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Floer homology and right-veering monodromy

By John A. Baldwin at Chestnut Hill, Yi Ni at Pasadena and Steven Sivek at London

Abstract. We prove that the knot Floer complex of a fibered knot detects whether the
monodromy of its fibration is right-veering. In particular, this leads to a purely knot Floer-
theoretic characterization of tight contact structures, by the work of Honda—Kazez—Mati¢. Our
proof makes use of the relationship between the Heegaard Floer homology of mapping tori
and the symplectic Floer homology of area-preserving surface diffeomorphisms. We describe
applications of this work to Dehn surgeries and taut foliations.

1. Introduction

Let K be a fibered knot in a closed 3-manifold Y, with fiber S and monodromy /: S — S.
The map £ is said to be right-veering if it sends every properly embedded arc in S to the right
(see Section 2 for a precise definition). This dynamical notion is important in low-dimensional
topology due to the following celebrated theorem of Honda—Kazez—Matié¢ [14].

Theorem 1.1. A contact 3-manifold (Y, &) is tight if and only if every fibered knot
K C Y supporting (Y, §) has right-veering monodromy.

Our goal in this paper is to prove that the knot Floer complex of a fibered knot completely
detects whether its monodromy is right-veering, as described below.

Recall that a fibered knot K C Y gives rise to a filtration of the Heegaard Floer complex
of —Y. Up to filtered chain homotopy equivalence, this filtration takes the form

0=.F_1 ¢ CF(c)=F ¢ C.F_g C--- C.F =CF(-Y),

where g = g(K) and we work with coefficients in F = Z /27 throughout. In particular, the
knot Floer homology groups associated with K C —Y are given by

HFK(-Y, K.i) = Ho(Zi ) Fi_1).

The corresponding author is John A. Baldwin.
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Note that - .
¢(§) = [¢] € Hyo(CE(~Y)) = HF(~Y)

is the contact invariant of the contact manifold (Y, &) supported by the fibered knot K C Y,
as defined by Ozsvath—Szabd in [29]. If this contact invariant vanishes (as, for example, when
& is overtwisted), then the class [c] vanishes in the homology of some filtration level. In [5],
Baldwin—Vela-Vick introduced a numerical invariant b(K) € N U {oo} to record the lowest
level at which this occurs,

b(K)y=b(KCY):= {OO’ ' . c(€) #0
g +min{k | [¢] = 0in Hy(Fy)}, c(§) = 0.

Moreover, they proved [5, Theorem 1.8] the following.
Theorem 1.2. A fibered knot K C Y has right-veering monodromy if b(K) > 1.

Beyond its relevance to contact geometry, this theorem has been critical for knot detection
results in both Floer homology [5] and Khovanov homology [2—4].
Our main result is the converse of Theorem 1.2.

Theorem 1.3. A fibered knot K C Y has right-veering monodromy if and only if

b(K) > 1.

Theorem 1.2 was proved in [5] by careful inspection of a Heegaard diagram adapted
to the fibered knot K C Y. Its converse (our main result) is substantially more difficult and
considerably more surprising. In particular, it is unclear how to prove this converse by similarly
direct, Heegaard-diagrammatic means (see Section 2.4 for discussion about this). Instead, our
proof of Theorem 1.3 is highly novel, blending the recently established relationships between
knot Floer homology and symplectic Floer homology (as in [3, 25, 26]; see also [11]), with
a new criterion proved here (Theorem 4.1) which shows for the first time that symplectic Floer
homology can detect whether a monodromy is right-veering.

Remark 1.4. There are other useful formulations of the invariant h(K). For example,
the cycle ¢ € .#_, represents a class in every page of the spectral sequence

E; =~ HFK(-Y,K) = HFE(-Y) =~ E

associated with the filtration above, and E (k)41 is the first page in which this class vanishes.
In particular, »(K) = 1 if and only if the spectral sequence differential

di:HFK(-Y,K,1 — g) — HFK(-Y, K, —g)

is nonzero. By the symmetry of knot Floer homology under orientation reversal, this holds in
turn if and only if the corresponding spectral sequence differential

dy:HFK(Y, K, g) — HFK(Y, K, g — 1)

1S nonzero.
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1.1. Applications. One application of Theorem 1.3, in combination with Theorem 1.1,
is the following purely knot Floer-theoretic characterization of tightness.

Corollary 1.5. A contact 3-manifold (Y, ) is tight if and only if every fibered knot
K C Y supporting (Y, §) satisfies b(K) > 1.

Another application of our main result is a partial answer to a question posed in [15, Ques-
tion 8.2] concerning the monodromies of slice fibered knots. The fractional Dehn twist coeffi-
cient of a monodromy /: S — S measures the twisting near 0.5 in the free isotopy between /
and its Nielsen—Thurston representative. Inspired by Gabai’s notion of degeneracy slope, this
coefficient quantifies just how right-veering (or not) % is, and contains important information
about the associated contact structure [14].

Remark 1.6. For example, if /4 is neither right-veering nor left-veering, then % has
fractional Dehn twist coefficient equal to zero [17, Corollary 2.6]."

Inspection of low-crossing examples in the knot tables suggests that monodromies of
slice fibered knots have fractional Dehn twist coefficient zero. However, this is not necessarily
the case: as noted in [15, §8], the (p, 1)-cable of any slice fibered knot is slice and fibered but
has fractional Dehn twist coefficient 1/ p. The authors therefore ask [15, Question 8.2] whether
the twist coefficient is always zero for hyperbolic slice fibered knots. We do not completely
answer this question, but we prove the following closely related corollary, stated in terms of
the tau invariant in Heegaard Floer homology (which vanishes for slice knots).

Corollary 1.7. If K C S3 is a fibered knot with thin knot Floer homology satisfying
|T(K)| < g(K),

then the monodromy of K is neither right-veering nor left-veering.

Remark 1.8. A fibered knot K C S3 satisfies |7(K)| < g(K) if and only if neither K
nor its mirror is strongly quasipositive [13, Theorem 1.2].

Since |t(K)| < g(K) is satisfied for every nontrivial slice knot, Corollary 1.7 helps
explain the observations about fractional Dehn twist coefficients of low-crossing slice fibered
knots as many of these have thin knot Floer homology.

Corollary 1.7 also has applications to Dehn surgery. A knot K C S?3 is called persistently
foliar if, for every r € QQ, there exists a co-orientable taut foliation of the knot complement
meeting the boundary transversally in curves of slope r. Note that every nontrivial Dehn surgery
on a persistently foliar knot admits a co-orientable taut foliation. It is known that fibered knots
whose monodromies are neither right-veering nor left-veering are persistently foliar [8, 31].
Therefore, Corollary 1.7 implies the following.

D" A monodromy is left-veering if and only if its inverse is right-veering.
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Corollary 1.9. If K C S3 is a fibered knot with thin knot Floer homology satisfying
[7(K)| < g(K),
then K is persistently foliar.

Remark 1.10. This corollary is consistent with the L-space conjecture, since fibered
knots which are not strongly quasipositive do not admit nontrivial L-space surgeries.

Fibered alternating knots with |7 (K)| < g(K) satisfy the hypotheses of Corollary 1.9. By
[24, Proposition 3.7], these are precisely the fibered alternating knots which are not connected
sums of positive torus knots of the form 7% >, 1 or the mirrors of such connected sums. Such
knots are thus persistently foliar. In particular, we can use this to prove that Dehn surgeries on
fibered alternating knots satisfy part of the L-space conjecture.

Corollary 1.11.  Suppose that K C S is a fibered alternating knot and r € Q. Then
S3(K) admits a co-orientable taut foliation if and only if it is not an L-space.

There is also a diagrammatic way of proving that the fibered alternating knots considered
above are persistently foliar, to be explained in forthcoming work of Delman-Roberts [9].2)
We note, however, that the hypotheses of Corollary 1.9 are satisfied by many non-alternating
knots as well. For instance, quasialternating knots have thin knot Floer homology [22]. Among
the eleven non-alternating prime knots with nine or fewer crossings, seven are fibered and
quasialternating and satisfy |t(K)| < g(K), according to KnotInfo [6]:

820,821,943, 944, 945, 947, 94s.

By Corollary 1.9, these knots are therefore persistently foliar.®
Lastly, by combining Theorem 1.3 and Corollary 1.7 with work of Ni in [23, Theo-
rem 1.1], we also obtain the following result about exceptional surgeries.

Corollary 1.12. Let K C S3 be a hyperbolic fibered knot such that S3(K) is non-
hyperbolic for some rational number r = p/q with gcd(p, q) = 1.

