
Performance-Aware Self-Configurable Multi-Agent Networks: A Distributed
Submodular Approach for Simultaneous Coordination and Network Design

Zirui Xu, Vasileios Tzoumas†

Abstract— We introduce the first, to our knowledge, rigorous

approach that enables multi-agent networks to self-configure

their communication topology to balance the trade-off between

scalability and optimality during multi-agent planning. We are

motivated by the future of ubiquitous collaborative autonomy

where numerous distributed agents will be coordinating via

agent-to-agent communication to execute complex tasks such

as traffic monitoring, event detection, and environmental ex-

ploration. But the explosion of information in such large-scale

networks currently curtails their deployment due to impractical

decision times induced by the computational and communi-

cation requirements of the existing near-optimal coordination

algorithms. To overcome this challenge, we present the Alter-

NAting COordination and Network-Design Algorithm (Ana-
conda), a scalable algorithm that also enjoys near-optimality

guarantees. Subject to the agents’ bandwidth constraints, Ana-
conda enables the agents to optimize their local communication

neighborhoods such that the action-coordination approximation

performance of the network is maximized. Compared to the

state of the art, Anaconda is an anytime self-configurable

algorithm that quantifies its suboptimality guarantee for any

type of network, from fully disconnected to fully centralized,

and that, for sparse networks, is one order faster in terms

of decision speed. To develop the algorithm, we quantify

the suboptimality cost due to decentralization, i.e., due to

communication-minimal distributed coordination. We also em-

ploy tools inspired by the literature on multi-armed bandits and

submodular maximization subject to cardinality constraints.

We demonstrate Anaconda in simulated scenarios of area

monitoring and compare it with a state-of-the-art algorithm.

I. INTRODUCTION

In the future, distributed teams of agents will be coor-
dinating via agent-to-agent communication to execute tasks
such as target tracking [1], environmental mapping [2], and
area monitoring [3]. Such multi-agent tasks are modeled
in the robotics, control, and machine learning literature via
maximization problems of the form

max
ai 2Vi, 8 i2N

f({ai}i2N), (1)

where N is the set of agents, ai is agent i’s action, Vi

is agent i’s set of available actions, and f : 2
Q

i2N Vi 7! R
is the objective function that captures the task utility [2]–
[14]. Particularly, in information gathering tasks, f is often
submodular [15]: submodularity is a diminishing returns
property, and it emanates due to the possible information
overlap among the information gathered by the agents [4].
For example, in target monitoring with multiple cameras at
fixed locations, N is the set of cameras, Vi is the available
directions the camera can point at, and f is the number of
targets covered by the collective field of view of the cameras.

†Department of Aerospace Engineering, University of Michigan, Ann
Arbor, MI 48109 USA; {ziruixu,vtzoumas}@umich.edu

This work was partially supported by NSF CAREER No. 2337412.

Fig. 1: Overview of AlterNAting COordination and Network-Design Al-

gorithm (Anaconda). Starting from an unspecified communication network,
and subject to the agents’ communication bandwidth and connectivity con-
straints, Anaconda enables the agents to optimize their local communication
neighborhoods such that the action-coordination approximation performance
of the whole network is maximized. To this end, Anaconda employs
two subroutines, ActionCoordination and NeighborSelection, that alternate
optimization. In more detail, given the selected neighborhoods {Ni}i2N by
NeighborSelection, ActionCoordination instructs the agents to select actions
to jointly maximize eq. (1). But ActionCoordination incurs a suboptimality
cost C({Ni}i2N) due to requiring the agents to coordinate exchanging
local information only, prohibiting also multi-hop communication, in favor
of decision speed. For this reason, given the agents’ bandwidth and connec-
tivity constraints, and the previously selected actions by ActionCoordination,
NeighborSelection instructs each agent i to design its neighborhood Ni to
optimize C({Ni}i2N) and, thus, maximize the approximation performance
of ActionCoordination in the subsequent iteration.

But solving the problem in eq. (1) in real-time is chal-
lenging since it is NP-hard [16]. Although polynomial-time
algorithms exist that achieve near-optimal solutions for the
problem in eq. (1), in the presence of real-world commu-
nication delays [17], these algorithms often require high
times to terminate —communication delays are caused by
the finite speed of real-world communication channels. The
reason is that, for an increasing number of agents, the
current algorithms require a combination of high number
of communication rounds and large inter-agent message
lengths, which collectively increase the total delay.

For example, the algorithm in [14], although it achieves
the approximation bound 1 � 1/e for eq. (1), which is the
best possible [18], can require tenths of minutes to terminate
even for 10 agents [11]. This is due to algorithm in [14]
requiring near-cubic communication rounds in the number
of agents, and inter-agent messages that carry information
about all agents, instead of only local information. Similarly,
the Sequential Greedy algorithm [15], which is the gold
standard in robotics, control, and machine learning [2]–
[14], although it sacrifices some approximation performance
to enable faster decision speed —achieving the bound 1/2
instead of the bound 1 � 1/e— still requires (i) inter-agent
messages that carry information about all the agents and, in
the worst case, (ii) a quadratic number of communication

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

979-8-3503-1633-9/24/$31.00 ©2024 IEEE 5393

20
24

 IE
EE

 6
3r

d
C

on
fe

re
nc

e
on

 D
ec

is
io

n
an

d
C

on
tro

l (
C

D
C

) |
 9

79
-8

-3
50

3-
16

33
-9

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
D

C
56

72
4.

20
24

.1
08

86
87

2

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 08,2025 at 13:56:21 UTC from IEEE Xplore. Restrictions apply.

rounds over directed networks [19, Proposition 2], resulting
in a communication complexity that is cubic in the number
of agents, as we will discuss later in Remark 3.

