not
be Heegaard surfaces (see [WWZZ]). It is worth mentioning that if an au-
tomorphism of ¥y is extendable over S3, then its corresponding embedded
surface can always be a Heegaard surface (see [FK]).

After giving some preparations in Section 2, we will prove a stronger
version of Theorem 1.3 in Section 3 and generalize the result to general
actions on compact manifolds. Then, in Section 4, we will prove Theorem 1.5
and give some intuitive examples which can also be read directly after the
introduction. In the appendix, we prove some results about automorphisms
of surfaces with boundary.

At the end of the introduction, we mention some literatures related to
Question 1.1:

1. There are many results about extending finite group actions on 3,
to some 3-manifold bounded by %,. For example, finite cyclic group actions
are analyzed in the pioneer work [Bol|, and finite abelian group actions are
analyzed in [RZ].

2. A result similar to our Theorem 1.2 has been obtained in [F]] for
finite cyclic group actions on finite 3-connected graphs. In this direction,
the recent results in [FY] are close to the style of our Theorem 1.3.

3. To get intuition about the symmetries on surfaces, a sequence of
papers on embedding symmetries of 3, into those of S3 appeared recently,

including [WWZZ] and [GWWZ]. The first one is devoted to maximum order
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problems and the second one lists all extendable finite cyclic group actions
on Ys. The present research is inspired by those papers.

2. Relation “>” and property “Xg-splittable”

In this section, we introduce two concepts that will be used in our main
result Theorem 3.1. Let M denote the set of closed connected oriented 3-
manifolds. We first define the relation “>” on M, and then “¥,-splittable”
for manifolds in M. Some properties and examples about the concepts are
given after the definitions, among which only Proposition 2.3 and Proposi-
tion 2.8 will be used later.

For M in M and a compact connected 3-manifold N embedded in M,
let M — N denote the closure of M — N, and let 8N denote the common
boundary of N and M — N.

If &N is a 2-sphere, then we can obtain a closed 3-manifold M’ from N
by gluing a 3-ball into &N . This process of obtaining M’ from M is often
called a “pinch”.

If ON is a torus, then by the following “half-live half-die” lemma there
exists a unique simple closed curve ¢ in N up to isotopy and orientation
reversal such that [¢] # 0 in H1(ON,Q) but [¢] =0in H (M — N,Q), where
[c] denotes the homology class represented by c¢. Hence, we can obtain a
closed 3-manifold M’ from N by filling a solid torus into &N, mapping the
meridian to c. This process of obtaining M’ from M is also called a “pinch”
in the literature.

Lemma 2.1. For a compact orientable 3-manifold X, the dimension of the

kernel of H1(0X,Q) — H1(X,Q) is half of the dimension of Hi(0X,Q).

Definition 2.2. For M and M’ in M, if M’ can be obtained from M

as in the above construction, then define the relation M >¢ M’ (“s” for

“Surgery”).
In general, we say M = M’, if there is a sequence of manifolds

M = My, M,,...,M, = M’

such that M; =¢ M;4,,1=0,1,...,n — 1. This defines a reflexive and tran-
sitive relation “>” on M.

Note that if M’ can be obtained from M by pinching an embedded
compact 3-manifold whose boundary is a sphere or a torus, then M >, M’.
We also have a relation “>g” on M, where M =g M’ if and only if there
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is an epimorphism H;(M,Q) — H(M’,Q). It is well known that M >=; M’
implies M > M'.

Proposition 2.3.

(1) For M and M’ in M, M = M’ implies M =y M'.

(2) If M is an integral homology 3-sphere, then M = M’ implies M =1 M’
and M’ is also an integral homology 3-sphere.

Proof. Suppose that M >, M’', N is the compact 3-manifold embedded in
M, ¢ is the simple closed curve in N, and T is the solid torus filled into
ON along c.

(1) By the Mayer—Vietoris sequence of homology groups,

dim H;(M,Q) = dim H; (N, Q) + dim H,(M — N, Q)
—dimIm(H;(6N,Q) — H,(N,Q) ® H;(M — N,Q)),

where “I'm(-)” denotes the image of the map. There is a similar equal-
ity for M’ with M — N replaced by T. Let ¢’ be a simple closed curve in
ON such that [c] and [¢] generate H1(ON,Q). For M and M’, [c] =0 in
Hi{(M — N,Q) and Hi(T,Q) respectively, so the images of [c] belong to
Hi(N,Q), and by Lemma 2.1, the images of [¢] are nonzero in the sec-
ond factors. Hence for M and M’ the last summands are equal. Then, by
Lemma 2.1, we have

dim Hy (M, Q) — dim Hy (M’, Q) = dim H,(M — N, Q) — dim Hy (T, Q) > 0.

The general case when M > M’ can be obtained by induction.

(2) Since M is an integral homology 3-sphere, by the Mayer—Vietoris
sequence of homology groups, N and M — N are integral homology solid
tori and [¢] =0 in Hi{(M — N,Z). Then ¢ bounds a connected surface in
M — N, and there is a map from M — N to T, which maps the surface to
a meridian disk in T' bounded by ¢ and is the identity on dN. The map
clearly extends to a degree one map from M to M’ by the identity on N. So
M =1 M'. Note that Hy(M',Z) = 0. Hence M’ is also an integral homology
3-sphere.

The general case when M > M’ can be obtained by induction, because
on each step we have an integral homology 3-sphere. |

Proposition 2.4. On the set of integral homology 3-spheres the relation
“~17 is a partial order relation, hence “=7 is also a partial order relation.
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Proof. We only need to show that “>;” is antisymmetric.

Suppose that M and M’ are integral homology 3-spheres so that M >,
M’ and M’ >, M. Since the fundamental groups of manifolds in M are
residually finite (see [He2] for Haken manifolds, the general case can be
proved similarly based on Thurston’s geometrization conjecture [Pe]), they
are hopfian groups. Since degree one maps induce epimorphisms between
fundamental groups, 1 (M) and m(M’), as hopfian groups, must be isomor-
phic. Let f: M — M’ be the degree one map, and let f, : m (M) — m(M’)
be the induced isomorphism.

For a 3-manifold N with N consisting of 2-spheres, let N denote the
manifold obtained by capping off N with 3-balls. By the prime decompo-
sition theorem of 3-manifolds, there is a compact 3-manifold Ny embedded
in M so that Ny consists of 2-spheres, ﬁo is homeomorphic to 52, and for
each component N of M — Ny the 3-manifold N is an irreducible integral
homology 3-sphere. Suppose that M — Np has m components, denoted by
Ni,Na,...,Nm. Let M; be N;, where 0 < i < m. Similarly, for M’ we have
N} and M ;, where 0 < j < m’. By the positive solution of Poincaré conjec-
ture (see [Pe]), we can assume that for ,5 > 1 neither w1 (M;) nor m1(Mj) is
trivial. Also, note that each of these groups is not a nontrivial free product
of its subgroups (see [Hel]).

Assume that the base points of M and M’ lie in Ny and N respectively,
and f preserves the base points. Then, according to the decompositions given
by N; and Nj'-, m(M;) and m (M;) can be embedded in 7 (M) and m (M),
respectively. By the Kurosh subgroup theorem (see [Hel, 8.3 and 8.4]), we
have m = m/, and there exists a permutation o of {1,2,...,m} such that
f«(m1(M;)) and m (M ;) are conjugate in m(M’) for each 1 <1 < m.

By the positive solution of Thurston’s geometrization conjecture and
Borel conjecture in dimension three, an irreducible integral homology 3-
sphere is determined by its fundamental group. Moreover, all these 3-
manifolds are aspherical, except S3 and the Poincaré homology sphere S?;,.
Hence M; and M/ ; are homeomorphic for 1 < 7 < m. Note that M; and M, t’;z
have the induced orientations from M and M’ respectively. We need to show
that the homeomorphisms between M; and M/ ; can be chosen to preserve
the orientations. Then, as connected sums, the oriented 3-manifolds M and
M’ are homeomorphic.