« If 1(K) = g(K), then 0 < r < 4g(K).
o If t(K) = —g(K), then —4g(K) <r <0.
* If |t(K)| < g(K) and the knot Floer homology of K is thin, then |q| < 2.

We remark that the first two statements only require Theorem 1.2, while the last statement

requires the full strength of Theorem 1.3.
We provide a detailed sketch of our proof of Theorem 1.3 below.

%) Their results pertain to non-fibered alternating knots as well.
3 Of the 50 non-alternating prime knots with zen or fewer crossings, 26 are fibered and quasialternating and
satisfy |7(K)| < g(K), and are therefore persistently foliar.
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1.2. Proof outline. Suppose that K C Y is a fibered knot with right-veering mon-
odromy /: S — S. One can show directly that Theorem 1.3 holds when / is isotopic to the
identity map rel boundary, so let us assume that & ~ id. We wish to prove that b(K) > 1. Let
us suppose for a contradiction that b(K) = 1.

Let L C S! x S? be a fibered knot which represents a contact structure £ on St x S?
with nontorsion Spin® structure s¢. Let Ly C S 1'% S? be the (3,3n + 1)-cable of L for
n large, and let g1 : F — F denote the monodromy of L. Let L_ C S! x S? denote the
“mirror” of L, with monodromy g_: F' — F given by the inverse of g .

Since h ~ id is right-veering, it follows that the monodromy 4 ~! of the mirror K C —Y
is not right-veering. Therefore, b(K C —Y) = 1 by Theorem 1.2. In particular, there is a non-
trivial spectral sequence differential

HFK(Y, K, 1 — g) — HFK(Y, K, —g),
as in Remark 1.4. Since h(K C Y) = 1, there is likewise a nontrivial differential
HFK(Y, K.g) — HFK(Y, K, g — 1).

We show that the nontriviality of these differentials implies that the Heegaard Floer groups
of 0-surgeries on the knots J1 = K#L 1 in the 3-manifold Z = Y#(S! x $?) have the same
dimensions in their “next-to-top” Spin® summands (see Proposition 3.4),

(1.1) dim HF ' (Zo(J4).top — 1) = dim HF " (Zo(J_), top — 1).

Our proof is inspired by those of [26, Proposition 3.1] and [25, Proposition 4.1], and uses the
0-surgery formula in Heegaard Floer homology (our requirement that L represents a nontorsion
Spin€ structure, and our taking the cables L helps when applying this formula).

Note that the manifold Zo(J+) is homeomorphic to the mapping torus of the reducible
homeomorphism 2 U g+: S U F — S U F. Since g(S U F) > 3, the Heegaard Floer groups
above are isomorphic to the symplectic Floer homology groups of these homeomorphisms,

(1.2) HF " (Zo(J+).top— 1) = HFY™(h U g4).

by work of Lee—Taubes [20] and Kutluhan-Lee—Taubes [19]. These symplectic Floer groups
can be computed from certain standard form representatives of the mapping classes of 47 U g,
as in [7]. From an analysis of these standard representatives, we prove (see Theorem 4.1) that

dimHFY™(h U gy) =2+ dimHFY™(h U g_),

contradicting (1.1) and (1.2). This proves Theorem 1.3. Implicit in the final step is a means by
which symplectic Floer homology detects whether a mapping class is right-veering. This is one
of the key new insights in this paper, and may be of independent interest.

1.3. Organization. In Section 2, we review right-veering homeomorphisms and their
importance in contact geometry, fractional Dehn twist coefficients, knot Floer homology, the
definition of b, and Cotton-Clay’s calculation of symplectic Floer homology. In Section 3, we
prove equality (1.1) following work of Ni in [25,26]. We prove Theorem 1.3 and its corollaries
in Section 4.
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Figure 1. a is to the right of b in a neighborhood of p.

2. Preliminaries

In this section and beyond, surface will refer to a compact, oriented surface with (possibly
empty) boundary. All surface homeomorphisms we consider will be orientation-preserving.
Isotopy of surface homeomorphisms will refer to isotopy rel boundary, and will be indicated
by ~. We will use the term free isotopy to refer to isotopy without boundary constraints.

2.1. Right-veering homeomorphisms. Suppose X is a surface with nonempty bound-
ary. Given two properly embedded arcs a, b C X, we say that a is to the right of b at p, denoted
by a >, b, if p is a shared endpoint p € da N 0b C 0% of these arcs, and either

e a is isotopic to b rel boundary, or

* after isotoping a rel boundary so that it intersects » minimally, « is to the right of b in
a neighborhood of p, as shown in Figure 1.

We say that a is fo the right of b, denoted by a > b, if a is to the right of b at both endpoints.

Suppose that ¢: ¥ — ¥ is a homeomorphism of ¥ which restricts to the identity on
a boundary component B of X. Then we say that ¢ is right-veering at B if ¢(a) >, a for every
properly embedded arc a C X and every p € da N B. If ¢ restricts to the identity on all of 0%,
then we say that ¢ is right-veering if ¢(a) > a for every properly embedded arc in a C X;
equivalently, if ¢ is right-veering at each boundary component of ¥. A map is left-veering if
its inverse is right-veering.

As mentioned in the introduction, the notion of right-veering is important in low-dimen-
sional topology due to the following theorem of Honda—Kazez—Mati¢ [14].

Theorem 2.1. A contact 3-manifold (Y, ) is tight if and only if every fibered link L C Y
supporting (Y, &) has right-veering monodromy.

A version of this result was stated in Theorem 1.1 in terms of fibered knots rather than
links; we explain below how Theorem 1.1 follows from Theorem 2.1.

Proof of Theorem 1.1.  Suppose that (Y, &) is tight. By Theorem 2.1, every fibered link —
in particular, every fibered knot — supporting (Y, £) has right-veering monodromy, proving one
direction of Theorem 1.1.

For the other direction, let us suppose that every fibered knot supporting (Y, £) has right-
veering monodromy. We must show that (Y, §) is tight. By Theorem 2.1, it suffices to prove
that every fibered link supporting (Y, £) has right-veering monodromy. We will prove this by
induction on the number of link components (the base case holds by assumption).

Suppose that every fibered link supporting (Y, §) with n components has right-veering
monodromy. Let L C Y be a fibered link supporting (Y, &) with n + 1 components, with
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fiber ¥ and monodromy ¢. Suppose, for a contradiction, that @ C X is a properly embedded arc
which is not sent to the right by ¢. Let ¢ C X be an arc disjoint from ¢(a) whose endpoints lie
on two different boundary components of X. Let X’ be the surface obtained from X by attach-
ing a 1-handle along the endpoints of ¢, and let y C X’ be the curve obtained as the union of ¢
with a core of this handle. Letting D,, denote a right-handed Dehn twist about y, we observe
that the homeomorphism ¢’ = D, o ¢ does not send a C X' to the right either, and is therefore
not right-veering. As the open book (X', ¢’) is a positive stabilization of (X, ¢), the associated
fibered link L’ C Y also supports (Y, €). But L’ has n components, so its monodromy ¢’ is
right-veering, a contradiction. |

2.2. Fractional Dehn twist coefficients. One can quantify how right-veering a homeo-
morphism is using the notion of fractional Dehn twist coefficient, as introduced by Honda—
Kazez—Matié in [14]. We explain this notion below in terms of certain standard representatives
of surface homeomorphisms.

Let ¢: ¥ — X be a homeomorphism of a surface . We say that ¢ is periodic if ¢" = id
for some positive integer 7; when y(X) < 0, we will assume that ¢ is an isometry with respect
to a hyperbolic metric on X for which 0¥ is a geodesic. We say instead that ¢ is pseudo-Anosov
if there is a transverse pair of singular measured foliations (£, us) and (¥, py) of X, called
the stable and unstable foliations of ¢, such that

o(Fs. us) = (ﬁs,/\_lﬂs) and  @(Fy, pu) = (Fu. Apy)

for some real number A > 1. These foliations meet 0% in a finite number of singular leaves
called prongs.

Suppose that ¢ is pseudo-Anosov and fixes a component B of 0% setwise. Let p1, ..., px
denote the intersection points of B with the prongs of the stable foliation of ¢, ordered accord-
ing to the orientation of B. Then there is an integer n such that ¢(p;;,) = pm+n for all m, where
the subscripts are taken mod k. The restriction of ¢ to B is thus isotopic rel {p1,..., px}
to a rotation by 27n/k. One can perturb ¢ via isotopy rel {p1,..., pr} in a standard way,
described in [7, §4.2], to a smooth map which restricts to B as a rotation by 27n/k on the
nose. We will henceforth assume when talking about pseudo-Anosov maps that they are of this
perturbed form. In particular, we will assume that both periodic and pseudo-Anosov homeo-
morphisms of a surface restrict to periodic maps on the boundary. We use these notions to
define standard representatives of surface homeomorphisms below, closely following [7, Defi-
nition 4.6].

