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Abstract—In this article, we provide a communication- and
computation-efficient method for distributed submodular opti-
mization in robot mesh networks. Submodularity is a property
of diminishing returns that arises in active information gathering
such as mapping, surveillance, and target tracking. Our method,
resource-aware distributed greedy (RAG), introduces a new dis-
tributed optimization paradigm that enables scalable and near-
optimal action coordination. To this end, RAG requires each robot
to make decisions based only on information received from and
about their neighbors. In contrast, the current paradigms allow
the relay of information about all robots across the network. As
a result, RAG’s decision-time scales linearly with the network size,
while state-of-the-art near-optimal submodular optimization algo-
rithms scale cubically. We also characterize how the designed mesh-
network topology affects RAG’s approximation performance. Our
analysis implies that sparser networks favor scalability without
proportionally compromising approximation performance: while
RAG’s decision-time scales linearly with network size, the gain in
approximation performance scales sublinearly. We demonstrate
RAG’s performance in simulated scenarios of area detection with up
to 45 robots, simulating realistic robot-to-robot (r2r) communica-
tion speeds such as the 0.25 Mb/s speed of the Digi XBee 3 Zigbee 3.0.
In the simulations, RAG enables real-time planning, up to three or-
ders of magnitude faster than competitive near-optimal algorithms,
while also achieving superior mean coverage performance. To en-
able the simulations, we extend the high-fidelity and photo-realistic
simulator AirSim by integrating a scalable collaborative autonomy
pipeline to tens of robots and simulating r2r communication delays.

Index Terms—Active information gathering, approximation
algorithms, multirobot mesh networks, robot-to-robot (r2r)
communication, submodular optimization.

Received 29 January 2025; accepted 14 April 2025. Date of publication 6
May 2025; date of current version 30 May 2025. This work was supported
in part by National Science Foundation CAREER 2337412. This article was
recommended for publication by Associate Editor H. G. de Marina and Editor M.
Schwager upon evaluation of the reviewers’ comments. (Zirui Xu and Sandilya
Sai Garimella contributed equally to this work.)

Zirui Xu and Vasileios Tzoumas are with the Department of Aerospace
Engineering, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
ziruixu@umich.edu; vtzoumas@umich.edu).

Sandilya Sai Garimella was with the Department of Robotics, University of
Michigan, Ann Arbor, MI 48109 USA. He is now with the Institute for Robotics
and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332
USA (e-mail: sgarimella34@gatech.edu).

Code is available online at: https://github.com/UM-iRaL/Resource-Aware-
Coordination-AirSim

Digital Object Identifier 10.1109/TRO.2025.3567540

I. INTRODUCTION

IN THE future, numerous distributed robots will be coor-
dinating actions via robot-to-robot (r2r) communication to

execute information-gathering tasks, such as collaborative map-
ping [1], surveillance [2], and target tracking [3]. Such tasks
require efficiency (scalability) and effectiveness (optimality),
especially in crowded scenarios where the robots are many and
operate close to each other; see, for example, the semantic-driven
task of road detection with 45 aerial robots in Fig. 1.

But achieving scalability and optimality is hard. The first
reason is that such tasks take the form of distributed submodular
optimization, an NP-hard combinatorial optimization problem
[4]. Therefore, such tasks require increased computations and
communications to be solved optimally. Submodularity is a
property of diminishing returns, and is encountered across
robotics [5] as well as machine learning [6] and control [7].
It captures the intuition that when any two robots are nearby
and collect same information, e.g., track the same targets, then
one of the robots is redundant (it would be more effective if
the robots were collecting different information). On top of the
above reason, another fundamental reason is the communica-
tion and computation limitations of the robots versus the r2r
messaging requirements by the tasks. For example, in active
distributed simultaneous localization and mapping (SLAM), the
inter-robot communication messages can grow to a few MBs
within a few hundred meters of explored environment [8] (1 MB
= 8Mb). But the wireless r2r communication speeds range from
0.25 Mb/s, e.g., achieved by the Digi XBee 3 Zigbee 3.0 antenna
module, to 100 Mb/s, e.g., achieved by the Silvus Tech SL5200
antenna module. Therefore, transmitting even a single message
can take seconds.

The current approaches are either near-optimal but not scal-
able, or real time but offer no performance guarantees. The
near-optimal methods [9], [10], [11] that are being used for
active information gathering with multiple robots [1], [2], [12],
[13], [14], [15], [16], [17], [18], [19], [20], scale cubically with
the network size, resulting in impractical running times in mesh
networks with tens of robots (up to tens of minutes per action
coordination step in the presence of real-world communication
delays). The state-of-the-art multirobot motion planning meth-
ods are real time [21], [22], [23], [24] but they are suitable in
spatial exploration where robots are expected to operate far from
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Fig. 1. Scenario of collaborative road detection with 45 aerial robots. The
drones are deployed in an unknown environment and tasked to collaboratively
detect the roads and visually cover them. Particularly, the drones aim to collec-
tively maximize the total covered road area in their top-view FOV. At each action
coordination step, each drone chooses a few other drones to coordinate with,
subject to its onboard communication and computation bandwidth constraints.
The full collaborative autonomy pipeline is depicted in Fig. 2. (a)–(c) Task
progress across time. (a) Drones start from their initial deployment points.
(b) Progress after 3 replanning steps. (c) Drones have achieved maximal road
coverage.

each other. Then, the submodular structure can be ignored and
opportunistic coordination is sufficient. We discuss the related
work in extension in Section II.

In this article, instead, we focus on crowded scenarios where
robots operate close to one another, and their objective is not
merely exploration; it is discovery and/or monitoring of specific
information, e.g., landmarks, mobile targets, areas, and objects
with specific semantics [1], [5], [26] (see Fig. 1). Then, the
submodular structure is present. Thus, to jointly maximize the
submodular objective, the robots must intelligently coordinate
actions to enable both scalability and near-optimality.

Contributions: We provide a communication- and computa-
tion-efficient method for distributed submodular optimization in
robot mesh networks. The method, resource-Aware distributed

greedy (RAG), enables both scalable and near-optimal coor-
dination over robot mesh networks despite real-world com-
munication and computational delays. In contrast, the current
approaches are either near-optimal but not scalable or are real-
time but offer no performance guarantees. RAG applies to any
distributed submodular optimization task. In this article, we
evaluate RAG in a semantics-driven area exploration task of
road detection and coverage with tens of robots (see Fig. 1),
via high-fidelity simulations. In more detail, our technical and
simulator contributions are as follows.

We characterize RAG’s time complexity and approximation
performance as a function of the state of the robot mesh network
such as the robots’ communication neighborhoods, task objec-
tive function, and expected delays due to the robots’ computation
and communication capabilities.

1) Time Complexity:RAG’s decision-time scales linearly with
the network size. Instead, the competitive near-optimal
submodular optimization algorithms scale cubically with
the network size. To this end, RAG introduces a resource-
minimal distributed optimization paradigm that requires
each robot to make decisions based only on locally ob-
served information and information received from and
about their neighbors only. In contrast, the current sub-
modular optimization paradigms [9], [10], [11], widely
applied in robotics and control [1], [2], [12], [13], [14],
[15], [16], [17], [18], [19], [20] that instead require the
relay of information about all robots across the network.

2) Approximation Performance: We present suboptimality
bounds for RAG. The bounds are useful as follows:
1) They capture the approximation performance ofRAG as
a function of each agent’s local mesh-network topology,
quantifying how denser mesh networks (more coordina-
tion) improve the approximation performance. 2) The
bounds inform how to design each agent’s communica-
tion neighborhood to balance the tradeoff between deci-
sion speed and optimality. Particularly, we prove that the
approximation performance gain grows sublinearly with
the agents’ communication neighborhood size. Therefore,
in combination with the fact that RAG’s decision time
scales linearly with the network size, the bounds imply
that sparser neighborhoods would favor decision speed
without proportionally compromising approximation per-
formance. The appropriate level of neighborhood sparsity
that balances the tradeoff for the task at hand can be found
via experimentation in high-fidelity simulations, as we
illustrate in our simulations.

To perform high-fidelity evaluations, we enhance the physics-
based and photo-realistic simulator AirSim [25] to enable scal-
able simulation of robot mesh networks, including simulation
of r2r communication delays (see Fig. 3). To this end, we
first implement multithreading for sensor data processing in
ROS wrappers, resulting in a tenfold improvement in data
frequency across multiple sensing modalities, including RGB,
depth, segmentation, inertial measurement unit (IMU), GPS,
and barometer. Second, we develop an r2r coordination module
that models realistic communication delays and ranges between
drones, with signal attenuation and dynamic neighborhood
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Fig. 2. Pipeline of collaborative mobile autonomy. The robots sequentially perform over a mesh network. (a) Network self-configuration step: Given the observed
environment and state of the robots, the robots decide with which other robots to communicate with, subject to their onboard bandwidth constraints; and (b) Action
coordination step: The robots jointly plan actions—how to move and sense the environment—upon coordinating over the established communication network.
(c) Action execution step: The robots execute their selected actions and perceive the environment. In this article, our focus is on action coordination over tasks
that take the form of submodular optimization. We present a communication- and computation-efficient distributed algorithm that scales linearly with the network
size, in contrast to the cubic time complexity of the competitive near-optimal algorithms. Along with our algorithmic contribution, we provide a rigorous analysis
of how each agent’s communication neighborhood affects the near-optimality of the optimization. The analysis implies that establishing sparser neighborhoods
favors scalability without proportionally compromising approximation performance.

Fig. 3. Simulator pipeline. We provide a high-fidelity simulator that extends AirSim [25] to the multirobot setting by integrating the autonomy pipeline of Fig. 2
and simulating r2r communication delays among other communication constraints. The illustrated pipeline is customized for the action coordination algorithm
provided herein. The pipeline can be modified to other algorithms as desired.

relationships managed through the ROS master. Finally, we
implemented automatons for capturing segmentation images via
rotating gimbals and calculating marginal information gain by
stitching semantic data from multiple drones. The implementa-
tion uses ROS1, thus inherently incorporating its transport layer
delays and message passing overhead, as shown in Figs. 7–10.

Our code is available at https://github.com/UM-iRaL/
Resource-Aware-Coordination-AirSim.