For each fixed 1 <i < m, there is a degree one map f/: M’ — M, ,,
which is the identity on N/ ; and maps M’ — N/ . to the 3-ball in M/
bounded by 9N/ ;. Since wa(M] ;) is trivial, f] o f is null-homotopic on each
2-sphere in Np. Hence, the degree one map f o f induces a map fj; : M; —
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M , for each 0 < j < m, and we have the equality E?:o deg f;; = deg(f] o
fl=1,0or1—degf;; = Ej#- deg fji, where “deg” denotes “degree”.

For j # i, fi(m(Mj)) is conjugate to the free factor m; (Mc’;j,) of m (M),
which lies in the kernel of the map m(M’) — w1 (M ,), so (fji)« : m1(M;) —
m (M} ;) is trivial. Hence, if M/ ; is aspherical, then f;; with j # i are all
null-homotopic, and we have deg f;; = 1; if M/, is S3, then 120 | deg f;; for
all j # i, and there exists a degree one map from M; to M/ ,. In each case,
the degree one map is homotopic to a homeomorphism (see [Sun]). O

Example 2.5. Neither “>1” nor “>” is antisymmetric on the set of lens
spaces.

Let N be the 3-manifold A x S, where A is an oriented annulus and
S! is an oriented circle. Let C; and Cs be the two components of JA. Let
D be a disk in the interior of A, and let C3 be dD. For 1 < i < 3, choose
a point P; in Cj. Let S; be the circle {F;} x S L'in N. Then C; and S; have
the induced orientations from A — D and S', respectively. Let N’ be the
submanifold D x S* of N.

Clearly [C;] and [Si] generate Hi(C; x Sj,Z) for 1 <i<3, and in
Hi{(N — N',Z) we have [Ci] + [C2] + [C3] = 0. Let a1, b1, a2, bz be integers
so that the greatest common divisors ged(a1, b1), ged(as, b2), ged(ai, az) are
equal to 1. For 1 < i < 2, let ¢; be an oriented simple closed curve in C; x S;
so that [ci] = ai[Ci] + b;[Si] in H1(C; x S;i,Z). Note that ged(aiaz, aibs +
azb1) = 1. Let c3 be an oriented s.c.c. in C3 x S3 so that [c3] = —a1a2[C3] +
(@1b2 + a2b1)[S3] in H1(C3 x S3,Z). Then a closed 3-manifold M can be ob-
tained from N by filling solid tori into N, mapping the meridians to ¢; and
¢, respectively. And a closed M’ can be obtained from N’ by filling a solid
torus into @N’, mapping the meridian to cs.

Let m and n be integers such that ma; — nb; = 1. One can check that
M is the lens space L(aiba + a2bi,maz + nbz) and M’ is the lens space
L(a1bz + asbi,araz). Since in Hi(N — N',Z) we have [c3] = as[c1] + a1[e2],
the curve c3 in N’ bounds a surface in M — N’, whose intersections with
ON are parallel copies of ¢; and c3. Hence we have M > M’ and M > M'.
Below we will show that if integers p, g1, ¢2 satisfy ged(p, 1) = ged(p, g2) = 1
and q1g2 = r? (mod p) for some integer r, then there exist a1, b1, a2, ba, m,
n such that M is L(p,q;) and M’ is L(p,g2).

Because ged(p, ¢1) = ged(p, g2) = 1, we have ged(p, ) = 1, and there ex-
ists an integer ¢f so that ¢;¢f =1 (mod p). Let a; = r¢f + p, a; = r, then
ged(ag,as) = 1. Hence there exist two integers b and b, such that a;b), +
asb) = 1. Let by = bip, by = byp, then we have ged(ay, b)) = ged(ag, bp) =
1 and ayby + aghy = p. Clearly ajas =r?q} = go (mod p). Finally, since
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ged(ay,b1) = 1, there exist two integers m and n such that ma; — nb; = 1.
So mas + nby = mr = maiq1 = ¢1 (mod p).

Remark 2.6. The fact that “>;” is not antisymmetric on the set of lens
spaces follows from the homotopy-type classification of lens spaces, which is

a classical result of Whitehead [Wh].

Definition 2.7. A 3-manifold M in M is X4-splittable if every embedded
3¢ in M separates M into two parts.

Proposition 2.8. For M in M, M is X,-splittable for g < k if M is Xy-
splittable; M is 34-splittable for any g if and only if M is a rational homology
3-sphere.

Proof. If an embedded Y., does not separate M, then locally add 1-handles to
34. Clearly M is not Yp-splittable for k > g. M is not a rational homology 3-
sphere if and only if there is an epimorphism H;(M,Z) — H,(S*,Z), which
can always be induced by a map from M to S!. The latter condition is
equivalent to that M contains a closed two sided surface which does not
separate M (see [Hel]). O

Proposition 2.9. A 3-manifold M in M is Yg4-splittable if and only if
every prime factor of M is X4-splittable.

Proof. When g = 0, this is equivalent to that M does not contain S! x S?
as a prime factor. Assume that it is true for ¢ = k — 1. When g = k, we only
need to show the “if” part. By induction, we can assume that the embedded
Yk in M is incompressible. For a sphere in M intersecting ;. transversely,
an innermost disk in the sphere together with a disk in ¥ will form a sphere
separating M. Then we can remove the intersection by an isotopy or reduce

the problem to a 3-manifold with fewer prime factors. Hence the proof can
be finished by induction. O

Example 2.10. Any spherical 3—manifold is a rational homology 3-sphere,
hence is X4-splittable for any g by Proposition 2.8. Any hyperbolic 3-
manifold in M contains no incompressible torus, hence is X;-splittable. Any
irreducible 3-manifold is ¥g-splittable. If the mapping torus of an automor-
phism of X, has first Betti number 1, then it is not X, -splittable, but it
is Y-splittable for any k < g, because any homologically essential surface
must represent a generator of Hy = Z, so the minimal genus of such a surface

is g [Th2].
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3. Extension of periodic automorphisms

In this section, we prove our main result Theorem 3.1. By Proposition 2.3
and Proposition 2.8, it implies Theorem 1.3. We also discuss several gener-
alizations of Theorem 3.1, summarized as Theorem 3.11 and Theorem 3.12.

Theorem 3.1. Given a X-splittable M in M and a finite subgroup G in
Aut(Xy), if there is an embedding e : g — M so that each element of G

is ertendable over M with respect to e, then there erists M' in M so that
M = M' (and so M =g M') and G is extendable over M'.

Its proof uses similar ideas as [Bol], as well as [Fl|. According to the
sphere and torus/annulus decompositions of M — ¥,, we can change com-
plicated 3-manifolds embedded in M — %, into 3-balls or solid tori such that
G is extendable, and each replacement corresponds to a relation =.. We first
list several fundamental results in 3-manifold theory that will be used in the
proof.

In what follows, Lemma 3.2 is based on Kneser—Milnor’s sphere decom-
position theorem (see [Bol, Lemma A.1l]). Theorem 3.3 can be found in
[Bo2, Theorem 3.7]. Theorem 3.4 is based on the torus/annulus decomposi-
tion theorem and Thurston’s hyperbolizaion theorem (see [Bo2]). Lemma 3.5
and Lemma 3.6 for finite cyclic G and I-bundles over closed surfaces can
be found in [Bol, Propositions 4.1 and 4.3], where “I” denotes the unit in-
terval. Theorem 3.7 is based on Mostow’s hyperbolic rigidity theorem and
Waldhausen’s isotopy theorem (see [Bo2| and [Wal).

Lemma 3.2. Let X be a compact connected oriented 3-manifold with 8X #
(. As in Proposition 2.4, there exists a collection S of disjoint spheres in X —
0X, which decomposes X into a punctured S® and several one-punctured
prime factors. If S and &' are two such collections, then there exists an

element f in Aut(X) such that f maps the spheres in S to the spheres in
S' and f fizes 0X.