Suppose that ¢: ¥ — ¥ is a homeomorphism of a surface . By Thurston’s classification
of surface homeomorphisms [33], ¢ is isotopic to a homeomorphism ¢ of the following form.
There is a finite union N of disjoint closed annuli and curves in ¥ which is invariant under ¢
and ¢! such that

* if A is an annulus component of N, and £ is the smallest positive integer such that
¢e (A) = A, then ¢)e |4 is either a twist map or a flip-twist map. That is, with respect to an
identification A4 2 [0, 1] x R/Z, the map ¢*|4 takes one of the following two forms:

(twist) (q.p) = (g.p+ f(q)).

(flip-twist) (¢, p) = (1 —q.—p — f(q)).
where f:[0, 1] — R is a strictly monotonic smooth map such that ¢¢|4 restricts to a peri-
odic map on every boundary component of A which is disjoint from 0.
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e Let A and £ be as above. If £ = 1 and ¢|4 is a twist map, then Im( /) C [0, 1]. Such
an annulus A is called a twist region, and is positive or negative if f is increasing or
decreasing, respectively; the condition on Im( /') implies that ¢ has no fixed points in the
interior of A. We require that parallel twist regions have the same sign. If £ = 1 and ¢ |4
is a flip-twist map, then A is called a flip-twist region.

* Let S be the closure of a component of ¥ \ N, and ¢ the smallest positive integer such
that ¢¢(S) = S. Then ¢*|g is either periodic or pseudo-Anosov. We call S a fixed com-
ponent if £ = 1 and ¢|g = id. We require that S is fixed if it is an annulus. In particular,
parallel twist regions are separated by fixed annuli. A multitwist region is a maximal
annular subsurface of X given as a union of twist regions and the fixed annuli between
them.

e N is called the invariant set for ¢. We will assume that it is minimal with respect to
inclusion. In particular, there is no curve component of N which abuts a fixed region on
both sides. There is a canonical such N up to isotopy.

The map ¢ is called a standard representative of ¢.

Remark 2.2. A multitwist region R consists of some number k& > 0 of twist regions on
which ¢ is a full Dehn twist, and at most two twist regions, each at an end of R, on which ¢ is
a partial Dehn twist. In particular, if R abuts a boundary component on which ¢ is the identity,
then R has at most one partial twist region, at an end interior to the surface, as described below
and illustrated in Figure 2. We will encounter multitwist regions with up to two partial twist
regions in the proof of Theorem 4.1, as illustrated in Figure 4.

Remark 2.3. Suppose ¢o and ¢; are standard form homeomorphisms of surfaces X
and X1, respectively. Let B; be a boundary component of 3; on which ¢; is the identity and
which abuts a twist region A; for ¢;, fori = 0, 1. Let

2=% | =
Bo=B

be the surface obtained by gluing 3¢ to 3 along these boundary components. If Ag and A4,
are twist regions of the same sign, then a standard representative ¢ of the induced map on X is
given by the union of the maps ¢ and ¢ on either side of a fixed annulus inserted between Ag
and A;. The new fixed annulus is required by the condition Im( f) C [0, 1] in the definition of
a twist region above; in particular, Ag and Ay do not glue to form a single twist region for ¢ in
this case. By contrast, if Ag and A; are twist regions of opposite signs, then ¢ does not include
this additional fixed annulus; the union of Ag and A; in this case is a single twist region for ¢.
This observation explains the difference between the standard representatives ¢ in one case
in the proof of Theorem 4.1.

Suppose that ¢: ¥ — 3 is a homeomorphism of a surface 3 which restricts to the identity
on a boundary component B, and let ¢ be a standard representative of ¢. The fractional Dehn
twist coefficient of ¢ at B, denoted by cp(¢) € Q, is defined as follows. If B does not abut
a multitwist region for ¢, then cp(¢) = 0. If B does abut a multitwist region R, then for some
integer k > 0 and some € € {1}, R is a union of k + 1 twist regions

AL, .. Agyr = 0,11 x R/Z,
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Ay Ay Az

Figure 2. A portion of ¥ near the multitwist region R in the case k = 2 and € = +1. That is, R
is made up of three positive twist regions, A1, A2, A3, shaded in medium gray, together
with the two fixed annuli between them, shaded in dark gray. The green arc is the image
of the red under ¢. In this example, we see that cg(¢) € (2, 3).

together with the k fixed annuli between them, where
* B isidentified with {0} x R/Z C Aj,
* ¢|4; is isotopic to the map (¢, p) — (¢, p + €q) foreachi = 1,... k, and

* @layy, is isotopic to the map (¢, p) — (¢, p + rq) for some rational number r with
[r| € (0, 1).

That is, ¢ is a full e-twist on each of Aq,..., Ax, and a partial twist on Ag 41, as indicated in
Figure 2. In this case, we define cp(¢) = €k + r. These twist coefficients satisfy

cg(¢") =ncg(p) and cp(p™"') = —cg(p).

If ¥ has connected boundary, we denote the twist coefficient simply by c(¢).

Fractional Dehn twist coefficients are intimately related with the notion of right-veering,
as illustrated by Lemma 2.4 below. This lemma follows mostly from the work in [14], but
appears as stated below (or in a transparently equivalent way) in [17, Corollary 2.6].

Lemma 2.4. Let ¢: ¥ — X be a homeomorphism which restricts to the identity on 0%,
and let B be a boundary component of . If @ is right-veering at B then cp(¢) > 0. Moreover,
if cg(@) > 0, then @ is right-veering at B. O

This lemma has the immediate corollary that if ¢ is neither right-veering nor left-veering,
then cp(¢) = 0, as noted in Remark 1.6.

Lemma 2.5. Let ¢: ¥ — X be a pseudo-Anosov homeomorphism which restricts to the
identity on a boundary component B. Then there exists a properly embedded arc a C X with
da C B such that p(a) # a. In particular, ¢ is not right-veering at B.

Proof. This follows readily from [14, Proposition 3.1]. In that proposition, however, it is
assumed that the map restricts to the identity on each boundary component of the surface. This
is not necessarily the case for the map ¢ in the lemma, which need not even fix every boundary
component of ¥ setwise. We remedy this by taking an appropriate power. In particular, ¢"
restricts to the identity on 0% for some positive integer 7, and

c(¢") = ncp(p) = 0.
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Then [14, Proposition 3.1] says that ¢” is not right-veering at B. Moreover, the proof of
that proposition shows that there is a properly embedded arc b C X with 0b C B such that
@"(b) # b. It therefore cannot be the case that

9" (b) = ¢" () = ¢"2(b) = -+ = @(b) = b,

which implies that ' T1(b) # ¢ (b) for some i. Letting a = ¢’ (b), the lemma follows. O

Lemma 2.6. If ¢: ¥ — X is a periodic homeomorphism of a connected surface which
restricts to the identity on a boundary component B, then ¢ = id.

Proof. We note that B is contained in a connected component of the fixed set of ¢.
Then [16, Lemma 1.1] says that such a component must be either (1) a connected component
of X, (2) a closed geodesic with a two-sided collar neighborhood, (3) a geodesic arc with
endpoints on 0%, or (4) an isolated point. The last three cannot contain B, so the corresponding
component of Fix(¢) must be a component of X, namely X itself. m)

The following lemma is key in our proof of Theorem 4.1, which explains how symplectic
Floer homology detects right-veering monodromy.

Lemma 2.7. Let S be a surface with one boundary component. Let h: S — S be a
homeomorphism which restricts to the identity on the boundary, and let o be a standard repre-
sentative of h with invariant set N. Let S denote the closure of the component of S \ N which
abuts either 0S or a multitwist region containing 0S, and let g = o|s,: So — So. Then h is
right-veering if and only if either

(1) 0S abuts a positive twist region for «, or

(2) 0S C 080, g = id, and every boundary component of Sy besides 0S abuts a positive
twist region for «.

Proof.  Suppose that 4 is right-veering. Then ¢ (/) > 0 by Lemma 2.4. If ¢(h) > 0, then
0S abuts a positive twist region for o, and we are done. Let us therefore suppose that ¢ (k) = 0.
This implies that 05 C 05y, that aglas = hl|as = id, and that ¢35 () = c(h) = 0. Observe
that & is not freely isotopic to a pseudo-Anosov map, by [14, Proposition 3.1]. If 4 is freely
isotopic to a periodic map, then Lemma 2.6 implies that oo = id, as desired. There are no
boundary components of Sg besides 0S in this case.