Evaluations: We evaluate RAG in the provided simulator
across four scenarios of road detection and coverage (see Fig. 1).
The scenarios include two team sizes, 15 and 45 robots, and two
communication rates, 0.25 Mb/s, e.g., achieved by the Digi XBee

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 08,2025 at 14:01:57 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/UM-iRaL/Resource-Aware-Coordination-AirSim
https://github.com/UM-iRaL/Resource-Aware-Coordination-AirSim


XU et al.: COMMUNICATION- AND COMPUTATION-EFFICIENT DISTRIBUTED SUBMODULAR OPTIMIZATION IN ROBOT MESH NETWORKS 3483

3 Zigbee 3.0 antenna module, and 100 Mb/s, e.g., achieved by
the Silvus Tech SL5200 antenna module.
RAG achieves real-time planning, up to three orders of magni-

tude faster than competitive near-optimal submodular optimiza-
tion algorithms; and, when the robots maintain a neighborhood
size≥ 2, RAG also achieves superior mean coverage. The exper-
iments also demonstrate RAG scales linearly with the network
size, as predicted by our theoretical analysis: from the 15-robot
to the 45-robot case, RAG scales linearly, being at most 3×
slower compared to the 15-robot case. In contrast, the compared
near-optimal algorithms scale cubically, being up to 60× slower
compared to the 15-robot case.

The rest of this article is organized as follows. In Section II,
we present background on distributed submodular coordination
and related work. In Section III, we define the problem of
resource-aware distributed submodular optimization. Then, we
present our algorithm in Section IV-A. The theoretical analysis
of the algorithm’s approximation guarantees and decision time
are presented in Sections V and VI, respectively. Section VII
presents the simulator and the evaluations. Finally, Section VIII
concludes this article. All proofs are presented in the Appendix.

Comparison with preliminary work [27] and [28]: This article
extends our preliminary work [27] to include new theory, the
AirSim extension, the evaluations, and proofs of all claims.
Particularly, this article provides novel performance guaran-
tees, including an a posteriori bound with network-design im-
plications, and an extension of the a priori bound in [27] to
functions that are not submodular. Also, this article bounds the
decision time of the algorithm, characterizing for the first time
its communication and computation complexity as a function
of the network size and the time to perform computations and
r2r communications. This article introduces the AirSim-based
simulator and the evaluations on the simulator. Instead, Xu and
Tzoumas [27] employed MATLAB simulations only without
simulating r2r communication delays. All proofs were omitted
in [27], and here are presented for all original and new results.

We also compare this article with our preliminary work [28].
First of all, Xu and Tzoumas [28] introduced a more complex
problem formulation that requires the mesh-network topology to
be co-optimized with the robots’ actions. The solution provided
therein requires robots at fixed locations, instead of mobile
sensors, which are the focus herein. Finally, the results in [28]
hold in probability and are based on regret optimization that
requires quadratic time to converge, whereas the results herein
are deterministic and are based on discrete optimization that
requires linear time to converge.

II. RELATED WORK

We discuss related work as follows:
1) near-optimal but not necessarily real-time distributed sub-

modular optimization;
2) rapid but not necessarily near-optimal distributed multi-

robot motion planning;
3) the tradeoff of decision speed versus optimality;
4) high-fidelity communication simulators.

A. Near-Optimal Distributed Submodular Optimization

The current approximation paradigms for submodular maxi-
mization problem [9], [10], [11] have been widely used in active
information gathering with multiple robots [1], [2], [12], [13],
[14], [15], [16], [17], [18], [19], [20] (see also the survey [5]).
However, they may not scale. The reason is that their commu-
nication and computation complexities are superlinear in the
number of robots, particularly, quadratic or cubic (see Table I).
Instead, we provide an algorithm with linear communication and
computation complexity.

Quadratic or higher communication and/or computation com-
plexity can become prohibitive in large-scale networks due to
real-world communication and computation delays. To illustrate
the point, we give a toy example upon noting that communication
delays are introduced by the limited r2r communication speeds.
For example, state-of-the-art r2r communication speeds range
from less than 1 Mb/s up to 100 Mb/s [29]. Computational delays
are caused by the time required to perform function evaluation.
This time depends on the processing required by the task at hand,
e.g., image segmentation for the said task of road coverage (see
Fig. 1). Assume now that the total delay per communication and
computation is on average 1 ms. Then, for cubic decision-time
complexity and 100 robots (|N | = 100), the total time delay is
at the order 1003 · 1ms ≃ 17min.

The quadratic or higher complexity of [9], [10], [11] over r2r
networks is due to their coordination protocols: they instruct the
robots to retain and relay information about all or most other
robots in the network. Particularly, the authors in [9] and [10]
required iterative decision-making via consensus where at each
iteration each robot needs to retain and transmit estimates of all
robots’ actions [9], [10]. Fisher et al. [11] required sequential
decision-making where all currently finalized actions need to
be relayed to all robots in the network that have not finalized
actions yet.

In more detail, the multirobot coordination algorithm in [30],
inspired by [9], [10], [11], achieves the best possible approxi-
mation bound for submodular maximization, namely, 1− 1/e.
However, it may require tens of minutes to terminate in simu-
lated tasks of 10 robots even with no simulated communication
delays [27]. The reason is that it requires a near-cubic number
of iterations in the number of robots to converge (see Table I).
Similarly, for the sequential greedy (SG) algorithm [11], also
known as coordinate descent, which is the gold standard in
robotics and control for submodular task optimization [1], [2],
[12], [13], [14], [15], [16], [17], [18], [19], [20], although it
sacrifices some approximation performance to enable faster
decision speed—achieving the bound 1/2 instead of the bound
1− 1/e—has communication complexity that is cubic in the
number of robots [28, Appendix II]. The reason is that it requires
inter-robot messages that carry information about all the robots
and a quadratic number of communication rounds over directed
networks [31, Proposition 2].

a) Real-time multirobot motion planning: Current motion
planning methods also employ approaches that do not need to
account for the submodular structure of the multirobot task: the
robots are expected to operate far from one another, collecting
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TABLE I
RAG VERSUS STATE-OF-THE-ART DISTRIBUTED SUBMODULAR MAXIMIZATION ALGORITHMS

mu-

decoupled information. Then, the submodular objective simpli-
fies to a distributed, modular objective: it can be expressed as the
sum of decoupled functions, one for each robot, each computable
by the robot based on its action only. Therefore, these methods
often allocate robots to unexplored areas and instruct the robots
to explore them independently. Opportunistic communication is
sufficient, when the robots happen to be nearby. For example, in
collaborative exploration, the robots coordinate actions to move
to the closest frontiers using shared map information in [32].
The authors in [21], [33], [34], and [35] used an auction-based
mechanism for task allocation among robots. The auction is
also leveraged for high-probability communication maintenance
in [35]. In [22], robots are assigned to different frontiers based
on potential functions for distributed mapping and exploration.
The robots set periodic meeting destinations in [23] to meet
and coordinate actions during distributed exploration. Klodt
and Willert [36] introduced a pair-wise coordination protocol
where all pairs of neighboring robots sequentially coordinate
trajectories to optimize their exploration task allocation. A sim-
ilar pair-wise protocol is proposed in [24] where each robot
coordinates trajectories with the neighbor that it has longest not
communicated with.

In contrast, this article focuses on crowded scenarios where
robots operate close to one another, and their objective is not
merely exploration; it is discovery and/or monitoring of specific
information, e.g., landmarks, mobile targets, and areas or objects
with specific semantics [1], [5], [26]. Thus, to jointly maximize
the submodular objective, the robots must coordinate actions [1]:
the submodular objective cannot be decomposed as the sum of
locally computable objectives, one for each robot, where the
actions of each robot are unaffected by the actions of other
robots. In addition, while the discussed task allocation works

are application-specific, e.g., exploration [23], [24], our algo-
rithmic results are general-purpose and apply to any distributed
submodular optimization setting in robotics, control, machine
learning, and beyond.

b) Tradeoff of decision speed versus optimality: To enable
rapid distributed submodular optimization, we need to curtail
the information explosion in robot mesh networks. Thereby,
we need to limit what and how much information can travel
across the network. However, the consequence of imposing such
information limitations is suboptimal coordinated actions.

Current works have captured the suboptimality cost due to
such limited information access for the case of the SG al-
gorithm [18], [37], [38]. The provided characterizations are
task-agnostic, holding true for the worst case over all possible
submodular functions and action sets. In contrast, we capture the
suboptimality cost as a function of the task objective f at hand,
the robots’ coordinated actions, and the current mesh network
topology. Thus, our characterizations, being task specific, (i) can
be tighter, and (ii) can be used by the robots to design commu-
nication neighborhoods that tune the tradeoff of decision speed
and near-optimality, subject to their communication bandwidth
constraints.

c) Communication simulators: Papers focus on high-
fidelity simulations of wireless communications, including the
simulation of protocols and communication limitations such as
communication delays and package dropouts. Lizzio et al.[39]
simulated communication delays, and demonstrates its influence
in consensus-based applications. The authors in [40], [41], and
[42] simulate communication channels and protocols, analyzing
how distance and line-of-sight conditions impact communica-
tion delays. Selden et al. [43] simulated realistic propagation
models and scheduling functions for mobile radio-frequency
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communications. We instead focus on enabling large-scale
photo-realistic simulations with tens of robots, analyzing how
communication delays impact active information gathering with
robot mesh networks.

III. RESOURCE-AWARE DISTRIBUTED SUBMODULAR

OPTIMIZATION

We define the problem of resource-aware distributed sub-
modular optimization (Problem 1) with regard to the action
coordination module in Fig. 2. To this end, we use the following
notation:

1) N is the set of robots;
2) E is the set of communication channels among the robots;
3) f(a | A) ! f(A ∪ {a})− f(A) is the marginal gain due

to adding a to A, given a set function f : 2V &→ R.
We also use the following framework. For easiness of il-

lustration, we present the framework focusing on multirobot
information-gathering tasks such as SLAM, target tracking,
surveillance [1], [15], [17]. Nonetheless, Problem 1 applies
to any distributed optimization problem with a submodular
objective function.

Robot dynamics: We assume mobile robots that act as mobile
sensors. Their motion dynamics may take the form

xi,t = fi(xi,t−1, ui,t−1) + ni,t, t = 1, 2, . . . , (1)

where xi,t ∈ Rnxi,t denotes the state of robot i at time step t,
ui,t ∈ Ui,t denotes the control input applied to robot i, where
Ui,t is a finite set of admissible control inputs [1], and ni,t is
process noise, e.g., Gaussian noise.