Let ¥ be a closed oriented surface. A compression body V can be ob-
tained from X x [0,1] by attaching 2-handles along ¥ x {1} and capping
off boundary 2-spheres appeared in the process with 3-balls. The external
boundary &,V is the part of @V corresponding to ¥ x {0}, and the internal
boundary @;V is 0V — 8,V.

Theorem 3.3. Let X' be a compact connected oriented 3-manifold with
0X' # 0, which is irreducible. Then, up to isotopy, X' contains a unique
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compression body V' such that the external boundary 8.V is equal to 8X/',
X! —V contains no essential compression disk for its boundary 9;V, and no

component of X' —V is a 3-ball.

Theorem 3.4. Let Y be a compact connected oriented 3-manifold with
Y # 0, which is irreducible and boundary irreducible. Then, up to isotopy,
there is a unique minimal collection T of disjoint properly embedded essential
tort and annuli in'Y , such that for each piece Z obtained by cuttingY along
surfaces in T, either

(i) Z s an I-bundle over a compact surface with negative Euler charac-
teristic, where the corresponding 0I-bundle is equal to Z N3Y, or

(ii) Z is a Seifert manifold, where Z N 3Y is a union of fibers, or

(iii) with boundaries from T and tori in Z NOY removed, Z admits a com-
plete hyperbolic structure with totally geodesic boundary and with finite
volume.

Lemma 3.5. LetV be an oriented compression body, possibly disconnected,
and G be a finite subgroup in Aut(0.V'). If each element h of G is extendable
over V with respect to the inclusion map, then the corresponding element h'
in Aut(V) can be deformed to an element ¢(h) in Aut(V) by an isotopy'
fizing 0.V so that the map ¢ : G — Aut(V') is a group monomorphism.

Lemma 3.6. Let Z be a connected oriented I-bundle over a compact surface
with negative Fuler characteristic. Let 01/ denote the corresponding OI-
bundle, and G be a finite subgroup in Aut(01Z). If each element h of G
is extendable over Z with respect to the inclusion map, then there is an
element ¢(h) in Aut(Z) extending h so that the map ¢ : G — Aut(Z) is a
group monomorphism.

Theorem 3.7. Let Z' be a connected oriented complete hyperbolic 3-
manifold with totally geodesic boundary and with finite volume. Then each
element in Aut(Z') can be deformed to a unique isometry in Aut(Z') by an
isotopy keeping 8Z' invariant setwise. Moreover, this correspondence induces
an isomorphism between the mapping class group of Z' and the isometry
group of Z', which is finite.

IThroughout this paper, when we say “an isotopy fixing N”, we mean that the
restriction of the isotopy to N is a fixed map.
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We will give proofs of Lemma 3.5 and Lemma 3.6 according to [Bol,
Section 4]. The following lemma will be used in the proofs, as well as in
the proof of Theorem 3.1. In what follows, extensions will be respect to the
inclusion maps.

Lemma 3.8. Let W be a compact oriented 3-manifold consisting of dif-
feomorphic components Wi,..., Wy, and OW # (0. Let G be a finite sub-
group in Aut(OW), H be the setwise stabilizer of OW1 in G, and assume
that G = U?ll hiH with hi(0W1) =0W; for 1 <i<m. If the H-action
on OW; extends to W1 and each h; on OW, extends to a diffeomorphism
h; : W1 — W;, then the G-action on OW extends to W.

Proof. Note that the G-action on OW induces permutations on {OW7,...,
OWp. }, because for each h in G and 1 < ¢ < m we have

h(OW;) = hhh;  (0W;) = hhy(0Wy) = hih(0W,) = h; (W) = OW;,

for some j € {1,...,m} and h € H. Let o}, denote the permutation on
{1,...,m} determined by h, then we have j = 0y(i) and hh; € hg, ;H.
Let ¢g : H — Aut(W;) be the group homomorphism given by the ex-
tension of the H-action. Then, for each h in G and 1 < i < m, define ¢(h)
on W; by
o(h)|lw, = h;h(i) o ¢x (h;:(i)hhi) ohi™L.
Clearly ¢(h)|lw, : Wi — Wy, (;) is a diffeomorphism and it extends hAlsw;,.

Moreover, one can check that ¢ : G — Aut(W) is a group monomorphism.
O

Note that Lemma 3.8 is essentially algebraic. Under the settings of Lem-
ma 3.8, the H-action on dW; can be non-faithful, but in applications it will
be faithful.

Proof of Lemma 3.5. By classical results in differential topology and Lem-
ma 3.8, Lemma 3.5 holds when V is a disjoint union of 3-balls or an I-bundle
over 0.V .

Below we assume that each component of 3.V has genus bigger than zero
and it contains an essential simple closed curve that bounds a disk in V. We
can choose a G-invariant Euclidean or hyperbolic structure on each com-
ponent of 3.V, by the geometrization theorem for 2-dimensional orbifolds.
Then, among all the essential curves that bound disks in V there is a curve
¢ having the minimum length. Since each element h in G is extendable over
V' w.r.t. the inclusion map, the curve h(c) also bounds a disk in V.
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We have h(c) =c or h(c) Nc=0. Otherwise, let D and D’ be disks
bounded by ¢ and h(c), respectively, which intersect transversely. Let a be
an arc in D N D’ which is outermost in D, then a co-bounds a disk in D
with an arc a C ¢, where a does not intersect h(c) in the interior of a. We
can choose a so that

length(a) < %length(c).

Now da separates h(c) into two arcs @’ and a”. Let ¢ =aUad' and ' =
aUa", then both ¢’ and ¢’ are null-homotopic in V. Since each of ¢ and
c’ is the union of two geodesic arcs, none of them is null-homotopic in
9.V. By Dehn’s Lemma, both ¢ and ¢ bound disks in V. We may assume

length(a’) < length(a”). So

length(a’) < %]ength(h(c)) = %1ength(c},

and length(c’) < length(c). Then we can get a strictly shorter loop by round-
ing off the corners of ¢/. This contradicts the choice of c.

Let {ci1,...,cm} be the orbit of c¢. Each ¢; bounds a disk D; in V. By
applying surgeries, we can assume that Dq,..., Dy, are disjoint from each
other. Then the G-action on | J;-; ¢; can extend to | J;-; D;, by the method in
Lemma 3.8. And the G-action on 8.V can extend to a regular neighborhood
U of 8.V U (Ui~ Di). Let ¢(h) in Aut(U) be the extension of h. Since V
is irreducible, each extension A’ in Aut(V) can be deformed to preserve the
collection of the disks by an isotopy fixing @,V . It can be further deformed
to coincide with ¢(h) on U.

Note that V — U is still a compression body, possibly disconnected, and
G acts on its external boundary 0U — 3.V . Hence on V — U we can use
the results about 3-balls and I-bundles, or repeat the above procedure. The
proof can be finished by induction on the genera of the components of the
external boundary. O

To prove Lemma 3.6, we will need some results about automorphisms of
surfaces with boundary. The versions of these results for closed surfaces are
well known. The versions we need can be found in the Appendix.

Proof of Lemma 3.6. Let X denote the base space of the I-bundle Z.

Case 1. X is orientable, no element in G swaps the two components of
O0rZ. In this case Z = X x [0,1], and 0;Z = ¥ x {0,1}.

For each element h in G and i =0,1, let p;(h) : ¥ — X be the map
induced by the restriction of h on X x {i¢}. Then py and p; are two repre-
sentations of G' into Aut(X). Since G is finite, for i = 0,1, we can equip X
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with a hyperbolic structure m; for which the p;(G)-action is isometric, and
0% is geodesic in each m;.