Suppose, therefore, that / is freely isotopic to a reducible map. If «¢ is pseudo-Anosov,
then the fact that cys(cg) = 0 implies by Lemma 2.5 that there is a properly embedded arc
a C So with da C 9dS such that h(a) ~ ag(a) # a, which contradicts the assumption that &
is right-veering. Thus, o is periodic, which implies that «p = id by Lemma 2.6. It remains
to show that every component B of dSp \ dS abuts a positive twist region for «. It is easy to
see that the restriction o’ = &|g\in(s,) is right-veering at B, given that / is right-veering and
ao = id. Thus, cg(a’) > 0 by Lemma 2.4. If cg(«) > 0, then B abuts a positive twist region.
Suppose, for a contradiction, that cg(a’) = 0. Then B does not abut any twist region; instead,
B abuts a component S” C S\ int(So) on which «’ is either pseudo-Anosov or periodic. In the
first case, Lemma 2.5 says that there is a properly embedded arc a C S’ with 0a C B such that
o'(a) # a, but this contradicts the fact that ¢’ is right-veering. In the second case, Lemma 2.6
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implies that o’ restricts to the identity on S’. But since o = id, this contradicts the minimality
of the invariant set for «: there should not be a curve abutting two regions on which « is the
identity.

For the other direction, suppose first that item (1) of the lemma holds. Then ¢ (/) > 0,
which implies that / is right-veering by Lemma 2.4. Suppose now that item (2) holds. Then
the fractional Dehn twist coefficients of the restriction o' = &|g\in¢(s,) are all positive. The
map «’ is thus right-veering by Lemma 2.4. Since S is obtained from S \ int(Sp) by attaching
1-handles, and « is the extension of o’ to S by the identity, [14, Lemma 2.3] says that « and
therefore i ~ « is right-veering as well. |

2.3. Symplectic Floer homology. Suppose ¢: ¥ — 3 is a homeomorphism of a closed
surface 2. Let w be an area form on X, and let ¢ be an area-preserving diffeomorphism of X
isotopic to ¢. Assuming certain nondegeneracy and monotonicity conditions, the symplectic
Floer homology HFY™P(¢) is the homology of a chain complex CF*Y™(¢) which is freely
generated as an [F-vector space by the fixed points of ¢, and whose differential counts certain
pseudo-holomorphic cylinders. As indicated by the notation and proved by Seidel in [32], the
[F-vector space HF*Y™P(¢) depends up to isomorphism only on the mapping class of ¢.

The goal of this section is to review Cotton-Clay’s calculation of symplectic Floer homol-
ogy in terms of standard representatives (Theorem 2.9). We first establish some notation.

Let ¢: ¥ — ¥ be a homeomorphism of a closed surface X, and let ¢ be a standard
representative of ¢. Let X denote the collection of fixed components for ¢. Let ¥, be the
collection of (non-fixed) periodic components, and let 3, be the collection of pseudo-Anosov
components. We further divide X¢ into three subcollections as follows.

Let X, be the collection of fixed components for ¢ which do not abut any pseudo-Anosov
components. Let 2, ,, be the collection of fixed components which abut exactly one pseudo-
Anosov component, at a boundary with p prongs. Let Ez,p denote the subsurface obtained
from X , by removing an open disk from each component of %, ,,. Let 3¢ 4 be the collection
of fixed components S which abut at least two pseudo-Anosov components, such that the total
number of prongs meeting the boundary of S is g.

Remark 2.8. A fixed component cannot abut a periodic component S'; otherwise, ¢
would restrict to the identity on a boundary component B of S. This would imply by Lem-
ma 2.6 that ¢ is the identity on S, violating the minimality of the invariant set for ¢.

We partition 0X¢ into collections 0+ X¢ of positive and negative components as follows.
Suppose that S C Xy is a fixed component. If a component of 0S abuts a positive or negative
twist region, then it is assigned to d+ Xg, respectively. If § C X, ,, then the component of 05
which abuts a pseudo-Anosov component is assigned to 0_X¢. If § C X 4, then we assign at
least one component of dS which meets a pseudo-Anosov component to 0— % and at least one
other to 0+ X¢ (and beyond that, it does not matter).

In [7, §4.5], Cotton-Clay further perturbs ¢ to an area-preserving diffeomorphism qAS of ¥
(with respect to some area form) with isolated fixed points, which agrees with ¢ on the invariant
set. Let A($|>;]) be the Lefschetz number of <$ |z, . Let CF¥Y™P ) |z,) denote the symplectic
Floer chain complex for $ restricted to X5, understood as the [F-vector space freely generated
by the fixed points of gE |=, which are not contained in 0X5. Let ny denote the number of
flip-twist regions for ¢.
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With this setup, we are finally ready to state Cotton-Clay’s formula for symplectic Floer
homology [7, Theorem 4.16], as clarified slightly in [25, Theorem 1.3].

Theorem 2.9. Suppose that ¢: 3 — X is a homeomorphism of a closed surface ¥ with
g(X) > 2, and let ¢ be a standard representative of ¢. Then we have that

HEY™ () = H,(Sq,0-%q:F)

® (DIH« (S5, . 0-5p, i F) @ F@~ Dm0,
p

& DlHx(Zc,q.0-Zeq: F) @ FIm0Ceo)l]
q

@ FA@I=) g B2 @ CFY™(J|5,).

with respect to the notation introduced above.

Remark 2.10. Since the relative homology groups of fixed regions contribute impor-
tantly in the formula above, we remind the reader that if .S is a connected, oriented surface with
boundary, and 0—.S is subcollection of the components of 0.5, then

dim H.(S:TF) ifo_S = @oro_S = s,

dim H«(S,0-S;F) = _
dim H«(S;F) —2 otherwise.

Here “dim H,.” refers to the total dimension of homology, rather than the dimension in a par-
ticular grading. We will use this extensively in the proof of Theorem 4.1.

Remark 2.11. The contributions from X, X1, X5 to the formula in Theorem 2.9 do
not change if we replace ¢ with ¢~!. In particular, HFY™P(¢p) = HFY™ (¢~ !) as ungraded
[F-vector spaces.

We end by describing the relationship between symplectic Floer homology and Heegaard
Floer homology. For this, suppose that ¢: ¥ — X is a homeomorphism of a closed surface X
with g(X) > 2. Let M, denote the mapping torus of ¢. Let us define

HF ' (M, top — 1) = &b HF (M, s).
s€Spin“ (M)
(c1(s),[Z])=2g(2)—4
The result below is a combination of work by Lee—Taubes [20, Theorem 1.1] and Kutluhan—
Lee-Taubes [19, Main Theorem)].

Theorem 2.12. Suppose that ¢: 3 — X is a homeomorphism of a closed surface %
with g(X) > 3. Then
HET (M, top — 1) 2 HFY™(g).

We will apply this theorem in Section 4 to mapping tori arising as 0-surgery on the fibered
knots J+ C Z introduced in Section 3 in order to prove our main theorem, Theorem 1.3.
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2.4. Knot Floer homology and 5. We assume below that the reader has some familiar-
ity with Heegaard Floer homology. Our goals in this section are primarily to establish notation
and review the invariant b. See [5, 28] for more background.

Suppose that (X, «, B, z, w) is a doubly pointed Heegaard diagram for a nullhomologous
knot K C Y. Recall that the Heegaard Floer chain complex aJ(Y) = @(E,a, B, w) is the
F-vector space freely generated by intersection points between the associated tori

Ty, Tg C Symk(E),

where k = g(X). The differential 0: CF Y) —> CF (Y) is the linear map defined on generators

x € Tq NTg by
ax) = > > #M@)-y.
yeToNTg ¢pema(x,y)

n(@)=1
ny (¢)=0

where 75 (X, y) denotes the set of homotopy classes of Whitney disks from x to y, u(d)) is the
Maslov index of ¢, ny, (¢) is the intersection number ¢ - ({w} x Symk 1(2)), and M(¢) is
the space of pseudo-holomorphic representatives of ¢ modulo conformal automorphisms of
the domain. The chain homotopy type of this complex, and therefore the (isomorphism type of
the) Heegaard Floer homology I-TF(Y ) = Hy (a: (Y),0), is an invariant of Y.

Given a Seifert surface S for the knot K, each generator x of the Heegaard Floer complex
is assigned an Alexander grading A(x) € Z such that, for generators x and y connected by
a Whitney disk ¢ € m»(x,y), we have

2.1) A(x) — A(y) = nz(¢) —nw(9).

