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Abstract
Synthesizing electronic health records (EHR) data has become a
preferred strategy to address data scarcity, improve data quality,
and model fairness in healthcare. However, existing approaches
for EHR data generation predominantly rely on state-of-the-art
generative techniques like generative adversarial networks, varia-
tional autoencoders, and language models. These methods typically
replicate input visits, resulting in inadequate modeling of temporal
dependencies between visits and overlooking the generation of time
information, a crucial element in EHR data. Moreover, their ability
to learn visit representations is limited due to simple linear map-
ping functions, thus compromising generation quality. To address
these limitations, we propose a novel EHR data generation model
called EHRPD. It is a di!usion-based model designed to predict the
next visit based on the current one while also incorporating time
interval estimation. To enhance generation quality and diversity,
we introduce a novel time-aware visit embedding module and a
pioneering predictive denoising di!usion probabilistic model (P-
DDPM). Additionally, we devise a predictive U-Net (PU-Net) to
optimize P-DDPM. We conduct experiments on two public datasets
and evaluate EHRPD from "delity, privacy, and utility perspectives.
The experimental results demonstrate the e#cacy and utility of the
proposed EHRPD in addressing the aforementioned limitations and
advancing EHR data generation.

CCS Concepts
• Information systems→Data mining; •Applied computing→
Health informatics; • Computing methodologies→ Arti"cial
intelligence; Neural networks.
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1 Introduction
In healthcare, the utilization of Electronic Health Records (EHR)
data is pivotal for advancing data-driven methodologies in both
research and clinical practice [34]. EHR data possess distinctive
characteristics, as illustrated in Figure 1, including sequential and
temporal visit records, irregular time intervals between consecutive
visits, and the presence of multiple modalities. However, e!ectively
harnessing such intricate data encounters a signi"cant challenge
due to the scarcity of high-quality EHR datasets. To address this
challenge, the generation of EHR data becomes an essential solution,
providing a means to produce synthetic yet realistic supplements of
patient data for constructing robust healthcare application models.

Recent advancements in EHR data generation primarily depend
on cutting-edge generative techniques, such as generative adversar-
ial networks (GAN) [3, 6, 36], variational autoencoders (VAE) [4, 8],
and language models (LM) [30, 32]. These methodologies adhere to
a common pipeline, as depicted in Figure 2. This pipeline generally
includes an encoder to encode visit 𝐿𝐿 into a representation v𝐿 , a
generative model to generate the latent representation v̂𝐿 , and a
decoder to map v̂𝐿 to the generated visit 𝐿𝐿 . Despite their notable
performance achievements, they still encounter several limitations.

• Inadequate modeling of temporal dependencies between
visits. Real EHR data, as shown in Figure 1, comprises visits or-
dered in time, with inherent temporal dependencies among them.
However, existing methodologies employ a visit-replicating ap-
proach, generating a synthesis𝐿𝐿 for the input𝐿𝐿 without explicitly
addressing the temporal relationships between visits. An optimal
generative model should inherently incorporate these temporal
characteristics, such as directly using the current visit 𝐿𝐿 to gener-
ate the next visit 𝐿𝐿+1.
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Figure 1: An example of multimodal EHR data, where 𝐿𝐿
denotes the visit information and 𝑀𝐿 represents its time.

• Failure to simultaneously generate time intervals be-
tween visits. Current models aimed at generating detailed data
frequently overlook a crucial aspect of patient healthcare: time
information. As illustrated in Figure 1, time information is a vital
component of EHR data, playing a signi"cant role in modeling
disease progression. Therefore, e!ectively capturing temporal de-
pendencies between visits necessitates incorporating the modeling
of time intervals between visits concurrently, enabling accurate
characterization of patient health trajectories.

• Limited capability in learning visit representations. Ow-
ing to the discrete nature of certain EHR modalities like diagnosis
codes, procedures, and medication codes, existing models embed
the input visit 𝐿𝐿 into a continuous representation v𝐿 "rst, as de-
picted in Figure 2. The quality of the generated EHR data directly
hinges on v𝐿 . However, current methods only utilize simple linear
layers as the mapping function, potentially insu#cient for rep-
resenting the complexity of EHR data. Hence, there is a need to
explore alternative approaches for learning visit representations.

• Lack of a robust generation model to balance data di-
versity and quality. From a modeling perspective, GAN-based
approaches encounter the issue of model collapsing during train-
ing [3, 6, 36], while VAE-based approaches rely on a strong Gaussian
assumption that may not align well with EHR data [4, 8]. LM-based
approaches either depend on additional knowledge to generate
diverse data, making it di#cult to control data quality [32], or uti-
lize autoregressive masked language training techniques to ensure
quality but sacri"ce diversity [30]. None of the existing models
adequately address this challenging task. Therefore, the develop-
ment of a powerful and comprehensive EHR generation model is
urgently needed in healthcare.

To comprehensively address the aforementioned limitations, we
introduce EHRPD1 in this paper, a di!usion-based model outlined
in Figure 3. Unlike existing approaches, EHRPD aims to capture the
temporal characteristic of EHR data by generating the next visit
𝐿𝐿+1 based on the current visit 𝐿𝐿 . Speci"cally, EHRPD takes multi-
modal EHR visit𝐿𝐿 = {𝑁1

𝐿 , · · · ,𝑁𝑀
𝐿 } as input, where 𝑂 denotes the

number of modalities. Initially, EHRPD encodes the input𝐿𝐿 using the
designed time-aware visit embedding module, which facilitates
the modeling of "ne-grained code appearance patterns concerning
time intervals when learning the visit embedding, denoted as v𝐿 .

The learned visit embedding v𝐿 is then utilized to generate the
latent representation of the subsequent visit v̂𝐿+1 via a novel pre-
dictive denoising di!usion probabilistic model (P-DDPM).
P-DDPM comprises three key processes – a forward noise addition

1
EHRPD code repository: https://anonymous.4open.science/r/EHRPD-465B
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Figure 2: Pipeline comparison between existing approaches
and our proposed EHRPD.

process, a backward denoising di!usion process, and a predictive
mapping process to encapsulate the temporality between visits
in each di!usion step. To learn the latent representation v̂𝐿+1, we
integrate the backward denoising di!usion process with a novel
predictive U-Net (PU-Net). The obtained representation v̂𝐿+1 is
then employed to generate multimodal EHR data 𝐿𝐿+1 through the
decoding EHR prediction module. The catalyst representation
learning module is dedicated to estimating the time interval be-
tween 𝐿𝐿 and 𝐿𝐿+1, as well as assembling the catalyst information
𝛚𝐿 used in PU-Net, including demographics D, historical EHR
representation h𝐿 , and the estimated time interval embedding 𝛆̂𝐿 .