We will use Proposition A.4. Let id : ¥ — ¥ denote the identity map.
Since po(h) is an isometry w.r.t. mo, 7ia © po(h) has constant dilatation and
is homotopic to po(h). So Tid 0 po(h) = Tpy(n). Similarly p1(h) o Tid = 7, (n)-
Since h is extendable over Z w.r.t. the inclusion map, po(h) and p;(h) are
homotopic. So 7, (n) = Tp, (h)-

Thus 74 realizes a conjugacy from po(h) to p1(h) for each h in G, and it
induces an orbifold homeomorphism 7ig : £/po(G) — X/p1(G). In general,
the map 74 is not smooth, but via deforming 7;3, we can obtain a diffeomor-
phism 7j; which also realizes the conjugacy between po(G) and p;1(G) and
is isotopic to 7iq. Then 7/; is smoothly isotopic to id. Let ¢; : ¥ — X be the
isotopy with ¢o = id and ¢; = 7{;. For each h in G, define ¢(h) : Z — Z by

the formula

é(h)(z,t) = ((bt o po(h) o ¢;1($}1t)1 (z,t) € X x [0,1].

Then ¢(h) is in Aut(Z), and ¢ : G — Aut(Z) is a group monomorphism.

Case 2. ¥ is orientable, and there exist elements in G swapping X x {0}
and ¥ x {1}.

By the method in [Wa, Section 3] (where the paper works in the PL
category), each extension of h can be deformed to an element ¢(h) in
Aut(Z) by an isotopy fixing ¥ x {0,1} so that ¢(h) keeps X x {1/2} invari-
ant setwise. So the map ¢ : G — Aut(Z) induces a group homomorphism
©: G — mo(Aut(X)). Note that h exchanges the two components of 07 if
and only if @(h) is an orientation-reversing mapping class in mo(Aut(X)).
Since x(X) < 0, the map P is injective.

By Proposition A.3, @ can be lifted to a group monomorphism G —
Aut(X). Hence, each ¢(h) can be deformed to some @(h) in Aut(Z) by an
isotopy fixing ¥ x {0,1} so that @(h) keeps ¥ x [1/4, 3/4] invariant setwise
and all the @(h) together give a G-action on it. Let G be the subgroup of G
consisting of elements that preserve ¥ x {0}. Then, by Case 1, the Gp-action
on ¥ x {0,1/4} can extend to X x [0,1/4]. By Lemma 3.8, the G-action can
extend to Z.

Case 3. X is non-orientable. So Z is the orientable twisted I-bundle
over X and ;% is an orientable double cover of ..

Let II be the section of Z which meets each fiber [0,1] at 3. As in
Case 2, for each h we get an extension ¢(h) in Aut(Z) so that ¢(h) keeps
IT invariant setwise. So ¢ : G — Aut(Z) induces a group homomorphism

® : G — mo(Aut(Il)). Let U be a neighborhood of II which has an induced
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I-bundle structure. We can assume that ¢(h) preserves U. Then we see that
G — p(G) is 1-to-1 or 2-to-1.

By Proposition A.3, (G) can be lifted to Aut(Il). So each ¢(h) can
be deformed to some @(h) by an isotopy fixing 977 so that @(h) preserves
U and the induced I-bundle, and all the @(h) together give a G-action on
II, possibly non-faithful. They also give a G-action on U, which must be
faithful, because ¢(h)|srr and @(h)|s,z are cobordant via @(h) on Z — U,
which is an I-bundle over d7Z. Then the proof can be finished by applying
Case 1. [l

Lemma 3.9. Let Z be an I-bundle over a compact surface ¥ with x(¥) < 0.
Let h € Aut(0rZ). Suppose that hy,hs € Aut(Z) are two extensions of h,
then hi, ha are (topologically) isotopic rel OrZ.

Proof. We use a procedure similar to the proof of Lemma 3.6. By composing
both hq, he with h;l, we may assume that h = idg,z and hy =idyz.

First, we consider the case X is orientable. By [Wa, Section 3], we may
assume h; is level-preserving. Thus h, defines a loop in Aut(X). By [EE, ES],
every component of Aut(X) is contractible, so this loop is null-homotopic.
So we can construct the desired isotopy using the null homotopy in Aut(Z).

When ¥ is non-orientable, let II be the section of Z which meets each
fiber [0,1] at % After an isotopy, we may assume h; preserves II. Since
hi|m is homotopic to idyy, they are also isotopic. We can isotope h so that
hi|m = idp. We can further isotope h; to get a new homeomorphism b, still
extending h, and k) = id on an I-bundle neighborhood U of II. Now we can
apply the last paragraph to get an isotopy connecting k| and idz. O

To give the proof of Theorem 3.1, we also need the following lemma.

Lemma 3.10. Let Z be a piece in the case (iii) of Theorem 3.4. Let Oy Z
denote the part of Z NAY without tori. Assume that OyZ # 0 and G is a
finite subgroup in Aut(OyZ). If each h in G extends to an element h' in
Aut(Z), then the b/ can be (topologically) deformed to an element ¢(h) in
Aut(Z) by an isotopy firing Oy Z such that the map ¢ : G — Aut(Z) is a

group monomorphism.

Proof. Note that each component of 3y Z is an oriented compact surface
with negative Euler characteristic, and the surface dZ — 8y Z consists of
boundaries from the decomposition tori/annuli in 7 and tori in Z N Y.
Let U be a regular neighborhood of 9y Z, which has an I-bundle struc-
tureover y Z. Let Zy = Z — U and Z' = Zy — 8Z. Then Z, is diffeomorphic
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to Z, and Z’ is diffeomorphic to Z — 0Z — 9y Z. So Z' admits a complete
hyperbolic structure with totally geodesic boundary and with finite volume,
by the assumption.

For each h in G, we can assume that the h' keeps Zj invariant setwise. By
Theorem 3.7, the h'|z: in Aut(Z') can be deformed to a unique isometry ¢(h)
in Aut(Z') by an isotopy keeping 07’ invariant setwise. If there are fi, ..., fs
in G such that []7_; f; is the identity, then [;_; f/|s,u—a, z is isotopic to the
identity map. Since components of dy Z have negative Euler characteristic,
the finite order isometry [];_; ¢(f;) is the identity. By the same reason, if
¢(h) is the identity, then h is the identity. So the map ¢ : G — Aut(Z') is a
group monomorphism.

By passing to the orbifold Z’/¢(G), we can construct a ¢(G)-invariant
compact manifold Z in Z’ so that Zy — Z] is an I-bundle over Z, N 0Z.
Then, each h'|z, is isotopic to some @(h) in Aut(Z,) relative to Zy N 0Z so
that @(h)|z; = @(h)|z;. Via further isotopy that preserves Zy N 0Z, we can
assume that ¢ : G — Aut(Zp) is a group monomorphism. Then the proof
can be finished by Lemmas 3.6 and 3.9. |

Proof of Theorem 3.1. Since M is ¥.q-splittable, M is ¥p-splittable. If g < 1,
then e(X,) bounds a manifold on each side, which can be replaced by a 3-
ball or a solid torus, according to Definition 2.2 and the note following it.
The result M’ satisfies M = M’, and each element of (G is extendable over
M’ w.r.t. the new embedding €' : ¥; — M’ (see Step 3 below). Then, by
Lemma 3.5, G is extendable over M'.

Below we assume that g > 2. The surface e(Xg) is two-sided in M. We
cut M along e(3,) and choose a connected component of the resulting mani-
fold, denoted by X. Since the extension of each h in G preserves the two sides
of e(X4), G can be naturally embedded in Aut(0X), so that each h is ex-
tendable over X w.r.t. the inclusion map. We will find a compact 3-manifold
W in X — 8X with W being a union of spheres or tori, and replace it by
3-balls or solid tori as in Section 2, such that the G-action on X can extend
to the modified manifold. We will do this for each possible component X.
When the boundaries of the modified components are glued back to e(Xg),
we will obtain a manifold M’, which will satisfy M > M’ by definition, and
G will be extendable over M’.