In a similar vein, the Resource-Aware distributed Greedy
(RAG) algorithm [11] aims to sacrifice even further ap-
proximation performance in favor of more scalability, by
requiring the agents to receive information only from and
about neighbors such that each message contains information
only about the neighbor that sends it. In more detail, the
messages are received directly from each neighbor, via multi-
channel communication, assuming a pre-defined directed
communication network that respects all agents’ communica-
tion bandwidths. That way, RAG enables (i) parallel decision-
making, instead of only sequential that the Sequential Greedy
requires, reducing the total number of communication rounds
it (RAG) requires, and (ii) inter-agent messages that contain
information about one agent only, instead of multiple agents
that the Sequential Greedy requires, thus making the com-
munication of such shorter messages faster in the presence of
finite communication speeds. Due to RAG’s communication-
minimal protocol, RAG has an approximation performance
that is the same as the Sequential Greedy when all agents are
neighbors with all other —fully centralized coordination—
but, when agents coordinate with a few others only, RAG
suffers a suboptimality cost as a function of the network
topology. Therefore, the following research question arises:

Subject to the agents’ bandwidth constraints, how to

enable each agent to optimize its coordination neighborhood

such that the suboptimality cost due to decentralization is

minimized, that is, the action-coordination performance of

the multi-agent network is maximized?

To our knowledge, no current work provides distributed al-
gorithms that design the network topology to rigorously opti-
mize the coordination’s approximation performance. Heuris-
tic methods are proposed for network optimization yet with-
out being rigorously tied to optimizing the coordination
performance [20], [21]. Although [11] quantifies the subop-
timality cost due to decentralization, it cannot be leveraged
to enable the agents to optimize their neighborhoods since
it requires the agents to have oracle access to the actions of
non-neighbors, which is impossible in practice in favor of
scalability. Works also provide fundamental limits in using
the Sequential Greedy for distributed submodular optimiza-
tion where the agents can select actions ignoring the actions
of some of the previous agents [7]–[9]. Particularly, [7],
[9] assume a Directed Acyclic Graph (DAG) information-
passing communication topology. In this context, these works
characterize Sequential Greedy’s worst-case performance via
graph-theoretic properties of the network. For example, [9]
characterizes the worst-case approximation bound by con-
sidering the worst-case over all submodular functions, and
proves a bound that scales inversely proportional to the
independence number of the information graph. Intuitively,
the bound scales inversely proportionally to the maximum
number of groups of agents that can plan independently. In
contrast, in this work, we provide algorithms that allow for
the distributed co-design of the network topology based on
the submodular function f at hand and the agents’ bandwidth

constraints. Even if all agents plan independently (fully
decentralized network), the guaranteed bound can still be
1/2, depending on f ’s curvature (Theorem 1), instead of
scaling inversely proportional to the number of agents.

Contributions. We provide the first, to our knowledge,
rigorous approach that enables multi-agent networks to self-
configure their communication topology to balance the trade-
off between scalability and optimality during multi-agent
coordination. To this end, we initiate the study of the problem
Distributed Simultaneous Coordination and Network Design

(Section II), and present a scalable online algorithm with
near-optimality guarantees (Sections III to V).

Subject to the agents’ bandwidth and communication
constraints, the algorithm enables the agents to optimize their

local communication neighborhoods such that the action-

coordination approximation performance of the whole net-

work is maximized. The optimization occurs over multiple
rounds of local information exchange, where information
relay via multi-hop communication is prohibited to curtail
the explosion of information exchange, and, thus, to keep low
delays due to limited communication speeds. We overview
the algorithm in more detail in Fig. 1.

To enable the algorithm, we introduce the first, to our
knowledge, quantification of the suboptimality cost during
distributed coordination as a function of each agent’s neigh-
borhood (Section IV). To this end, we capture the action
overlap through f between each agent and its neighbors via
a mutual-information-like quantity that we term Mutual In-

formation between an Agent and its Neighbors (Definition 3).
The algorithm has the following properties:

a) Anytime Self-Configuration: The algorithm enables
each agent to select actions and neighbors based on local
information only. Therefore, the algorithm enables the multi-
agent system to fluidly adapt to new near-optimal actions
and communication topology whenever either new agents are
included to or existing agents are removed from the network.

b) Decision Speed: For sparse networks, where the size
of each agent’s neighborhood is not proportional to the size
of the whole network, the algorithm is an order faster than the
state-of-the-art algorithms when accounting for the impact
that the message length has to communication delays (Sec-
tion V). The result holds true when the communication cost
to the decision speed is at least as high as the computational
cost. Particularly, we quantify the algorithm’s decision speed
in terms of the time needed to perform function evaluations
and to communicate with finite communication speeds.

c) Approximation Performance: The algorithm enjoys
a suboptimality bound against an optimal fully centralized
algorithm for eq. (1) (Section IV). Particularly, the bound:
• Captures the suboptimality cost due to decentralization,

i.e., due to communication-minimal distributed coordina-
tion. For example, if the network returned by the algorithm
is fully connected, then the algorithm’s approximation
bound becomes 1/2. This is near-optimal since the best
approximation bound for eq. (1) is 1� 1/e ' 0.63 [16].

• Holds true given any network topology, including directed
and (partially) disconnected networks. In contrast, the
current algorithms, such as the Sequential Greedy algo-

5394

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 08,2025 at 13:56:21 UTC from IEEE Xplore. Restrictions apply.

rithm [15], cannot offer suboptimality guarantees when the
network is disconnected since they require the agents to
be able to relay information about all others.
Numerical Evaluations. We evaluate Anaconda in sim-

ulated scenarios of area monitoring with multiple cameras
(Section VI). We evaluate the decision speed of and total area
covered by Anaconda with different maximum neighborhood
sizes and compare it with the state-of-the-art algorithm DFS-
SG [19]. The results are presented in Fig. 2.

All proofs can be found in the extended version [22].

II. DISTRIBUTED SIMULTANEOUS COORDINATION AND
NETWORK DESIGN

We define the problem Distributed Simultaneous Coordi-

nation and Network Design. To this end, we use the notation:
• VN , Q

i2N Vi is the cross product of sets {Vi}i2N .
• [T] , {1, . . . , T} for any positive integer T ;
• f(a | A) , f(A [{a}) � f(A) is the marginal gain

of set function f : 2V 7! R for adding a 2 V to A ✓ V .
• |A| is the cardinality of a discrete set A.
• E is the set of (directed) communication edges among

the agents. E is designed in this paper.
We also lay down the following framework about the agents’
communication network, and their function f .

Communication network. The communication network
G = (N , E) among the agents is unspecified a priori, with
the goal in this paper being that the agents must optimize
the network themselves to best execute the given task.

The resulting communication network can be directed and

even disconnected. When the network is fully connected
(all agents receive information from all others), we call
it fully centralized. In contrast, when the network is fully
disconnected (all agents are isolated, receiving information
from no other agent), we call it fully decentralized.

