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While the thermodynamics for bosonic systems with weak s-wave interactions has been known for decades,

a general and systematic extension to higher partial waves has not yet been reported. We provide closed-form

expressions for the equations of state for weakly interacting systems with arbitrary partial waves in the normal

phase. Thermodynamics, including contact, loss rate, and compressibility, are derived over the entire temperature

regime. Our results offer an improved thermometer for ultracold atoms and molecules with weak high-partial

wave interactions.
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I. INTRODUCTION

The equations of state (EOS) for ideal noninteracting Bose
and Fermi gases are standard textbook results [1] that are of
immense importance to cold atom experiments. For exam-
ple, temperatures of weakly interacting quantum gases are
frequently extracted by fitting experimental data to noninter-
acting density profiles. While weak interactions modify the
noninteracting density profile only slightly, recent molecular
quantum gas experiments [2–11] suggest that the chemical
reaction rate is comparatively sensitive to the interactions even
in the weak-interaction limit. The reason is that the contact
[12–28], which is the thermodynamic variable that governs
the chemical rate in the weakly interacting regime [29–33],
changes from zero for noninteracting systems to a finite value
for interacting systems.

This article is devoted to the EOS of single-component
Bose and Fermi gases with weak interactions in the nor-
mal phase. The EOS is well understood and available in an
analytical form for single-species bosons with weak s-wave
interactions [34]. In contrast, for single-component Fermi
gases with weak p-wave interactions, the contacts and EOS
have only been studied in the low- and high-temperature
regimes [32,33,35], even though higher partial-wave physics
has attracted increased attention recently [36–39]. Analytical
expressions for the EOS of single-component gases beyond
the s-wave case (i.e., for p-wave Fermi gases, d-wave Bose
gases, and f -wave Fermi gases, etc.)—applicable over the
entire temperature regime—do not exist.
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Within the Hartree-Fock framework, we derive analytical

closed-form expressions for the EOS, applicable to all tem-

peratures, of single-component atomic or molecular quantum

gases with weak l-wave interactions in the normal phase.

We calculate the contact, which determines the chemical re-

action rate of ultracold gases. Using the virial expansion,

we find that, while the contact of weakly interacting s-wave

Bose gases in the normal phase is a pure two-body quan-

tity, that of weakly interacting p-wave Fermi gases displays

pronounced three-body effects even at temperatures as high

as the degeneracy temperature. This effect is shown to arise

from many-body dressing, i.e., the emergence of quasipar-

ticles at leading order in the interaction strength. We also

discuss the relation between the resulting reaction rate and

that obtained through a simple thermal average over the

inelastic cross-section. Applying the local-density approxima-

tion (LDA), we calculate the contacts of the harmonically

trapped systems. Our results show that the trapped system

needs to be cooled to rather low temperatures to probe the

“low-temperature” portion of the EOS of the homogeneous

system.

The article is arranged as follows: Sec. II introduces the

l-wave low-energy two-body interaction potential employed

in Sec. III to derive the normal-phase l-wave EOS in the

weak-interaction limit. Section IV applies the EOS of the ho-

mogeneous system to deduce explicit, yet general, expressions

for the two-body contact and two-body loss rate coefficient,

which are interpreted using the virial expansion (see Sec. V).

Section VI focuses on the homogeneous l = 0 and l = 1 sys-

tems. The loss rate coefficients derived in this work are com-

pared with heuristic thermal averages in Sec. VII. Section VIII

applies the homogeneous EOS to harmonically trapped

systems using the LDA. Finally, Sec. IX discusses the applica-

bility regime of the theory results derived in this work, while

Sec. X concludes. Technical details are relegated to several

Appendices.
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II. INTERACTION MODEL

The low-energy two-body potential for arbitrary partial-

wave channel l reads

Ul (q, q′) = 4πgl q
l (q′)l

l
∑

m=−l

Ylm(q̂)Y ∗
lm(q̂′), (1)

where Ylm(q̂) is the spherical harmonic, and q and q′ are

the incoming and outgoing relative momenta [40]. The two-

body phase shifts δl are given by k2l+1 cot(δl ) = −1/al +
O(k2), where al is the scattering length in the lth partial-

wave channel. To describe the binding energy of shallow

two-body bound states, the leading-order effective-range cor-

rection needs to be included, and δl needs to be expanded up

to order k2 [41]. However, effective-range corrections can be

excluded since we work in a weakly interacting regime where

bound states do not contribute. A standard renormalization

procedure gives (see Appendix A)

1

gl

=
M

4π h̄2al

+
M

2π2h̄2

∫ ∞

0

dqq2l . (2)

Noticing that since we are using first-order perturbation theory

where ultraviolet divergencies are absent, renormalization is

not required, implying that the bare coupling gl and scattering

length al are related by gl = 4π h̄2al/M, where M denotes

the mass of the gas constituents (atoms or molecules). For

l = 0, the interaction U0 is, as expected, equal to g0 [42]. The

next section uses the interaction potential Ul (q, q′) to derive

perturbative results for the normal-phase EOS.

III. EQUATIONS OF STATE IN NORMAL PHASE

To include the two-body interactions in the EOS, we ac-

count for the mean-field corrections to the Bose-Einstein

distribution function (l even) and Fermi-Dirac distribution

function (l odd) in momentum space [42],

nk =

{

exp

[

ε
(0)
k

+ h̄�l (k)

kBT

]

z−1 ∓ 1

}−1

, (3)

where ε
(0)
k

= h̄2k2/2M denotes the single-particle kinetic en-

ergy, h̄�l (k) the self-energy, and h̄k the momentum. In

Eq. (3) and in what follows, the upper sign is for even

l (single-component bosons) and the lower sign for odd l

(single-component fermions). The self-energy reads

�l (k) =
2

h̄
(2π )−3

∫

d3k′Ul

(

k − k′

2
,

k − k′

2

)

nk′ , (4)

from which we can obtain the normal-phase grand potential �

by the “generalized Hellman-Feynman theorem” [42]

� − �(0) =
V

2

∫ 1

0

dλ

λ

∫

d3k

(2π )3
h̄�l (k, λ)nk(λ), (5)

where nk(λ) and �(k, λ) are defined through Eqs. (3) and (4)

with the two-body potential Ul (q, q′) scaled by λ1. Here

�(0) = ∓kBTV
Li5/2(±z)

λ3
T

(6)

1Namely, nk(λ) = [exp (
ε

(0)
k

+h̄�l (k,λ)

kBT
)z−1 ∓ 1]

−1

and �l (k, λ) =
2

h̄
(2π )−3

∫

d3k′λUl (
k−k′

2
, k−k′

2
)nk′ (λ).

is the noninteracting grand potential, where

λT = h̄

√

2π

MkBT

is the thermal wavelength and z is the fugacity. At the leading

order in the scattering length, we find

�

kBTV
≈ ∓

Li 5
2
(±z)

λ3
T

+
al

λ2l+4
T

∑

i, j,n

i+ j+n=l

C(i, j, n, l )

× Li 2i+n+3
2

(±z)Li 2 j+n+3

2
(±z), (7)

where the indices i, j, and n start from 0, and

C(i, j, n, l ) = (2l + 1)π l−1 [1 + (−1)n]2n+2l!

i! j!n!(1 + n)

× �

(

2i + n + 3

2

)

�

(

2 j + n + 3

2

)

. (8)

Here Lis and � are the polylogarithm and gamma functions,

respectively. To construct the full EOS, the mean particle den-

sity n needs to be expressed in terms of z. We achieve this by

treating the self-energy as a small parameter and integrating

Eq. (3) in momentum space:

n = ±
Li 3

2
(±z)

λ3
T

−
2al

λ2l+4
T

∑

i, j,n

i+ j+n=l

C(i, j, n, l )

× Li 2i+n+1
2

(±z)Li 2 j+n+3

2
(±z). (9)

One can check that Eqs. (7) and (9) fulfill the thermody-

namic relation n = − 1
V

∂�
∂μ

= −z
∂ (�/kBTV )

∂z
, where μ denotes

the chemical potential. Equations (7) and (9) are the first main

result of this article. From Eqs. (7) and (9), one can—at least

formally—calculate all thermodynamic quantities. Fully ana-

lytical expressions for the isothermal compressibility, entropy,

and isochoric heat capacity are given in Appendix B.