We have three steps to modify X and extend the G-action to it. As
before, for h in G, we use b’ to denote its extension. It will be modified in
each step.

Step 1. If X admits a nontrivial prime decomposition as in Lemma 3.2,
since M is Yg-splittable, &X lies in a single prime factor X’. For each h in
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@, the images of the decomposition spheres under k' give X another prime
decomposition. Hence, by Lemma 3.2, there exists an element f in Aut(X)
such that foh' preserves the original decomposition spheres and f fixes
0X. So foh' is also an extension of h. According to the note following
Definition 2.2, we replace X by X', and replace f o A’ by an extension of h
in Aut(X'). It will still be denoted by h'. Now G is embedded in Aut(dX’).
Note that X’ is irreducible.

Step 2. By Theorem 3.3, we have a compression body V in X’. More-
over, for each h in G, the I/ in Aut(X’) can be deformed to keep V in-
variant setwise, by an isotopy fixing 8X’. Note that V is connected if and
only if 8,V = 38X’ is connected, and G acts on each component of 8,V.
By Lemma 3.5, the ' can be further deformed so that the map given by
h+— h'|y from G to Aut(V) is a group monomorphism. So the G-action
extends to V. Below we assume that V # X'.

By Theorem 3.3, X/ —V is irreducible and boundary irreducible. Its
boundary &;V consists of oriented closed surfaces with genera bigger than
zero. Because the singular set of the orbifold V/G is empty or 1-dimensional,
the action on each component of ;V given by the stabilizer is faithful. Now
G is embedded in Aut(9;V), and each h in G is extendable over X’ —V
w.r.t. the inclusion map.

Step 3. Let Y7,...,Y, be all the components of X’ — V. Because each
h in G extends to some h' in Aut(X’ — V), the G-action on ;V induces
permutations on {9Y1,...,0Y,}. Let H be the setwise stabilizer of dY7 in
G, {0Y1,...,0Yn} be the orbit of 8Y1, and G = |JI-; h:H with h;i(8Y1) =
adY; for 1 <4 < m. Note that G and H act faithfully on U:il dY; and 9Y1,
respectively. Let W =i, Y;, then G and H are embedded in Aut(dW),
and each h in G extends to some h' in Aut(W).

Since hlly, : Y1 — Y; is a diffeomorphism, which extends hi|sy;, if the
H-action on 9Y; extends to Y7, then by Lemma 3.8, the G-action on W
extends over W. In general, we will show that the H-action on dY; can
extend over a 3-manifold W; obtained from Y; by surgeries. Then, since hj|y,
identifies Y7 with Y;, there is a W; obtained from Y; and a diffeomorphism
W1 — W; that also extends hi|ay,. Hence, the G-action on OW can extend
over the modified 3-manifold |J-, W;.

For simplicity, below we denote Y; by Y, and we need to show that the
H-action on dY extends over a modified 3-manifold.

Case 1. 3Y contains a torus.

Because M is X;-splittable, 8Y is the torus. By Lemma 2.1, we have
an essential simple closed curve ¢ in 9Y so that [¢] =0 in H1(Y,Q). Then
[h(c)] = 0 for each h in H, because h'(Y) =Y. Hence, by Lemma 2.1, h(c)
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is isotopic to ¢ in Y. According to Definition 2.2, we replace Y by a solid
torus P. Since both ¢ and h(c) bound disks in P, h|gy extends over P for
each h in H. So, by Lemma 3.5, the H-action on dY extends over P.

Case 2. Each component of dY has genus bigger than one.

Note that Y is irreducible and boundary irreducible. By Theorem 3.4,
we have a collection T of properly embedded tori and annuli in Y, so that
each piece Z obtained by cutting Y along surfaces in 7 belongs to one of
the three types: (i) Hyperbolic; (ii) I-bundle; (iii) Seifert fibered space.

Subcase 2.1. T contains only tori. In this case, let T' be the union of
the tori in 7. (Note that 7T is a set of tori, while 7" is the union of the tori
inT.)

By Theorem 3.4, for each h in H, the k' in Aut(Y) can be deformed
to keep T invariant setwise, by an isotopy fixing dY. Because M is X-
splittable, Y lies in a single piece Z. Since components of Y have genera
bigger than one, Z is not a Seifert manifold. If Z is an I-bundle, then it
is an I-bundle over a closed surface. So it is Y, and by Lemma 3.6, the
H-action on @Y can extend over Y. If Z is hyperbolic, then according to
Lemma 3.10, 8y Z = 8Y, and the k' can be further deformed so that the
map given by h + h'|z from H to Aut(Z) is a group monomorphism. So the
H-action extends over Z. If T # (), then H is embedded in Aut(0Z — dY")
as in Step 2. Since dZ — 3Y is a union of tori, by the argument in Case
1, Y — Z can be replaced by a union of solid tori so that the H-action can
extend further over it.

Subcase 2.2. T contains annuli. Let A denote the union of all the annuli
in T, let N be a tubular neighborhood of the union of surfaces in 7.

Because H is finite, we can choose a H-invariant hyperbolic structure
on Y. Each circle in 94 is isotopic to a closed geodesic in Y, where non-
isotopic ones correspond to disjoint geodesics. For each such closed geodesic
¢, suppose that there are k(c) circles in A isotopic to ¢, then we can choose
k(c) circles in Y, parallel and sufficiently close to ¢, so that the union of all
these circles is invariant under the H-action. Hence, we can choose A and
N so that h(NNa@Y)= N NaY for each h in H.

By Theorem 3.4, for each h in H, the k' in Aut(Y) can be deformed to
keep N invariant setwise, by an isotopy fixing 9Y . Let Z; (which is possibly
empty) be the union of all hyperbolic pieces Z in Y — N with dyZ # 0.
By Lemma 3.10, we can (topologically) deform h'|z, to a diffeomorphism
hy of Z relative to 8y Z1, so that the map defined by h|s,z, + k) is a
group monomorphism. Hence the H-action on V extends to a new H-action
¢1 1 H — Aut(V U Z;). Moreover, each ¢1(h) extends to a diffeomorphism
of V UY, still called A'.
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Let Z5 (which is possibly empty) be the union of all /-bundles in Y — N.
By Lemma 3.6, we can extend each ¢1(h) to get a group monomorphism ¢ :
H — Aut(V U Z1 U Z3). By Lemma 3.9, for each h € H, we can construct
an isotopy H; between ¢2(h) and h'|vyuz,uz,, so that H; is equal to ¢1(h)
on (V UZp) x {t}.

Let T3 be the union of the torus component of 3(V U Z; U Zs). Then
¢2(h) and h'|vuz,uz, induce isotopic maps on T5. By the argument in Case
1, we can fill T» with solid tori, so that ¢2(H) extends over these solid tori.
Our conclusion follows by Lemma 3.5. O

In what follows, we discuss some generalizations of Theorem 3.1.

1. We can replace X, by any compact connected 3-manifold N. The
extendable automorphisms and extendable subgroups in Aut(N) can be de-
fined as the surface case. The proof is almost the same, except that now we
choose X as a component of M — N, and for each possible X we consider the
setwise stabilizer of X in G, where G is naturally embedded in Aut(0N).

We can also replace X, by any compact connected surface. Let X denote
such an oriented surface. We can first extend the G-action to an oriented
I-bundle over ¥ embedded in M, then extend the G-action to a regular
neighborhood of ¥. This leads to the case of compact 3-manifolds.

Let II be a compact connected nonorientable surface embedded in an
oriented 3-manifold M, and Aut(II) be its automorphism group. Then we
can define extendable automorphisms and extendable subgroups in Aut(II)
similarly. Since M is oriented the surface e(II) is one-sided. In M, we can
choose an oriented I-bundle Z over Il and assume that for each h in G the
R in Aut(M) preserves Z and the bundle structure. Because the 8I-bundle
01Z is an orientable double cover of II, each h has two lifts in Aut(0rZ),
and they differ by the covering transformation. Since h' preserves the two
sides of 917, the restriction of A’ on 977 is the orientation-preserving lift of
h. Hence the G-action can extend to a regular neighborhood of II.