Communication neighborhood. When a communication
channel exists from agent j to agent i, i.e., (j ! i) 2 E , then
i can receive, store, and process information from j. The set
of all agents that i receives information from is denoted by
Ni. We refer to Ni as agent i’s neighborhood.

Communication constraints. Each agent i can receive
information from up to ↵i other agents due to onboard
bandwidth constraints. Thus, it must be |Ni| ↵i.

Also, we denote by Mi the set of agents than have agent
i within communication reach —not all agents may have
agent i within communication reach because of distance
or obstacles. Therefore, agent i can pick its neighbors by
choosing at most ↵i agents from Mi. Evidently, Ni ✓Mi.

Definition 1 (Normalized and Non-Decreasing Submodular
Set Function [15]). A set function f : 2V 7! R is normalized
and non-decreasing submodular if and only if

• (Normalization) f(;) = 0;

• (Monotonicity) f(A)  f(B), 8A ✓ B ✓ V;

• (Submodularity) f(s | A) � f(s | B), 8A ✓ B ✓ V
and s 2 V .

Intuitively, if f(A) captures the number of targets tracked
by a set A of sensors, then the more sensors are deployed,

more or the same targets are covered; this is the non-
decreasing property. Also, the marginal gain of tracked tar-
gets caused by deploying a sensor s drops when more sensors
are already deployed; this is the submodularity property.

Definition 2 (2nd-order Submodular Set Function [23], [24]).
f : 2V 7! R is 2nd-order submodular if and only if

f(s | C)�f(s | A[C) � f(s | B[C)�f(s | A[B[C), (2)

for any disjoint A,B, C ✓ V (A \ B \ C = ;) and s 2 V .

Intuitively, if f(A) captures the number of targets tracked
by a set A of sensors, then marginal gain of the marginal

gains drops when more sensors are already deployed.

Problem 1 (Distributed Simultaneous Coordination and
Network Design). Each agent i 2 N needs to select a

neighborhood Ni of size at most ↵i, and an action ai such

that the agents jointly solve the optimization problem

max
Ni ✓ Mi
8 i 2 N

max
ai 2 Vi
8 i 2 N

f({ai}i2N) s.t. |Ni| ↵i, (3)

where each agent i selects their action ai after coordinating
actions with its neighbors only, without having access to
information about non-neighbors, and where f : 2VN 7! R
is a normalized, non-decreasing submodular, and 2nd-order

submodular set function.

Problem 1 implies that the network and action optimiza-
tions are coupled: when the network is fully decentralized
(all agents coordinate with no other), the achieved value of
f can be lower compared to the value that can be achieved
when the network is instead fully centralized (all agents
coordinate with all others). For example, consider the target
monitoring scenario in Section I: in the fully decentralized
setting, all cameras may end up covering the same targets,
thus f will equal the number of targets covered by one
camera only. In contrast, in the fully centralized setting, the
cameras can coordinate and end up covering different targets,
thus maximizing the total number of covered targets f .

Remark 1 (Decision speed vs. Optimality). As demonstrated

by the above example, the more centralized a network is,

the higher the value of f that can be achieved. But a

more centralized network can also lead to lower decision

speeds due to an explosion of information passing among all

the agents since all agents will coordinate with all others.

The goal of this paper is to develop a communication-

efficient distributed algorithm that not only requires just

a few coordination rounds for convergence; it also needs

only short messages to be communicated among agents,

thus, accounting for real-world communication delays due

to limited communication speeds [25]. For this reason, in

particular, Problem 1 requires each agent to (i) coordinate

actions only with its neighbors, and (ii) receive information

only about them, instead of also about non-neighbors. This

is in contrast to standard distributed methods that allow

information about the whole network to travel to all agents

via multi-hop communication, hence often not reducing the

amount of information flowing in the network compared to

5395

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 08,2025 at 13:56:21 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: AlterNAting COordination and Net-
work-Design Algorithm (Anaconda)

Input: Number of time steps T ; agent i’s neighbor
candidate set Mi; agent i’s neighborhood size ↵i;
objective set function f : 2VN 7! R.

Output: Agent i’s action ai, t and neighbor set Ni, t at
each t 2 [T].

1: Ni, 0 ;, 8i 2 N ;
2: for each time step t 2 [T] do

3: ai, t ActionCoordination([T],Vi, f);
4: Ni, t NeighborSelection(ai, t, [T],Mi,↵i, f);
5: receive neighbors’ actions {aj, t}j 2Ni, t and

update ActionCoordination (per lines 6-8) and
NeighborSelection (per lines 6-11);

6: end for

fully centralized coordination, and hence often introducing

impractical communication delays [11], [17].

III. ALTERNATING COORDINATION AND
NETWORK-DESIGN ALGORITHM (Anaconda)

We present the AlterNAting COordination and Network-
Design Algorithm (Anaconda) for Problem 1. Anaconda aims
to approximate a solution to Problem 1 by alternating the
optimization for action coordination and neighbor selection.
A description of the algorithm is given in Fig. 1.

Both action coordination and neighborhood selection take
the form of Multi-Armed Bandit (MAB) problems, therefore,
in the following, we first present the MAB problem (Sec-
tion III-A). Then, we will present the algorithms ActionCoor-
dination (Section III-B) and NeighborSelection (Section III-C).

A. Multi-Armed Bandit Problem

The adversarial Multi-Armed Bandit (MAB) problem [26]
involves an agent selecting a sequence of actions to maximize
the total reward over a given number of time steps [26]. The
challenge is that, at each time step, the reward associated
with each action is unknown to the agent a priori, becoming
known only after the action has been selected. To rigorously
present the MAB problem, we use the notation:
• V denotes the available action set;
• vt 2 V denotes the agent’s selected action at time t;
• rvt, t 2 [0, 1] denotes the reward that the agent receives by

selecting action vt at t.

Problem 2 (Multi-Armed Bandit [26]). Assume an operation

horizon of T time steps. At each time step t 2 [T], the agent

must select an action vt such that the regret

MAB-RegT , max
v 2V

TX

t=1

rv, t �
TX

t=1

rvt, t, (4)

is sublinear in T , where for full-information feedback, the

rewards rv, t 2 [0, 1] for all v 2 V become known to the

agent after v has been executed at each t; whereas for bandit
feedback, only the reward rvt, t 2 [0, 1] becomes known to

the agent after v has been executed.