IV. CONTACT AND TWO-BODY LOSS

In addition to the observables considered in Appendix B,

we consider the contact Cl , which is conjugate to the inverse

scattering length. The contact has been discussed extensively

for the two-component Fermi gas at unitary [15–21]. Working

in the grand-canonical ensemble, where the fugacity z is a

thermodynamic variable, Cl is defined in terms of the grand

potential � by the adiabatic relation

(2l + 1)h̄2Cl

2M
= −

∂�

∂a−1
l

. (10)

This definition of Cl generalizes the definition of the p-

wave contact C1 [24]. For s-wave interacting Bose gases, the

most commonly employed definition of the contact C0 differs

from Eq. (10) by a factor of 2π [12–14]. The description

of higher-partial wave systems typically requires a second

contact, namely the conjugate to the effective range [23–27].

Since we find that it affects the thermodynamics of weakly

interacting systems at sub-leading order, we exclude it from

our discussion.
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The contact of weakly interacting systems is a fascinating

thermodynamic quantity since it determines the loss rate due

to chemical reactions between two particles. Examples of

reactions in molecular NaRb and KRb gases are as follows:

NaRb + NaRb → Na2 + Rb2 (s-wave Bose gas)

KRb + KRb → K2 + Rb2 (p-wave Fermi gas)

When the two incoming reactants are “scattered” into final

products, the (typically large) binding energy is converted to

the kinetic energy of the products. Consequently, the prod-

ucts have so much energy that they are not held in place

by the comparatively shallow trapping potential. Since the

reaction time is short compared to the typical time scale of

experimental observations, a non-Hermitian Hamiltonian with

a complex interaction potential can effectively describe the

process. For the single-component p-wave gas, it was shown

that the change of the number N of constituents is related to

the imaginary part of the scattering length [33],

dN

dt
=

4

h̄
〈Im(H )〉 =

4

h̄

∂�

∂a1

∣

∣

∣

∣

z

Im(a1), (11)

where H is the effective Hamiltonian with complex interac-

tion and 〈·〉 denotes the thermal average. Since the derivation

in Ref. [33] was done in real space, without making any

assumptions about the form of the interaction, the result

can be straightforwardly generalized to arbitrary partial-wave

channels:

dN

dt
=

4

h̄

∂�

∂al

∣

∣

∣

∣

z

Im(al ). (12)

From Eq. (11) and the definition of the contact, Eq. (10), one

obtains

dn

dt
= 2(2l + 1)

h̄

M

Cl

V

Im(al )

[Re(al )]2
= −βln

2, (13)

where n denotes the particle density; the loss-rate coefficient

βl can be measured experimentally [43–45]. The loss-rate co-

efficient characterizes—due to the n2 term—losses that arise

from two-body processes. In general, though, the loss-rate

coefficient may be n-dependent, implying that dn/dt may

effectively scale with n3 or n to some other power.

Combining the EOS and the definition of the contact, we

find the contact in the canonical ensemble:

Cl (z)

V
=

4π [Re(al )]
2

(2l + 1)λ2l+6
T

∑

i, j,n

i+ j+n=l

C(i, j, n, l )

× Li 2i+n+3
2

(±z(0))Li 2 j+n+3

2
(±z(0)), (14)

where the fugacity z(0) of the noninteracting system is implic-

itly determined by Li3/2(±z(0)) = ±nλ3
T . Equation (14) and

its interpretation and implications (see below) are the second

main result of this paper.

V. VIRIAL EXPANSION ANALYSIS

To unravel how the many-body thermodynamics emerges

from the two-body scattering length and few-body corre-

lations, we employ the virial expansion, which provides a

systematic expansion in terms of one-, two-, three-, and

higher-body clusters [1]. Formally, we expand � in terms of

the fugacity z,

� = −kBT Z1

∞
∑

j=1

b jz
j, (15)

where Z1 = V/λ3
T is the canonical partition function for a

single constituent in a box with volume V . The determination

of the virial coefficient b j requires information up to the

canonical partition function Z j for j constituents [46], i.e.,

b j contains one-, two-, · · · , j-body physics; Z j with j > 1

accounts for interactions as well as exchange statistics. Since

we have an analytical expression for �, the virial coefficients

b j can be calculated analytically up to arbitrarily large j by

Taylor expanding Eq. (7) around z = 0. We provide expres-

sions for �b j = b j − (±1) j−1

j5/2 up to j = 4:

�b1 = 0,

�b2 = −
al

λ2l+1
T

∑

i, j,n

i+ j+n=l

C(i, j, n, l ),

�b3 = ∓
al

λ2l+1
T

∑

i, j,n

i+ j+n=l

C(i, j, n, l )2− 1+2i+n
2 ,

�b4 = −
al

λ2l+1
T

∑

i, j,n

i+ j+n=l

C(i, j, n, l )
[

2−3−l + 2 × 3− 3+2i+n
2

]

,

(16)

The expressions for �b j will be interpreted below. The

following section applies the l-wave result for Cl to two

commonly investigated systems, namely s-wave Bose (in this

case, our virial coefficients agree with the literature [47]) and

p-wave Fermi gases.

VI. HOMOGENEOUS SYSTEMS

A. Single-component s-wave Bose gas

The contact C0 for the weakly interacting single-

component Bose gas, applicable to any temperature T above

the transition temperature TC , is directly proportional to n2:

C0

V
=

8π [Re(a0)]2

λ6
T

{Li 3
2
[z(0)]}2 = 8π [Re(a0)]2n2. (17)

Since the quantity n2 can be interpreted as the semiclassical

pair density, the thermodynamic variable C0 is a two-body

quantity in the weak-interaction limit; in other words, many-

body dressing is absent. As a consequence, the corresponding

loss-rate coefficient β0 is independent of n,

β0 = −
16π h̄Im(a0)

M
. (18)

Even above degeneracy, two-body chemical reactions of the

weakly interacting single-component s-wave gas do not ex-

hibit three- or higher-body correlations. This behavior can be

traced back to how the self-energy modifies the momentum

distribution Eq. (3). At the mean-field level, the s-wave inter-

actions lead to a self-energy �0 that is independent of k, i.e.,

�0(k) = �0 (see Appendix B 1). According to Eq. (3), the

interactions can thus be interpreted as modifying the chemical
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potential without modifying the character of the constituents,

i.e., the constituents remain free particles, and each two-

body collision involves exactly two “physical” constituents.

The virial expansion formalism can further confirm the in-

terpretation. By self-consistently calculating the contact with

truncated virial expansion at j, we find that j = 2 is enough

to produce the exact results and that choosing a higher j does

not introduce new terms (see Appendix C).