Clearly we can replace ¥4 by S ! or I. Hence we have the following result.

Theorem 3.11. Given a Xq-splittable M in M, a compact connected man-
ifold N, and a finite subgroup G in Aut(N), if there is an embedding
e: N — M so that each element of G is extendable over M with respect to
e, then there exists M' in M so that M = M’ and G is extendable over M’.

2. Theorem 3.11 will still hold if orientation-reversing automorphisms are
added into Aut(N) and Aut(M), when we define “extendable” suitably. Note
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that all the results listed after Theorem 3.1 are still valid when orientation-
reversing elements are added into the groups involved. The proofs of Lem-
ma 3.5 and Lemma 3.6 will also hold, after some small changes. For example,
in the proof of Lemma 3.6, ¥ in Case 2 can be 2-to-1 now, and we can use
arguments as in Case 3 to deal with it. The proofs of other lemmas are
almost the same.

In the case of compact 3-manifolds, the proof is also valid. Note that
in each step in the proof, h is orientation-reversing if and only if A’ is
orientation-reversing. In the cases of compact surfaces, we need more dis-
cussions.

For the oriented surface ¥, we can define a map p: G —+ Zy so that
p(h) = 0 if and only if the element h’ corresponding to h preserves the two
sides of e(X). For the nonorientable surface II, we can define a map p: G —
Zs so that p(h) = 0 if and only if the element &’ corresponding to h preserves
the orientation of M. Note that for II we have an oriented I-bundle Z over
it, and A’ is orientation-preserving on M if and only if the restriction of A’
on JrZ is orientation-preserving.

If the map p is a group homomorphism, then the G-action extends to
a regular neighborhood of e(X) (resp. e(II)). This leads to the case of com-
pact 3-manifolds. Otherwise, the identity on X (resp. II) can extend to an
automorphism of M that exchanges the two sides (resp. reverses the orien-
tation). Then every element in G can extend to an automorphism of M that
preserves the two sides (resp. preserves the orientation), and the proof can
be finished as the previous case.

For periodic automorphisms, similar arguments can show the following
theorem, where when N is a surface, it is possible that f has odd order
while f’ reverses the orientation of M, in which case ¢(f) has order twice

the order of f.

Theorem 3.12. If a periodic automorphism [ of a compact connected man-
ifold N extends to an automorphism f' of a X1 -splittable M in M, then there
exists M' in M so that M = M', f extends to a periodic automorphism ¢(f)
of M', and ¢(f) preserves the orientation of M’ if and only if f' preserves
the orientation of M.

4. Classification of extendable cyclic actions

In this section, we first prove Theorem 1.5, then we give some examples.
According to the orbifold theory, which is developed and carefully dis-
cussed in [Th] and [BMP], two subgroups G and G’ in Aut(X,) are conjugate
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in the extended automorphism group Aut*(%,), the group of all (possibly
orientation-reversing) automorphisms of 34, if and only if there exist an iso-
morphism 77: G — G’ and an orbifold homeomorphism 7 : X;/G — X,/G’
so that no =9 o7y, where ¢ : m(Xy/G) = G and ¢¥' : m(X4/G') — G’
are the epimorphisms corresponding to G and G’ respectively, and 7. :
m(Xg/G) — m(Xg/G’) is the induced map of 7. Moreover, G and G’ are
conjugate in Aut(X,) if and only if 7 is orientation-preserving.

We write the group law of the cyclic group Z,, multiplicatively. So the
identity element in Z,, will be 1. The following Lemma 4.1 is a consequence
of the Chinese remainder theorem. We leave its proof to the reader.

Lemma 4.1. Let m,p,q be positive integers with ged(p,q) = 1. Given a
generator h of the group Zpp, and elements a and b in Zypq with orders p

and q respectively, there is an automorphism 1 of Zpypq so that n(a) = K™
and n(b) = h™P.

Lemma 4.2. Let F be the 2-orbifold having underlying space ¥, and s
singular points of indices ni,...,ns. According to Figure 2, m(F) has the
presentation

r s
<0511611--- :aTaﬁf‘:F}(I:---aFYS H[a‘i:ﬁi]HF}(j = 1?7;-% = ]-1]- < k < 3>-
i=1 j=1

Figure 2: Generators of m(F).

Let 1 : m1(F) — Zm be a finitely-injective epimorphism, and h be a gen-
erator of Zm. Then there is an automorphism T of F so that ¢ o T4(c1) = h,
Yoru(ag) =1 for2<i<r,Yor(Bi) =1 for 1 <i<r, and ¥ oT«(7;) =
Y(v;) for 1 < j <s.

Proof. If r = 0, then let 7 be the identity. Below we assume that » > 1.
Note that we do not need to consider the base point, because Z,, is
abelian. In fact, 9 factors through H,(F), so we often abuse the notation by
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regarding ¢ as a map Hi(F) — Zm,. We will also use a4, fi, 75, L <i<r,
1 < j§ < s to denote the loops presenting them.

Let n be the least common multiple of ny, ..., ng. Since 7 is injective on
finite subgroups of 1 (F), the subgroup of Z, generated by (1), ..., %¥(7s)
has order n. Below we will consider slides and Dehn twists on F along the
loops a; and S; for 1 < 7 < r. Figure 3 shows a sketch of slides, where we omit
the indices of the singular points. The left two pictures indicate the slide of
singular points, and the right two pictures indicate the slide of handles.

CHISLE
(& <) T &)

Figure 3: Slide of singular points and slide of handles.

If m = n, then % is surjective on (71,...,7s). Each singular point of F
can slide along the loop «; or ;. Consider the singular point corresponding
to k. The slide of it along a; will change ¥(3;) to zb(ﬁe’]f 1) and not affect the
Y(B;) with j # 1, ¥(aj) with 1 < j < r and ¢(v;) with 1 < j < s. Similarly,
the slide of it along §; will only affect ¥(e;). Hence, we can change ¥(e;)
and (5;) for 1 < i < r to the required values, and 7 can be a composition
of slides of singular points.

If m > n, then we also need slides of handles and Dehn twists. The Dehn
twist along «a; will change ¥(3;) to w(ﬁgaéil} and not affect the ¥(5;) with
j #1i, ¥(aj) with 1 < j <r and 9¥(y;) with 1 < j < s. Similarly, the Dehn
twist along f; will only possibly affect ¥(c;). Hence, we can change v(5;)
for 1 <4 <r to 1 by Dehn twists along «; and ;. Then, for 7 and k& with
k # i, there is a slide of a handle along the loop f3;, so that it changes 9(c;)
to w(aiafl) and does not affect the ¥(o;) with j # 4, ¥(B;) with j # k and
() with 1 < j < s. The slide will also not affect (), because now each
¥(B;) is 1. Hence, we can further change ¢(a;) for 2 < i <r to 1 by slides
of handles.

We also need to change ¥(a;) to h. Since 9 is surjective, the ¥ (ay)
and ¢(v;) with 1 < j < s together generate Z,. We can use the Dehn twists
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along a; and f3; together with the slides of singular points along a4 and 3; to
change ¥(a;) to h. This process will possibly change (f;), but we can use
the Dehn twists along «; to change () to 1. Hence, we can change 9(«;)
and 1(5;) for 1 < i < r to the required values, and 7 can be a composition
of slides of singular points, slides of handles, and Dehn twists. O

Proof of Theorem 1.5. We first show the “only if” part.

Let G be a finite cyclic subgroup in Aut(3,) that is extendable over S3.
Then, by the orbifold theorem and the geometrization theorem (see [BMP]
and [Pe|), we can assume that the monomorphism ¢ maps G into SO(4).
Hence, we can get an embedding of the 2-orbifold F = ¥,/G in the spherical
3-orbifold O = S3/#(G). Denote this embedding by .