In summary, the proposed EHRPD not only addresses the mod-
eling of temporality between visits but also facilitates the simul-
taneous estimation of time intervals. Furthermore, the introduced
time-aware visit embedding module can learn comprehensive visit
embeddings by explicitly capturing code appearance patterns. Addi-
tionally, the design of P-DDPM inherits the robustness of existing
DDPMs [15, 37] while leveraging the diversity and quality of the
generated EHR data through the noise addition and denoising pro-
cess via the proposed PU-Net. Finally, extensive experiments are
conducted onMIMIC-III and Breast Cancer Trial datasets to validate
the proposed EHRPD from "delity, privacy, and utility perspectives.
Experimental results demonstrate the superiority of EHRPD in EHR
generation.

2 Related Work
EHR Data Generation. To generate synthetic medical data to alle-
viate data scarcity, data generation methods in the medical domain
that are equipped with GAN [3, 6, 36, 38], VAE [4, 8], LM [30, 32],
and DDPM [15, 37] have shown great success from their debut.
Earlier methods [3, 6] perform visit-level code aggregation to pro-
duce one or a few feature vectors and generate synthetic ones with
GAN. However, this summarization would inevitably lose temporal
dynamics and lead to inferior performance. To address this prob-
lem, recent work [4, 6, 8, 30, 32, 36] aims to generate EHR data
on the visit level. These "ne-grained methods learn and leverage
the hidden visit-wise relationship in EHR data with sequential
learning techniques such as Tansformer, achieving state-of-the-art
results. However, these methods ignore the time information of
the patient’s visit that contains crucial information such as disease
progression and thus are suboptimal in their performance.

Denoising Di!usion Probabilistic Models. The di!usion model
has achieved considerable success in various tasks. One of its
primary applications is image generation, as demonstrated in
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Figure 3: Overview of the proposed EHRPD model.

works [16, 25, 26]. It can also be adapted to time series forecast-
ing and imputation [24, 25, 29]. Besides, the Discrete Di!usion
Model [1] adapts di!usion to discrete data space and fosters work
such as [10, 17]. Speci"c to the medical domain, the di!usion model
has been used to generate healthcare data, including works such
as [11, 15, 22, 37]. However, these methods are either task-oriented
or not designed for sequential EHR generation.

3 Methodology
This work is dedicated to the generation of realistic high-
dimensional, longitudinal, andmultimodal ElectronicHealth Record
(EHR) data. Given the sequential temporality inherent in EHR data,
our objective is to simultaneously generate the next visit 𝐿𝐿+1 and
its associated time interval ω̂𝐿 (i.e., ω̂𝐿 = 𝑀𝐿+1 ↑ 𝑀𝐿 ), where 𝑀𝐿+1
means the estimated time for 𝐿𝐿+1. This generation process relies
on the entire historical visit sequenceV1:𝐿 = [(𝐿1,𝑀1), · · · , (𝐿𝐿 ,𝑀𝐿 )]
in conjunction with demographic information D. Mathematically,
this is represented as:

{𝐿𝐿+1, ω̂𝐿 } = 𝑃(V1:𝐿 ,D), (1)

where 𝑃(·) denotes the generation function. Each visit 𝐿𝐿 =
{𝑁1

𝐿 , · · · ,𝑁𝑀
𝐿 } encompasses 𝑂 modalities, including diagnosis

codes, medication codes, lab test items, and so on.
To achieve this, we propose a novel di!usion-based EHR genera-

tion model, referred to as EHRPD, illustrated in Figure 3. This model
comprises four main modules: (1) time-aware visit embedding, (2)
predictive denoising di!usion probabilistic model, (3) catalyst rep-
resentation learning, and (4) multimodal EHR prediction. In the
following section, we provide a detailed explanation of each module.

3.1 Time-aware Visit Embedding
The easiest way to embed each visit𝐿𝐿 = {𝑁1

𝐿 , · · · ,𝑁𝑀
𝐿 } is applying

a linear mapping function for each modality 𝑁𝑁
𝐿 on its modality-

level binary representation y𝑁𝐿 ↓ {0, 1}| C𝐿 | . However, this approach
ignores nuances of the code’s evolution against time. To address
this de"ciency, we propose a time-aware visit embedding approach
to capture the temporal evolution of medical code individually.

Time-aware Code Embedding. For the 𝑄-th code 𝑅𝑁, 𝑂𝐿 that ap-
pears in the 𝑆-th modality, we record its most recent appearance
time, which is then subtracted by 𝑀𝐿 to obtain the code-level time
gap denoted as 𝑇𝑁, 𝑂𝐿 . 𝑇𝑁, 𝑂𝐿 = 0 for the "rst visit. A smaller 𝑇𝑁, 𝑂𝐿 usually
indicates a higher importance level for time-aware code embedding
learning, which is described as follows:

c𝑁, 𝑂𝐿 = 𝑈𝑁, 𝑂𝐿 MLP𝑃 ( [e𝑁, 𝑂𝐿 ;𝜴𝑁, 𝑂𝐿 ]) + (1 ↑ 𝑈𝑁, 𝑂𝐿 )e𝑁, 𝑂𝐿 , (2)

where [; ] denotes the concatenation operation, e𝑁, 𝑂𝐿 is the basic
code embedding, and 𝜴𝑁, 𝑂𝐿 is the time gap embedding calculated
by the positional embedding used in Transformer. 𝑈𝑁, 𝑂𝐿 is a gating
indicator to decide whether to incorporate time gap information
into code embedding learning, which is obtained via a Gumbel-
Softmax layer as follows:

𝑈𝑁, 𝑂𝐿 = Binarize
!""
#

exp
(
(log(p𝑁, 𝑂𝐿 [0]) +𝑉0)/𝑊

)
∑1

𝑄=0 exp
(
(log(p𝑁, 𝑂𝐿 [𝑋]) +𝑉𝑄)/𝑊

) '((
)
, (3)

where p𝑁, 𝑂𝐿 is the softmax layer output on top of a linear function on
the concatenated [e𝑁, 𝑂𝐿 ;𝜴𝑁, 𝑂𝐿 ], 𝑉 is the noise following the Gumbel
distribution, and 𝑊 is a hyperparameter.
Visit Embedding.We use a modality-level attention mechanism
to learn the aggregated time-aware visit embedding as follows:

v𝐿 =
𝑀∑
𝑁=1

𝑌𝑁
𝐿 z

𝑁
𝐿 ,

𝜶𝐿 = Softmax
(
MLP𝑅 ( [z1𝐿 ; · · · ; z𝑀𝐿 ])

)
,

z𝑁𝐿 = ReLU !"
#
MLP𝑆

!"
#
| C𝐿 |∑
𝑂=1

c𝑁, 𝑂𝐿
'(
)
'(
)
.