Let .%; denote the subspace of CF (Y) spanned by generators in Alexander grading at most i.
The fact that n,(¢) > 0 when ¢ has a pseudo-holomorphic representative, combined with (2.1)
and the fact that 0 counts disks with ny,(¢) = 0, implies that these subspaces are in fact sub-
complexes, and that they define a filtration - -+ C %, C F#p—1 C Fp = aj(Y). The filtered
chain homotopy type of this complex is an invariant of (¥, K) and the relative homology
class [S] € Ha(Y, K). We denote by (ﬁJ\K(Y, K,[S],i) = %;/F;—1 the direct summand of
the associated graded complex in Alexander grading i, and by

HFK(Y, K, [S].i) = H«(CFK(Y, K, [S].i))
the resulting knot Floer homology group in Alexander grading i. Recall that
(2.2) HFK(Y, K.[S],i) =0 for |i| > g(S).

Letting
HFK(Y. K.[S]) = (D HFK(Y. K. [S].1).
i
it follows that the filtration above gives rise to a spectral sequence with
E1 = HFK(Y, K, [S]) and Eo = HE(Y)

whose d; differential is a sum over integers i of maps of the form

d1:HFK(Y, K, [S],i) — HFK(Y, K, [S].i — 1).
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The chain complexes above (and thus the corresponding homology groups) split as direct sums
of complexes over Spin® structures on Y. Given s € Spin‘(Y'), we denote by

CR(Y,s),HF(Y,s),CFK(Y, K, [S].s.i), HFK(Y. K., [S]. 5. 1)

the corresponding Spin® summands.

Remark 2.13. Foraknot K C S3, we have that E, IfIT:(S 3) = FF. The tau invariant
t(K) € Z is the Alexander grading of the generator of this page.

Remark 2.14. We will omit the Seifert surface S from the notation above where the
class [S] is implicit, as in the case of a fibered knot or a knot in a rational homology sphere.

Remark 2.15. The knot Floer homology of a knot K C S3 is bigraded,

HFK(S®, K) = @D HFK,(S3. K. i),

m,i

where m € Z denotes the Maslov grading. The knot Floer homology is thin if it is supported
in bigradings (m, i) with m — i constant. The fact that the differential 0 shifts Maslov grading
by —1 implies that the spectral sequence

E; =~ HFK(S?, K) = HF(S?) ~ Eo

collapses at the E» page when the knot Floer homology of K is thin.
Suppose now that K C Y is a fibered knot of genus g. Then

(2.3) HFK(+Y, K, g) =~ HFK(+Y, K, —g) =~ F.

Moreover, if s is the Spin® structure on Y associated with the fibration of K (by which we
mean the Spin€ structure associated with the contact structure on Y supported by K), then

(2.4) HFK(Y,K,s,g) ~F,
(2.5) HFK(Y,K,s',g) =0 fors #s.

Note that the combination of (2.2) and (2.3) implies that the filtration of (/?T:(—Y) associated
with K C —Y is filtered chain homotopy equivalent to a filtration of the form

as mentioned in the introduction. As in that section, we define the invariant
b(K)=b(K CY) e NU{oo}

to be either
g +min{k | [¢] = 0 in H«(F)},

if [¢] = 0in P/IF(—Y), or oo otherwise. The spectral sequence interpretation of b in Remark 1.4
then follows readily from its definition and the discussion above.
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y
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T

Figure 3. The compositions = Dy o Dy 1 of a right-handed Dehn twist about x with a left-handed
Dehn twist about y is a non-right-veering homeomorphism of the once-punctured torus S.
The arcs a and b form a basis for S, and are both moved to the right by /.

Theorem 1.2 is equivalent to the statement that »(K) = 1 when the monodromy of K
is not right-veering. As mentioned in the introduction, this was proved by Baldwin—Vela-Vick
via a Heegaard-diagrammatic approach, but it is not clear how to prove our main theorem,
Theorem 1.3, by a similarly direct strategy. We elaborate on this point below.

The idea behind Baldwin—Vela-Vick’s proof of Theorem 1.2 is roughly the following.
Suppose that the monodromy /: S — S of K is not right-veering. Then there is some basis arc
a C S which is not sent to the right by 4. This arc and its image /(a) can be used to define
attaching curves in a doubly pointed Heegaard diagram for K C —Y . The fact that /# does not
send a to the right is used to find a generator d € CF (=Y), in Alexander grading 1 — g, such
that the sole contribution to od is a pseudo-holomorphic disk with domain given by a bigon
from d to ¢. This proves that b(K) = 1.

One might hope to prove the converse (our Theorem 1.3) by similar diagrammatic means.
Most naively, given a doubly pointed Heegaard diagram for K adapted to the open book (S, /)
and a basis of arcs on S, one might hope that b(K) = 1 implies that there is a bigon from
a generator d as above to ¢, certifying that at least one of the basis arcs is not sent to the right.
However, this naive strategy fails for the reason that one can find a surface S, a monodromy
h:S — §, and a basis of arcs on S such that % is not right-veering but nevertheless moves
every arc in the basis to the right, as illustrated in Figure 3.

What our Theorem 1.3 ultimately shows of course is that there is some basis of arcs for
which b(K) = 1 guarantees the existence of a bigon as above, but it is not at all clear to us how
to find such a basis by diagrammatic means.

2.5. The infinity knot Floer complex. We end this section with a review of the CFK*°
version of the knot Floer complex, which we will use extensively in Section 3.

Given a doubly pointed Heegaard diagram for a nullhomologous knot K C Y with Seifert
surface S as in the previous section, the chain complex ¢ = CFK*(Y, K, [S]) is generated as
a vector space over [ by triples [x,7, j], with x € To, N Tg and (i, j) € Z @ Z, satisfying
A(x) = j —i. This complex has the structure of an [F[U]-module, where multiplication by
Uactsas U - [x,i, j] = [x,i — 1, j — 1]. The differential §: ¢ — % is the F[U]-module map
defined on generators by

S(xijh= Y. > #M@)[y.i—nu(@).j—nz($).
yeTNTg ¢€(n¢2)(x,{)
Py
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The complex (€, §) is (Z & Z)-filtered with respect to the grading which assigns to a generator
[x,1, j] the pair (i, j), once again by the nonnegativity of n,(¢) and n,(¢) for disks ¢ which
admit pseudo-holomorphic representatives. In particular, § is a sum of maps § = »_ 8, over
pairs of nonnegative integers, where 8,,, is the component of § which lowers the grading by
(m,n). As before, the filtered chain homotopy type is an invariant of (Y, K, [S]), and this
complex splits as a direct sum of complexes over Spin® structures on Y. We will denote by %5
the summand corresponding to s € Spin®(Y).

Given (i, j) € Z ® Z, let ¢5(i, j) be the subspace of ¢ spanned by generators of the
form [x, i, j]. Then the component §,,, of § restricts to a sum of maps of the form

Smn:Cs(i, j) = Cs(i —m, j —n)
over pairs of integers (i, j ). More generally, given a subset X C Z & Z, we define

CX = P %))

(@,))ex

The differential § induces an endomorphism of 5 X which may or may not be a differential.
For example, €5 (i, j) is naturally a chain complex with respect to the induced map g9, and
there is a canonical isomorphism of this complex with the knot Floer complex above,

%s(i,j) = CFK(Y. K. [S].5.j —i).

Moreover, for each k € Z, the induced endomorphism &g + So1 + 802 + - on €{i =k} is
a differential which is filtered by the j-coordinate, and this filtered complex is isomorphic to
(/?T:(Y ) with its filtration induced by K and [S] as above. The same is true of the complex
¢{j = k} as filtered by the i-coordinate.

In practice, we will use the reduced model for CFK*°(Y, K, [S]). This is the (Z & Z)-
filtered chain complex (C, d) over F[U], where C = H« (%, 609) is obtained by taking homol-
ogy with respect to §go, and d is the induced differential on C. Extending the notational
conventions above in the obvious way, we have that Cg (i, j) = H/F\K(Y ,K,[S],s,j —i) for
each s € Spin°(Y) and (i, j) € Z® Z, and d = )_ dy, is a sum of maps over pairs (m, n)
of nonnegative integers which are not both equal to zero, where each component d,,,, restricts
toamap dyp: Cs(i, j) = Cs(i —m, j —n) for every (i, j). In addition, multiplication by U
isamap U:Cs(i, j) = Cs(i — 1, j — 1). This reduced complex (C,d) is (Z & Z)-filtered
chain homotopy equivalent to (%, §). In particular, for each k € Z, the complex C{i = k}
with filtration induced by the j-coordinate, which as a vector space is given by

Cli =k} = (DHFK(Y. K. [S].] — k).
JEZL
is filtered chain homotopy equivalent to CF (Y') with the filtration induced by K and [S] as
above. Moreover, the restriction of dg; = (dp1)« to C{i = k} is a sum over integers j of maps

of the form
do1: HFK(Y, K, [S],j] —k) - HFK(Y, K, [S],] —k — 1),

and agrees with the d; differential of the spectral sequence
HFK(Y, K, [S]) = HE(Y).