Target dynamics: The robots use their sensors to measure and
infer information about the environment. For example, in SLAM
and target tracking, at each time step t, the robots aim to estimate
a target state vector yt that encapsulates the landmark locations
or the mobile targets’ to be localized [1]. Generally, yt evolves
with motion dynamics of the form

yt = φ(yt−1) + wt, t = 1, 2, . . . , (2)

where wt denotes process noise, e.g., Gaussian noise.
Sensor model: For each robot i, we assume sensor model

zi,t = gi(xi,t, yt) + vi,t(xi,t), t = 1, 2, . . . , (3)

where zi,t denotes the measurement taken by robot i at time
t, and vi,t is noise that possibly depends on the robots’ and
targets’ state. For example, vi,t may be Gaussian noise with
mean µvi,t(xi,t, yt), and covariance Σvi,t(xi,t, yt).

Communication neighborhood: Before each action coordina-
tion step (see Fig. 2), given the observed environment and states
of the robots, the robots decide with which others to establish
communication, subject to their onboard bandwidth constraints.
Specifically, we assume that each robot i can receive information
from up to αi other robots due to onboard bandwidth constraints
(|Ni| ≤ αi).

When a communication channel is established from robot j
to robot i, i.e., (j → i) ∈ E , then robot i can receive, store, and
process information from robot j. The set of all robots that robot

i receives information from is denoted by Ni. We refer to Ni as
robot is neighborhood.

Communication network: The resulting communication net-
work can be directed and even disconnected. When the network
is fully connected (all robots receive information from all oth-
ers), we call it fully centralized. In contrast, when the network is
fully disconnected (all robots receive no information from other
robots), we call it fully decentralized.

We assume communication to be synchronous.
Communication data rate: All communication channels

(j → i) ∈ E have finite data rates (communication speeds).
In the simulations, we assume two values for the data rates:
0.25 Mb/s (simulating the Digi XBee 3 Zigbee 3.0 antenna),
and 100.0 Mb/s (simulating the Silvus SL5200 antenna). Due
to the finite data rates, the decision time of action coordination
depends on both (i) the number of communication rounds and
(ii) the size of transmitted messages it requires for the robots to
find a joint plan. We assume that all communication channels
have the same data rate in this article.

Objective function: At each action coordination step, the
robots choose actions to maximize an objective function f that
captures the current multirobot task. For example, in SLAM and
target tracking, at each time step t, f can be [1]

f({ai}i∈N ) =
t+T∑

τ=t+1

h(yτ |{zi, t+1:τ (ai)}i∈N ) (4)

per the robot, sensing, and target models in (1), (3), and (2)

ai ! {ui,t+1, . . . , ui,t+T }

zi,t+1:τ (ai) ! {zi,t+1(ai), . . . , zi,τ (ai)} denotes the measure-
ments induced by ai up until τ , T is an action-planning look-
ahead horizon, and h(·|·) is an information metric such as the
conditional entropy [1] or the mutual information [15]. When h
is conditional entropy and the process and sensor noises in (1),
(3), and (2) are uncorrelated Gaussian, then (4) is computable a
priori given any action set {ai}i∈N :h is then equal to the log det
volume of the Kalman filtering uncertainty over the horizon T
and is, thus, independent of the measurements’ realization [1].
Conditional entropy, mutual information, and, more broadly,
covering functions [1], [15], [30], [44], [45] are used to model ac-
tive information-gathering tasks such as target tracking, SLAM,
and surveillance [1], [15], [17]. These functions capture how
much information is observed given the actions of all robots.
They belong to a broader class of functions that satisfy the
properties below (Definitions 1 and 2).

Definition 1 (Normalized and Non-Decreasing Submodular
Set Function [11]): A set function f : 2V &→ R is normalized
and nondecreasing submodular if and only if:

1) f(∅) = 0;
2) f(A) ≤ f(B), for any A ⊆ B ⊆ V;
3) f(s | A) ≥ f(s | B), for any A ⊆ B ⊆ V and s ∈ V .
Normalization (f(∅) = 0) holds without loss of generality.

In contrast, monotonicity and submodularity are intrinsic to the
function. Intuitively, if f(A) captures the area covered by a
set A of activated cameras, then the more sensors are activated
(A ⊆ B), the more area is covered (f(A) ≤ f(B)); this is the
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nondecreasing property. Also, the marginal gain of covered area
caused by activating a camera s drops (f(s | A) ≥ f(s | B))
when more cameras are already activated (A ⊆ B); this is the
submodularity property.

Definition 2 (Second-order Submodular Set Function [46],
[47]): f : 2V &→ R is second-order submodular if and only if

f(s | C)− f(s | A ∪ C) ≥ f(s | B ∪ C)− f(s | A ∪ B ∪ C)
(5)

for any disjoint A,B, C ⊆ V (A ∩ B ∩ C = ∅) and s ∈ V .
The second-order submodularity is another intrinsic property

of the function. Intuitively, if f(A) captures the area covered by
a set A of cameras, then the marginal gain of marginal gains
drops when more cameras are already activated.

Problem 1 (Resource-Aware Distributed Submodular Opti-
mization): Consider a normalized and nondecreasing submod-
ular function f : 2

∏
i∈N Vi &→ R that captures the optimization

task at hand at the current action coordination step. Each robot
i ∈ N selects an actionai ∈ Vi, using only information from and
about its neighbors Ni, such that the actions {ai}i∈N jointly
solve the optimization problem:1

max
ai ∈Vi, ∀ i∈N

f( {ai}i∈N ). (6)

Remark 1 (Generality): Problem 1 applies to any distributed
optimization problem in control, robotics, machine learning,
and beyond where the objective function is nondecreasing and
submodular, including the information-gathering tasks captured
via (1) to (4).2

Problem 1 is resource-aware in that it requires each robot to
coordinate actions with its neighbors only, receiving information
only about them instead of more robots in the network. The
reason is to curtail the explosion of information passing across
the network and, thus, to enable rapid coordination. This is
in contrast to standard distributed methods that allow infor-
mation about the whole network to travel to all other robots
via information passing (multihop communication) [31], [44],
[48]. Multihop communication does not reduce the amount of
information flowing in the network compared to centralized
methods, introducing impractical communication delays, as we
will demonstrate in the simulations.

IV. RAG ALGORITHM

We present the RAG algorithm. Examples of how the algo-
rithm works are given in Fig. 4. Therein, we also compare RAG
to theSG algorithm [11].SG is the “gold standard” in submodular
maximization. SG is presented in (see Section IV-B).

A. RAG Algorithm

The pseudocode of RAG, as it is used onboard an robot i, is
presented in Algorithm 1. The purpose of each iteration of RAG,
namely, of each “while loop” (lines 2–15), is to enable robot i

1We extend our framework to any normalized, nondecreasing, and merely
submodular or approximately submodular function f in the Appendix.

2We refer the reader to the papers [1], [15] for implementation details on
rapidly computing single-robot actions ai ! {ui,t+1, . . . , ui,t+T } that opti-
mize f per (1) to (4), given actions for the remaining robots.

Algorithm 1: Resource-Aware Distributed Greedy (RAG).
Input: robot i’s actions Vi; neighborhood Ni;
non-decreasing set function f : 2VN &→ R;
Output: robot i’s action aRAGi .
1: Ii ← ∅; Ai ← ∅; aRAGi ← ∅; // Ii is the robots in Ni

that have selected their actions; Ai stores Ii’s selected
actions; aRAGi is robot i’s selected action

2: while aRAGi = ∅ do
3: ai ← argmaxa∈Vi f(Ai ∪ {a})− f(Ai);
4: gi ← f(Ai ∪ {ai})− f(Ai);
5: receive {gj}j ∈Ni\Ii ;
6: if i = argmaxj ∈Ni∪{i}\Ii gj then
7: aRAGi ← ai; // i has the best action candidate across

Ni ∪ {i} \ Ii and it selects this action candidate
8: broadcast aRAGi to out-neighbors; // out-neighbors

can be different from Ni

9: else
10: denote as Snew

i ⊆ Ni \ Ii the set of neighbor(s)
that just selected action(s) in this iteration; // Snew

i

may be empty as we explain in Section IV-A
11: receive aRAGj from each robot j ∈ Snew

i ;
12: Ii ← Ii ∪ Snew

i ;
13: Ai ← Ai ∪ {aRAGj }j ∈Snew

i
;

14: end if
15: end while
16: return aRAGi .

to decide whether to select an action over its neighbors at this
iteration or to pass because a neighbor has an action with a higher
marginal gain. If passing, then the robot must wait for a future
iteration to select an action. In more detail, at each “while loop.”

1) Robot i finds an action ai with the highest marginal gain
gi given the actions selected by neighbors Ii ⊆ Ni so far
(lines 3–4).

2) Robot i receives the respective highest marginal gain gj
of all neighbors j that have not selected an action yet,
namely, of all j ∈ Ni \ Ii (line 5).

3) Robot i compares gi with all gjs (line 6).
4) If gi > gj , ∀j ∈ Ni \ Ii, then robot i selects ai, i.e.,

aRAGi ← ai, broadcast aRAGi , and RAG terminates onboard
robot i (lines 6–8 and 2, respectively).

5) Otherwise, robot i passes (line 9), and receives the actions
selected at this iteration by its neighbors with the highest
marginal gain among their respective neighbors, if any
(line 11)—the set of these neighbors is denoted as Snew

i

(line 10). Particularly, Snew
i may be empty if no neighbor

can select an action per their onboard iteration of RAG.
Remark 2 (Directed, Possibly Disconnected Communication

Topology): RAG is valid for directed and even disconnected
communication topologies. For example, RAG can be applied
to a robot i that is completely disconnected from the network.