(4)
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3.2 Predictive Denoising Di!usion Probabilistic
Models (P-DDPM)

Existing di!usion-based models, like DDPM [12] and Glide [23],
achieve generation by reconstructing the original input data. How-
ever, the task of EHR generation di!ers signi"cantly from other
tasks, as it aims to generate sequential, time-ordered EHR data
using Eq. (1) instead of reconstructing input data. To address this
distinction, we propose a novel approach called the Predictive De-
noising Di!usion Probabilistic Model (P-DDPM) to generate the
visit information𝐿𝐿+1. Speci"cally, we treat the visit𝐿𝐿 as a reactant
and𝐿𝐿+1 as the product. In generating𝐿𝐿+1 using𝐿𝐿 , the aggregated
information from V1:𝐿 and D can be treated as the catalyst in P-
DDPM. Thus, the proposed P-DDPM contains three components –
a forward noise addition process, a predictive mapping process, and
a backward denoising di!usion process – to tackle the challenges
associated with sequential EHR data generation e!ectively.

Forward Noise Addition Process. The forward noise addition
process is "xed to a Markov chain that gradually adds Gaussian
noise to the representation of𝐿𝐿 (i.e., v𝐿 or v0𝐿 detailed in Section 3.1
Eq. (4)) as follows:

𝑍(v1:𝑇𝐿 |v0𝐿 ) =
𝑇∏
𝑈=1

𝑍(v𝑈𝐿 |v𝑈↑1𝐿 ),

𝑍(v𝑈𝐿 |v𝑈↑1𝐿 ) = N(v𝑈𝐿 ;
√
1 ↑ 𝑎𝑈v𝑈↑1𝐿 , 𝑎𝑈 I),

(5)

where 𝑏 is the number of di!usion steps, 𝑍(v1:𝑇𝐿 |v0𝐿 ) is the ap-
proximate posterior, and 𝑎𝑈 is the variance schedule at step 𝑐 . Let
𝑑𝑈 = 1 ↑ 𝑎𝑈 and 𝑑𝑈 =

∏𝑈
𝑂=1 𝑑 𝑂 , we can reparametrize the above

Gausssian steps in Eq. (5) to obtain the closed-form solution of v𝑈𝐿
at any step 𝑐 without adding noise step by step as follows:

v𝑈𝐿 =
↔
𝑑𝑈v𝑈↑1𝐿 +

↔
1 ↑ 𝑑𝑈𝑒𝑈↑1 =

↔
𝑑𝑈v0𝐿 +

↔
1 ↑ 𝑑𝑈𝑒, (6)

where 𝑒 ↓ N(0, I). The details of the forward process can be found
in Appendix Section 6.1.1.

Predictive Mapping Process. To generate the next visit 𝐿𝐿+1 us-
ing 𝐿𝐿 , we need to "rst model the relationship between these two
consecutive visits. In healthcare, such a relationship is usually mod-
eled by a disease progress function, which is equivalent to a map-
ping function to predict𝐿𝐿+1 using𝐿𝐿 along with other information.
Mathematically, we de"ne such a predictive mapping function 𝑓 (·)
at each di!usion step as follows:

v𝑈𝐿+1 = 𝑓 (v𝑈𝐿 ,𝛚𝐿 ), (7)

where𝛚𝐿 is the embedding of the aggregated information fromV1:𝐿
and D (detailed in Section 3.3), which plays a role of the catalyst
during the generation.

Backward Denoising Di!usion Process. The backward denois-
ing di!usion process in existing di!usion models aims to reverse
the above forward process and sample from 𝑍(v𝑈↑1𝐿 |v𝑈𝐿 ) to recreate
the true sample v0𝐿 . Di!erent from these approaches, our work aims
to generate the next visit’s representation, i.e., v0𝐿+1, using v0𝐿 based
on their relationship modeled in Eq. (7). Mathematically, the reverse

process of v0𝐿+1 can be formulated as follows:

𝑍(v𝑈↑1𝐿+1 |v𝑈𝐿+1, v0𝐿+1) = 𝑍(v𝑈𝐿+1 |v𝑈↑1𝐿+1 , v
0
𝐿+1)

𝑍(v𝑈↑1𝐿+1 |v0𝐿+1)
𝑍(v𝑈𝐿+1 |v0𝐿+1)

,

𝑍(v𝑈↑1𝐿+1 |v𝑈𝐿+1, v0𝐿+1) = N(v𝑈↑1𝐿+1 ; 𝜷̂𝑈 (v𝑈𝐿+1, v0𝐿+1), 𝑎𝑈 I),
(8)

By simplifying Eq. (8) according to the Gaussian distribu-
tion’s density function, we can obtain the variance 𝑎𝑈 and mean
𝜷̂𝑈 (v𝑈𝐿+1, v0𝐿+1) of 𝑍(v𝑈↑1𝐿+1 |v𝑈𝐿+1, v0𝐿+1) as follows:

𝑎𝑈 =
1 ↑ 𝑑𝑈↑1
1 ↑ 𝑑𝑈

𝑎𝑈 ,

𝜷̂𝑈 (v𝑈𝐿+1, v0𝐿+1) =
↔
𝑑𝑈 (1 ↑ 𝑑𝑈↑1)

1 ↑ 𝑑𝑈
v𝑈𝐿+1 +

↔
𝑑𝑈↑1𝑎𝑈
1 ↑ 𝑑𝑈

v0𝐿+1 .
(9)

Recall in the forward process, we have obtained v𝑈𝐿+1 =
↔
𝑑𝑈v0𝐿+1+↔

1 ↑ 𝑑𝑈𝑒 in Eq. (6). Thus, themean value of the closed-form solution
to the backward di!usion process can be obtained by substituting
v0𝐿+1 in Eq. (9) as follows:

𝜷̂𝑈 (v𝑈𝐿+1, v0𝐿+1) =
1↔
𝑑𝑈

(v𝑈𝐿+1 ↑
1 ↑ 𝑑𝑈↔
1 ↑ 𝑑𝑈

𝑒𝑈 ) . (10)