The same holds for C{j = k} and do.
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3. The Heegaard Floer homology of 0-surgery

The goal of this section is to prove Proposition 3.4 below. As outlined in the introduction,
this result is a step in the proof of Theorem 1.3, which we will complete in the next section.
We first establish some notation that will be used in this section and the next.

Let s be a nontorsion Spin® structure on S x S2. Work of Eliashberg [10] implies that
there is a contact structure § with sg = s. Let L C S 1 % §2 be a fibered knot supporting &,
with fiber G. Let Ly C S x S? be the (3, 3n + 1)-cable of L for n > 1. This cable is natu-
rally fibered, with fiber givenby F = T U G; U G, U G3, where T is a genus-3n surface with
four boundary components, and the G; are copies of G. In particular,

g i=g(Ly) =3g(L) +3n>3.

Since L is a positive cable, its fibration also represents the Spin® structure s by [1, Corol-
lary 1.12]. Let g4+: FF — F denote the monodromy of L. Then g4 is reducible: it restricts to
T as a periodic map of period 9n + 3, and cyclically permutes the G;.

Note that L C —(S! x $?) has monodromy g_: F — F given by the inverse of g.
Its fibration also represents s . For notational convenience, let L_ C S x S? be the image
of this knot under an orientation-reversing homeomorphism of S x §2, and let s_ denote the
pullback of s+ under this homeomorphism. We will refer to L_ as the “mirror” of L.

Lemma 3.1. The fractional Dehn twist coefficients of g+ are given by

c(ge) = +£1/(9n + 3).

Proof. 1Tt is shown in [17, Proposition 4.2] that the (p, g)-cable of a fibered knot, for p
and ¢ relatively prime and | p| > 1, has fractional Dehn twist coefficient 1/pg. This is stated
there for cables of fibered knots in S3, but the proof is local and applies to cables of fibered
knots in any 3-manifold; see also [26, Lemma 4.2]. O

The reason we ultimately consider cables is for the following lemma, which follows from
work of Hedden [12] and is a key input for Proposition 3.4.

Lemma 3.2. For n sufficiently large,
HFK(S! x S2,L4+,g'—2)=0 and HFK(S'x S2 Ly.g' —1)=F

is supported in the Spin® structures s+ and s—, respectively.

Proof. A slight adaptation of the proof of [12, Lemma 3.6] shows that, for n sufficiently
large, we have that

HFK(S! x S2, Ly.s,¢' — 1) ~ HFK(S' x S2, L.s,g)

for each s € Spin®(S! x $2), and that I-ﬁZ\K(S1 x 82, Ly, g’ —2) = 0. In particular, there is
a doubly pointed Heegaard diagram for the cable L4 such that there is an isomorphism of
chain complexes,

CFK(S! x S%,L4.,s,g' — 1) =~ CFK(S' x S2, L. s,g)
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for each s, and for which there are no generators in Alexander grading g’ — 2. Since
HFK(S!' x S2,L,g) = F

is supported in the Spin¢ structure s by (2.4)—(2.5), the result for Ly follows. The lemma
then follows for L_ from the symmetry

HFK(S' x S2, L., j) ~ HFK(—S' x S2, L4, s. j),

which holds for each Alexander grading j and each s € Spin©(S! x §?) (see [28, §3]). O

Remark 3.3. We will hereafter assume that n is large enough that the conclusion of
Lemma 3.2 holds.

The rest of this section is devoted to proving Proposition 3.4 below. Our proof is inspired
by the proofs of [26, Proposition 3.1] and [25, Proposition 4.1].

Proposition 3.4. Suppose K C Y is a nontrivial fibered knot of genus g satisfying
b(KCY)=b(KC-Y)=1,
andlet J+ = K#Ly and Z = Y#(S' x S?). Then

dimHF " (Z¢(J+),top— 1) = dimHFK(Y, K, g — 1) — 1.

Proof. Let us denote the genus of J by
g=g(Jy)=g(L4)+g(K)=¢ +g.
Recall that there is a natural identification
Spin€(Zy(J4+)) == Spin€(Z) x Z.

More precisely, for every Spin® structure t on Z and each integer k, there is a unique Spin®
structure tz on Zo(J4+) determined by the conditions that

telz\gy =tlz\s, and  (c1(tx).[S U F]) = 2k,

where we are viewing S U F as the result of capping off the boundary connected sum S{F,
which is the natural fiber surface for the knot J+ = K#L . Moreover, every Spin€ structure on
Zo(J4) arises in this way. Recall that HF ' (Z((J4.), top — 1) is the direct sum of the Heegaard
Floer groups of Zy(J4) over Spin® structures of the form tz_,. We will first show that this
group is in fact supported in Spin® structures tz_,, where t € Spin“(Z = Y#(S! x $2)) is of
the form t = s#s. We will then prove the dimension formula in the proposition.

Let (C, d) be the reduced model for the (Z & Z)-filtered knot Floer complex

CFK*(Z, J4),
as described in Section 2.5. In particular, for each t € Spin®(Z), we have that

3.1) Ci(i, j) = HFK(Z, J 4. t. j — i),
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and d = Y_ dmn, where each component d,, is a sum of maps of the form
Ci(i,j) = Ci(i —m, j —n).
This is a complex over [F[U], where multiplication by U is a map
U:Ci(i,j)— Ci(G —1,j —1).
For each integer k, we consider the induced chain complexes
A,tt = C¢{max(i, j — k) > 0},
B = Cili = 0},

as in [30], where the latter is chain homotopy equivalent to CFT(Z, t). There are two nat-

ural chain maps v,j , hl_:: A,‘: ¢ Bt+ , where v,‘: is vertical projection onto Ci{i > 0}, and

h,i" is horizontal projection onto Ct{j > k}, followed by the identification of the latter with
Ci{j = 0} induced by multiplication by U k. followed by a chain homotopy equivalence from
Ci{j = 0} to Ci{i = 0}

One can compute the Floer homology of surgeries in terms of this data. For instance, the
Heegaard Floer complex of Zy(J4+) in the Spin® structure t; is known to be chain homotopy
equivalent to the mapping cone of v,j + i,

CF*(Zo(J4). tx) ~ Cone(v; + h}).

For a torsion Spin® structure t, this follows exactly as in [30, §4.8]. For nontorsion t, this
follows from [27, Theorem 3.1]. We use this extensively below.

Let us suppose first that t = s#s’ with s’ # s4. As mentioned above, our aim in this
case is to prove that

(3.2) HF(Zo(J+). tz—2) = 0.
This will follow if we can show that
(3.3) HF(Zo(J4).tz-2) =0,

given the exact triangle

_ U
co — HF(Zo(J4). tz—2) — HF " (Zo(J4). tz-2) — HF T (Zo(J4). t3-2) — -+

and the fact that every element in the group in (3.2) is in the kernel of U™ for some positive

integer m. Let
Ak,t = Ct{max(i’j _k) = O}a

B = Ci{i = 0}

denote the kernels of U acting on A]j . and B;r , respectively, and let Uy, h ke A kit = Et be the
restrictions of v,j' and h,‘: to Ag . Then we have that

CF(Zo(J+4). ti) = ker(U: CF T (Zo(J4), tx) — CFT(Zo(J4). 1)
~ ker(U: Cone(v,’cF + h,‘c'") — Cone(v,;|r + h,‘:)) = Cone(Vy + Ek).

To prove (3.3), it therefore suffices to prove that Vg _» + h g—2 18 an isomorphism.
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We first claim that A, g2t = Et and hence that the projection 0z is the identity map.
For this, it (more than) suffices to prove that

34 Cili <0, j=8-2}=C{i =0, j >g—-2} =0,
since in this case we will have by definition that
(3.5) Ag21=Bi=Cili =0, j <g—2).

According to (3.1), each complex in (3.4) is isomorphic as a vector space to a direct sum of
knot Floer homology groups of the form I-ﬁJ\K(Z ,J4, 1, k) withk > g — 2. We claim that these
knot Floer homology groups vanish. This follows from an application of the Kiinneth formula
[28, Theorem 7.1], which implies that

i
(3.6)  HFK(Z.Ji.t.g 1) = (DHFK(Y. K. 5.8 — k)
k=0 QHFK(S' x 2, Ly, g +k—i)

for any integer i . The fact that the groups
HFK(S! x S2,L4.g') and HFK(S'x S2, Ly.g' —1)
are supported in the Spin€ structure s # &', while
HFK(S! x 2, Ly.g' —2) =0,

by Lemma 3.2, implies that the knot Floer group in (3.6) vanishes for i = 0, 1,2, as claimed.
This proves (3.5), and hence that Uz _ is the identity map.