B. Comparison to the SG Algorithm

RAG is compared withSG [11] in Fig. 4. We rigorously present
SG next, and provide a qualitative comparison with RAG. The
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Fig. 4. RAG versus SG [11]. The two algorithms are compared in their execution steps and in the time they need to terminate. We present the case of five agents
in two scenarios with the communication networks being (i) an undirected line graph (top row), and (ii) an undirected star graph (bottom row). Nodes 1 to 5 are
the agents 1 to 5; black lines are undirected communication links; {ai, gi} denotes agent is newly updated action candidate ai with marginal gain gi; {ai} and
{gi} alongside red arrows are the actions and marginal gain values being transmitted between two agents; the transparent nodes are the agents that have selected
their actions and, thus, already ended running RAG; and the transparent edges are the communication channels that have become “disappeared” since at least one
end of them has finished RAG. The implementation of RAG [(a)–(d) and (f)–(i)] results in shorter decision time than SG [(e) and (j)] in both scenarios with the line
and star graphs, respectively. (a) First iteration of RAG starts. Each agent i simultaneously finds its action candidate ai with the largest marginal gain gi from all
available actions Vi. The operation takes τf |Vi|. (b) Each agent i simultaneously receives gj from each neighbor j ∈ Ni. This takes τ#. Then, it compares gi
with them. We assume g2 = max (g1, g2, g3) and g4 = max (g3, g4, g5). (c) Thus, agents 2 and 4 get to select actions. Agents 1, 3, 5 simultaneously receive
the actions selected by their neighbors. This takes τc. The first iteration ends. Only 1, 3, 5 continue. (d) Second iteration starts. Given the received actions, agents
1, 3, 5 simultaneously select actions. This requires τf |Vi|. Then, all agents have selected actions, and RAG terminates. (e) Sequentially, from i = 1 to 5, agent i
receives {a1, . . . , ai−1}, in τc (i− 1) time, then selects ai, which takes τf |Vi| time, and then transmits {a1, . . . , ai} to agent i+ 1. (f) First iteration of RAG
starts. Each agent i simultaneously finds its action candidate ai with the largest marginal gain gi from all available actions Vi. The operation takes τf |Vi|. (g)
Each agent i simultaneously receives gj from each neighbor j ∈ Ni. This takes τ#. Then, it compares gi with them. We assume g2 = max (g1, g2, g3, g4, g5).
(h) Thus, agent 2 gets to select an action. Agents 1, 3, 4, 5 simultaneously receive the action selected by their neighbor. This takes τc. The first iteration ends. Only
1, 3, 4, 5 continue. (i) Second iteration starts. Given the received action, agents 1, 3, 4, 5 simultaneously select actions. This requires τf |Vi|. Then, all agents have
selected actions, and RAG terminates. (j) From i = 1 to 5, agent i receives {a1, . . . , ai−1}, possibly via ri relay nodes (takes τc (ri + 1) (i− 1)), then selects ai
(takes τf |Vi|), and then transmits {a1, . . . , ai} to agent i+ 1.

rigorous comparison of runtime and approximation performance
is postponed to Sections V and VI, where, e.g., we prove that
RAG’s runtime scales linearly with the number of the robots
whereas SG’s scales cubically.
SG instructs the robots to sequentially select actions such that

the ith robot in the sequence selects

aSGi ∈ max
a∈Vi

f( a | {aSG1 , . . . , aSGi−1} ) (7)

i.e., aSGi maximizes the marginal gain over the actions that have
been selected by the i− 1 previous robots in the sequence. In
contrast, RAG enables the robots to select actions in parallel, and
even if not all their neighbors have selected an action.

The above action-selection features of RAG—parallelization
and action selection before all neighbors have chosen an
action—can further speed up the algorithm’s termination. Also,
they enableRAG to work on arbitrary communication topologies.
In contrast, SG requires a line path connecting all robots in
the action-selection sequence. If such a path does not exist
(see the star graph example in Fig. 4), the ith robot in the

action-selection sequence cannot communicate directly with
the (i+ 1)th robot. Then, SG requires extra communication
rounds for message relaying, further delaying its termination.
Specifically, given the limited communication speed of r2r com-
munication channels [49], the termination of SG is delayed due
to both the increased number of communication rounds, and
the communication delay incurred from relaying the actions of
multiple robots—the robots in the sequence that have chosen an
action so far—across the network.

V. APPROXIMATION GUARANTEES: CENTRALIZATION

VERSUS DECENTRALIZATION PERSPECTIVE

We present a priori and posteriori suboptimality bounds for
RAG (Theorems 1 and 2). To this end, we first introduce the
notion of centralization of information (coin) to quantify the a
priori bound (see Section V-A). Then, we present the a priori
bound (see Section V-B) and the a posteriori bound (see Sec-
tion V-C). Finally, we compare the a priori bound with the a
priori bounds in the state of the art (see Section V-D).
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Fig. 5. Multirobot network for area coverage. (a) Scenario with 5 robots, their communication network, and a limited square area that the robots are tasked to
cover. (b) Illustration of robot 1’s non-neighbors N c

1 , coinf,1(N1), and worst-case coinf,1 coinf,1(N1). (c) Computable upper bound of coinf,i as a function of
robot is communication range per the analysis in Example 1. (a) Setup. The robots are tasked to maximize the area covered among the available square area by
picking locations to stay at. Each robot (dot) has an FOV (circle), and established communication channels with its neighbors (red arrows). For example, for robot
1, its neighbors are the robots in N1 = {2, 4}, thus, its non-neighbors are those in N c

1 = {3, 5}. (b) Robot 1’s non-neighbors N c
1 , coinf,1(N1), and worst-case

coinf,1. The non-neighbors N c
1 = {3, 5} are the robots that robot 1 does not communicate range, e.g., because of limited bandwidth or because they are outside

its communication range (dashed circle). coinf,1(N1) is depicted by the dark gray area, and its upper bound the light gray ring area (Example 1). (c) Computable
upper bound of coinf,i as a function of robot is communication range. rs is the robots’ sensing radius (Example 1).

A. Centralization of Information

We introduce the notion of coin. We use the notion to quantify
the a priori suboptimality cost due to decentralization. coinmea-
sures how the agents’ actions can overlap due to not coordinating
with their non-neighbors. We also relate coin to curvature [50]
and pair-wise consistency [44] (Remarks 3 and 4), and show that
coin is a less conservative measure of action overlap. We use the
following notation and definition.

1) N c
i ! N \ {Ni ∪ {i}} is the set of robot is non-

neighbors, i.e., the robots beyond is neighborhood [see
Fig. 5(b)].

Definition 3 (Curvature [50]): Consider a function f :
2VN → R that is nondecreasing and submodular. Without loss of
generality, we assume that for any action a ∈ {Vi}i∈N , it holds
that f(a) ̸= 0. The curvature of f is defined as

κf ! 1− min
A∈VN

min
a∈A

f(A)− f(A \ {a})
f(a)

. (8)

κf measures how much an agent’s action a can overlap with
other agents’ actions. Particularly, κf ∈ [0, 1], and if κf = 0,
then f(A)− f(A \ {a}) = f(a), for all a ∈ A, i.e., no agent’s
action overlaps with any other agent’s actions. In contrast, if
κf = 1, then there exists an action a ∈ A such that f(A) =
f(A \ {a}), i.e., action a has no contribution to f(A) in the
presence of all other agents.

Definition 4 (coin): Consider a function f : 2VN &→ R and a
communication network {Ni}i∈N where each agent i ∈ N has
an selected an action ai. Then, agent is coin is defined as

coinf,i(Ni) ! f(ai)− f(ai | {aj}j ∈N c
i
). (9)

coinf,i measures how much ai can overlap with the actions
of agent is non-neighbors. In the best case where ai does not

overlap at all, i.e., f(ai | {aj}j ∈N c
i
) = f(ai), then coinf,i = 0.

In the worst case instead where ai is fully overlapped, i.e.,
f(ai | {aj}j ∈N c

i
) = 0, then coinf,i = f(ai).

From an information-theoretic perspective, coinf,i measures
how much the information collected by ai overlaps with the
information collected by {aj}j ∈N c

i
. Rigorously, if f is an

entropy metric, then coinf,i is mutual information [51]. Thus,
coinf,i = 0 if and only if the information collected by ai is
decentralized from (independent of) the information collected
by {aj}j ∈N c

i
. In this sense, coinf captures the decentralization

of information across the network.
Remark 3 (Relation to Curvature [50]): coinf is a less conser-

vative measure of action overlap compared to κf . κf measures
the overlap of an agent’s action with the actions of all other
agents, whereas coinf measures the overlap of an agent’s action
with the actions of its non-neighbors only. Particularly, we prove
that, for all i ∈ N , coinf,i/f(ai) ≤ κf (see Proposition 1, which
is presented later on in this section).

Remark 4 (Relation to Pairwise Redundancy [44]): coinf
generalizes the notion of pairwise redundancy to capture the ac-
tion overlap among multiple agents instead of a pair. Specifically,
given any two agents i and j, their pair-wise consistency is de-
fined as wij ! maxsi ∈Vi maxsj ∈Vj , j ∈Ni [f(si)− f(si | sj)].
In contrast, coinf,i captures the action overlap between an agent
i and its non-neighbors, capturing that way the decentralization
of information across the network.

By measuring how much agent is action overlaps with
the actions of its non-neighbors, coinf,i equivalently cap-
tures agent is suboptimality cost due to not coordinating with
its non-neighbors. We, thus, expect that the more neighbors
agent i has the smaller is coinf,i. Indeed, the following result
holds.

Proposition 1 (Monotonicity): For any i ∈ N , coinf,i(Ni) is
non-increasing inNi. Its least and maximum values, attained for
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Ni = N \ {i} and Ni = ∅, respectively, are as follows:

0 = coinf,i(N \ {i})
︸ ︷︷ ︸

full centralization

≤ coinf,i(Ni) ≤ coinf,i(∅) = κf f(ai)︸ ︷︷ ︸
full decentralization

.

(10)
The sum of all {coinf,i}i∈N will be used in the next section

to characterize the global suboptimality cost due to decentral-
ization. Given this characterization, we may want to enable the
agents to pick their neighborhoods to minimize coin subject
to their communication-bandwidth constraints. coinf can be
uncomputable a priori since agent i will not have access to the
actions of its non-neighbors. Notwithstanding, finding a com-
putable upper bound for coinf,i may be easy, as we demonstrate
in the following example.

Example 1 (Computable Upper Bound: Example of Area Cov-
erage): Consider an area coverage task where each robot carries
a camera with a circular field-of-view (FOV) of radius rs [see
Fig. 5(a)]. Consider that each robot i has fixed its neighborhood
Ni by picking a communication range ri. Then, coinf,i is equal
to the overlap of the FOVs of robot i and its non-neighbors.
Since the number of robot is non-neighbors may be unknown,
an upper bound to coinf,i is the gray ring area in Fig. 5(b),
obtained assuming an infinite amount of non-neighbors around
robot i, located just outside the boundary of is communication
range. Specifically

coinf,i ≤ max(0, π[r2s − (ri − rs)
2]). (11)

The bound as a function of the communication range ri is plotted
in Fig. 5(c). It tends to zero for increasing ri, as expected. When
the distance of agent i for its nearest non-neighbor is larger
than 2rs, then the FOVs of agent i and its non-neighbors cannot
overlap, thus, coinf,i = 0.