Algorithm 2: ActionCoordination
Input: Number of time steps T ; agent i’s action set Vi;

objective set function f : 2VN 7! R.
Output: Agent i’s action ai, t at each t 2 [T].

1: ⌘1
p

8 log |Vi| / T ;
2: w1

⇥
w1, 1, . . . , w|Vi|, 1

⇤> with wv, 1 = 1, 8a 2 Vi;
3: for each time step t 2 [T] do

4: get distribution pt wt / kwtk1;
5: draw action ai, t 2 Vi from pt;
6: input ai, t to NeighborSelection and

receive neighbors’ actions {aj, t}j 2Ni, t ;
7: ra, t f(a | {aj, t}j 2Ni, t) and

normalize ra, t to [0, 1], 8a 2 Vi;
8: wa, t+1 wa, t exp (⌘1 ra, t), 8a 2 Vi;
9: end for

Problem 2 asks for MAB-RegT to be sublinear, i.e.,
MAB-RegT /T ! 0 for T ! +1, since this implies that
the agent asymptotically chooses optimal actions even though
the rewards are unknown a priori [26].

Problem 2 presents two versions of MAB, one with full-
information feedback, and one with bandit feedback. The
difference between them is that, at each t 2 [T], in full-
information feedback the rewards of all v 2 V are revealed,
even though only one action is selected; while in bandit
feedback, only the reward of the selected action is revealed.
B. Action Coordination

We present ActionCoordination and its performance guar-
antee. To this end, we introduce the coordination problem
that ActionCoordination instructs the agents to simultaneously
solve and show that it takes the form of Problem 2 with
full-information feedback. We use the definitions:
• At , {ai, t}i2N is the set of all agents’ actions at t;
• AOPT 2 argmaxai 2Vi, 8 i2N f({ai}i2N) is the optimal

actions for agents N that solve eq. (1);
• N ?

i is the optimal neighborhood corresponding to
{ai, t}t2[T] that solves eq. (8);

• f , 1�minv 2V [f(V)� f(V \ {v})]/f(v) is the curva-
ture of f [27]. f measures how far f is from modularity:
if f = 0, then f(V)�f(V \{v}) = f(v), 8v 2 V , i.e., f
is modular. In contrast, f = 1 in the extreme case where
there exist v 2 V such that f(V) = f(V \ {v}), i.e., v has
no contribution in the presence of V \ {v}.
The intuition is that the agents should select actions

simultaneously such that each agent i selects an action ai, t
that maximizes the marginal gain f(a | {aj, t}j 2Ni, t). But
since the agents select actions simultaneously, {aj, t}j 2Ni, t

become known only after agent i selects ai, t and com-
municates with Ni, t, i.e., computing f(a | {aj, t}j 2Ni, t)
becomes feasible for all a 2 Vi only in hindsight. To this
end, ActionCoordination instructs each agent i to select actions
{ai, t}t2 [T] such that the action regret

max
a2Vi

TX

t=1

f(a | {aj, t}j 2Ni, t)�
TX

t=1

f(ai, t | {aj, t}j 2Ni, t), (5)

is sublinear in T . Thus, the action coordination problem takes
the form of Problem 2 with full-information feedback, where

5396

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 08,2025 at 13:56:21 UTC from IEEE Xplore. Restrictions apply.

the reward of each action a 2 Vi is the marginal gain, i.e.,
ra, t , f(a | {aj, t}j 2Ni, t).

ActionCoordination implements a Multiplicative Weights
Update (MWU) procedure to converge to an optimal solution
to eq. (5) —the MWU procedure has been introduced to
solve Problem 2 with full-information feedback [28]. In more
detail, ActionCoordination starts by initializing a learning rate
⌘1 and a weight vector wt for all available actions a 2 Vi

(Algorithm 2’s lines 1-2). Then, at each time step t 2 [T],
ActionCoordination executes in sequence the steps:
• Compute probability distribution pt using wt (lines 3-4);
• Select action ai, t 2 Vi by sampling from pt (line 5);
• Send ai, t to NeighborSelection and receive neighbors’

actions {aj, t}j 2Ni, t (line 6);
• Compute marginal gain of selecting a 2 Vi as reward ra, t

associated with each a 2 Vi, and update weight wa, t+1

for each a 2 Vi (lines 7-9).1

Proposition 1 (Approximation Performance). The agents

select actions via ActionCoordination such that:

TX

t=1

f(At) �
1� f

1 + f � 2f

TX

t=1

"
f(AOPT) (6)

+
X

i2N
[f(ai, t)� f(ai, t | {aj, t}j 2Ni, t)]| {z }

If,t(ai, t;Ni, t)

#
� Õ

⇣
|N |
p
T

⌘

| {z }
sublinear regret

.

where Õ(·) hides log terms.

Proposition 1 implies that the approximation perfor-
mance of ActionCoordination increases for network designs
{Ni, t}i2N with higher value If,t(ai, t; Ni, t). Particularly,
the �

P
i2N If,t(ai, t; Ni, t) plays the role of C({Ni}i2N)

in Introduction. Intuitively, If,t(ai, t; Ni, t) captures the util-
ity overlap between agent i’s action and the actions of its
neighbors: for example, when the network is fully discon-
nected (Ni, t = ;, 8i 2 N), then If,t(ai, t; Ni, t) = 0.

Definition 3 (Mutual Information between an Agent and Its
Neighbors). At any t 2 [T], given an agent i 2 N with

an action ai, t and neighbors Ni, t, the mutual information

between the agent and its neighbors is denoted by
2

If,t(ai, t; Ni, t) , f(ai, t)� f(ai, t | {aj, t}j 2Ni, t). (7)

NeighborSelection will next leverage Lemma 1 to enable
the agents to distributively select a network topology that
optimizes the approximation bound of ActionCoordination.

Lemma 1 (Monotonicity and Submodularity of If, t). Given

an a 2 Vi and a non-decreasing and 2nd-order submodular

function f : 2VN 7! R, then If,t(a; ·) is non-decreasing and

submodular in the second argument.