By substituting v𝑈𝐿+1 in Eq. (10) with the predictive mapping pro-
cess in Eq. (7), we "nally have the closed-form solution as follows:

𝜷̂𝑈 (v𝑈𝐿+1, v0𝐿+1) =
1↔
𝑑𝑈

(𝑓 (v𝑈𝐿 ,𝛚𝐿 ) ↑
1 ↑ 𝑑𝑈↔
1 ↑ 𝑑𝑈

𝑒𝑈 ) . (11)

The details of the derivation of the backward reverse process
can be found in Appendix Section 6.1.3.
P-DDPM Learning.We typically use a U-Net with parameters 𝑔
to train the proposed P-DDPM by approximating Eq. (11), i.e.,

𝜷𝑈𝑉 (v
𝑈
𝐿+1, 𝑐) =

1↔
𝑑𝑊

(𝑓 (v𝑈𝐿 ,𝛚𝐿 ) ↑
1 ↑ 𝑑𝑊↔
1 ↑ 𝑑𝑊

𝑒𝑉 (𝑓 (v𝑈𝐿 ,𝛚𝐿 ), 𝑐)). (12)

Di!erent from conventional U-Net architecture which only takes
the noised embedding as input, we design a new predictive U-Net
(PU-Net) equipped with the capability to condition on 𝛚𝐿 during
the generation process. PU-Net also contains two paths of learning
– the downsampling path and the upsampling path.

PU-Net takes v𝑈𝐿 as the input of the "rst layer. Then, at each
layer 𝑕 , the downsampling operations include a ResNet block with
a 1-D convolution operation to generate the input of layer 𝑕 + 1 as
follows:

v𝑈𝐿,𝑋+1 = Conv(ResBlock(v𝑈𝐿,𝑋 )) . (13)

The upsampling path at the 𝑕-th layer consists of an informa-
tion aggregator, a ResNet block, and a deconvolutional (DeConv)
operation to reconstruct the input. The information aggregator is
a self-attention block (SelfAtt) to fuse the embeddings of v𝑈𝐿,𝑋 and
the transformed catalyst embedding 𝛚𝐿,𝑋 by a linear function on 𝛚𝐿 .
The upsampling operation can be formulated as follows:

v̂𝑈𝐿+1,𝑋 = DeConv(ResBlock(v̂𝑈𝐿+1,𝑋+1, SelfAtt(v
𝑈
𝐿,𝑋 ,𝛚𝐿,𝑋 ))) . (14)

Figure 4 shows the designed PU-Net; the detailed derivation can
be found in Appendix Section 6.2.
P-DDPM Reconstruction Loss. Let v̂𝐿+1 = v̂𝑈𝐿+1,0 denote the out-
put of PU-Net that is trained on a randomly selected di!usion
step 𝑐 ↓ [1, · · · , 𝑏]. The objective function of PU-Net is the mean
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Figure 4: Illustration of PU-Net.

squared errors between the generated v̂𝐿+1 and the learned embed-
ding v𝐿+1 in Section 3.1 at each training epoch as follows:

L𝑌 (𝐿𝐿 ) =
1
𝑖𝑍

| |v̂𝐿+1 ↑ v𝐿+1 | |2, (15)

where 𝑖𝑍 is dimension size of v̂𝐿+1, and the learned visit embedding
v𝐿+1 can be treated as ground truths.
Multimodal EHR Prediction. The predicted embedding v̂𝐿+1 can
also be used to predict medical codes in each modality. Speci"-
cally, for each modality𝑁𝑁

𝐿 , we use a linear layer to map v̂𝐿+1 to a
modality-level representation, and then a Sigmoid function is used
to predict the probability of a medical code on top of a multilayer
perceptron (MLP) as follows:

ŷ𝑁𝐿+1 = Sigmoid(MLP𝑄 (v̂𝐿+1)), (16)

Finally, we can use a Focal loss to train the multimodal EHR predic-
tor as follows:

L𝑎 (𝐿𝐿 ) = ↑ 1
𝑂

𝑀∑
𝑁=1

1
|C𝑁 |

| C𝐿 |∑
𝑂=1

[𝑋𝑁, 𝑂𝐿+1𝑗 (1 ↑ 𝑋𝑁, 𝑂𝐿+1)
𝑏 log(𝑋𝑁, 𝑂𝐿+1)

+ (1 ↑ 𝑋𝑁, 𝑂𝐿+1) (1 ↑ 𝑗) (𝑋𝑁, 𝑂𝐿+1)
𝑏 log(1 ↑ 𝑋𝑁, 𝑂𝐿+1)],

(17)

where |C𝑁 | denotes the number of identical codes in each modality
𝑁𝑁
𝐿 , 𝑋

𝑁, 𝑂
𝐿+1 is a binary ground truth to indicate whether the 𝑄-th code

𝑅𝑁, 𝑂𝐿+1 of the 𝑆-th modality presents in visit 𝐿𝐿+1, and 𝑗 and 𝑘 are
hyperparameters.

To optimize Eqs. (15) and (17), we need to obtain the catalyst
representation 𝛚𝐿 . Next, we introduce the details of catalyst repre-
sentation learning in Section 3.3.

3.3 Catalyst Representation 𝛚𝐿 Learning
As discussed in Section 3.2, the catalyst information is signi"cantly
important in the proposed EHRPD during the generation with P-
DDPM, which “translates” the information from v𝑈𝐿 to v𝑈𝐿+1 at each
di!usion step 𝑐 via Eq. (7). Next, we explain how we construct the
catalyst representation 𝛚𝐿 .
EHR Historical Information Representation. In clinical prac-
tice, professionals often rely on a patient’s historical medical records
for a comprehensive view of their past health issues and as a crucial

tool for informed decision-making. These records o!er a timeline
of medical events, treatments, and diagnoses that provide insights
into the patient’s health trajectory and are useful for predicting
future health scenarios. Thus, we incorporate historical medical
information as one of the conditioning factors to aid our generation
process. Based on the learned visit embedding using Eq. (4), we
utilize an LSTM network to accumulate a hidden state h𝐿 for each
visit as follows:

h𝐿 = LSTM(h𝐿↑1, v𝐿 ) . (18)
Time Interval Estimation. Not only do clinical professionals di-
agnose a patient’s health condition, but they also make a crucial
decision in determining the optimal timing for the follow-up visit
that best suits the current health condition of the patient. This
decision is often to cope with the urgency and nature of the pa-
tient’s condition: patients su!ering from acute illnesses may need
to return within a matter of days, while those with chronic diseases
revisit with a more prolonged and periodic pattern. In our approach,
we use the current health condition h𝐿 to make predictions on the
time interval till the next follow-up visit with a continuous time
LSTM [21], as shown in Eq. (19). We utilize a linear layer on hidden
state h𝐿 to learn an intensity measure 𝜸𝐿 of the current visit, which
represents a patient’s medical urgency. This intensity is subtracted
from 1, giving a close to 0 output if the patient’s condition is urgent.
Then, the second equation predicts the time gap and ensures it is
strictly above 0 with the Softplus activation function:

𝜸𝐿 = 1 ↑ tanh(MLP𝑐 (h𝐿 )),
ω̂𝐿 = Softplus(MLPω (𝜸𝐿 )) .