B. Priori Suboptimality Bound of RAG

We present the a priori suboptimality bound of RAG. by
bounding coinf with a computable bound as a function of the
agents’ neighborhoods, we enable the agents to optimize their
neighborhoods to maximize the suboptimality bound of RAG
subject to their communication-bandwidth constraints.

We focus the presentation on nondecreasing and doubly
submodular functions, for sake of simplicity. In Appendix I
(Corollary 4), we generalize the results to functions that are
nondecreasing and submodular or approximately submodular.

We use the following notation:
1) AOPT ∈ arg maxai ∈Vi, ∀ i∈N f( {ai}i∈N ), i.e., AOPT

is an optimal solution to Problem 1;
2) ARAG ! {aRAGi }i∈N is RAG’s output for robots N .
Theorem 1 (A Priori Suboptimality Bound): Given a commu-

nication topology {Ni}i∈N , RAG guarantees

f(ARAG ) ≥ 1

1 + κf

[
f(AOPT )− κf

∑

i∈N
coinf,i(Ni )

]
.

(12)
Theorem 1 captures the intuition that when the agents co-

ordinate with fewer other agents, then the approximation per-
formance will deteriorate. This intuition is made rigorous by

applying Proposition 1 to (12) along the spectrum from fully
centralized to fully decentralized networks.

1) If G is fully centralized (all agents communicate with all),
then the approximation bound in (12) becomes

f(ARAG ) ≥ 1

1 + κf
f(AOPT ) (13)

i.e., RAG is near-optimal, matching the approxima-
tion ratio 1/(1 + κf ) of the seminal SG algorithm [50].
The bound 1/(1 + κf ) is near-optimal since the best
possible bound for the optimization problem in (6) is
1− κf/e [10].

2) If G is in between fully centralized and fully decentral-
ized, then the approximation bound in (12) captures as
is the cost of decentralization. It does so through coinf ,
which measures how the agents’ actions overlap due to not
coordinating with all others. Specifically, as the network
becomes less and less centralized (the agents have less
neighbors), then suboptimality bound in (12) deteriorates
since, for all i ∈ N , coinf,i(Ni) increases when the neigh-
borhood Ni becomes smaller (Proposition 1).

3) If G is fully decentralized (all agents isolated), then the
approximation bound in (12) becomes

f(ARAG ) ≥ 1

1 + κf

[
f(AOPT )− κf

∑

i∈N
coinf,i( ∅ )

]

(14)

∈
[
1− κf ,

1

1 + κf

]
f(AOPT ). (15)

Equation (14) captures the intuition that when the agents’
actions do not overlap, then no communication still leads
to near-optimal performance. For example, per the area
coverage Example 1, when the agents are sufficiently
far away such that their FOVs cannot overlap upon ex-
ecuting their actions, then coinf,i( ∅ ) = 0 for all i ∈ N .
Particularly, then the bound in (14) becomes 1/(1 + κf ),
matching the fully centralized performance.

In the worst case, the bound in (12) takes the value 1−
κf , and becomes zero when the actions of all agents fully
overlap with each other (κf = 1). This is inevitable since
all agents ignore all others and, thus, cannot coordinate
actions to reduce the overlap.

The tightness of the bound will be analyzed in future work.
Corollary 1 (A Priori Bound with Approximate Greedy Se-

lection): If Algorithm 1’s line 3 can only perform approximate
greedy selection such that f(ai) ≥ η f(aOPT

i | Ai), 0 < η ≤ 1,
then RAG guarantees

f(ARAG ) ≥ η

1 + ηκf

[
f(AOPT )

−
(
1

η
− 1 + κf

)∑

i∈N
coinf,i(Ni )

]
. (16)
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Also, it holds that

f(ARAG )

f(AOPT )
≥

{
η

1+ηκf
, G is fully centralized

η(1− κf ), G is not fully centralized.
(17)

RAG still has near-optimal performance guarantees even with
approximate greedy selection [13], [15]. When η = 1, Corol-
lary 1 reduces to Theorem 1.

C. A Posteriori Suboptimality Bound of RAG

We present the a posteriori approximation bound of RAG (see
Theorem 2). We recall the notation:

1) Ii is robot is neighbors that select actions prior to i during
the execution of RAG.

Theorem 2 (A Posteriori Suboptimality Bound): Given the
actions {aRAGi }i∈N selected by the agents, RAG guarantees:3

f(ARAG ) ≥ f(AOPT ) − κf

∑

i∈N
f( aRAGi | ARAG

Ii ). (18)

Theorem 2 captures the suboptimality cost due to decen-
tralization, similarly to Theorem 1. In contrast to Theorem 1,
Theorem 2 captures the decentralization cost as a function of
the action overlap between agent i and its neighbors, instead of
its non-neighbors. As such, Theorem 2 captures the intuition that
the larger agent is neighborhood is, the better the suboptimality
guarantee can be since then agent i would have the chance to
coordinate actions with more agents.

Proposition 2 (Approximate Submodularity of A Posteriori
Bound): The right-hand side of (18) is nondecreasing and ap-
proximate submodular as a function of {Ii}i∈N .

The proposition implies that although the approximation per-
formance will improve if the agents have more neighbors, the
gained improvement diminishes.

Remark 5 (Trade-Off between Decision Speed and Optimal-
ity): For larger neighborhoods, the marginal increase in the
approximation guarantee is negatively outweighed by a greater
increase in decision time. The reason is that the gain in the ap-
proximation guarantee diminishes as the neighborhoods become
larger (see Theorem 2) while the decision time may increase
linearly for RAG and superlinearly for the state of the art, as we
present in Section VI.

The appropriate size of neighborhoods that balances the trade-
off for the task at hand can be found via experimentation in
high-fidelity simulations, as we illustrate in the experiments.

D. Comparison to the State of the Art

We summarize the approximation guarantees of the state
of the art and RAG in Table I. We observe the tradeoff of
decision time and optimality: the algorithms with the best sub-
optimality guarantees—first six rows of the table, achieving the
near-optimal 1/2 or 1− 1/e [10]—can exhibit also the worst
decision times, one to two orders of the network size higher
than that of RAG. Among the remaining algorithms—three last
rows of the table— RAG is the only algorithm that provides

3Theorem 2 holds true for f nondecreasing and submodular and not neces-
sarily second-order submodular.

Fig. 6. Comparison of Suboptimality Guarantees of [37], [38] and RAG:
Example of Area Coverage. We make the comparison over an area coverage
task with multiple drones, as in Fig. 5(a), where the drones need to each select a
short trajectory to maximize the total covered area at the next time step. The stars
are the drones’ positions, the circles are their FOVs, and the red lines denote
undirected communication links. The best performances for each metric are in
blue. (a) Drones are fully decentralized (no communication). The bounds by [37],
[38] are both 1/4. For |N | drones, instead of 4, the bounds would be O(1/|N |).
Instead, RAG guarantees 1/(1 + κf ) = 1 since the drones are far enough for
their FOV to overlap, coinf,i = 0, ∀i, and κf = 0. (b) Drones are partially
decentralized such that only the physically close drones communicate. For this
communication graph, that we assume to be the same as the information-action
access graph,ω = 2,χ = 2, andα⋆ = 3. Therefore, Gharesifard and Smith [37]
give [1/4, 1/2] and Grimsman et al. [38] give [1/4, 1/3]. RAG still gives
1/(1 + κf ) ≥ 1/2 since non-neighbors are far away. (c) In the fully centralized
case, [37], [38] give 1/2 and RAG gives 1/(1 + κf ). In all, RAG may provide
tighter bounds than [37], [38] since it considers the actual function f using
coinf and κf , whereas the authors in [37] and [38] are agnostic to f . (a) fully
decentralized. (b) partially decentralized. (c) fully centralized.

task-aware (f -based) performance guarantees and that quantifies
the suboptimality guarantee as a function of each agent’s local
communication network. Instead, the guarantees of [37], [38] are
task-agnostic and can scale inversely proportional to the number
of agents even when RAG can still guarantee the near-optimal
1/2 (see Fig. 6).

To discuss the suboptimality guarantees of [37], [38] in more
detail, we present their decision-making rule. Specifically, the
authors in [37] and [38] used the following distributed submod-
ular maximization (DSM) rule, introduced in [37]

aDSM
i ∈ max

a∈Vi

f
(
a | {aDSM

j }j ∈N in
i

)
(19)

where N in
i ⊆ [i− 1]. Equation (19) generalizes SG’s rule in

(7) to the setting where agent i has access only to the actions
selected by the agents in N in

i ⊆ [i− 1], instead of all agents that
have selected an action before agent i. The information-access
structure prescribed by the rule in (19) can be represented as a
DAG Ginfo, where agent is neighbors in Ginfo are the set N in

i of
agents.4 Due to the limited information access, the suboptimality
guarantees of [37], [38] take the form presented in Table I,
where ω(Ginfo) is the clique number of Ginfo, χ(Ginfo) is the
chromatic number, and α⋆(Ginfo) is the fractional independence
number [55].

4The graph Ginfo is in general different from the communication graph G.
When an agent i and an agent j do not communicate (they are not neighbors in
the communication graph G) but agent j ∈ N in

i , then agent js action needs to
be relayed to agent i via other agents in G that form a connected communication
path in G between agent i and agent j.
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VI. DECISION TIME ANALYSIS

We bound the time it takes for RAG to terminate. RAG’s
decision time scales linearly with the size of the network, up
to two orders of the network size faster than the state of the art.
We summarize the decision time of the state of the art and of
RAG in Table I, where we use the notation:

1) τf is the time required for one evaluation of f ;
2) τc is the time for transmitting an action through a commu-

nication channel (i→ j) ∈ E ;
3) τ# is the time for transmitting a real number through a

communication channel (i→ j) ∈ E ; evidently, τ# ≪ τf
and τ# ≪ τc;

4) diam(G) is the diameter of a graph G, i.e., the longest
shortest path among any pair of nodes in G [56].