C. Neighbor Selection

1The coordination algorithms in [12]–[14] instruct the agents to select
actions simultaneously at each time step as ActionCoordination, but they lift
the coordination problem to the continuous domain and require each agent
to know/estimate the gradient of the multilinear extension of f , which leads
to a decision time at least one order higher than ActionCoordination [11].

2The quantity in eq. (7) extends the definition of submodular mutual

information [29] to the multi-agent setting introduced herein.

Algorithm 3: NeighborSelection
Input: Number of time steps T ; agent i’s neighbor

candidate set Mi ✓ N \ {i}; agent i’s neighborhood
size ↵i; objective set function f : 2VN 7! R.

Output: Agent i’s neighbors Ni, t at each t 2 [T].

1: ⌘2
p

2 log |Mi| / (|Mi|T); � = ⌘2/2;

2: z
(k)
1

h
z
(k)
1, 1, . . . , z

(k)
↵i, 1

i>
with z

(k)
j, 1 = 1,

8v 2Mi, 8k 2 [↵i];
3: for each time step t 2 [T] do

4: receive action ai, t from ActionCoordination;
5: for k = 1, . . . ,↵i do

6: get distribution q
(k)
t z

(k)
t / kz(k)t k1;

7: draw agent j(k)t 2Mi from q
(k)
t ;

8: receive action a
j(k)
t , t

from j
(k)
t ;

9: r
j(k)
t , t

 If,t(ai, t; {aj(1)t , t
, . . . , a

j(k)
t , t

})�
If,t(ai, t; {aj(1)t , t

, . . . , a
j(k�1)
t , t

})
and normalize r

j(k)
t , t

to [0, 1];

10: r̃
(k)
j, t 1� 1(j(k)

t = j)

q(k)
j, t + �

⇣
1 � r

j(k)
t , t

⌘
, 8j 2Mi;

11: z
(k)
j, t+1 z

(k)
j, t exp (⌘2 r̃

(k)
j, t), 8j 2Mi;

12: end for

13: Ni, t {jk, t}k2 [↵i];
14: end for

We present NeighborSelection. To this end, we introduce the
neighbor-selection problem that NeighborSelection instructs
the agents to simultaneously solve and show that it takes the
form of Problem 2 with bandit feedback.

Since ActionCoordination’s suboptimality bound improves
when If,t(ai, t; Ni, t) increases, NeighborSelection instructs
each agent i to select its neighbors by solving the cardinality-
constrained maximization problem:

max
Ni, t ✓Mi, |Ni, t|↵i

TX

t=1

If,t(ai, t; Ni, t), (8)

where ai, t is given by ActionCoordination (Fig. 1). The
problem in eq. (8) is a submodular optimization problem
since we prove that If,t(ai, t; Ni) is submodular in Ni.

But If,t(ai, t; Ni, t) is computable in hindsight only: the
{aj, t}j 2Ni, t become known only after agent i has selected
and communicated with Ni, t. Therefore, eq. (8) takes the
form of cardinality-constrained bandit submodular maxi-
mization [1], [30], [31], which is an extension of Problem 2
to the submodular multi-agent setting.

Solving eq. (8) using algorithms for Problem 2 with bandit
feedback will lead to exponential-running-time algorithms
due to an exponentially large V per eq. (4) [31]. Therefore,
NeighborSelection instead extends [31, Algorithm 2], which
can solve eq. (8) in the full-information setting, to the bandit
setting [1]. Specifically, NeighborSelection decomposes eq. (8)
to ↵i instances of Problem 2 with bandit feedback, and sepa-
rately solves each of them using the EXP3-IX algorithm [32],
which can handle bandit feedback.

NeighborSelection starts by initializing a learning rate ⌘2
and ↵i weight vectors z

(k)
t , 8k 2 [↵i], each determining the

5397

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 08,2025 at 13:56:21 UTC from IEEE Xplore. Restrictions apply.

k-th selection in Ni, t (Algorithm 3’s lines 1-2). Then, at
each t 2 [T], NeighborSelection executes the steps:
• Receive action ai, t by ActionCoordination (lines 3-4);
• Compute distribution q

(k)
t using z

(k)
t , 8k 2 [↵i] (lines 5-6);

• Select agent j
(k)
t 2 Mi as neighbor by sampling from

q
(k)
t , and receive its action a

j(k)
t , t

, 8k 2 [↵i] (lines 7-8);
• For each k 2 [↵i], compute reward r

j(k)
t , t

associated with

each j
(k)
t , estimate reward r̃

(k)
j, t for each j 2 Mi, and

update weight z(k)j, t+1 for each j 2Mi (lines 9-12).

IV. APPROXIMATION GUARANTEE

We present the suboptimality bound of Anaconda. Thus,
the bound compares Anaconda with an optimal fully central-

ized algorithm that maximizes f per eq. (1).

Theorem 1 (Approximation Performance). Anaconda in-

structs over t 2 [T] each agent i 2 N to select actions

{ai, t}t2 [T] and neighborhoods {Ni, t}t2 [T] that guarantee:

• If the network is fully centralized, i.e., Ni, t ⌘ N \ {i},

E [f(At)] �
1

1 + f
f(AOPT)� Õ

⇣
|N |

p
1/T

⌘

| {z }
�(T)

. (9)

• If the network is fully decentralized, i.e., Ni, t ⌘ ;,

E [f(At)] �
1� f

1 + f � 2
f

f(AOPT)�Õ

⇣
|N |

p
1/T

⌘

| {z }
�(T)

. (10)

• If the network is anything in between fully centralized and

fully decentralized, i.e., Ni, t ✓Mi ✓ N \ {i},

E [f(At)] �
1� f

1 + f � 2
f

f(AOPT)

+
1� f

1 + f � 2
f

1
f

(1� e
�f)E

"
X

i2N

If,t(ai, t; N ?
i)

| {z }
I?

#

�Õ

✓
↵̄|N |

q
|M̄|/T

◆
� log (2/�)Õ

✓
↵̄|N |

q
|M̄|/T

◆

| {z }
 (T)

, (11)

where ↵̄ , maxi2N ↵i, and |M̄|, maxi2N |M̄i|.
Particularly, each case above holds with probability at least

1 � �, for any � 2 (0, 1), and the expectation is due to

Anaconda’s internal randomness. Õ(·) hides log terms.