B. Single-component p-wave Fermi gas

Setting l = 1 in Eq. (14), we find

C1

V
= −

24Re(a1)2π2

λ5
T

nLi 5
2
[−z(0)]. (19)

Since the polylogarithm on the right-hand side of Eq. (19) has

the index 5/2 as opposed to 3/2, the polylogarithm cannot,

contrary to the s-wave case, be directly converted to n. Con-

sequently, C1 features a nontrivial dependence on n and T . At

high temperatures (z(0) → 0), Eq. (19) becomes

Cl=1(n)

V

T →∞−−−→ −
24[Re(a1)]2π2

λ2
T

n2. (20)

In this regime, the contact C1 has—similarly to the contact

C0—a two-body nature. However, unlike in the s-wave case,

the high-temperature p-wave contact has an explicit temper-

ature dependence. Since λ−2
T is directly proportional to T ,

C1 increases linearly with temperature, i.e., reactions become

slower as the gas is getting colder. The corresponding β1 at

high temperatures is independent of n and linearly dependent

on T ,

β1
T →∞−−−→ −

72πkBT Im(a1)

h̄
. (21)

In the zero temperature limit, Eq. (19) approaches

Cl=1(n)

V

T →0−−→
12

5
62/3π7/3[Re(a1)]2n8/3. (22)

Appendix D discusses how to evaluate the zero-temperature

limits of some of the functions that enter into the l = 1 EOS.

Since the n dependence deviates from n2, β1 is n dependent,

β1
T →0−−→ −

144π

5

kBTF

h̄
Im(a1), (23)

where TF = h̄2

2M
(6π2n)2/3 denotes the Fermi temperature. The

black solid line in Fig. 1 shows Eq. (19) as a function of T/TF .

The T 1 and T 0 scalings in the high- and low-temperature

regimes fully agree with previous works [32,33].

To interpret the change of the dependence of C1 from being

proportional to n2/3 at low temperatures to being proportional

to n2 at high temperatures, we first note that p-wave interact-

ing gases may exist in the normal phase approximately all the

way down to zero temperature since the superfluid transition

temperature is exponentially small [40]. It is then natural to

assume that many-body effects will modify the reaction rate

in the low-temperature limit as the incoming and outgoing

momenta are expected to be constrained due to the fermionic

exchange statistics, i.e., intuitively, one expects some dress-

ing of the constituents due to many-body effects. A careful

analysis of the self-energy confirms this picture. Substituting

FIG. 1. Contact (or two-body loss-rate coefficient), both in

scaled dimensionless form, for single-component p-wave gas as a

function of scaled temperature. The solid line shows Eq. (19); dotted,

dashed, and dash-dotted lines show the second-, third-, and fourth-

virial expansions. Inset (i): Extension to larger T/TF , illustrating that

the second-order virial expansion converges to the exact result at

relatively high temperatures. Inset (ii): Contact for—from bottom to

top at T = TC/F —p-wave (black), d-wave (cyan), s-wave (yellow),

and f -wave (magenta).

�1(k) = A1 + B1k2 (see Appendix B 1) into Eq. (3), the con-

stant A1 can be shown to modify, just as in the s-wave case,

the chemical potential. The B1k2 term, in contrast, modifies

the single-particle energies ε
(0)
k

, thereby effectively renormal-

izing the mass of the physical constituents. When a chemical

reaction happens at low temperatures, two quasiparticles with

effective mass interact instead of two physical constituents.

Since the renormalization of the mass is due to many-body

dressing, the chemical reaction involves more than two phys-

ical constituents.

The above analysis is complemented by the virial ex-

pansion up to the fourth order in z. Figure 1 compares the

contact C1, calculated up to second, third, and fourth or-

der, with the exact result, Eq. (19). Figure 1 shows that the

second-order expansion agrees with the exact expression at

T 
 TF [see inset (i)]. Importantly, the second-order virial

expansion deviates notably from the exact result for temper-

atures as high as T/TF = 2. The third-order virial expansion

provides an excellent description down to T/TF ≈ 0.25. In-

terestingly, the fourth-order virial expansion does not yield

much improvement over the third-order expansion, indicating

that three-body processes are essential in chemical reactions

of weakly interacting p-wave gases for T/TF ≈ 0.25–2. At

higher temperatures, three-body processes contribute very lit-

tle. At lower temperatures, the chemical reactions acquire

many-body characteristics.

Extending the analysis to higher partial waves, we find that

the Cl for l > 1 also have non-negligible three-body contri-

butions in the vicinity of the degeneracy temperature (TC for

even l and TF for odd l). In the high-T limit, Cl is directly

proportional to T l ; this scaling is consistent with the two-

particle Bethe-Wigner threshold law [50–52]. The inset (ii)

of Fig. 1 plots our analytical expressions for Cl for l = 0 − 3

as a function of temperature.
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TABLE I. Comparison between results from Eqs. (30) and (29) up to l = 3.

Heuristic thermal average [Eq. (30)] Thermodynamics [Eq. (29)]

s −16π h̄Im(a0)/M −16π h̄Im(a0 )/M

p
−144π 2 h̄Im(a1)Li 5

2
[−z(0)]

Mλ2
T Li 3

2
[−z(0)]

−144π 2 h̄Im(a1)Li 5
2
[−z(0)]

Mλ2
T Li 3

2
[−z(0)]

d
−1200π 3 h̄Im(a2)Li 7

2
[z(0)]

Mλ4
T Li 3

2
[z(0)]

−600π 3 h̄Im(a2)Li 7
2
[z(0)]

Mλ4
T Li 3

2
[z(0)]

+
−600π 3 h̄Im(a2)Li 5

2
[z(0)]2

Mλ4
T Li 3

2
[z(0)]2

f
−11760π 4 h̄Im(a3)Li 9

2
[−z(0)]

Mλ6
T Li 3

2
[−z(0)]

−2940π 4 h̄Im(a3)Li 9
2
[−z(0)]

Mλ6
T Li 3

2
[−z(0)]

+
−8820π 4 h̄Im(a4)Li 5

2
[−z(0)]Li 7

2
[−z(0)]

Mλ6
T Li 3

2
[−z(0)]2

VII. STATISTICAL AVERAGE OF INELASTIC

CROSS SECTION

In the literature, the loss-rate coefficients βl have been

calculated by thermally averaging the two-body inelastic cross

sections σin,l (E ). In what follows, we review the steps taken

within this approach to derive βl [53–55]. According to the

definition of the scattering length al for the lth partial-wave

channel, namely k2l+1 cot(δl ) = −1/al , the scattering matrix

element Sl in the low-energy threshold limit reads

Sl = e2iδl ≈ [1 + 2Im(al )k
2l+1] − 2Re(al )k

2l+1i. (24)

The inelastic partial-wave cross section σin,l is related to the

scattering matrix element through [56–59]

σin,l = (2l + 1)π
1 − |Sl (k)|2

k2
, (25)

where the factor 2l + 1 originates from the fact that the lth

partial-wave channel has a (2l + 1)-fold degeneracy. Assum-

ing |Im(al )|k2l+1 � 1 and |Re(al )|k2l+1 � 1, we find

|Sl |2 ≈ [1 + 2Im(al )k
2l+1]2 ≈ 1 + 4Im(al )k

2l+1. (26)

Utilizing the definition of the scattering energy E = h̄2k2/2μ,

where μ = M/2 is the two-body reduced mass, one obtains

σin,l (E ) = −4π (2l + 1)Im(al )(ME )l−1/2/h̄2l−1. (27)