We base our analysis on the observation that the decision time
of any distributed algorithm depends on the algorithm’s.

1) Computational complexity, namely, the number of func-
tion evaluations required till termination (ignoring addi-
tion and multiplications as negligible in comparison).

2) Communication complexity, namely, the number of com-
munication rounds needed till termination, accounting for
the length of the communication messages per each round.

A. Decision Time of RAG

We first analyze the computational and communication com-
plexities of RAG and then present its decision time.

Proposition 3 (Computational Complexity): RAG requires
each agent i to perform at most |Vi||Ni| function evaluations.

Proof: For each agent i, |Ai| increases by at least one with
each “while loop” iteration of RAG. At each such iteration,
agent i needs to perform |Vi| function evaluations to evaluate
its marginal gain of all v ∈ Vi (lines 3–4). Since |Ai| ≤ |Ni|,
agent i will perform at most |Vi||Ni| function evaluations. "

Proposition 4 (Communication Complexity): RAG requires
at most |N |− 1 communication rounds where a real number is
transmitted, and at most |N |− 1 communication rounds where
an action is transmitted.

Proof: The number of “while loop” iterations of RAG is at
most |N |− 1 because at each iteration at least one agent will
select an action. Besides, each “while loop” iteration includes
two communication rounds: one for transmitting a marginal gain
value (line 5), and one for transmitting an action (lines 8 and 11).
Hence, Proposition 4 holds. "

Theorem 3 (Decision Time of: RAG) RAG terminates in at
most (τc + τ#) (|N |− 1) + τf maxi∈N (|Vi| |Ni|) time.

Proof: Theorem 3 holds from Propositions 3 and 4. "

B. Comparison to the State of the Art

We summarize the decision times of the state of the art and
RAG in Table I. RAG scales linearly with the number of robots,
|N |, whereas the state of the art scales at least quadratically
with |N |. RAG has computational time that is linear in |Ni|,
independent of |N |, and communication time linear in |N |.

In Table I, we assume for simplicity that |Vi| = |Vj |, ∀i, j ∈
N . We divide the state of the art into algorithms that solve
Problem 1 either in the continuous domain via employing the

multilinear extension [54] of the set function f [30], [52], [53],
or in the discrete domain [31], [37], [38], [44], [48]:5,6,7

a) Computation time: RAG requires τf |Ni| |Vi| computa-
tion time. The method in [31] requires computation time
τf

∑
i∈N |Vi| =τf |Vi| |N | since each agent ineeds to perform

|Vi| computations and the agents perform the computations
sequentially. Given a prespecified information access prescribed
by directed acyclic graph (DAG) Ginfo, the methods in [37] and
[38] also instruct the agents to select actions sequentially leading
to a computation time at most τf |Vi| |N |. This time excludes the
time needed to find the Ginfo given an arbitrary communication
graph G. The method in [44] enables parallelized computation
among agents by ignoring certain edges of an initially com-
plete G, resulting in a computation time of O(τf |Vi| / ϵ) ≤
τf |Vi| |N |. Compared to [37], [38], the method in [44] also
provides a distributed way to find which edges to ignore such
that the suboptimality guarantee is optimized, a process that re-
quires an additional computation time ofO(τf |Vi|2 (|N |− 1)).
The remaining algorithms require longer computation times,
proportional to |N |2 or more.

b) Communication time: RAG requires at most (τc +
τ#) (|N |− 1) communication time. In [37] and [38], the agents
need to communicate over G per the prespecified information-
access DAG Ginfo per the rule in (19) [37, Remark 3.2]. In
Appendix D, we identify a worst case where this rule results in
O(τc |N |2) communication time. This happens when each agent
i− 1 and agent i in the decision sequence do not communicate
directly, thus, the information of agent i− 1 needs to be relayed
to agent i via other agents that form a connected communication
path between the two. The method in [31], which introduces a
DFS procedure to determine the best agents’ ordering to run
SG [11] over arbitrary (strongly) connected networks (instead
of just line graphs), requires a worst-case communication time
of O(τc |N |3) for directed networks, and O(τc |N |2) for undi-
rected networks [28, Appendix II]. For some ϵ, the method
in [44] may require less communication time for running the
algorithm per se than other methods, but an additional commu-
nication time ofO(τc |Vi|) is needed to distributively find a DAG
that optimizes the algorithm’s approximation performance. The
remaining algorithms require communication times proportional
to |N |2 or more.

VII. EVALUATION IN ROAD DETECTION AND COVERAGE

We evaluate RAG in the provided simulator across four sce-
narios of road detection and coverage. The scenarios span two
team sizes (15 and 45 robots), and two communication rates
(0.25 Mb/s), and 100 Mb/s)—up to three orders of magnitude

5The continuous-domain algorithms employ consensus-based techniques
[30], [52], or algorithmic game theory [53], and need to compute the multilinear
extension’s gradients via sampling.

6The decision times of the continuous-domain algorithms depend on addi-
tional problem-dependent parameters (such as Lipschitz constants, the diameter
of the domain set of the multilinear extension, and a bound on the gradient of
the multilinear extension), which we make implicit in Table I via the O, Ω, and
Θ notations.

7The computational and communication times reported for [53] are based
on the numerical evaluations therein since a theoretical quantification is not
included in [53] and appears nontrivial to derive one as a function of N , ϵ, or
the other problem parameters.
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faster than competitive near-optimal submodular optimization
algorithms—and, when the robots maintain a neighborhood size
≥ 2, superior mean coverage. The experiments also demonstrate
RAG scales linearly with the network size, as predicted by our
theoretical analysis: from the 15-robot to the 45-robot case, RAG
scales linearly, being at most 3x slower compared to the 15-robot
case. In contrast, the compared near-optimal algorithms scale
cubically, being up to 60x slower compared to the 15-robot case.

Our code is available at https://github.com/UM-iRaL/
Resource-Aware-Coordination-AirSim.

Common Simulation Setup across Simulated Scenarios: We
first present the task of road detection (see Fig. 1), then the
compared algorithms and the simulation pipeline (see Fig. 3).

a) Road detection and coverage task: Multiple aerial robots
with onboard cameras are deployed in an unknown urban en-
vironment and tasked to maximize the total new road area
detected after each action coordination step (see Fig. 1). The
environment is unknown to the robots (no map is available a
priori), necessitating the robots to use their onboard cameras to
perform exploration for road detection.

The robots are deployed close to each other relative to the size
of their FOVs and, as a result, their FOVs may often overlap
(see Fig. 1). Therefore, coordination becomes necessary for the
robots to spread in the environment such that they detect different
road segments and maximize the total new road area detected
after each action coordination step.

To perform the task, given the currently visible environment,
the robots coordinate how to move per the collaborative auton-
omy pipeline in Fig. 2. Particularly, the task takes the form of the
optimization problem in Problem 1 where f denotes the number
of road pixels captured by all robots’ collective FOV after they
traverse their agreed trajectories {ai}i∈N —f is nondecreas-
ing, submodular, and second-order submodular [44]—and Vi

denotes robot is available trajectories at the current coordination
round. Vi defines the possible directions that the robot can move
in, and the speed the robot can move with. For simplicity, we
assume that every robot can move in any of the 8 cardinal
directions—N E S W NE SE NW SW—relative to its body frame,
for 10 m at 3 m/s.

Without loss of generality, the deployed robots are assumed to
have the same onboard sensing and communication capabilities:
All robots are equipped with the following:

1) an IMU;
2) a GPS signal receiver;
3) a downward-facing camera mounted on a gimbal that en-

ables the camera to point to any of the 8 cardinal directions
relative to the robot’s body frame;

4) a communication module—either a Digi XBee 3 Zigbee
3.0 (0.25 Mb/s) or Silvus Tech SL5200 (100 Mb/s)—for
inter-robot communication.

Each robot can establish a few communication channels with
robots within 100 m range, subject to bandwidth constraints.

b) Compared algorithms: Across various bandwidth con-
straints for the robots, we compare RAG with two competitive
near-optimal algorithms: the SG algorithm [11], also known as
coordinate descent [1], and its state-of-the-art depth-first-search
variant (DFS-SG) [31]. The algorithms are commonly used

for information gathering with multiple robots (e.g., see the
papers [1], [15], [17] and the survey [5]. In more detail, the
setup is as follows.

We test RAG for different bandwidth constraints varying from
0 up to 7.8 In each case, the same bandwidth constraint applies
to all robots. Each such version of RAG is denoted by RAG-knn,
where k = 0, . . . , 7. For each k, the communication network is
heuristically determined by having each robot select k nearest
other robots as neighbors subject to the 100 m communication
range. If fewer thank others are within the communication range,
then all are selected as neighbors.

The SG algorithm requires the robots to be arranged on a line
graph that defines the order in which the robots select actions
per (7) and enables the information relay from robots that have
already selected actions to the robot currently selecting an action.
To ensure the existence of a line graph in our simulations of SG,
we randomly generate one, adjusting the robots’ communication
ranges to infinity.

The DFS-SG algorithm enables SG to be applied to networks
that are not necessarily a line graph, but the networks still need
to be strongly connected. To this end, we construct strongly
connected graphs by first randomly constructing line graphs as
for SG, then randomly adding a few undirected edges to the
line graphs, particularly, 30 edges for the 15-robot case and 90
edges for the 45-robot case. At each coordination step, DFS-SG
randomly picks the first robot to select an action, and the order of
all other robots is determined by a distributed method based on
DFS. The resulting decision sequence may involve relay robots
that transmit information between robots that are not directly
connected and, thus,DFS-SG generally requires longer decision
times than SG.

c) Simulation pipeline: The simulation pipeline consists of
the following modules (see Fig. 3).

1) Network self-configuration: This module applies only to
RAG since only RAG enables the network to self-configure
itself across the planning steps subject to the robots’
bandwidth constraints and the robots’ relative locations.
Particularly, as described also in the above paragraph for
RAG-knn, at the beginning of each planning step, each
robot selects the k nearest other robots within its com-
munication range. This neighborhood selection scheme is
justified by Example 1.

2) Perception: The process is different for each algorithm
since each algorithm requires the robots to process infor-
mation received from different sets of robots. For RAG,
the robots need the following three operations to detect
the nearby environment and evaluate where would be best
to move.