Theorem 1 quantifies both the suboptimality of Anaconda
due to decentralization, and the convergence speed of Ana-
conda. Both are affected as follows:
• Effect of online co-design of network topology and agent

actions: in eq. (11) captures the convergence speed of
the network and action selection and its impact to the
suboptimality bound —similarly in eqs. (9) and (10) for
� and �. Particularly, vanishes as T ! 1, having
no impact on the suboptimality bound anymore, and its
vanishing speed captures how fast the agents converge to
near-optimal actions and neighborhoods.

• Effect of resource-minimal distributed communication and

action coordination: After vanishes as T ! 1, the

bound in eq. (11) depends on I
? that captures the subop-

timality due to decentralization such that the higher I
?

is the better is Anaconda’s approximation performance.
Particularly, I

? depends on the neighborhoods of each
agent i, and the larger agent i’s neighborhood can be, the
higher I

? can be since If,t(ai, t; Ni) is non-decreasing
in Ni. Then, the better Anaconda’s suboptimality bound
can be per eq. (11). In contrast, if ↵i = 0 for all agents
i 2 N , then If,t(ai, t; ;) = 0, and as T ! 1, eq. (10)
and eq. (11) become the same.
Overall, eqs. (9) to (11) imply that Anaconda’s global
suboptimality bound will improve if the agents can
communicate and coordinate over a more central-
ized network, with the bound covering the range
[(1� f)/(1 + f � 2f), 1/(1 + f)] as the network cov-
ers the spectrum from being fully decentralized (eq. (10))
to fully centralized (eq. (9)). Importantly, the 1/(1 + f)
suboptimality bound in the fully centralized case recovers
the bound in [27] and is near-optimal since the best
possible bound for in (3) is 1� f/e [33].3

In all, asymptotically (as T ! 1), Anaconda enables

the agents to individually select near-optimal actions and

communication neighborhoods.

Remark 2 (On the Tightness of Approximation Bounds).
The approximation bound in Theorem 1 are not necessarily

tight. Particularly, the bound in eq. (11) does not converge

to 1/(1 + f) when the network becomes fully centralized.

As part of our future work, we will investigate tight bounds.

V. RUNTIME ANALYSIS

We present the runtime of Anaconda by analyzing its
computation and communication complexity (accounting for
message length). We use the notation and observations:
• ⌧f is the time required for one evaluation of f ;
• ⌧c is the time for transmitting the information about one

action from an agent directly to another agent;
• ✏ is Anaconda’s convergence error after T iterations: if the

network is fully centralized or fully decentralized, then
Anaconda’s convergence error after T iterations is ✏ only
if, per eqs. (9) and (10), �(T)  ✏ or �(T)  ✏ , i.e., T �
|N |2 / ✏. Similarly, if the network is anything in between,
per eq. (11), only if (T)  ✏, i.e., T � |Mi| |N |2 / ✏.

Proposition 2 (Computational Complexity). At each t 2 [T],
Anaconda requires each agent i to execute |Vi|+2↵i+1 eval-

uations of f and O(|Vi|+↵i|Mi|) additions/multiplications.

Proposition 3 (Communication Complexity). At each t 2
[T], Anaconda requires one communication round where each

agent i only transmits its own action to other agents.

Theorem 2 (Decision Speed). Anaconda terminates in

O
�
[⌧f maxi2N (|Vi|+↵i) + ⌧c] (maxi2N |Mi|) |N |2 / ✏

.

Corollary 1 (Decision Speed for Sparse Networks). In

sparse networks, where |Mi|= o(|N |), Anaconda terminates

in O
�
[⌧f maxi2N (|Vi|+↵i) + ⌧c] |N |2 / ✏

time.

3The bounds 1/(1+f) and 1�f/e become 1/2 and 1� 1/e when,
in the worst case, f = 1.

5398

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 08,2025 at 13:56:21 UTC from IEEE Xplore. Restrictions apply.

(a) ⌧f = 0.01s, ⌧c = 0.05s. (b) ⌧f = 0.01s, ⌧c = 0.01s. (c) ⌧f = 0.05s, ⌧c = 0.01s.

Fig. 2: Area Monitoring with Multiple Cameras: Anaconda vs. DFS-SG. The cameras select the locations of their FOVs either per Anaconda with
different maximum neighborhood sizes ranging among {0, 1, 3, 5}, or per the DFS-SG. (a)-(c) are averaged over 30 Monte-Carlo trials. From (a) to (b) to
(c), the time ⌧c of communicating an action decreases compared to the time ⌧f of completing a function evaluation, with ⌧c/⌧f = {5, 1, 0.2}.

Remark 3 (Anaconda vs. Sequential Greedy [15]). In

sparse networks, Anaconda can be one order faster

than the Sequential Greedy algorithm, which requires

O(⌧f
P

i2N |Vi|+ ⌧c |N |3) time to terminate for directed

networks. The decision time results from each agent i in the

sequence needing to first evaluate f for |Vi| times and then

transmit all actions selected so far by agents [i] to agent (i+
1). The proof appears in the full version [22], following the

steps of [19, Proposition 2] accounting for the size of each

inter-agent communication message. In contrast, Anaconda
requires O

�
[⌧f maxi2N (|Vi|+↵i) + ⌧c] |N |2 / ✏

time

to terminate. For example, if ⌧f = ⌧c = ⌧ and |Vi|= v, 8i 2
N , with ⌧ and v being constant, then Sequential Greedy takes

O(|N |3) time while Anaconda takes O(|N |2/✏) time.

VI. NUMERICAL EVALUATION IN SENSOR SCHEDULING
FOR AREA MONITORING

We evaluate Anaconda in a simulated scenario of 2D
area monitoring. The results are summarized in Fig. 2. We
next elaborate on the simulated area monitoring setup, the
compared algorithms, and the used performance metrics.

Area Monitoring Setup. The setup is as follows:
• Environment: The environment is a static 100⇥ 100 map.
• Agents: There exist 60 downward-facing cameras. Each

camera i 2 N is located at xi 2 [0, 100]2 and can point
its limited field of view (FOV) to different directions.