The loss-rate coefficient βl is then found by thermally aver-

aging the two-body inelastic cross section σin,l (E ) over the

Boltzmann distribution function [53–55]:

βl = 2 ×
∫∞

0
dE

√
Ee−E/kBT σin,l (E )

√
4E/M

∫∞
0

dE
√

Ee−E/kBT

= −25+lπ1/2+l�(3/2 + l )
h̄

Mλ2l
T

Im(al ), (28)

where the factor 2 reflects that one inelastic collision process

eliminates two particles. Since Eq. (28) employs the Boltz-

mann distribution function, it is instructive to compare it with

the high-temperature limit of the expression for βl derived

in this work within the thermodynamic formalism. Our exact

result and its high-temperature limit read

βl = −
8π h̄

Mλ2l
T

∑

i, j,n

i+ j+n=l

C(i, j, n, l )

×
Li 2i+n+3

2
[±z(0)]Li 2 j+n+3

2
[±z(0)]

Li 3
2
[±z(0)]Li 3

2
[±z(0)]

Im(al ),

T →∞−−−→ −
8π h̄

Mλ2l
T

⎛

⎜

⎝

∑

i, j,n

i+ j+n=l

C(i, j, n, l )

⎞

⎟

⎠
Im(al ). (29)

It can be checked that Eq. (29) agrees with Eq. (28) for each

partial wave channel. This can be understood because the

two particles’ center-of-mass and relative momenta obey the

Boltzmann distribution separately.

At lower temperatures, however, the thermal average

needs to be generally performed over the product of two

Bose-Einstein or two Fermi-Dirac distribution functions (the

three-body analog is discussed in Ref. [60]). Since the product

of two such distribution functions does not, unlike in the case

of the Boltzmann distribution function, separate in relative

and center-of-mass coordinates, the thermal-average approach

does not straightforwardly extend to the low-temperature

regime. By naively replacing the classical Boltzmann distribu-

tion with the quantum version (Bose-Einstein or Fermi-Dirac

distribution), Eq. (28) becomes

βl
?= 2 ×

∫∞
0

dE
√

E (eE/kBT z−1 ∓ 1)−1σin,l (E )
√

4E/M
∫∞

0
dE

√
E (eE/kBT z−1 ∓ 1)−1

.

(30)

The question mark over the equal sign indicates that the ex-

pression is not rigorous but instead, deduced heuristically. The

integral in Eq. (30) can be evaluated analytically, and the re-

sults for l = 0–3 are reported in the second column of Table I.

Curiously, a comparison of the thermal-average approach and

our exact results (third column of Table I) shows that the

heuristic thermal-average approach does yield the same ex-

pressions for l = 0 and l = 1 as the rigorous thermodynamic

framework developed in this work. For the higher partial wave

channels (l = 2 and l = 3), however, the heuristic approach

yields a different temperature dependence. The correction of

the heuristic expressions of the loss rate coefficient constitutes

the third main result of this paper.
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FIG. 2. Normal-phase contacts, in scaled dimensionless units,

for harmonically trapped (a) s-wave Bose and (b) p-wave Fermi

gas. The gray-shaded region in (a) denotes the Bose-Einstein con-

densate (BEC) phase where our calculation does not apply. The

exact results (solid lines) are compared with the virial expansions

up to fourth order (see legend). Here T
trap

C = [N/ζ (3)]1/3 h̄ω/kB [48]

(T
trap

F = (6N )1/3 h̄ω/kB [49]) is the transition (Fermi) temperature

of the noninteracting trapped Bose [Fermi] gas; ζ (s) denotes the

Riemann Zeta function, and k
trap

C and k
trap

F denote the momentum

scales of the corresponding energy scales.

VIII. HARMONICALLY TRAPPED SYSTEMS

We now apply our results to harmonically trapped N-

particle systems, which are being studied extensively exper-

imentally. To account for the trap-induced inhomogeneity

of the density, we convert our homogeneous EOS, namely

Eqs. (7) and (9), to those for the trapped system via the LDA

[61]. Within this framework, the local density at position r

determines the EOS of the homogeneous system to be used

at that point: �trap =
∫

d3r�[n(r)]/V. To obtain the contact

C
trap

l
of the trapped system, Eq. (10) is evaluated numeri-

cally. The black solid lines in Fig. 2 show the result for a

spherically symmetric harmonic trap with angular frequency

ω. To gain physical insight, the EOS of the inhomogeneous

system can be described through the virial expansion. In an

isotropic harmonically trapped system, the relation between

the virial coefficients b
trap
j of the trapped system and those of

the homogeneous system is b
trap
j = b j/ j3/2 [46]. The explicit

description of the thermodynamics of harmonically trapped

single-component gases with weak interactions and the inter-

pretation thereof (see below) constitute the fourth main result

of this paper.

Figures 2(a) and 2(b) compare the contacts of the harmon-

ically trapped s-wave Bose and p-wave Fermi gas, obtained

from the virial expansion up to fourth order, with the full

numerical results. We make two observations: (i) For the s-

wave Bose gas, the contact of the trapped system does not

coincide with the second-order virial expansion, indicating

that the contact of the trapped system is not, unlike that of the

homogeneous system, a two-body quantity. This is because

each position in the trap has a distinct local self-energy. Corre-

spondingly, the fugacity of the trapped system cannot be inter-

preted as a globally shifted fugacity of the noninteracting gas.

(ii) The second-order viral expansion for the p-wave system

works quite well at T ∼ T
trap

F ; apparently, three-body correc-

tions play a rather small role near the degeneracy temperature.

The two-body (high-temperature) approximation works better

for the inhomogeneous system than the homogeneous system

since the former is much hotter than the latter for the same

scaled temperature (e.g., T/T
trap

F = 1 and T/TF = 1 corre-

spond to z ≈ 0.17 and z = 0.98, respectively). This validates

previous works on loss processes of harmonically trapped p-

wave systems [32,33]. Finally, we note that while the adiabatic

relation, Eq. (10), holds for the trapped system, the relation

between the loss rate and the contact differs from that for

the homogeneous system since the loss-rate coefficient of the

trapped system is not only governed by particles being lost

from the trap but also by a so-called deformation effect [33].

IX. VALIDITY REGIME OF THE THEORY BASED ON b2

The results presented in this paper employ the mean-field

framework and expansions applicable to the weakly interact-

ing regime. It is thus natural to ask what the validity regime

of the theory is and whether the theory covers the operating

regime of typical state-of-the-art experiments.

The applicability regime can be estimated using the virial

EOS of the homogeneous system that accounts for the second-

order virial coefficient. At this level, the virial EOS can be

analytically tackled for an arbitrary interaction strength. The

virial EOS up to b2 allows us to obtain exact reference results

that can be used to assess the accuracy of Eq. (7). To facilitate

the comparison, we compare the second-order virial coeffi-

cient b2, obtained within the mean-field framework, directly

with its exact counterpart.