(19)

Demographic Information Embedding. Demographic informa-
tion is also treated as a key factor in decision-making. Thus, we
encode the demographic informationD into a dense representation
d using an MLP layer, i.e., d = MLP𝑌 (D).
Catalyst Representation Learning. Finally, the catalyst repre-
sentation 𝛚𝐿 = [h𝐿 ; 𝛆̂𝐿 ; d] is obtained by concatenating the his-
torical representation h𝐿 , the embedding of time interval through
the positional embedding on ω̂𝐿 (i.e., 𝛆̂𝐿 ), and the demographic
embedding d.

3.4 Time Interval Estimation Loss
The proposed EHRPD generates not only the next visit informa-
tion but also the time interval between visits 𝐿𝐿 and 𝐿𝐿+1. We take
another MSE loss Ltime between the real-time gap ω𝐿 and the pre-
dicted time gap ω̂𝐿 using Eq. (19) as follows:

L𝑊 (𝐿𝐿 ) = (ω𝐿 ↑ ω̂𝐿 )2, (20)

3.5 EHRPD Loss
Finally, we de"ne the total loss L of a patient with |V| visits as the
weighted sum of all three loss components by 𝑙𝑌 , 𝑙𝑎 , and 𝑙𝑊 , as
follows:

L =
1

|V| ↑ 1

|V |↑1∑
𝐿=1

(𝑙𝑌L𝑌 (𝐿𝐿 ) + 𝑙𝑎L𝑎 (𝐿𝐿 ) + 𝑙𝑊L𝑊 (𝐿𝐿 )) . (21)

4 Experiment
Due to the limited space, we put more results in the Appendix.
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MIMIC-III Breast Cancer Trial
Total Patients 46,520 Total Patients 970
Diagnosis 1,071 Adverse Events 50
Drug Codes 1,439 Medications 100
Lab Items 710 Lab Categories 9

Procedure Codes 711 Treatments 4
Table 1: Statistics of two main datasets.

4.1 Datasets
We use two publicly available datasets to validate the performance
of the proposed EHRPD, including MIMIC-III [14] and Breast Cancer
Trial2 from Project Data Sphere. The statistics of these two datasets
are listed in Table 1. For the MIMIC-III dataset, we extract all
46, 520 patients’ diagnoses, prescriptions, lab items, and procedure
codes as four modalities of interest. For the Breast Cancer Trial
dataset, we mainly follow the data preprocessing procedure de-
scribed in TWIN [8], extracting adverse events, medications, lab
categories, and treatment codes. For both datasets, each patient’s
EHR data is represented by a sequence of admissions ordered by
admission time, where each admission consists of four lists of codes
from each modality accordingly. Lastly, we add demographic infor-
mation, such as sex, age, race, etc., as a static feature vector. We
randomly split each dataset into train, validation, and test sets, with
a ratio of 75 : 10 : 15.

4.2 Implementation Details
Our model is implemented in PyTorch and trained on an NVIDIA
RTX A6000 GPU. We use the Adam optimizer with learning rate
and weight decay both set to 10↑3. We set the Focal Loss parameter
in Eq. (17) to 𝑗 = 0.75 and 𝑘 = 5. For the total EHRPD loss in Eq. (21),
we set 𝑙𝑌 = 0.5, 𝑙𝑎 = 1000, and 𝑙𝑊 = 0.01. The dimension of
h, v, !, and d are set to 256, and the PU-Net dimension list is
[1024, 512, 256].

4.3 Fidality Assessment
We perform experiments to evaluate the generated data quality
with two evaluation metrics and various baseline models, empha-
sizing the temporal coherence and cross-modality consistency of
the generated data.

4.3.1 Baselines. Our selected baseline models include MLP, GAN-
based models (medGAN [3] and synTEG [36]), VAE-based mod-
els (EVA [4] and TWIN [8]), di!usion-based approaches (TabD-
DPM [15], Meddi! [11], and ScoEHR [22]), and language model-
based approaches (PromptEHR [32] and HALO [30]). Appendix
Section 6.3 describes each model’s detailed explanation.

4.3.2 Experiment Design and Evaluation Metrics. In this exper-
iment, we use MIMIC-III and the Breast Cancer Trial as input
databases separately. Each model produces a synthetic dataset cor-
responding to the original one, maintaining a 1:1 ratio. To assess the
e!ectiveness of these EHR generation models, we focus on the fol-
lowing evaluation metrics. Longitudinal Imputation Perplexity
(LPL) is a specialized metric used to evaluate EHR generation mod-
els. This metric adapts the traditional concept of perplexity from

2Clinical Trial ID: NCT00174655, https://www.projectdatasphere.org/

natural language processing to suit the unique temporal structure
of EHR data. The LPL metric e!ectively captures the model’s ability
to predict the sequence of medical events over time, considering
the chronological progression of a patient’s health condition. In
contrast to the LPL, which concentrates on the temporal coherence
within a single modality, Cross-modality Imputation Perplex-
ity (MPL) extends this concept to encompass the interrelations
among di!erent modalities, by assessing the model’s pro"ciency in
integrating and predicting across various types of data modalities,
making it a more comprehensive measure of a model’s ability to
handle the multifaceted nature of EHR data.

4.3.3 Experimental Results. Table 2 shows the experimental results
on the LPL and MPL metrics of all models tested on each of the
data sources. Lower score, indicates better model performance. On the
MIMIC-III dataset, our proposed model consistently outperforms
other models across all four modalities in both LPL and MPL met-
rics. For instance, in the Diagnosis modality, our model achieves the
best LPL score of 15.97 and MPL score of 17.95, signi"cantly better
than the next best baseline model, TWIN, which scored 26.28 and
27.68 in LPL and MPL, respectively. Though PromptEHR slightly
outperforms our model in the Lab Category modality within the
Breast Cancer Trial dataset, its performance across other modalities
is less consistent. This variation indicates that while PromptEHR
can be e!ective in certain scenarios, its output generally exhibits
greater variability and less reliability compared to our model. Such
inconsistency can lead to diminished e!ectiveness in diverse medi-
cal data scenarios, underlining our model’s superior adaptability
and robustness. Overall, our model’s consistent performance across
various metrics andmodalities reinforces its e!ectiveness and broad
applicability in medical data generation.