We can identify S3 with the set {(z1,22) € C? | |21|2 + |22|2 = 1}, and
let h be a generator of G. Then we can assume that @¢(h) has the form

d(h) : (z1,22) — (ew‘zl,ewzzﬂ.

Suppose that G has order n, then there are integers [y and I3 so that 6; =
27l /n and @2 = 2wl /n. Note that the greatest common divisor of {1, 12, n is
1, otherwise the order of G will be smaller that n. Now assume that z12z2 # 0,
and there exists a positive integer k so that ¢(h)*((z1,22)) = (21, 22). Then
n | k, so the image of (z1,2z2) in O is a regular point. For (z1,0) or (0, z2),
the image in O has index ged(l1,n) or ged(li, n), respectively. Hence, such
an image is a regular point if and only if the corresponding greatest common
divisor is 1.

Let p = ged(li,n) and g = ged(lz,n), then ged(p,g) = 1. The singular
set of O consists of at most two circles with indices p and ¢. So clearly
ni,...,ng belong to {p, ¢}. Since €(F) separates O, each of p and ¢ is valued
even times. Then, the singular points of €(F) in each singular circle of O can
be partitioned into pairs so that the conditions (b) and (c) in Theorem 1.5
are satisfied.

Then we show the “if” part.

Suppose that the orbifold F = 3,/G and the finitely-injective epimor-
phism 1 satisfy the three conditions (a), (b), (¢) in Theorem 1.5. Then, by
(a), each ¢(~) is either an element of order p or an element of order g. By
(b), all the ¥(~z) with order p (resp. ¢) have at most two possible values.
So, by (c) and Lemma 4.1, the values of ¥(7;) can be determined, up to
automorphisms of GG. Note that for any two singular points in F with the
same index, there exists an automorphism of F which exchanges them and
keeps the other singular points fixed. Hence, combined with Lemma 4.2, we
can assume that v satisfies the following conditions.
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(1) Y(ea) =h,Y(a) =1for2<i<r, ¢(Bi)=1for 1 <i<r;

(2) P(y;) =h™ for 1<j<sy, ¥(y)=h"™ for s1+1<5<2s,
%b(’}f ) = h™P for 2s1 +1 < j < 251 + s, W(7y;) = AP for 251 + 55+
1 <53 <s.

Here h is a generator of G; s1,s2 > 0 are two integers such that 2s; +
283 = 5. Since 1 is finitely-injective, we have an integer m such that mpq
equals the order of G, where p =1 (resp. ¢ = 1) if 51 = 0 (resp. sz = 0).

Hence, when F is a torus with no singular points, up to conjugacy, the
G-action on X is determined by the order of G, and it is extendable over
S3; otherwise, up to conjugacy, the G-action on %, is completely determined
by ¥4/G, and we need to show that such a G-action is extendable over S3.

For any 2-orbifold F and finitely-injective epimorphism % : m1(F) — Zn
that satisfy conditions (a), (b) and (c), we will construct an extendable cyclic
action of order n in Example 4.3 such that its corresponding orbifold is F.
By the “only if” part, this new action also satisfies the three conditions, and
hence is conjugate to the G-action by the above arguments. Since in Exam-
ple 4.3 all the surfaces in S are Heegaard surfaces, we have the “moreover”
part of Theorem 1.5. |

Example 4.3. Let F be the 2-orbifold having underlying space X,, 2s;
singular points of index p, and 2s5 singular points of index g, where s1, s3 are
nonnegative integers, p,q are co-prime positive integers, and s; = 0 (resp.
sp =0) if and only if p=1 (resp. ¢ = 1). There exists a finitely-injective
epimorphism v : m1(F) — Zy, if and only if one of the following conditions
holds.

(1) » =0 and n = pg;
(2) » > 1 and n = mpgq for some positive integer m.

In each case, we will construct a Zy,-action on a closed surface below such
that its corresponding orbifold is orbifold homeomorphic to F. The action
is extendable over S? and its corresponding embedded surface is a Heegaard
surface.

We identify S® with the set {(z1,22) € C? | |21]? + |22|> = 1}. Let 6%, =
2m /mq and 0, = 27 /mp where m = n/(pq). Let hh? be the isometry of S3

defined by

07 25).

Clearly hh;! has order mpq. Let T be the set {(z1,22) € S? | |z1| = |22|}. Then
T is a torus in S, which is invariant setwise under the action of (h5;?). Let €

o (z1,22) — (e ™21, €



914 Y. Ni, C. Wang, and S. Wang

be a sufficiently small positive number, for example € < (100n(s; + 1)(s2 +

1)L

Figure 4: Part of I'5:%, and IT'%)%, m in S® — {(—1,0)}.

In the case of (1), we connect the point (v/2/2,1/2/2) to the points
(e™*¢,0) and (0, €€) for 1 < k < s; and 1 <[ < sy by the shortest geodesics
in S3. The left picture in Figure 4 shows a sketch of the construction. The
union of the orbits of these geodesics under the action of (h}*?) forms a
graph I'5%, . and we can choose an invariant regular neighborhood of 'Y, .
Denote its boundary by ¥£%,. Then the orbifold X%, /(h"?) is orbifold
homeomorphic to F.

In the case of (2), we connect (eikfﬁ/Q, \/5/2} to (e*¢,0) for 1 < k < s,
and connect (\/5/2, eﬂE\/E/Q} to (0,e€) for 1 <[ < sy, by the shortest
geodesics in S3. The right picture in Figure 4 shows a sketch of the con-
struction. The union of the orbits of these geodesics under the action of
(K1) forms a graph I't;%, 1, which is not connected in general. We choose
sufficiently small disjoint spheres centred at the vertices of degree bigger than
one. For each edge of the graph we can make a tube along it connecting the
small spheres to the torus 7. Then we can obtain a closed surface which is
invariant setwise under the action of (hh;). At each point in the orbit of
(v/2/2,v/2/2) we can add r — 1 local handles to the surface equivariantly.
Denote the result by X5,% ;.. Then 8% 1, /(h};?) is orbifold homeomorphic
to F.

Note that the surfaces ngsz and ngﬁ;,m are all Heegaard surfaces.
Hence the (h]*?)-action on 5%, and the (h%;?)-action on X% m give all ex-
tendable finite cyclic actions on Y, stated in Theorem 1.5. By the Riemann—
Hurwitz formula,

1 1
2—2g:n(2—2r—251(1——) —252(1——)).
p q
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Since ged(p, g) = 1 and pg | n, we can find all solutions (n,p, g,r, s1,s2) for a
given g by enumeration. Especially, when s; = s3 = 0, we get the standard
forms of the free finite cyclic actions on ¥4, which correspond to the factors
of g — 1.

Remark 4.4. For a finite cyclic subgroup G in Aut(X,) that is extendable
over 52, the generators of G are not conjugate to each other in general. For
two generators hy and ha, let 77 be the automorphism of G with 5(hy) = hs.
Let ¢ : m1(X4/G) — G be the finitely-injective epimorphism corresponding
to G. By Nielsen’s classification of periodic automorphisms of closed surfaces
(see [Ni]), h1 and hg are conjugate to each other if and only if no /(1) =
Y(m) or no(yk) = ¥(y) ™! for 1 <k < s, equivalently, there exists an
orbifold automorphism 7 of ¥4/G such that no¢ = ¢ o 7.