We consider the s-wave Bose and p-wave Fermi gases as

examples. Their exact b2 are

bbose
2 =

⎧

⎪

⎨

⎪

⎩

1

4
√

2
+ 2

√
2 exp

(

− 2

ã2
s T̃

)

−
√

2 exp
(

2

ã2
s T̃

)

erfc
(

√

2

T̃

1
ãs

)

ãs > 0

1

4
√

2
+

√
2 exp

(

2

ã2
s T̃

)

+
√

2 exp
(

2

ã2
s T̃

)

erf
(

√

2

T̃

1
ãs

)

ãs < 0
, (31)

where ãs is equal to askC and T̃ is equal to T/TC , and

bfermi
2 = −

1

4
√

2
+ 3

√
2 exp

(

2

T̃ |ṽp|2/3

)

− 6
√

2 exp

(

−
1

T̃ |ṽp|2/3

)

cos

( √
3

T̃ |ṽp|2/3

)

−
48 1F3

[

1; 5
6
, 7

6
, 3

2
; 8

27T̃ 3
ṽ

2
p

]

√
π T̃ 3/2

ṽp

, (32)

where ṽp is equal to vpk3
F and T̃ is equal to T/TF . erf, erfc, and

pFq denote the error, complementary error, and generalized

hypergeometric functions, respectively. Equations (31) and

(32) are obtained from the Beth-Uhlenbeck formula [46]. The

expressions are expected to apply to relatively large |ãs| or

|ṽp|. In writing Eq. (32), we ignored the contribution from the
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FIG. 3. Validity regime determined by comparing the mean-field bmf
2 and the exact b2. Left panel: s-wave Bose gas. Right panel: p-wave

Fermi gas. The heatmaps show the value of the exact b2 [Eqs. (31) and (32)]; the color scheme is defined in the bars that are shown to the right

of the main panels. The gray-shaded areas denote the parameter regime for which |b2 − bmf
2 |/|b2| � 0.05. A normalized difference below 5%

is interpreted as an indicator that the theory framework developed in this work is applicable.

shallow bound state, i.e., we assumed that the effective range

is infinitely large. Using Eq. (16), the second-order mean-field

level virial coefficients, extracted from the EOS for l = 0 and

l = 1 derived in this work, read

b
bose,mf
2 =

1

4
√

2
−

ãsT̃√
π

, (33)

b
fermi,mf
2 = −

1

4
√

2
−

9T̃ 3/2
ṽp

4
√

π
. (34)

Figure 3 shows the virial coefficients bbose
2 (left panel)

and bfermi
2 (right panel) as functions of the reduced inter-

action strength and reduced temperature. If the normalized

difference |b2 − bmf
2 |/|b2| between the mean-field coefficient

and the exact virial coefficient is small, then the mean-field

treatment is expected to provide a faithful description. The

gray-shaded area in Fig. 3 demarcates the parameter combi-

nations for which the normalized difference |b2 − bmf
2 |/|b2|

between the mean-field virial coefficient and the exact virial

coefficient is smaller than 0.05. A difference below 5% is in-

terpreted as indicating that the mean-field description provides

an accurate description of the system. At T̃ � 2, which is typ-

ical for experiments, the normalized difference is smaller than

5% for |ãs| � 0.15 and |ṽp| � 0.1 for the s-wave Bose gas

and p-wave Fermi gas, respectively. For lower values of T̃ , the

validity regime of the mean-field treatment extends, according

to our criteria, to larger reduced interaction strengths. We cau-

tion that—even though the validity regime, as determined by

|b2 − bmf
2 |/|b2|—is quite large for temperatures that are much

lower than the degeneracy temperature, Fig. 3 may not accu-

rately reflect the validity regime of the full EOS. The reason

is that the virial expansion fails at these low temperatures for

which the fugacity is large (in this regime, virial coefficients

other than b2 come into play). We expect the “true” validity

range for the mean-field EOS to be comparable to that at

temperatures notably above the transition temperature.

Ultracold molecular gas experiments typically work with

samples that are characterized by extremely weak interac-

tions, which are thus expected to be well described by the

theory developed in this work. Table II shows three exam-

ples: one for a s-wave Bose gas and two for p-wave Fermi

gases. The molecular gas is loaded into an approximately

harmonic trap in the experiments. We use the typical densities

reported in the experimental works [11,45,62] to calculate the

reduced interaction strength and subsequently calculate the

transition temperature TC and Fermi temperature TF assuming

that the systems are homogeneous. Table II shows that the re-

duced interaction strength is well within the parameter regime

where the mean-field-based theory developed in this work is

applicable.

X. CONCLUSION

In summary, we theoretically derived the EOS for single-

component normal-phase quantum gases, which can be used

to obtain all thermodynamic quantities. We focused on the

behavior of the contact of two commonly produced systems—

s-wave Bose and p-wave Fermi gases. We showed that the

contact is purely a two-body quantity in the former system and

exhibits many-body characteristics in the latter. We analyzed

the behavior of the p-wave contact in the near-degenerate

regime and found that the three-body contribution plays a vital

role. The discussion was extended to harmonically trapped

systems, where we analyzed the contacts under the LDA.

TABLE II. Species used in molecular gas experiments, their statistics, their interaction strength, and their reduced interaction strength.

Molecule Statistics Interaction strength Reduced interaction strength

87Rb 133Cs [62] Boson as ≈ 233a0 [62] ãs ≈ 0.02
40K

87Rb [45] Fermion vp ≈ (118a0 )3 [63] ṽp ≈ 1.44 × 10−5

23Na 40K [11] Fermion vp ≈ (88a0 )3 [11] ṽp ≈ 2.39 × 10−7
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Our study provides critically needed guidance for recent

ultracold molecular gas experiments, i.e., for weakly inter-

acting molecules in the deeply degenerate regime where the

virial expansion fails. Specifically, our results can be used to

calibrate loss rate and temperature measurements. Moreover,

our results also apply to single-component Fermi gases such

as 6Li and 40K [64,65], and provide a reference for studying

crossover from weakly to strongly interacting systems.
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APPENDIX A: BARE COUPLING

AND SCATTERING LENGTH

To obtain the relation between the bare couplings gl and the

scattering lengths al for each partial wave channel l , we follow

the standard renormalization procedure, i.e., we compare the

T -matrix element Tl (k, k′) and the partial wave scattering

amplitude fl [61]:

−
MV

4π h̄2
Tl (k, k′) = (2l + 1) fl (k)Pl (cos θ ), (A1)

where

fl (k) =
1

k cot δl (k) − ik
. (A2)

In Eq. (A1), M, V , and k denote the mass of the constituent,

volume, and relative wave vector, respectively. Pl is the Legen-

dre polynomial of degree l . The T -matrix elements are defined

by the Schwinger-Dyson equation [66]

Tl (k1, k2) =Ul (k1, k2) + V

∫

d3qUl (k1, q)

×
1

h̄2k2
2

M
− h̄2q2

M
+ iε

Tl (q, k2), (A3)

where ε has an infinitesimally small positive real value that

ensures retarded propagation. Making use of the form of inter-

action in the main text, Eq. (A3) can be worked out explicitly:

Tl (k1, k2) =
4πgl

V

l
∑

m=−l

kl
1kl

2Ylm(k̂1)Y ∗
lm(k̂2)

×

[

1 +
gl

2π2

∫

dq
q2l+2

h̄2k2

M
− h̄2q2

M
+ iε

+ · · ·

]

.