4.4 Privacy Assessment
We also evaluate the privacy-preserving capability of our model
against other generation baseline models. The privacy-preserving
capability is how likely the generated data can be traced back to
the original data. We conduct our experiments with the Presence
Disclosure Sensitivity metric.

4.4.1 Experiment Design and Evaluation Metric. We start with a
prede"ned percentage of patient records from the training set, la-
beling them as “known” or “compromised”. The aim is to identify
these known records within the generated dataset. If the 𝑚-th visit
of a patient is matched back to one of the synthetic visits generated
by this patient by similarity score, we count it as a successful attack.
We use the metric Presence Disclosure Sensitivity (PD) [8] to
evaluate the security of our datasets. PD is the proportion of known
patient records correctly matched in the generated dataset against
the total number of compromised records. The lower the PD value,
the better the security performance. This metric e!ectively gauges
the risk of individual patient identi"cation in the generated dataset,
serving as an indicator of the dataset’s privacy and data protection
capabilities.

4.4.2 Experimental Results. Table 3 shows the experiment results
on MIMIC-III in terms of PD with varying percentages of known
patient records, ranging from 10% to 50%. Our analysis reveals that
our model consistently outperforms the baseline models across all
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Dataset Modality Metric MLP medGAN synTEG EVA TWIN TabDDPM Meddi! ScoEHR PromptEHR HALO EHRPD

M
IM

IC
-II
I

Diagnosis LPL 325.55 242.30 36.87 29.62 26.28 108.79 664.54 685.17 126.23 149.66 15.97
MPL 352.54 257.48 45.61 31.63 27.68 114.18 670.91 691.55 128.05 192.13 17.95

Drug LPL 553.63 403.02 83.38 43.79 40.94 179.22 936.28 934.87 167.48 166.11 20.53
MPL 551.67 405.75 82.66 44.02 40.86 178.70 936.14 950.27 136.04 202.01 19.15

Lab Item LPL 168.25 77.10 26.80 20.05 17.47 54.69 413.41 432.11 107.22 322.51 15.11
MPL 166.61 87.12 30.34 19.97 17.41 54.44 412.33 431.09 98.52 303.09 13.99

Procedure LPL 290.38 234.81 49.33 27.39 21.26 98.03 471.81 486.81 51.18 22.68 14.53
MPL 286.53 245.28 44.00 30.49 24.26 102.72 479.96 499.89 31.13 39.04 18.89

Br
ea
st
Ca

nc
er

Tr
ia
l Adverse Event LPL 8.42 8.00 8.21 6.08 6.08 9.31 49.04 51.82 12.37 34.83 5.96

MPL 9.37 9.42 9.70 8.30 8.52 10.86 50.13 51.57 12.14 31.51 8.02

Medication LPL 8.82 9.53 8.21 5.39 5.56 11.13 99.35 99.31 19.34 31.22 4.96
MPL 8.73 11.67 10.08 6.95 7.10 12.95 98.83 99.10 19.80 33.61 5.87

Lab Category LPL 9.33 10.41 9.63 9.07 9.09 9.06 10.95 10.93 8.55 9.14 9.01
MPL 9.22 10.08 10.03 9.09 9.11 9.03 10.96 10.97 8.66 9.28 9.09

Treatment LPL 7.29 9.43 9.09 3.09 3.12 3.67 4.77 5.01 5.10 3.44 2.63
MPL 4.47 4.83 4.43 2.89 2.92 3.22 4.84 5.00 5.63 3.05 2.41

Table 2: EHR data generation evaluation of di!erent approaches on two datasets with two metrics.

Approach 10% 20% 35% 50%
MLP 13.53 13.38 13.03 13.07

medGAN 17.06 17.19 17.56 17.79
synTEG 13.21 13.02 12.71 12.76
EVA 13.36 13.17 12.84 13.36
TWIN 13.36 13.16 12.84 12.89

TabDDPM 13.45 13.66 13.50 13.68
Meddi! 14.94 17.00 18.35 19.18
ScoEHR 14.12 15.56 16.44 16.91

PromptEHR 14.44 12.86 12.90 13.31
HALO 13.52 13.79 13.88 13.79
EHRPD 12.60 12.77 12.53 12.25

Table 3: Privacy assessment on MIMIC-III with di!erent per-
centages of known patients under the metric PD.

tested scenarios. Notably, as the percentage of known patients in-
creases, our model maintains its e!ectiveness in protecting patient
privacy. For instance, at 10% known patients, our model achieves a
Presence Disclosure Sensitivity of 12.60, and even with 50% known
patients, it has the lowest metric of 12.25. This demonstrates a
robust defense against privacy breaches, even as the challenge es-
calates with more known patient records. In comparison, other
models like medGAN, TabDDPM, and PromptEHR show higher
sensitivity, indicating a greater risk of patient identi"cation in their
generated datasets. For example, medGAN’s sensitivity ranges from
17.06 to 17.79, which is signi"cantly worse than ours. These results
underscore the e!ectiveness of our model in ensuring the privacy
and protection of patient data.

4.5 Utility Assessment
We experiment with the utility of the generated dataset from two
databases on various downstream tasks under both multimodal
and unimodal settings. We also conduct experiments to assess the
e!ectiveness of the time gap prediction module of our model.

4.5.1 Data Preprocessing. We follow the FIDDLE [28] guidelines
for data preprocessing and adapt their label de"nitions to process
the MIMIC-III database, focusing on three critical health outcomes
of a multimodal setting: Acute Respiratory Failure (ARF), Shock,

and Mortality. Additionally, we employ another data preprocessing
method from Retain [7] to obtain diagnosis codes for heart failure
risk prediction, demonstrating our model’s e!ectiveness in an uni-
modal context. Furthermore, following the work of TWIN [8], we
select patients with severe outcomes and death as positive labels.