8Although neighborhood sizes larger than 7 are possible in the simulator, we
limit them to at most size 7 to achieve a reasonable duration for completing
each Monte Carlo trial. Particularly, the neighborhoods’ scalability to k > 7
is constrained by the msgpack-rpc protocol implementation over TCP/IP via
rpclib. The current use of a single TCP port for multidrone API calls creates a
communication bottleneck, increasing client response times. For example, our
experiments with 45 robots, which include 30 trials that simulate the robots’
evolution for 500 s for 9 different algorithms (RAG k-nn for k = 1, . . . , 7, SG,
and DFS-SG), require 3 days for each algorithm to be tested.
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i) At the beginning of each planning step, each robot
hovers at a constant height (30 m) and rotates its
camera to take a picture in each of the 8 cardinal
directions relative to its body frame. The captured
FOV in each direction is of size 34.6× 26.0m2. Then,
the robot uses semantic segmentation9 to detect the
road segments in each of the 8 captured images. The
resulting segmented image has size 25 KB with label
information after compression.

ii) Each robot, upon receiving segmented images and
relative poses from neighbors that have committed
actions in specific directions, stitches these images to-
gether. That way, the robot reconstructs the collective
FOV of its neighbors that have committed an action.
This reconstruction will be used next by the robot to
select in which direction to move to cover the most
new road area. To this end.

iii) The robot stitches its 8 captured images, respectively,
with the previous reconstruction and counts the extra
road pixels that can be covered in each of the corre-
sponding 8 cardinal directions.

For SG and DFS-SG, the operations above are similar,
with the modification being that instead of just the neigh-
bors’ segmented and stitched images, each robot leverages
all previous robots’ stitched images in (ii) and (iii).

3) Action coordination: The process differs across algo-
rithms: ForRAG, given their neighbors’ already committed
actions, the robots that are still deciding will first each
pick a trajectory whose FOV gives the most amount of
newly covered road area. Then, they will compare this
amount with one another. Those who win their neigh-
bors will commit to their picked trajectories and share
the corresponding FOV and camera pose with neighbors.
Otherwise, they will receive the FOVs and camera poses
selected by newly committed robots and repeat the process
above. For SG, the robots make decisions sequentially in a
line graph. Each robot, upon receiving the stitched FOVs
of the trajectories selected by all predecessors, will first
choose the trajectory whose FOV offers the most newly
covered area based on previous robots’ selections. It will
then align and stitch this FOV with the received ones, and
finally send the newly stitched FOVs to the next robot.
The coordination process for DFS-SG is similar to SG,
with the difference being that DFS-SG operates over a
strongly connected network, given the robots’ locations,
bandwidth, and communication range, instead of a line
graph. Thus, during DFS-SG, the ith robot in the decision
sequence may need to transmit FOVs to the (i+ 1)th robot
in the decision sequence via relay robots.

4) Control: The robots simultaneously traverse the trajec-
tories after coordination using “simple_flight,” a flight
controller in AirSim. “simple_flight” uses cascade PID

9We simulate semantic segmentation using the in-built ground truth result of
AirSim. The process runs at 20 Hz, ensuring segmentation does not create a
bottleneck for the replanning frequency of RAG.

controllers to drive the aerial robots to move in the selected
direction with speed 3.0 m/s for 10.0 m.

A. Evaluations With 15 Robots

We present the results for the 15-robot scenario. Each com-
pared algorithm was tested in 50 trials, each lasting 300 s. The
simulation setup is as follows.

Simulation setup: Across the Monte Carlo tests, the robots are
initialized near one another such that their FOVs largely overlap
(e.g., see the leftmost group of 15 robots in Fig. 1). Therefore,
coordination becomes necessary for the robots to spread in the
environment such that they detect different road segments and,
thus, maximize the total new road area detected after each action
coordination step.

We ran the simulations on a 32-core CPU with 2 Nvidia RTX
4090 24 GB GPUs and 128 GB RAM on Ubuntu 18.04.

Results: The results are summarized in Figs. 7 (100 Mb/s)
and 8 (0.25 Mb/s). RAG-knn achieves real-time planning for all
k, and superior mean coverage for k ≥ 2.

1) Road Coverage Over Time: Figs. 7(a) and 8(a) present
the total area of the road covered over time for each algorithm.
RAG-knn rapidly achieves superior mean performance fork ≥ 2,
and maintains comparable performance for k = 1. The lower
performance for k = 0 is expected, since then no robot ever
coordinates with any other.

2) Tradeoff Between Decision Time Versus Road Coverage:
Figs. 7(b) and 8(b) present the average action coordination time
versus the peak coverage of the road area over the duration of
the task [the peak values in Figs. 7(a) and 8(a)]. For larger k, the
marginal increase in total coverage is negatively outweighed by a
greater increase in decision time. The observation demonstrates
the tradeoff between decision speed versus optimality predicted
in Section V (Remark 5).

B. Evaluations With 45 Drones

We demonstrate the scalability of our algorithm from 15 to
45 robots. Each compared algorithm was tested in 30 trials,
each lasting 500 s. The experiments demonstrate that RAG
scales linearly, being at most 3 times slower compared to the
15-robot case. In contrast, the compared near-optimal algorithms
scale cubically, as predicted by our theoretical analysis, being
> 27 = 33 times slower compared to the 15-robot case: e.g.,
SG’s decision time increases from around 2 to 60 s (100 Mb/s
case), a 30x increase, and from around 14 to 850 s (0.25 Mb/s
case), a 60x increase.

Simulation setup: Across the Monte Carlo tests, the robots
are divided into three groups, with the robots within each group
being deployed near to one another such that their FOVs largely
overlap (see Fig. 1). In such a setting,RAG automatically enables
parallelized decision-making, achieving scalability and similar
coverage as for the 15-robot setting, in contrast to the state-of-
the-art near-optimal algorithms.

We ran the simulations on a remote server with 80 CPU cores
(4x 2.4 GHz Intel Xeon Gold 6148), 360 GB RAM, and 4
NVIDIA Tesla V100 16 GB GPU.
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Fig. 7. Comparative Analysis of Coverage Performance with 15 robots for 100 Mb/s data rate. The reported times include ROS1 delays of up to 0.18 s per action
coordination step. Particularly, in Figs. 7–10, all coverage data are normalized by the mean results of the corresponding RAG-7nn instances, and the shared area
and cross-hairs represent 1 standard deviation for y-axis in (a) and both axes in (b). (a) Total road-area coverage versus time. (b) Maximum total coverage versus
action coordination time.

Fig. 8. Comparative Analysis of Coverage Performance with 15 robots for 0.25 Mb/s data rate. The reported times include ROS1 delays of up to 0.81 s per action
coordination step. (a) Total road-area coverage versus time. (b) Maximum total coverage versus action coordination time.

Fig. 9. Comparative analysis of coverage performance with 45 robots for 100 Mb/s data rate. The reported times include ROS1 delays of up to 3.78 s per action
coordination step.
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Fig. 10. Comparative analysis of coverage performance with 45 robots for 0.25 Mb/s data rate. The reported times include ROS1 delays of up to 6.54 s per action
coordination step.

Results: The results are summarized in Fig. 9 (100 Mb/s)
and 10 (0.25 Mb/s). RAG maintains superior mean coverage,
with all qualitative observations from the 15-robot case applying
here. Per Figs. 9(b) and 10(b), RAG’s coordination times scaled
linearly compared to the 15-robot case. In contrast, SG’s and
DFS-SG’s coordination times scaled super-cubically, requiring
now minutes per action coordination step at 100 Mb/s and tens
of minutes at 0.25 Mb/s. The results demonstrate the linear
scalability of RAG and cubic scalability of the state of the art, as
predicted by our theoretical analysis (see Table I).

VIII. CONCLUSION

We introduced a distributed submodular optimization
paradigm, RAG that enables scalable and near-optimal coor-
dination over robot mesh networks. The framework applies to
any distributed submodular optimization task. In this article, we
applied it to active information-gathering, demonstrating RAG’s
performance in simulated scenarios of road detection with up to
45 robots. In the simulations, RAG enabled real-time planning,
up to 3 orders of magnitude faster than competitive near-optimal
algorithms, while also achieving superior mean coverage perfor-
mance. To enable the simulations, we extended the high-fidelity
and photo-realistic AirSim by enabling a scalable collaborative
autonomy pipeline to tens of robots while simulating realistic
r2r communication messages and speeds.

In our future work, we will apply RAG to distributed metric-
semantic SLAM where the r2r communication messages scale
to MBs [8], [57], 40 times larger than the messages of 25 KB,
we considered for the road detection task in this article.

We also plan the following algorithmic contributions.
1) RAG assumes synchronous communication. Although

RAG can be modified to handle such cases, e.g., by instruct-
ing each robot to execute its action without first waiting
for all other robots to select actions, its near-optimality
guarantees provided in this article may no longer hold. Our
future work will extend our theoretical and algorithmic
analysis beyond the above limitations.

2) We will also extend our results to handle effective task
execution over long time horizons. For example, in collab-
orative mapping over long time horizons, the team needs
to stay updated on the areas that have been mapped, such
that the current plans do not repeat past actions. This is
in addition to the focus of this paper that only the current
plans among the robots do not overlap. To this end, we
will handle network connectivity constraints.

3) Finally, we will enhance our simulator by integrating
the simulation of realistic communication channels and
protocols toward communication-aware and -efficient co-
ordination algorithms.

APPENDIX A

Proof of Proposition 1: Consider robot i ∈ N and two dis-
joint robot sets B1,B2 ⊆ N \ {i}, we have

coinf,i(B1 ∪ B2)− coinf,i(B1)

= f(ai | {aj}j ∈B1∪B2)− f(ai | {aj}j ∈B1) ≤ 0 (20)

where the inequality holds since f is submodular. Hence,
coinf,i(Ni) is nonincreasing in Ni. Therefore, for any i ∈
N , coinf,i(Ni) achieves the lower bound coinf,i(Ni) ≥
coinf,i(N \ {i}) = f(ai)− f(ai | ∅) = 0. For the upper bound

coinf,i(Ni) ≤ coinf,i(∅) = f(ai)− f(ai | AN\{i}) (21)

≤ κff(ai) (22)

where the first inequality holds since coinf,i is nonincreasing,
and the second inequality holds from (8). "

APPENDIX B

We first prove Theorem 1, and then present and prove the
bounds of RAG when f is submodular or approximately sub-
modular instead of second-order submodular.
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A. Proof of Theorem 1

We index each agent in N per its selecting order in RAG, i.e.,
agent i ∈ N ! {1, . . . , |N |} is the ith agent to select an action
during the execution of RAG. If multiple agents select actions
simultaneously, then we index them randomly. We use also the
notation.