(A4)

We find that the infinite sum inside the square brackets forms

a geometric sequence of the form 1 + c + c2 + · · · , where c

is equal to the second term in square brackets in the last line

of Eq. (A4). Hence, we can write

Tl (k1, k2) =
4π
V

∑l
m=−l kl

1kl
2Ylm(k̂1)Y ∗

lm(k̂2)

1
gl

− 1
2π2

∫∞
0

dq
q2l+2

h̄2k2

M
− h̄2q2

M
+iε

. (A5)

Because of energy conservation, the magnitudes of k1 and

k2 should be the same. Setting |k1| = |k2| = k, denoting the

angle between k1 and k2 by θ , and using the addition theorem

Pl (k̂1 · k̂2) =
4π

(2l + 1)

l
∑

m=−l

Ylm(k̂1)Y ∗
lm(k̂2) (A6)

of spherical harmonics, we obtain

Tl (k1, k2) =
(2l + 1)Pl (cos θ )

V
k2l gl

− V
2k2l π2

∫∞
0

dq
q2l+2

h̄2k2

M
− h̄2q2

M
+iε

. (A7)

Combining Eq. (A1) and the definition of the partial-wave

phase shifts δl (k), we get

1

gl

−
1

2π2

∫ ∞

0

dq
q2l+2

h̄2k2

M
− h̄2q2

M
+ iε

=
M

4π h̄2al

+
iMk2l+1

4π h̄2
.

(A8)

The integral on the left-hand side of Eq. (A8) diverges. It

can be reexpressed using the well-known low-energy relation

[66]:

1

2π2

∫ ∞

0

dq
q2l+2

h̄2k2

M
− h̄2q2

M
+ iε

=
M

2π2h̄2

∫ ∞

0

dqP
q2l+2

k2 − q2

−
iπM

2π2h̄2

∫ ∞

0

dqq2l+2δ(k2 − q2)

k→0−−→ −
M

2π2h̄2

∫ ∞

0

dqq2l +
iMk2l+1

4π h̄2
, (A9)

where P denotes the Cauchy principal value. Using Eq. (A9)

in Eq. (A8), we finally obtain the renormalization condition

Eq. (2). It is known that the derived renormalization condition

cannot eliminate all diverging terms that may arise in the

many-body treatment of the single-species bosonic system,

especially when the interaction is strong [67]. For example, in

single-component bosonic systems, Efimov physics requires

one to introduce an additional parameter for renormalization

[68]. However, since the lowest-order mean-field interactions

dominate the many-body physics for the weakly interacting

systems of interest in this work, the renormalization condition

is not needed to eliminate divergencies, i.e., we can use the

nonintegral part of the bare coupling constant.

APPENDIX B: DETAILS OF CALCULATION

ON THERMODYNAMICS

1. Self-energy and grand potential

Substituting Eq. (1) into Eq. (4), the self-energy is found

explicitly to be

h̄�l (k) =
21−2l (2l + 1)

π

h̄2al

M

∫ ∞

0

dk′nk′ (k′)2

×
∫ π

0

dθ |k − k′|2l sin(θ ), (B1)
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where θ denotes the angle between k and k′. To proceed, we

work in the weakly interacting limit and assume that nk is

equal to the noninteracting distribution functions n
(0)
k ,

n
(0)
k =

{

exp

[

ε
(0)
k

kBT

]

z−1 ∓ 1

}−1

, (B2)

Inserting Eq. (B2) into Eq. (B1), we note that the θ depen-

dence only appears in the term |k − k′|2l . To evaluate the

integral over θ , the usual binomial theorem for scalars cannot

be applied to |k − k′|2l . Instead, we first take the square and

then construct a series expansion using the trinomial theorem

[69]:

|k − k′|2l = [k2 + (k′)2 − 2k · k′]l

=
∑

i, j,n

i+ j+n=l

l!

i! j!n!
(−2)nk2i+n(k′)2 j+n cosn θ, (B3)

where the indices i, j, and n each go from 0 to l . Letting, as

before, the angle between k and k′ be θ and using
∫ π

0

cos(θ )n sin(θ )dθ =
1 + (−1)n

1 + n
, n = 0, 1, 2, 3, . . . ,

(B4)

we have

h̄�l (k)
|al k

2l+1
F |�1

−−−−−−→
21−2l (2l + 1)

π

h̄2al

M

×
∑

i, j,n

i+ j+n=l

l!

i! j!n!
2n 1 + (−1)n

1 + n
k2i+n

×
∫

dk′n(0)
k′ (k′)2 j+n+2. (B5)

Using the integral expression of the polylogarithm function,

∫

dqn(0)
q q j = ±2

j−1

2

(

MkBT

h̄2

)
j+1

2

�

(

j + 1

2

)

Li j+1

2
(±z),

(B6)

the self-energy becomes

h̄�l (k) ≈ ±
2l + 1

π

h̄2al

M
2

3
2
−2l

×
∑

i, j,n

i+ j+n=l

l!

i! j!n!

1 + (−1)n

1 + n
k2i+n2 j+ 3n

2

× �

(

2 j + n + 3

2

)(

MkBT

h̄2

)
2 j+n+3

2

Li 2 j+n+3

2
(±z).

(B7)

Equation (B7) reveals the structure of the self-energy for the

lth partial-wave channel clearly: �l (k) = �l (k) is a poly-

nomial of even degree in k (see the factor of k2i+n in the

summand) since 2i is always even and the summand is zero

when n is odd. For example, �0 = A0 for the s-wave channel,

�1 = A1 + B1k2 for the p-wave channel, �2 = A2 + B2k2 +
C2k4 for the d-wave channel, etc., where Al , Bl , and Cl are

constants that depend on the temperature T .

Since �l (k, λ) is directly proportional to λ and al [see

Eq. (B7)] and since nk(λ) has no dependence on λ at leading

order [nk(λ) ≈ n
(0)
k ], the leading-order modification of the

grand potential based on Eq. (5) is given by

� − �(0) ≈
V

4π2

∫

dkk2 h̄�l (k)n
(0)
k . (B8)

Using Eqs. (B5) and (B6), we arrive at Eq. (7) in the main text.

For convenience, we list the explicit expressions of Eq. (7)

from the main text for l = 0 to l = 3:

�0

kBTV
= −

Li5/2(z)

λ3
T

+
2a0[Li3/2(z)]2

λ4
T

(s-wave, Bose gas),

(B9)

�1

kBTV
=

Li5/2(−z)

λ3
T

+
18πa1Li3/2(−z)Li5/2(−z)

λ6
T

(p-wave, Fermi gas), (B10)

�2

kBTV
= −

Li5/2(z)

λ3
T

+
75π2a2[Li5/2(z)]2

λ8
T

+
75π2a2Li3/2(z)Li7/2(z)

λ8
T

(d-wave, Bose gas),

(B11)

�3

kBTV
=

Li5/2(−z)

λ3
T

+
2205π3a3Li5/2(−z)Li7/2(−z)

2λ10
T

+
735π3a3Li3/2(−z)Li9/2(−z)

2λ10
T

( f -wave, Fermi gas). (B12)

2. Isothermal compressibility

This section considers the isothermal compressibility,

which is defined through

κT =
z

kBT

∂n

∂z
. (B13)

In terms of the grand potential �, we find

κT = −
z

NkBT

∂ (�/kBT )

∂z
−

z2

NkBT

∂2(�/kBT )

∂z2
. (B14)

Using Eq. (7), we find the isothermal compressibility in terms

of the fugacity:

κT = ±
Li1/2(±z)

nkBT λ3
T

−
2

nkBT λ3
T

al

λ2l+1
T

l
∑

i, j,n

i+ j+n=l

C(i, j, n, l )

×
[

Li 2i+n+1
2

(±z)Li 2 j+n+1

2
(±z)

+ Li 2i+n−1
2

(±z)Li 2 j+n+3

2
(±z)

]

. (B15)

This expression is not yet in the “standard form” of the com-

pressibility, as it depends on the fugacity (a thermodynamic
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variable in the grand-canonical potential) rather than the den-

sity (a thermodynamic variable in the canonical ensemble). To

convert z to n, we use the Gibbs-Duhem relation

n = −z
∂ (�/kBTV )

∂z
. (B16)

We know that n is equal to ±Li3/2(±z(0))/λ3
T at leading order.