• Actions: Each camera i has a circular FOV of radius r = 7
and can point it to 8 cardinal directions. Particularly, at
each time step t, camera i can locate the center of its FOV
at ai, t 2 Vi where Vi , xi + [r cos ✓t, r sin ✓t] and ✓t is
one of the 8 cardinal directions. Each camera i is unaware
of Vj , j 2 N\{i}. Thus, the cameras have to communicate
to know about one another’s action information.

• Communication Network: The emergent communication
network Gt can be directed and time-varying. At each time
step t, each camera i first finds its neighbor candidate set
Mi , {j}kxj�xikci, j 2N\{i}, where ci is i’s commu-
nication range. Then, it uses NeighborSelection to select
neighborhood Ni, t from Mi. Once Ni, t is determined by
all cameras i 2 N , Gt is defined.

• Objective Function: f({ai, t}i2N) is the total area cov-
ered by the cameras N when they select {ai, t}i2N as the
centers of their FOVs. f is proved to be submodular [3].

Compared Algorithms. We evaluate Anaconda against
the state-of-the-art algorithm DFS-SG [19] across 30 Monte-
Carlo scenarios where at each trial (i) each camera location
xi is uniformly sampled from [0, 100]2, 8i 2 N , and
(ii) the communication ranges ci, 8i 2 N are uniformly
sampled from [15, 20]. We repeat the 30 trials over three
sets of possible values of ⌧f and ⌧c, (⌧f , ⌧c) = (0.01s,
0.05s), (0.01s, 0.01s), or (0.05s, 0.01s), that capture scenar-
ios with different computational and communication loads.

In more detail, we evaluate the following algorithms:
a) Anaconda with different neighborhood sizes: To

evaluate the impact of decentralization on the trade-off be-
tween decision speed and total area coverage, at each Monte-
Carlo trial, we ran multiple Anaconda varying the maximum
neighborhood size ↵i  nmax, where nmax = {0, 1, 3, 5}.

b) DFS-SG [19]: We also compare Anaconda with the
state-of-the-art algorithm DFS-SG. DFS-SG requires a given
connected communication network to run. To this end, at
each trial, we first sample the same communication ranges
ci from [15, 20] and construct Mi, 8i 2 N for both Ana-
conda and DFS-SG. Then, while Anaconda actively selects
neighbors Ni, t ✓ Mi, 8i 2 N , to enable scalability, DFS-
SG will directly take Ni, t ⌘Mi, 8t. We set the range ci to
be not too small to ensure the communication network for
DFS-SG is always connected.

Performance Metrics. We evaluate the performance of
the algorithms in terms of their (i) decision speed —time to
convergence— and (ii) achieved objective value.

System Specifications. We ran all simulations using
Python 3.11.7 on a Windows PC with the Intel Core i9-
14900KF CPU @ 3.20 GHz and 64 GB RAM.

Code. The code is available at https://github.com/UM-
iRaL/Self-configurable-network.

Results. The simulation results are presented in Fig. 2.
From Fig. 2, we observe the following:
• Trade-off of centralization and decentralization: As the

neighborhood size nmax increases, i.e., the coordination
becomes more centralized, the convergence speed of Ana-
conda decreases, while the total covered area upon conver-
gence increases. These observations agree with the proven
theory: (i) per Proposition 2, NeighborSelection runs faster
when each agent can select fewer neighbors; and (ii) per
Theorem 1, as the cameras’ neighborhood sizes increase,

5399

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 08,2025 at 13:56:21 UTC from IEEE Xplore. Restrictions apply.

the approximation performance of Anaconda increases.
• Anaconda vs. DFS-SG: Upon convergence, both algorithms

cover a comparable total area. As expected, Anaconda
converges faster when the communication cost to the
decision speed is no less than the computational cost
(⌧c � ⌧f). In more detail, we observe the following:
– Total covered area: Anaconda starts with a non-zero

covered area (30% of the total area), whereas DFS-SG
starts from near-zero covered area. The reason is that
Anaconda instructs all cameras to execute an action from
the start of time, whereas DFS-SG instructs the cameras
to execute actions sequentially. Upon convergence, the
two algorithms cover a comparable total area.

– Convergence speed: When the communication cost to
the decision speed is no less than the computation cost
(⌧c � ⌧f), then Anaconda converges faster. For example,
for ⌧f = 0.01s and ⌧c = 0.05s (Fig. 2(a)), Anaconda
converges within 10s to 20s, whereas DFS-SG achieves
comparable performance at 80s. Anaconda converges
slower when ⌧f = 0.05s and ⌧c = 0.01s (Fig. 2(c))
since Anaconda requires more computations per step.
But still, Anaconda covers a comparable total area to
DFS-SG across all time steps in Fig. 2(c).

VII. CONCLUSION

We introduced a rigorous approach, Anaconda, that enables
multi-agent networks to self-configure their communication
topology to balance the trade-off between decision speed and
approximation performance during multi-agent coordination.
Compared to the state of the art, Anaconda is an anytime
self-configuration algorithm that quantifies its suboptimality
guarantee for any type of network, from fully disconnected to
fully centralized, and that, for sparse networks, is one order
faster. We demonstrated Anaconda in simulated scenarios of
area monitoring with multiple cameras.

Future work. We will extend this work to reduce the
number of function evaluations needed by Anaconda, and
investigate tighter suboptimality bounds.

REFERENCES

[1] Z. Xu, X. Lin, and V. Tzoumas, “Bandit submodular maximization
for multi-robot coordination in unpredictable and partially observable
environments,” in Robotics: Science and Systems (RSS), 2023.

[2] N. Atanasov, J. Le Ny, K. Daniilidis, and G. J. Pappas, “Decentralized
active information acquisition: Theory and application to multi-robot
SLAM,” in IEEE Inter. Conf. Rob. Auto. (ICRA), 2015, pp. 4775–4782.

[3] M. Corah and N. Michael, “Distributed submodular maximization on
partition matroids for planning on large sensor networks,” in IEEE

Conference on Decision and Control (CDC), 2018, pp. 6792–6799.
[4] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor place-

ments in gaussian processes: Theory, efficient algorithms and empirical
studies,” Jour. Mach. Learn. Res. (JMLR), vol. 9, pp. 235–284, 2008.