_Next, since the deﬁnmon of hJr _, starts with projection onto Ct{j > g — 2}, its restric-
tion /15 72" Az g-2.t — Bt is 1dent1cally zero, given (3.5). Therefore,

i)\g_z + hg_z = 6g_2 =1id

is an isomorphism, and hence HF (Z((J4), tz—2) = 0 for all such t, as claimed.

Now suppose that t = s#s. Since s+ is nontorsion, the evaluation of ¢1(t) on a sphere
factor {pt} x S2inthe S' x §? summand is nonzero. It follows from the adjunction inequality
that Hy (BtJr ) = HF(Z,t) = 0. There are two natural exact triangles coming from short exact
sequences of chain complexes,

(U+ 2 +hg__2)*

- H*(A- 2t)

Hi(B;") — HFY(Zo(J4), tz—2) — -+,

Uﬂ,r_ )«
o Ho(A$, ) RN Ho(B) - Hu(Cili <0, j >3 —2}) — ---
Since Hy(B;") = 0, it follows that
HF*(Zo(J4).tz—2) = Ha(Ce{i <0, j = g —2})

for all t € Spin©(Z) of the form t = s#s .
Note that, for any t € Spin®(Z), the complex C¢{i <0, j > g — 2} is isomorphic as a
vector space to a direct sum of knot Floer groups of the form HFK(Z, J4+,t, k) withk > g — 1.
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As above, these groups vanish for t = s#s’ with s’ # s. Since we have also shown that
HF'(Z(J4), tz—2) = 0 for such t, we conclude that, in fact,

HF Y (Zo(J1). tz-2) = Hu(Cili <0, j > §—2})
for every t € Spin€(Z). Thus, all that remains to prove the formula
(3.7) dimHF ' (Zo(J4).top — 1) = dimHFK(Y, K, g — 1) — 1
in the proposition is to show that
(3.8) dim Hy(C{i <0, j > g —2}) =dimHFK(Y,K,g — 1) — 1.

We do so below.
First note by (3.1) that the complex C{i <0, j > g — 2} is given by

C-1,g—-1 axF

d d
/ ldm / ldm

C(-2.-2) <;— C(-1.§-2)  Fp=F —— HFK(Z,J1.Z - D).
10

Il

The components dy; and d¢ above can be identified with the components of the d; differential

(3.9) dy:HFK(Z, J4,8) — HFK(Z, J4, 5 — 1),
(3.10) dy:HFK(Z, J4+,1—g) — HFK(Z, J+, —g),

respectively, as explained in Section 2.5. We claim that both components are nontrivial. Indeed,
since (K C Y') = 1, there is a nontrivial component of the d; differential

dy:HFK(Y, K, g) — HFK(Y, K, g — 1),

per Remark 1.4. The filtered complex associated with the knot J+ C Z is filtered chain homo-
topy equivalent to the tensor product of the filtered complexes associated with K C Y and
L, C S' x 52, by the Kiinneth formula. It follows readily that the differential in (3.9) is non-
trivial as well. Similarly, we conclude from H(K C —Y) = 1 and Remark 1.4 that there is
a nontrivial component of the d; differential

di:HFK(Y, K, 1 — g) — HFK(Y, K, —g),

which shows by the same argument that the differential in (3.10) is nontrivial.
We have thus shown that

F,
Cli<0,j>g—2) = du ldm

Fp <— HFK(Z,J1,g - 1),
10

where the components do; and d;¢ are injective and surjective, respectively, and dy; is either
zero or an isomorphism. Letting 0 = dj1 + do1 + d10, We see that the kernel of 0 is the direct
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sum ker(9d) = [, & ker(di¢), while the image of 0 is the direct sum Im(9) = IFp, @ Im(dp1).
Since ker(d¢) is a codimension-1 subspace of HFK(Z, J4+, g — 1) and contains Im(dp1), we
conclude that

dim H,(C{i <0, j > g —2}) = dimHFK(Z, J+,g — 1) — 2.

Thus, all that remains for (3.8) is to show that
dimHFK(Z, J4+,g — 1) = dimHFK(Y, K, g — 1) + 1.
By the Kiinneth formula and Lemma 3.2,
dimHFK(Z, J4.§ — 1) = dimHFK(Y, K, g — 1) - dimHFK(S' x 2, L. g¢")
+ dimHFK(Y, K, g) - dimHFK(S! x §2, L4, g — 1)
= dimHFK(Y, K, g — 1) + 1,
as desired. This completes the proof of (3.7) as explained above. The proof that
HF ' (Zo(J-).top—1) = HFK(Y, K, g — 1) — 1

proceeds in exactly the same manner. O

4. Theorem 1.3 and its corollaries

In this section, we prove Theorem 1.3 and its corollaries. Theorem 1.3 will follow from
Proposition 3.4 and Theorem 4.1 below, as outlined in the introduction. The latter may be
viewed as a means by which symplectic Floer homology detects right-veering monodromy.
For the statement of the theorem, recall that the maps g+: F — F are the monodromies of the
fibered knots L4+ C S! x S? introduced in the previous section.

Theorem 4.1. Let K C Y be a fibered knot with monodromy h: S — S which is not
isotopic to the identity map. Then h is right-veering if and only if the maps

hUge:SUF ->SUF

satisfy
dimHFY™(h U g4+) = 2 + dimHFY™P(h U g_).

We note that Theorem 1.3 and its corollaries do not require the if direction of Theo-
rem 4.1. We include it here for completeness and because it may be useful for other appli-
cations.

Proof of Theorem 4.1.  'We will apply Theorem 2.9 to the homeomorphisms
o+ =hU gy

of the closed surface ¥ = S U F. Let @ and B4 be standard representatives of 4 and g, as
defined in Section 2.2. Let ¢+ be a standard representative of 7 U g4.
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Figure 4. The standard representatives ¢+ on the top and bottom, respectively. The green arcs are
the images of the red arcs under the corresponding maps. The fixed annuli are shown in
dark gray, and the twist regions in medium gray. Note that ¢ has one more fixed annulus
A than ¢_.

Note that S+ are inverses of one another, and thus have the same invariant set V. Since

c(g+) =—c(g-) =1/On +3) € (0,1),

O F abuts a positive or negative twist region for 81, respectively. It follows that the components
of F\ N do not abut in X the components in the complement of the invariant set for « in S,
and hence contribute the same to dim HF*Y™P(h U g4 ) as to dim HFY™P(h U g_).

Suppose that % is right-veering. We will address the two cases provided by Lemma 2.7
in turn, beginning with the first: that S abuts a positive twist region for «. In this case, ¢+
has one more fixed annulus than ¢_, as explained in Remark 2.3 and depicted in Figure 4.
Both boundary components of this annulus A abut positive twist regions, so this annulus has
no negative boundary components and therefore contributes

dim Hy(A;F) =2

to the term dim Hy(X,,0-%,;F) for dim HFY™P(h U g4 ) in Theorem 2.9. The remaining
contributions to dim HFY™P(h U g4 ) are the same for both, proving the formula in the theorem
in this case.

Suppose next that we are in the second case provided by Lemma 2.7: that S C 9y,
ao = id, and every boundary component of Sy besides 0.5 abuts a positive twist region for .
Since we are assuming for the theorem that /4 is not isotopic to the identity, So must indeed
have boundary components other than 0. Note that S abuts a positive twist region for ¢
and a negative twist region for ¢—. Thus, 0S¢ has no negative components for ¢, but has both
positive and negative components for ¢_. It follows that the fixed component Sy contributes

dim H.(So: F)

to the term dim H«(X,, 0—X,; F) for dim HF¥™P(h U g4 ) in Theorem 2.9 (see Remark 2.10,
with 0_Sop = @), but only

dim Hy(So, 3S;F) = dim Hy(So: F) — 2
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to dim HFY™P(h U g_). The remaining contributions to dim HF*Y™P(h U g ) are the same,
proving the formula in the theorem in this case as well.

We have so far proven the only if direction of the theorem. For the if direction (which,
as mentioned above, we do not need for our main theorem or its applications), suppose that /
is not right-veering. We must show that

dimHFY"™(h U g4) # 2 + dimHFY™(h U g_).

By Lemma 2.7, 0S does not abut a positive twist region for «. If 0S abuts a negative twist
region, then the inverse of / is right-veering by Lemma 2.7, and we have, by the calculation
above and the fact that the dimension of symplectic Floer homology is invariant under taking
inverses (see Remark 2.11), that

dimHFY™(hU g1) = =2 + dimHFY"™P(h U g_) # 2 + dimHFY™ (h U g_),

as desired.