To see the equivalence, if no1 =1 oy, then no () =¥ o Tu(Vk)-
Since 74 (k) is conjugate to some ; or 'y;l, which corresponds to a singular
point with order n; = nj. Since the image of ¢ is cyclic, by Theorem 1.5, we
have 1 o T (%) = ¥ (k) or ¥ (k) 1. Conversely, by Theorem 1.5, we can first
find 71 so that no ¥(qx) = ¥ o T1.(yx) for 1 < k < s, where 71 is an orbifold
automorphism exchanging singular points. By Lemma 4.2, we can assume
that ¥(a1) = h1, ¥(ag) =1for2 < i <r,and ¥(8;) = 1 for 1 <7 < r. Then,
by the proof of Lemma 4.2, we can find an orbifold automorphism 75 so that
P oTo, 0T, =7 o, and T = 75 0o 11 is the required orbifold automorphism.

Hence, the classification of orientation-preserving periodic automor-
phisms of ¥, that are extendable over S3 needs a little more work.

As the end of the paper, we give some examples and questions as illus-
trations and supplements to our theorems.

Example 4.5. We give two periodic automorphisms of the handlebody of
genus four, which are not extendable over S3. It is not so easy to prove this
fact without Theorem 1.2 and Theorem 1.5.

We first consider the handlebody with two 0-handles Vi, Vs and five
1-handles E; for 1 < i < 5. We will construct a periodic automorphism f
of order five. It is a 27/5-rotation on Vi, is a 4w /5-rotation on V3, and
permutes the five 1-handles such that f(E;) = Eij41 for 1 <i <5, where
E¢ = E,. Then we can equivariantly attach the five 1-handles onto V; and
V5 such that each E; is adjacent to each of V] and V5. See the left picture in
Figure 5. This gives an order five periodic automorphism of the handlebody
of genus four. Intuitively, the map is not extendable over S3, because the
“rotation speeds” of the two 0-handles are different. In view of our theorems,
the condition (b) in Theorem 1.5 is not satisfied.
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27
5

o -rotation

2m .
6 rotation

Ve 1

47

— 3 -rotation

Figure 5: Actions on the handlebody of genus four.

Then, consider the handlebody with three 0-handles Vi, Vs, V3 and six
1-handles E; for 1 < i < 6. We will construct a periodic automorphism f of
order six. It is a 2w /6-rotation on V3 and it exchanges Vi and V5. Its square
preserves V; and Vs, and is a 27/3-rotation on them. It permutes the six 1-
handles such that f(FE;) = E;4+1 for 1 < i < 6, where E7 = E;. Then we can
equivariantly attach the six 1-handles onto Vi, V,, V3 such that each of Eq,
Es5, E5 is adjacent to each of V] and V3, and each of F5, E,, Eg is adjacent
to each of V5 and V3. See the right picture in Figure 5. This gives an order
six periodic automorphism of the handlebody of genus four. Intuitively, it
is not extendable over S2, because V; and V5 can not be exchanged. In the
view of our theorems, the condition (a) in Theorem 1.5 is not satisfied.

Example 4.6. By the result in [WWZZ], the maximum order of finite
subgroups in Aut(3,) that are extendable over S° is 6(g — 1) when g is
21 or 481. Moreover, the corresponding embedded surfaces of such groups
cannot be Heegaard surfaces. Hence, the “moreover” part of Theorem 1.5
does not hold for general finite group actions. Below we will give an explicit
example about Yaj.

Consider two spheres in R? centered at the origin with radii 1/2 and 2.
Project a regular dodecahedron centered at the origin onto the spheres, and
denote the two images by P; and P,, where P, is the larger one. Clearly
the orientation-preserving isometries of the dodecahedron preserves P; U
P,. Consider the composition of the inversion about the unit sphere and a
reflection about a plane containing the origin. We can choose the plane such
that the composition preserves P; U P,. Then all these elements preserving
P, U P, generate a group of order 120, denoted by G.
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Clearly G can act on S°. Let v and w be adjacent vertices in the do-
decahedron, and let vy, w1 and w2, ws be their corresponding vertices in
P, and P;. Then we can choose an arc connecting v; and ws such that its
images under the action of G only meet at vertices of P; and P». The union
of these image arcs is a graph with genus 21. It has a regular neighborhood
N which is preserved by the action of G. Then G also preserves N which
is homeomorphic to .

Question 4.7. If we admit orientation-reversing automorphisms (of X4
or S3), how to classify the periodic automorphisms of ¥4 that is extend-
able over S3? Can the corresponding embedded surface always be a Heegaard
surface?

Appendix: Two results about automorphisms of surfaces
with boundary

In this section, we will prove two results about automorphisms of surfaces
with boundary. These results are well known for closed surfaces, but it is
hard to find the versions for surfaces with boundary in the literature. We
include the proofs here for the convenience of the reader.

Definition A.1. Let ¥ be a compact oriented surface with (possibly
empty) boundary, let DY be the double of ¥ along 9%. Given a hyper-
bolic structure m on X so that 9% is geodesic, let Dm be the hyperbolic
structure on DY induced by m. Given a map f:(X,0X) — (X,0%), let
Df : DY, — DY be the induced map.

Definition A.2. Let ¥ be a compact oriented surface with (possibly
empty) boundary, and let mg, m; be two hyperbolic structures on ¥ so that
0% is geodesic in each m;. We say a homeomorphism ¢ : (X, mq) — (X, m1)
is gquasi-conformal, if its double Dy : (DX, Dmg) — (DX, Dm,) is quasi-
conformal.

The following proposition was sketched in [Ke, Section IV], but we did
not find an explicit statement in the literature, so we include a proof here.

Proposition A.3 (Nielsen Realization Problem for surface with
boundary). Let ¥ be a compact surface with boundary, x(¥) < 0. Let G
be a finite subgroup of wo(Aut(X)), then G can be lifted to a finite subgroup
of Aut(X).
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Proof. By Definition A.1, every element f € Aut(3) can be doubled to Df €
Aut(DY). On the level of mapping classes, G is embedded as a subgroup
DG of mo(Aut(DX)). Let r : DX — DX be the reflection across 0¥. Then
the mapping class of 7 and DG generate a finite subgroup G of mo(Aut(DX)),
such that DG is an index-2 subgroup of G. By the positive solution of the
Nielson realization problem for closed surfaces [Ke], there exists a hyperbolic
metric m on DY so that there is an embedding p : G — Iso( DX, m) lifting G.
(The main theorem in [Ke| is only stated for orientable surfaces, but it also
holds true for non-orientable surfaces. See the remark at the end of [Ke,
Section IV].)

Let ¢1,...,¢cp, be the components of 3%, and let ¢; be the unique
geodesic loop homotopic to ¢;. Clearly, ¢, ..., ¢, are mutually disjoint. Since
r(ci) = ¢;, we must have p(r)(¢;) = ¢;. Moreover, since DG permutes the
homotopy classes [c1],...,[cn], p(DG) permutes ¢i,...,¢n. So p(DG) sends
every component of DX\ (¢1U---U¢y) to itself. Thus p(DG) acts on X,
which is isotopic to a component of DX\ (¢iU---U¢p). It is clear that
p(DG) lifts G. O

Proposition A.4. Notations are as in Definition A.2. Let f: X — X be
an orientation preserving homeomorphism, then there is a unique quasi-
conformal homeomorphism 7¢ : (3, mg) — (X, my) between the two hyper-
bolic surfaces with constant dilatation, so that the map 77 is homotopic to

f.

Proof. When X is closed, this is a standard result in Teichmiiller theory, see
[FM, Theorems 11.8 and 11.9]. We now consider the general case.

Let r : DY — DY be the reflection across 9%, then r is an orientation-
reversing isometry for each Dm;. Now r7psr is homotopic to r(Df)r = Df,
and it has the same constant dilatation as 7py. The uniqueness of 7p s implies
that

TTDfT = TDf-

In particular, if € 9%, we have r(x) = z, so r7pf(x) = Tpy(z), which im-
plies that 7ps(x) € 0. Thus 7ps sends 0¥ onto OX. Let 77 be the restriction
of Tpy to X, then it is an automorphism of Y. The uniqueness of 7; follows
from the uniqueness of 7py. O
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