If we write z in terms of z(0), z = z(0) + δz, then we find to

first order,

δz
(

|al |/λ2l+1
T → 0

)

= ±z0

2al

λ2l+1
T

∑

i, j,n

i+ j+n=l

C(i, j, n, l )

× Li 2i+n+1
2

[±z(0)]Li 2 j+n+3

2
[±z(0)]/Li1/2[±z(0)]. (B17)

Substituting z = z(0) + δz into Eq. (B15), we have

nkBT κT = ±
Li1/2[±z(0)]

λ3
T

−
2al

λ2l+4
T

∑

i, j,n

i+ j+n=l

C(i, j, n, l )

×
{

Li 2i+n+1
2

[±z(0)]Li 2 j+n+1

2
[±z(0)]

+ Li 2i+n−1
2

[±z(0)]Li 2 j+n+3

2
[±z(0)]

− Li− 1
2

[±z(0)]Li 2i+n+1
2

[±z(0)]

× Li 2 j+n+3

2
[±z(0)]/Li 1

2
[±z(0)]

}

. (B18)

The explicit expressions for l = 0 and l = 1 read

nkBT κT =
Li1/2[z(0)]

λ3
T

−
4a0{Li1/2[z(0)]}2

λ4
T

for l = 0,

nkBT κT = −
Li1/2[−z(0)]

λ3
T

+
54πa1nLi1/2[−z(0)]

λ3
T

+
18πa1n2Li−1/2[−z(0)]

Li1/2[−z(0)]
for l = 1. (B19)

The divergence of the compressibility of the bosonic s-wave

system indicates the Bose-Einstein condensate (BEC) transi-

tion. The first equation of Eqs. (B19) diverges at z(0) = 1 or

T = TC , i.e., the BEC transition temperature of the nonin-

teracting system. The argument extends to Bose gases with

higher partial-wave interactions because Lis(x) diverges at

x = 1 for all s, s � 1. It is worthwhile pointing out that TC

does, in fact, have a correction of order n1/3a0, which arises

from higher-order fluctuations that are not captured by the

mean-field approach considered here [34].

3. Entropy and isochoric heat capacity

This section determines the isochoric heat capacity. We

start with the entropy, which is defined through

S = −
∂�

∂T

∣

∣

∣

∣

μ

= −

(

∂�

∂T

∣

∣

∣

∣

z

+
∂�

∂z

∣

∣

∣

∣

T

∂z

∂T

∣

∣

∣

∣

μ

)

= −
∂�

∂T

∣

∣

∣

∣

z

+
z ln(z)

T

∂�

∂z

∣

∣

∣

∣

T

. (B20)

To obtain the entropy in the canonical ensemble in terms of n

and T , we change z to z(0) and keep terms up to first order in

al/λ
2l+1
T :

S =
kBV

2λ3
T

{

±5Li5/2[±z(0)] ∓ 2 ln[z(0)]Li3/2[±z(0)]
}

+
kBVal

λ2l+4
T

∑

i, j,n

i+ j+n=l

C(i, j, l, n)
{

3Li3/2[±z(0)]

× Li 2i+n+1
2

[±z(0)]Li 2 j+n+3

2
[±z(0)]/Li 1

2
[±z(0)]

− (l + 3)Li 2i+n+3
2

[±z(0)]Li 2 j+n+3

2
[±z(0)]

}

. (B21)

It can be noted that the entropy for l = 0 is quite special since

it is independent of a0. After simplification, we find that the

entropy of the weakly interacting s-wave Bose gas is identical

to that of the noninteracting Bose gas:

Sl=0 =
kBV

2λ3
T

{

5Li5/2[z(0)] − 2 ln[z(0)]Li3/2[z(0)]
}

. (B22)

The independence of a0 is a consequence of the fact that

the s-wave mean-field interaction simply shifts the chemical

potential, making the interacting system resemble a noninter-

acting gas. The p-wave interactions, in contrast, modify the

entropy of the noninteracting system:

Sl=1 =
kBV

2λ3
T

{

−5Li5/2[−z(0)] + 2 ln[z(0)]Li3/2[−z(0)]
}

+
kBV

λ3
T

27πa1{Li 3
2
[−z(0))}3

λ3
T Li 1

2
[−z(0)]

−
kBV

λ3
T

45πa1Li 3
2
[−z(0)]Li 5

2
[−z(0)]

λ3
T

. (B23)

We can now calculate the isochoric heat capacity directly from

the entropy,

CV = T
∂S

∂T

∣

∣

∣

∣

n

= T
∂λT

∂T

[

∂S

∂λT

∣

∣

∣

∣

z(0)

+
∂S

∂z(0)

∣

∣

∣

∣

λT

∂z(0)

∂λT

∣

∣

∣

∣

n

]

= −
λT

2

{

∂S

∂λT

∣

∣

∣

∣

z(0)

±
3nλ2

T z(0)

Li 1
2
[±z(0)]

∂S

∂z(0)

∣

∣

∣

∣

λT

}

. (B24)

Explicitly, the expression is

CV =
kBV

λ3
T

{

±
15Li 5

2
[±z(0)]

4
∓

9n2λ6
T

4Li 1
2
[±z(0)]

}

−
kBVal

2λ2l+4
T

∑

i, j,n

i+ j+n=l

C(i, j, n, l )

{Li 1
2
[±z(0)]}3

×
[

2(l2 + 5l + 6)
{

Li 1
2
[±z(0)]

}3

× Li 2i+n+3
2

[±z(0)]Li 2 j+n+3

2
[±z(0)] + 9n2λ6

T Li 1
2
[±z(0)]

× {Li 2i+n+1
2

[±z(0)]Li 2 j+n+1

2
[±z(0)]

+ Li 2i+n−1
2

[±z(0)]Li 2 j+n+3

2
[±z(0)]}

−
(

9n2λ6
T Li− 1

2
[±z(0)]
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∓ 3(4l + 7)nλ3
T

{

Li 1
2
[±z(0)]

}2)

× Li 2i+n+1
2

[±z(0)]Li 2 j+n+3

2
[±z(0)]

]

. (B25)

Consistent with the discussion above, one can check that the

weakly interacting s-wave system has the same CV as the cor-

responding noninteracting system. In contrast, the isochoric

heat capacity of the weakly interacting p-wave gas contains a

correction due to the interactions.

APPENDIX C: CALCULATION OF CONTACTS VIA

TRUNCATED VIRIAL SERIES

This work uses the virial expansion, truncated at order j,

to analyze the j-body contribution to the contact and other

thermodynamic quantities. A crucial point of the derivations is

to consistently account for terms that contribute to the j-body

physics. In particular, this implies that higher-order terms that

go beyond j-body physics need to be excluded.