If 05 does not abut a negative twist region, then it does not abut a twist region at all,
and we have that 0S C 0Sp. In this case, Lemma 2.7 says that either oo # id, or else og = id
and some component of 05 \ 95 does not abut a positive twist region for «. Suppose first that
ag # id. Then, in the notation of Theorem 2.9, Sy belongs to either X1 (the non-fixed periodic
components) or X, (the pseudo-Anosov components). In this case, all regions contribute the
same amount to both of dim HF*Y™P (4 U g1 ), by Theorem 2.9, and

dimHFY™(h U g1) = dim HFY™ (h U g_) # 2 + dim HFY™(h U g_).

as desired. Finally, suppose that «gp = id and some component B of dSp \ 0S does not abut
a positive twist region for «. There are three cases to consider.

Case 1: So C ¥,. Suppose that So does not abut any pseudo-Anosov components for «,
so that Sp is a component of X in the notation of Theorem 2.9. Let &’ = o[ g\ini(s,,)- We claim
that B must abut a negative twist region. Otherwise, B does not abut any twist region, and
therefore abuts a periodic component for o’. Moreover, cg(¢’) = 0. This implies by Lemma 2.6
that o’ restricts to the identity on this component. But that contradicts the minimality of the
invariant set for «, since oo = id as well. Thus, B abuts a negative twist region. As before, 95
abuts a positive twist region for ¢+ and a negative twist region for ¢—. Therefore, 0S¢ has both
positive and negative boundary components for ¢4, from which it follows by Remark 2.10 that
the fixed component S contributes

dim Hy(So: F) — 2

to the term dim H« (X4, 0—X4; F) for dim HFY™P(h U g4 ) in Theorem 2.9. Moreover, S con-
tributes at least
dim H,(So;F) — 2

to dim HF*¥™P (4 U g_). The remaining contributions to dim HF*Y™P (/4 U g1 ) are the same for
both, proving that

dim HFY™(h U g1) < dim HFY™(h U g_) < 2 + dim HFY™ (7 U g_),

as desired.
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Case2: So C Xp, ,. Suppose that Sp abuts exactly one pseudo-Anosov component for c,
meeting 0Sp in p prongs (note that it does not abut a pseudo-Anosov component for 1), so
that So is a component of ¥ , in the notation of Theorem 2.9. Let §0 be the complement of
an open disk in Sg. Then, by the conventions in Section 2.3, 0_S is a nonempty proper subset
of 05y for both ¢ . It follows that So contributes

dim Hy(So; F) — 2

to the term dim H. (X3 » 0-Xp, p:F) in Theorem 2.9 for both dim HF*¥™P(h U g+). The re-
maining contributions to both dimensions are the same, proving that

dimHFY™(h U g+) = dimHFY"P(h U g_) # 2 + dimHFY™(h U g_),
as desired.

Case 3: So C X¢4. Suppose that So abuts at least two pseudo-Anosov components
for o, meeting 0 in a total of ¢ prongs, so that S is a component of X 4 in the notation of
Theorem 2.9. Then, by the conventions in Section 2.3, 0_Sy is a nonempty proper subset of
0S5y for both ¢. It follows that S contributes

dim Hy(So;F) — 2

to the term dim H«(2¢ 4, 0-%¢ 4:F) in Theorem 2.9 for both dim HF*™P(h U g+ ). The re-
maining contributions to both dimensions are the same, proving that

dimHFY™(h U g4) = dimHFY"™(h U g_) # 2 + dimHFY"P(h U g_),

as desired. This completes the proof of the theorem. |

Proof of Theorem 1.3.  Suppose that K C Y is a fibered knot with right-veering mon-
odromy h: S — S.If h ~ id, then K supports the Stein-fillable contact structure on

Y = #2288 (s x §2),

which has nontrivial contact invariant. Therefore, b(K) > 1, as desired.

Let us now suppose that 2 ~ id, and let us assume for a contradiction that b(K C Y) = 1.
Since 4 is right-veering and /& ~ id, the monodromy 4~ of the mirror K C —Y is not right-
veering. Thus, (K C —Y) = 1 by Theorem 1.2. Moreover, K is nontrivial since /& ~ id.
Proposition 3.4 therefore implies that

dimHF"(Zy(J1),top — 1) = dimHF " (Zo(J_), top — 1),

where J+ = K#L+ and Z = Y#(S! x §?). Since Zo(J+) is the mapping torus of 4 U g,
and g(S U F) > 3, we have by Theorem 2.12 that

HF " (Zo(J+),top — 1) = HFY™ (h U ¢).

Therefore,
dimHFY™ (h U ¢4) = dimHFY™P(h U ¢_).

But this contradicts the conclusion of Theorem 4.1. O
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Proof of Corollary 1.5. This follows immediately from Theorems 1.1 and 1.3. O

Proof of Corollary 1.7. As noted in Remark 2.13, t(K) is equal to the Alexander grad-
ing of the generator of the E, = IF page of the spectral sequence

E1 = HFK(S3, K) = HE(S?) = Eo.

The thinness hypothesis implies that this spectral sequence collapses at the £, page, as noted in
Remark 2.15. Thus, every element in the knot Floer homology of K in Alexander grading dif-
ferent from 7 (K) is either (1) a boundary or (2) not a cycle with respect to the d; differential in
the spectral sequence. In particular, since g := g(K) # 7(K), there is a nontrivial component
of d from

HFK(S3, K, g) — HFK(S3, K, g — 1)

By Remark 1.4, this implies that (K C S3) = 1. The same reasoning applied to the mirror
shows that b(K € —S3) = 1 as well. By Theorem 1.3, the monodromies A1 of K C +53
are thus non-right-veering. In particular, 4 is neither right-veering nor left-veering. O

Proof of Corollary 1.9. The inequality |7(K)| < g(K) means that K C S3 is nontriv-
ial, and Corollary 1.7 says that the monodromy of K is neither right-veering nor left-veering.
Then K is persistently foliar by [8, Theorem 1.4]; we note that the cited theorem is really
a slight generalization of [31, Theorem 4.7 (1)], which is stated using different terminology
and only for pseudo-Anosov monodromy. O

Proof of Corollary 1.11.  Suppose K C S3 is a fibered alternating knot. First, let us sup-
pose that K is a connected sum of torus knots of the form K = 15 2, 4 1#- - #1225 1. If
k =1 and r is a rational number other than 2(2n1 + 1), then S3(K) is a Seifert manifold
with base S2. Such manifolds admit co-orientable taut foliations if and only if they are non-
L-spaces by [21, Theorem 1.1]. For k = 1 and r = 2(2n1 + 1), S?(K) is a connected sum of
lens spaces and therefore an L-space, and it does not admit a taut foliation since it is reducible.
If k > 1, then K does not admit an L-space surgery by [18, Theorem 1.2], and is persistently
foliar by [8, Theorem 6.1]. So, in this case, S r?’ (K) is a non-L-space and admits a co-oriented
taut foliation for every r € Q.

If K is not a connected sum of torus knots, then neither K nor its mirror is strongly
quasipositive by [24, Proposition 3.7]. Thus, K does not admit an L-space surgery, and

[T(K)| < g(K)
(see [13]). The latter implies by Corollary 1.9 that K is persistently foliar. So, in this case,
S3(K) is a non-L-space and admits a co-oriented taut foliation for every r € Q. m]
Proof of Corollary 1.12.  Suppose first that 7(K) = g(K). From the interpretation of
7(K) in Remark 2.13 as the Alexander grading of the Eo, = [ page of the spectral sequence
E1 =~ HFK(S3, K) = HE(S?) = E,

we conclude that the generator of H/ﬁ((S 3, K, g) must survive in this spectral sequence. In
particular, the component of the d; spectral sequence differential from

HFK(S3, K, g) — HFK(S3, K, g — 1)
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vanishes. Per Remark 1.4, this implies that b(K) > 1, which implies by Theorem 1.3 that the
monodromy of K is right-veering.) Then [23, Theorem 1.1] says that 0 < r < 4g(K).
Suppose next that (K) = —g(K). The fact that S (K) is non-hyperbolic implies that

§2,(K) = —S}(K)

is also non-hyperbolic. Since 7(K) = —7(K) = g(K) = g(K), we have by the previous case
that 0 < —r < 4g(K), which implies that —4g(K) <r < 0.

Finally, if |t(K)| < g(K) and the knot Floer homology of K is thin, then Corollary 1.7
tells us that the monodromy of K is neither right-veering nor left-veering. Then [23, Theo-
rem 1.1] says that |g| < 2. |
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