4.5.2 Multimodal Risk Prediction Analysis. To evaluate the qual-
ity of synthetic data generated by our approach, we designed an
experiment to determine whether integrating synthetic data into
the training process enhances the performance of downstream
task-oriented models. We take all four time-series modalities and
stationary demographic information as input features to conduct
multimodal risk prediction experiments on acute respiratory fail-
ure (ARF), Shock, and Mortality datasets. We choose the following
models as baselines: F-LSTM [28], F-CNN [28], RAIM [35], and
DCMN [9], and three evaluation metrics: AUPR (the area under
the Precision-Recall curve), F1 and Kappa, following [31]. Baseline
models and the results on ARF and Shock are explained in Appendix
Section 6.4 and Section 6.7, respectively.

For each dataset, models are trained using either only original
data or a blend of synthetic and original data at a 1:1 ratio. The
results, detailed in Table 4, reveal that our method, EHRPD, con-
sistently outperforms baseline models under most conditions. No-
tably, under the Mortality task with the F-CNN architecture, EHRPD
demonstrates a 2% improvement in both AUPR and F1 metrics
compared to baselines. In contrast, the HALO model shows supe-
rior performance in speci"c metrics when paired with the F-LSTM
architecture, suggesting a particularly e!ective synergy between
HALO’s synthetic data and the F-LSTM model. Overall, these re-
sults imply our model’s potential to provide reliable synthetic data
to augment multimodal risk prediction models.

4.5.3 Unimodal Risk Prediction Analysis. To simulate a scenario
where multimodal data are unavailable, we conduct the following
unimodal risk prediction task on Heart Failure disease with diagno-
sis code only. The backbone risk prediction models are LSTM [13],
Dipole [19], Retain [7], AdaCare [20], and HiTANet [18], and are
explained in Appendix Section 6.5. We utilize the same evaluation
metric and synthetic-real data ratio as the multimodal experiment.
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Model F-LSTM F-CNN RAIM DCMN
Metric AUPR F1 Kappa AUPR F1 Kappa AUPR F1 Kappa AUPR F1 Kappa
Orginal 0.5710 0.4705 0.4221 0.5810 0.5132 0.4554 0.5849 0.5000 0.4280 0.5438 0.4742 0.4298
MLP 0.6344 0.5408 0.4747 0.6614 0.5882 0.4950 0.6226 0.5571 0.4819 0.5733 0.4975 0.4245
medGAN 0.6210 0.5685 0.4946 0.6563 0.6098 0.5337 0.6159 0.5455 0.4789 0.5668 0.5473 0.4793
synTEG 0.6309 0.5556 0.4815 0.6597 0.6026 0.5220 0.6490 0.5891 0.5185 0.5804 0.5674 0.4958
EVA 0.6313 0.5572 0.4907 0.6487 0.5703 0.4897 0.6366 0.5438 0.4890 0.5585 0.5076 0.4326
TWIN 0.6410 0.5503 0.4846 0.6642 0.5929 0.5412 0.6469 0.5876 0.5292 0.6283 0.5687 0.4992
TabDDPM 0.6489 0.5586 0.4939 0.6534 0.5672 0.5022 0.6228 0.5572 0.4858 0.5428 0.5112 0.4354
Meddi! 0.6337 0.5502 0.4823 0.6163 0.5504 0.4636 0.6161 0.5289 0.4597 0.5594 0.4969 0.4186
ScoEHR 0.6408 0.5438 0.4812 0.6392 0.6033 0.5272 0.5949 0.4964 0.4191 0.6089 0.5333 0.4594
PromptEHR 0.6580 0.5677 0.5041 0.6682 0.6079 0.5383 0.6419 0.5648 0.4923 0.6279 0.6036 0.5351
HALO 0.6673 0.5547 0.4885 0.6139 0.5234 0.4562 0.5812 0.4779 0.4119 0.6124 0.5746 0.4957
EHRPD 0.6658 0.5870 0.5251 0.6835 0.6159 0.5425 0.6548 0.5936 0.5327 0.6385 0.6147 0.5448

Table 4: Result evaluation of the Mortality task on multimodal EHR data.

Backbone Adacare Dipole HiTANet LSTM Retain
Metric AUPR F1 Kappa AUPR F1 Kappa AUPR F1 Kappa AUPR F1 Kappa AUPR F1 Kappa
Orginal 0.6242 0.6136 0.3627 0.5856 0.5740 0.3349 0.6203 0.5978 0.3740 0.5943 0.5758 0.3461 0.5989 0.5913 0.3720
MLP 0.6640 0.6376 0.4185 0.6872 0.6470 0.4511 0.6692 0.6562 0.4488 0.6706 0.6374 0.4460 0.6476 0.6279 0.4158
medGAN 0.6669 0.6400 0.4089 0.6915 0.6371 0.4490 0.6781 0.6492 0.4376 0.6667 0.6332 0.4431 0.6424 0.6285 0.4028
synTEG 0.6711 0.6121 0.4142 0.6820 0.6215 0.4174 0.6851 0.6607 0.4641 0.6676 0.6312 0.4353 0.6319 0.6285 0.4224
EVA 0.6590 0.6424 0.4189 0.6795 0.6527 0.4513 0.6813 0.6511 0.4372 0.6629 0.6307 0.4267 0.6527 0.6240 0.4208
TWIN 0.6739 0.6252 0.4328 0.6603 0.6409 0.4406 0.6789 0.6690 0.4274 0.6546 0.6264 0.4162 0.6540 0.6382 0.4187
TabDDPM 0.6677 0.6243 0.3877 0.6851 0.6342 0.4312 0.6633 0.6581 0.4480 0.6687 0.6317 0.4301 0.6465 0.6152 0.4067
Meddi! 0.6659 0.6323 0.4171 0.6756 0.6249 0.4190 0.6684 0.6301 0.4277 0.6672 0.6188 0.4119 0.6591 0.6204 0.4161
ScoEHR 0.6701 0.6395 0.4284 0.6719 0.6296 0.4117 0.6774 0.6340 0.4238 0.6624 0.5980 0.3966 0.6469 0.6282 0.4166
PromptEHR 0.6810 0.6462 0.4100 0.6748 0.6359 0.4334 0.6541 0.6182 0.4076 0.6642 0.6222 0.4178 0.6582 0.6251 0.4211
HALO 0.6742 0.6312 0.4295 0.6907 0.6562 0.4604 0.6841 0.6578 0.4489 0.6619 0.6301 0.4252 0.6518 0.6266 0.4196
EHRPD 0.6856 0.6523 0.4385 0.7018 0.6630 0.4735 0.7017 0.6777 0.4699 0.6824 0.6484 0.4506 0.6603 0.6397 0.4382

Table 5: Result evaluation on Heart Failure prediction task on unimodal EHR data.