We start from the general virial expansion in the

grand-canonical ensemble, truncated at order j, � =
−kBT Z1

∑ j

i=1 biz
i. Here Z1 denotes the one-body partition

function for an as-of-yet unspecified system (could be the

homogeneous or inhomogeneous system). Using the standard

thermodynamics relation N = −z
∂ (�/kBT )

∂z
, we find

N = Z1

j
∑

i=1

ib jz
i. (C1)

From the expression for N and the definition of the contact,

it is straightforward to calculate the contact in the grand-

canonical ensemble at order j:

Cl (z) = −
2kBT M[Re(al )]

2Z1

(2l + 1)h̄2

j
∑

i=1

∂bi

∂al

zi. (C2)

In what follows, we are interested in the contact in the canoni-

cal ensemble. To convert Eq. (C2) from the grand canonical

to the canonical ensemble, we need to express z in terms

of N . This is achieved by applying the Lagrange inversion

theorem (see Sec. 3.6.6 of Ref. [70]) to Eq. (C1). To obtain

the forth-order results presented in the main text, we need to

include terms up to the fourth power of N ,

z =
b1N

Z1

−
2b2N2

Z2
1

+
(

8b2
2 − 3b3

)

N3

Z3
1

+
(

− 40b3
2 + 30b2b3 − 4b4

)

N4

Z4
1

. (C3)

When substituting Eq. (C3) into Eq. (C2) and working at order

j, one needs to truncate all terms at order N j . Even though the

z2 term, e.g., generates terms that scale as N2, . . . , N8, only

the terms proportional to N2, N3, and N4 are kept to obtain

consistent forth-order results. The results reported below are

obtained by additionally taking, consistent with the weak in-

teraction regime assumption, the |al |/λ2l+1
T → 0 limit.

The above-mentioned strategy is critical for determining

that the homogeneous system’s s-wave contact has a pure

two-body character. If we—incorrectly so—kept all terms in

N when going from the grand canonical to the canonical

ensemble, then we would obtain

C0 =
8π [Re(a0)]2

V
N2 (exact result)

C0
?=

8π [Re(a0)]2

V
N2 −

16π5/2 h̄3[Re(a0)]2

(MkBT )3/2V 2
N3

+

{

40π4h̄6[Re(a0)]2

(MkBT )3V 3
−

128π4h̄6[Re(a0)]2

3
√

3(MkBT )3V 3

}

N4

+ O(N5) (truncated at j = 2)

C0
?=

8π [Re(a0)]2

V
N2

+

{

−8π4h̄6[Re(a0)]2

(MkBT )3V 3
−

128π4h̄6[Re(a0)]2

3
√

3(MkBT )3V 3

}

N4

+ O(N5) (truncated at j = 3)

C0
?=

8π [Re(a0)]2

V
N2 + O(N5) (truncated at j = 4).

(C4)

Converting the above expressions to expressions that use kC =
( 8π3/2

ζ (3/2)
N
V

)1/3 and TC = h̄2k2
C

2MkB
[implying N = M3/2ζ (3/2)V

2
√

2π3/2 h̄3 T
3/2

C ], it

can be observed that this approach yields inconsistent results

with regards to the order of N :

C0

N[Re(a0)]2k3
C

=
ζ (3/2)
√

π
(exact result)

C0

N[Re(a0)]2k3
C

=
ζ (3/2)
√

π
−

ζ (3/2)2

√
2π

√

T 3
C

T 3

+
ζ (3/2)3

8
√

π

T 3
C

T 3

+ O[(TC/T )9/2] (truncated at j = 2)

C0

N[Re(a0)]2k3
C

=
ζ (3/2)
√

π
+

ζ (3/2)3

8
√

π

T 3
C

T 3

−
2ζ (3/2)3

3
√

3π

T 3
C

T 3

+ O[(TC/T )9/2] (truncated at j = 3)

C0

N[Re(a0)]2k3
C

=
ζ (3/2)
√

π
+ O[(TC/T )9/2]

(truncated at j = 4). (C5)

On the other hand, when following the correct approach that

consistently keeps terms up to order N j , we find:

C0 =
8π [Re(a0)]2

V
N2 (exact result)

C0 =
8π [Re(a0)]2

V
N2 (truncated at j = 2)

C0 =
8π [Re(a0)]2

V
N2 (truncated at j = 3)

C0 =
8π [Re(a0)]2

V
N2 (truncated at j = 4). (C6)
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Again, in units of kC and TC , we find:

C0

N[Re(a0)]2k3
C

=
ζ (3/2)
√

π
(exact result)

C0

N[Re(a0)]2k3
C

=
ζ (3/2)
√

π
(truncated at j = 2)

C0

N[Re(a0)]2k3
C

=
ζ (3/2)
√

π
(truncated at j = 3)

C0

N[Re(a0)]2k3
C

=
ζ (3/2)
√

π
(truncated at j = 4). (C7)

The analysis above leads to the following important conclu-

sion: When one includes terms up to j = 2, the s-wave result

is exact; contributions from larger clusters do not lead to any

corrections.

APPENDIX D: ZERO-TEMPERATURE LIMIT

IN FERMIONIC SYSTEMS

The main text characterizes weakly interacting

single-component systems in the normal phase. This

Appendix provides limiting expressions for several quantities

of fermionic systems in the T/TF → 0 limit. In the T/TF → 0

limit, it is computationally inefficient to evaluate expressions

that explicitly or implicitly contain polylogarithm functions

numerically. The reason is that the direct use of T = 0

yields expressions like Lis(−∞) cannot be evaluated

numerically. Instead, it is generally more convenient to

use asymptotic analytic expressions. The large-argument

asymptote of fermionic-type polylogarithm functions

is [71]

−Lis(−x)
x→+∞−−−−→

[ln(x)]s

�(s + 1)
. (D1)

Correspondingly, one finds

−Lis1

[

Li−1
s2

(−x)
] x→+∞−−−−→

[�(1 + s2)x]s1/s2

�(1 + s1)
, (D2)

where −1 denotes the inverse function. Direct application of

Eq. (D2) to the homogeneous system yields

C1

N[Re(a1)]2k5
F

T →0−−→
2

5π
,

C3

N[Re(a3)]2k9
F

T →0−−→
4

45π
. (D3)

One also needs to change the integration limits accordingly for

harmonically trapped systems. To illustrate this, we consider

the p-wave system. The exact integral for the contact is

C
trap

1

N[Re(a1)]2
(

k
trap
F

)5
=
∫ ∞

0

dr̄
18T̄ 4

π
r̄2Li3/2

[

− e− r̄2

T̄ z(0)
]

× Li5/2

[

− e− r̄2

T̄ z(0)
]

, (D4)

where T̄ = T/T
trap

F and r̄ = r/RF . Here RF =
(48N )1/6

√
h̄/Mω denotes the Thomas-Fermi radius.

Utilizing Eq. (D1) to simplify the integrand, we find
18T̄ 4

π
r̄2Li3/2[−e− r̄2

T̄ z(0)]Li5/2[−e− r̄2

T̄ z(0)] → 64r̄2(r̄2−1)4

5π2 , which

shows that the integrand vanishes at r̄ = 1. This is consistent

with the LDA, where the density goes to zero at r = RF .

Since the density of the cloud is zero for r > RF , the

upper limit of the integration can be changed from r̄ = ∞
to r̄ = 1,

C
trap

1

N[Re(a1)]2
(

k
trap
F

)5

T →0−−→
∫ 1

0

dr̄
64r̄2(r̄2 − 1)4

5π2
=

8192

17325π2
.

(D5)

We note that our work does not rule out the existence of

other phases in the extremely low-temperature regime. If, e.g.,

a BCS phase existed, then the BCS transition temperature

would be exponentially small in the weakly interacting regime

(|al |k2l+1
F � 1) considered in this work. Evaluating the low-

temperature normal-phase behavior would still be justified

by considering the limiting T/TF → 0 expressions discussed

above.
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