[5] A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser, “Efficient informa-
tive sensing using multiple robots,” Journal of Artificial Intelligence

Research (JAIR), vol. 34, pp. 707–755, 2009.
[6] P. Tokekar, V. Isler, and A. Franchi, “Multi-target visual tracking with

aerial robots,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2014, pp. 3067–3072.
[7] B. Gharesifard and S. L. Smith, “Distributed submodular maximization

with limited information,” IEEE Transactions on Control of Network

Systems (TCNS), vol. 5, no. 4, pp. 1635–1645, 2017.
[8] J. R. Marden, “The role of information in distributed resource allo-

cation,” IEEE Transactions on Control of Network Systems (TCNS),
vol. 4, no. 3, pp. 654–664, 2017.

[9] D. Grimsman, M. S. Ali, J. P. Hespanha, and J. R. Marden, “The
impact of information in distributed submodular maximization,” IEEE

Trans. Ctrl. Netw. Sys. (TCNS), vol. 6, no. 4, pp. 1334–1343, 2019.
[10] B. Schlotfeldt, V. Tzoumas, and G. J. Pappas, “Resilient active

information acquisition with teams of robots,” IEEE Transactions on

Robotics (TRO), vol. 38, no. 1, pp. 244–261, 2021.
[11] Z. Xu and V. Tzoumas, “Resource-aware distributed submodular

maximization: A paradigm for multi-robot decision-making,” in IEEE

Conference on Decision and Control (CDC), 2022, pp. 5959–5966.
[12] B. Du, K. Qian, C. Claudel, and D. Sun, “Jacobi-style iteration for dis-

tributed submodular maximization,” IEEE Transactions on Automatic

Control (TAC), vol. 67, no. 9, pp. 4687–4702, 2022.
[13] N. Rezazadeh and S. S. Kia, “Distributed strategy selection: A

submodular set function maximization approach,” Automatica, vol.
153, p. 111000, 2023.

[14] A. Robey, A. Adibi, B. Schlotfeldt, H. Hassani, and G. J. Pappas,
“Optimal algorithms for submodular maximization with distributed
constraints,” in Learn. for Dyn. & Cont. (L4DC), 2021, pp. 150–162.

[15] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, “An analysis
of approximations for maximizing submodular set functions–II,” in
Polyhedral combinatorics, 1978, pp. 73–87.

[16] U. Feige, “A threshold of ln(n) for approximating set cover,” Journal

of the ACM (JACM), vol. 45, no. 4, pp. 634–652, 1998.
[17] Q. Wu, J. Xu, Y. Zeng, D. W. K. Ng, N. Al-Dhahir, R. Schober,

and A. L. Swindlehurst, “A comprehensive overview on 5G-and-
beyond networks with UAVs: From communications to sensing and
intelligence,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 10, pp. 2912–2945, 2021.

[18] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, “Maximizing a
monotone submodular function subject to a matroid constraint,” SIAM

Journal on Computing, vol. 40, no. 6, pp. 1740–1766, 2011.
[19] R. Konda, D. Grimsman, and J. R. Marden, “Execution order matters

in greedy algorithms with limited information,” in American Control

Conference (ACC), 2022, pp. 1305–1310.
[20] Y.-C. Liu, J. Tian, C.-Y. Ma, N. Glaser, C.-W. Kuo, and Z. Kira,

“Who2com: Collaborative perception via learnable handshake com-
munication,” in IEEE International Conference on Robotics and Au-

tomation (ICRA), 2020, pp. 6876–6883.
[21] Y. Niu, R. Paleja, and M. Gombolay, “Multi-agent graph-attention

communication and teaming,” in International Conference on Au-

tonomous Agents and MultiAgent Systems, 2021, pp. 964–973.
[22] Z. Xu and V. Tzoumas, “Performance-aware self-configurable multi-

agent networks: A distributed submodular approach for simultaneous
coordination and network design,” arXiv preprint:2409.01411, 2024.

[23] Y. Crama, P. L. Hammer, and R. Holzman, “A characterization of a
cone of pseudo-boolean functions via supermodularity-type inequal-
ities,” in Quantitative Methoden in den Wirtschaftswissenschaften.
Springer, 1989, pp. 53–55.

[24] S. Foldes and P. L. Hammer, “Submodularity, supermodularity, and
higher-order monotonicities of pseudo-boolean functions,” Mathemat-

ics of Operations Research, vol. 30, no. 2, pp. 453–461, 2005.
[25] O. S. Oubbati, M. Atiquzzaman, P. Lorenz, M. H. Tareque, and M. S.

Hossain, “Routing in flying ad hoc networks: Survey, constraints, and
future challenge perspectives,” IEEE Access, pp. 81 057–81 105, 2019.

[26] T. Lattimore and C. Szepesvári, Bandit Algorithms. Cambridge
University Press, 2020.

[27] M. Conforti and G. Cornuéjols, “Submodular set functions, matroids
and the greedy algorithm: Tight worst-case bounds and some general-
izations of the rado-edmonds theorem,” Discrete Applied Mathematics,
vol. 7, no. 3, pp. 251–274, 1984.

[28] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games.
Cambridge University Press, 2006.

[29] R. Iyer, N. Khargonkar, J. Bilmes, and H. Asnani, “Generalized
submodular information measures: Theoretical properties, examples,
optimization algorithms, and applications,” IEEE Transactions on

Information Theory, 2021.
[30] M. Zhang, L. Chen, H. Hassani, and A. Karbasi, “Online continuous

submodular maximization: From full-information to bandit feedback,”
Adv. Neu. Info. Proc. Sys. (NeurIPS), vol. 32, 2019.

[31] T. Matsuoka, S. Ito, and N. Ohsaka, “Tracking regret bounds for online
submodular optimization,” in International Conference on Artificial

Intelligence and Statistics (AISTATS). PMLR, 2021, pp. 3421–3429.
[32] G. Neu, “Explore no more: Improved high-probability regret bounds

for non-stochastic bandits,” Adv. Neu. Info. Proc. Sys., vol. 28, 2015.
[33] M. Sviridenko, J. Vondrák, and J. Ward, “Optimal approximation for

submodular and supermodular optimization with bounded curvature,”
Math. of Operations Research, vol. 42, no. 4, pp. 1197–1218, 2017.

5400

Authorized licensed use limited to: University of Michigan Library. Downloaded on June 08,2025 at 13:56:21 UTC from IEEE Xplore. Restrictions apply.