1) ARAG
X ! {aRAGi }i∈X for any X ⊆ N , i.e., ARAG

X is the set
of actions selected by the agents in X .

Then, we have

f(AOPT)

= f(AOPT ∪ARAG)−
∑

i∈N
f(aRAGi | AOPT ∪ARAG

[i−1]) (23)

≤ f(ARAG) +
∑

i∈N
f(aOPT

i | ARAG
Ni∩[i−1])

− (1− κf )
∑

i∈N
f(aRAGi | ARAG

Ni∩[i−1]) (24)

≤ f(ARAG) + κf

∑

i∈N
f(aRAGi | ARAG

Ni∩[i−1]) (25)

= (1 + κf )f(ARAG)

+ κf

∑

i∈N

[
f(aRAGi | ARAG

Ni∩[i−1])− f(aRAGi | ARAG
[i−1])

]
(26)

≤ (1 + κf )f(ARAG)

+ κf

∑

i∈N

[
f(aRAGi )− f(aRAGi | ARAG

[i−1]\Ni
)
]

(27)

≤ (1 + κf )f(ARAG) + κf

∑

i∈N

[
f(aRAGi )− f(aRAGi | ARAG

N c
i
)
]

︸ ︷︷ ︸
coinf,i(Ni)

(28)

where (23) holds from telescoping the sums; (24) holds from f
being submodular and

1− κf ≤
f(aRAGi | ARAG

N\{i})

f(aRAGi )
≤

f(aRAGi | AOPT ∪ARAG
[i−1])

f(aRAGi | ARAG
Ni∩[i−1])

(29)
per the definition of κf ; (25) holds since RAG selects aRAGi

greedily; (26) holds from telescoping the sums; (27) holds from
f being second-order submodular; and (28) holds from f being
submodular. Therefore, (12) holds.

Then, in the fully centralized case where N c
i = ∅, ∀i ∈ N ,

we have coinf,i(Ni) = f(aRAGi )− f(aRAGi ) = 0. Hence, (13)
follows (28).

Finally, in the fully decentralized case where N c
i = N \

{i}, ∀i ∈ N , we have
∑

i∈N
coinf,i(Ni) =

∑

i∈N
f(aRAGi )− f(aRAGi | ARAG

N\{i})

≤ κf

∑

i∈N
f(aRAGi ) (30)

≤ κf

1− κf
f(ARAG) (31)

where (30) holds from (8), and (31) holds from [58, Lemma
2.1]. Combining (28) and (31), the lower bound in (15) can be
proved. "

B. Suboptimality bounds of RAG for submodular or
approximately submodular f

We present the bounds in Corollary 4. To this end, we use the
following definition.

Definition 5 (Total curvature [9], [10]): Consider f : 2V &→
R is nondecreasing. Then, fs total curvature is defined as

cf ! 1−min
v ∈V

min
A,B⊆V\{v}

f({v} ∪A)− f(A)

f({v} ∪ B)− f(B) . (32)

Similarly to κf , we have cf ∈ [0, 1]. When f is submodular,
then cf = κf . Generally, if cf = 0, then f is modular, while if
cf = 1, then (32) implies the assumption thatf is nondecreasing.
In [59], any monotone f with total curvature cf is called cf -
submodular, as repeated as follows.10

Theorem 4 (Suboptimality Bounds for Submodular and Ap-
proximately Submodular Functions): If f is not second-order
submodular, ARAG enjoys the following approximation bounds:

1) if f is nondecreasing submodular, then

f(ARAG )

f(AOPT )
≥

{
1

1+κf
, G is fully centralized

1− κf , G is not fully centralized
(33)

2) if f is nondecreasing cf -submodular, then

f(ARAG )

f(AOPT )
≥

{
1−cf

1+cf−c2f
, G is fully centralized

(1− cf )2, G is not fully centralized.
(34)

C. Proof of Corollary 4

We present the proof separately for each case. First, when f
is submodular with G being fully centralized, RAG has the same
1/(1 + κf ) bound as in Theorem 1, following from (26).

When f is submodular, and G is not fully centralized, RAG
provides the same bound as the lower bound in (15)

f(AOPT) ≤ f(ARAG) + κf

∑

i∈N
f(aRAGi | ARAG

Ni∩[i−1])

≤ f(ARAG) +
κf

1− κf

∑

i∈N
f(aRAGi | ARAG

[i−1]) (35)

=

(
1 +

κf

1− κf

)
f(ARAG) (36)

where (35) holds from (25) and the definition of κf .
When f is cf -submodular, and G is fully centralized

f(AOPT)

10Lehmann et al. [59] defined cf -submodularity by considering in (32)A ⊆ B
instead ofA ⊆ V . Generally, nonsubmodular but monotone functions have been
referred to as approximately or weakly submodular [60], [61], names that have
also been adopted for the definition of cf in [59], e.g., in [62] and [63].
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= f(AOPT ∪ARAG)−
∑

i∈N
f(aRAGi | AOPT ∪ARAG

[i−1])

≤ f(ARAG) +
1

1− cf

∑

i∈N
f(aOPT

i | ARAG
Ni∩[i−1])

− (1− cf )
∑

i∈N
f(aRAGi | ARAG

Ni∩[i−1]) (37)

≤ f(ARAG) +

[
1

1− cf
− (1− cf )

]∑

i∈N
f(aRAGi | ARAG

Ni∩[i−1])

(38)

=

(
cf +

1

1− cf

)
f(ARAG) (39)

where (37) holds from (23) and Definition 5, (38) holds since
RAG selects aRAGi greedily, and (39) holds since Ni ∩ [i− 1] =
[i− 1] for G being fully centralized.

When f is cf -submodular, and G is not fully centralized

f(AOPT)

≤ f(ARAG) +

[
1

1− cf
− (1− cf )

]∑

i∈N
f(aRAGi | ARAG

Ni∩[i−1])

≤ f(ARAG) +

[
1

(1− cf )2
− 1

]∑

i∈N
f(aRAGi | ARAG

[i−1]) (40)

=
1

(1− cf )2
f(ARAG) (41)

where (40) holds from (38) and Definition 5. "

APPENDIX C

We provide the proofs regarding the a posteriori suboptimality
bound of RAG.

A. Proof of Theorem 2

Since Ii = Ni ∩ [i− 1], (18) follows (26), and thus, Theo-
rem 2 is proved. Notice that f only needs to be submodular
instead of second-order submodular for Theorem 2 to hold. "

B. Proof of Theorem 2

Let δi(Ii) ! f(a(Ii)i | AIi), where AIi is the actions selected
by Ii per RAG, and a(Ii)i is the action selected by i per RAG,
i.e., greedily. Therefore, proving δi(Ii) is nonincreasing and
approximately supermodular in Ii, ∀i ∈ N , will be sufficient in
proving Theorem 2.

We start with the nonincreasing property by proving δi is
nonincreasing. For disjoint sets B1,B2 ⊆ N \ {i}, we have
AB1 ⊆ AB1∪B2 and, thus

δi(B1) = f(a(B1)
i | AB1) ≥ f(a(B1∪B2)

i | AB1) (42)

≥ f(a(B1∪B2)
i | AB1∪B2) = δi(B1 ∪ B2) (43)

Fig. 11. Example of a directed communication graph with the worst-case agent
order where each message needs to traverse |N |− 2 edges.

where (42) holds sinceRAG selectsa(B1)
i greedily givenAB1 , and

(43) holds since AB1 ⊆ AB1∪B2 . To prove the approximate su-
permodularity of δi, we will first prove another function δ′i is su-
permodular, then show that δi(S) ≤ δ′i(S) ≤ δi(S) + ϵ, ∀S ⊆
N \ {i} [64]. In particular, let us define δ′i(Ii) ! f(a | AIi),
where AIi is the actions selected per RAG by Ii as in the
definition of δi, but a ∈ Vi is an arbitrary fixed action. Consider
robot set S ⊆ N \ {i} other than B1,B2, then

δ′i(S | B1)− δ′i(S | B1 ∪ B2)

= δ′i(S ∪ B1)− δ′i(B1)− δ′i(S ∪ B1 ∪ B2) + δ′i(B1 ∪ B2)

= f(a | AS∪B1)− f(a | AB1)

− f(a | AS∪B1∪B2) + f(a | AB1∪B2) ≤ 0 (44)

where the inequality holds since f is second-order submodular.
Hence, δ′i is supermodular. Then, we have

δi(S)− δ′i(S) = f(a(S)i | AS)− f(a | AS)

≤ f(a(S)i )− (1− κf )f(a) (45)

which holds from the submodularity of f and (8)

1− κf ≤
f(a | AN\{i})

f(a)
≤ f(a | AS)

f(a)
. (46)

Also, δi(S)− δ′i(S) ≥ f(a(S)i | AS)− f(a(S)i | AS) = 0 since
RAG selects a(S)i greedily. All in all, δ′i(S) ≤ δi(S) ≤ δ′i(S) + ϵ
holds true with

ϵ = min
a2 ∈Vi

max
a1 ∈Vi

[f(a1)− (1− κf )f(a2)] (47)

that is, δi is approximately supermodular. "

APPENDIX D

We provide the proof of the communication time of the algo-
rithm in [37] and [38]: the worst-case communication time of
the two methods occurs when, for example, if the informational
DAG G ′ is complete, i.e., each agent i requires information from
[i− 1], then

1) for undirected graphs G, e.g., when agent 1 locates in
the center of a line graph and the rest are ordered alter-
nately extending outward from the center to both ends of
the line (e.g., 5↔ 3↔ 1↔ 2↔ 4↔ 6), which leads to∑|N |−1

i=1 τc × i = 1/2 τc |N | (|N |− 1);
2) for directed graphs G, e.g., when G is a one-directional

acyclic graph yet the agents’ order increases in the other
direction (see Fig. 11), and every agent i needs to traverse
all other agents to send information to i+ 1, which leads
to

∑|N |−1
i=1 τc × (|N |− 2) = τc (|N |− 1)(|N |− 2).
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Therefore, the worst-case communication time is O(τc |N |2)
for both undirected and directed G.
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