The results of these experiments in Table 5 show our model
outperforms other generation models. Compared to the best-
performing model PromptEHR with Adacare, our model achieves
a 3% higher Kappa. One notable point is that to make a fair com-
parison between baseline models, the real data does not contain
the time interval between visits. Thus, backbone methods that rely
on learning time information, such as HiTANet, do not perform
optimally. However, we can see that when our model provides extra
time information in the synthetic dataset, HiTANet’s performance
greatly increases and is better than others: the AUPR and F1 of
HiTANet rise by 8%. This experiment not only underscores our
model’s e!ectiveness in generating high-quality unimodal data but
also demonstrates its unique capability to enrich synthetic datasets
with critical temporal information, thereby o!ering comprehensive
support for advanced predictive analytics.

4.5.4 Time Interval Prediction. While the previous experiment im-
plicitly con"rmed our model’s time interval prediction capability
and e!ectiveness for downstream risk prediction, we directly com-
pare ours to a range of established time-series forecasting baselines
in this experiment. The task is de"ned to use historical time stamps
till 𝑀𝐿 to predict 𝑀𝐿+1 and will include 𝐿𝐿 if the model structure al-
lows. The selected baseline methods include the Autoregressive
Integrated Moving Average (ARIMA) [5], Support Vector Regres-
sion (SVR) [2], Gradient Boosting Regression Trees (GBRT) [27],

ARIMA KF SVR GBRT LSTM EHRPD
RMSE 331.13 524.81 146.22 319.89 84.14 76.73

0
100
200
300
400
500
600

RM
SE

Figure 5: Illustration of time interval prediction with RMSE.

Kalman Filter (KF) [33], and LSTM [13], which are explained in
Appendix Section 6.6. We use Root Mean Squared Error (RMSE) as
the metric. The less the RMSE, the better the "t of the model.

We visualize the results in Figure 5, with red-colored bars rep-
resenting baseline models and blue representing ours, as well as
RMSE values on the bottom. We can see that timestamp-only meth-
ods do not perform well. The conventional LSTM performs closely
to EHRPD, while EHRPD shows the best performance with the low-
est RMSE. This experiment demonstrates our model’s ability to
integrate various additional information and deliver more accurate
predictions on the intervals leading up to the next patient visit.

4.5.5 Severe Outcome Prediction. In the healthcare domain,
datasets often have a smaller scale compared to extensive public
resources like MIMIC-III, highlighting the necessity for generation
models to e#ciently generate with limited data. With this concern,
we assess our method’s performance on the Breast Cancer Trial
dataset, which presents a challenging environment with relatively
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Figure 6: Illustration of severe outcome prediction from the
synthetic or synthetic-real hybrid datasets.

few data entries. Following the settings in TWIN [8], our task is
to predict the severe outcome and death de"ned in the data pre-
processing section, and the selected metric is the Area Under the
Receiver Operating Characteristic (AUROC) score. The size of the
generated dataset is equal to the training dataset.

An LSTM network is used to learn the sequential visit-level hid-
den states, which are then utilized by an MLP to make a binary
prediction. The results are depicted in Figure 6. The dashed line
represents the AUROC value achieved using the real dataset. Our
model is colored in blue, while baselines are colored in red. For each
pair of the histogram, the light-colored one is the performance from
synthetic data only, while the darker one is from synthetic data
plus real data. Our model achieves the best performance under both
synthetic-only and hybrid settings. This comparative experiment
provides a clear visualization of our model’s capability to gener-
ate synthetic data that is both realistic and e!ective for advanced
predictive tasks.

4.5.6 Adverse Event Prediction. While the previous experiments
show our model’s generation capability on the patient level, now
we evaluate the "ne-grained code-level generation capability and
see whether the generated visit is coherent with its predecessor.
Thus, in this section, our task is to predict the next visit’s adverse
events with the current visit’s multimodal codes. The only training
datasets available are the synthetic ones with AUROC as the metric.
The size of the generated dataset is equal to the real training dataset.
We utilize linear layers to embed medical codes and aggregate to
visit level, and then an MLP predicts the next visit’s adverse events.

Our "ndings are visually represented in Figure 7, where the
horizontal dashed line indicates the performance with the real
training set. Red histograms show the performance of baseline
models, while blue ones highlight that of our model. We can observe
that our model is closest to the real dataset’s performance, while
PromptEHR achieves the second-best performance, likely due to
the sequential generation nature of the model design that helps
preserve the visit-to-visit consistency. However, HALO behaves
worse than expected. This can be attributed to its design, which
generates a single prediction vector of various modalities, diluting
its e!ectiveness in tasks that require a focused prediction on a
singular modality.
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Figure 7: Illustration of adverse event prediction with syn-
thetic datasets.

Diagnosis Drug Lab Item Procedure
Metric LPL MPL LPL MPL LPL MPL LPL MPL
AS1 22.60 26.99 32.84 36.69 23.68 20.81 34.21 33.22
AS2 21.09 22.63 23.38 24.02 17.36 17.21 23.20 28.64
AS3 22.96 22.71 28.30 27.72 19.36 18.46 18.95 22.52
AS4 66.73 49.43 44.71 30.10 52.25 27.64 58.36 170.66
EHRPD 15.97 17.95 20.53 19.15 15.11 13.99 14.53 18.89

Table 6: Results of ablation study

4.6 Ablation Study
In this section, we remove some components of our model to assess
each component’s e!ectiveness towards the whole model, with
LPL and MPL as evaluation metrics. All ablation experiments are
described as follows:

• AS 1: removes the time aware visit embedding in Section 3.1
and replaces with a linear embedding layer.

• AS 2: removes the time interval estimation (Eq. 19) and time
prediction loss (Eq. 20).

• AS 3: removes the demographic information embedding of
catalyst representation in Section 3.3.

• AS 4: removes the self attention in Eq. (14), i.e., exclude
catalyst representation entirely.

The experiment result is shown in Table 6. An analysis of the
outcomes reveals that each component plays a signi"cant role in
enhancing the model’s performance. Notably, the catalyst represen-
tation in EHRPD emerges as the most critical element, signi"cantly
in$uencing the model’s performance.

5 Conclusion
In this paper, we present EHRPD, a di!usion-based EHR data genera-
tion model. By incorporating a time-aware visit embedding module
and predicting the next visit with a novel predictive di!usion model,
EHRPD is capable of capturing the complex temporal information of
EHR data. Furthermore, EHRPD’s ability to simultaneously estimate
time intervals till the next visit sets it apart from existing methods,
o!ering a signi"cant improvement in the "eld of EHR data genera-
tion. To validate our claims, we conducted extensive experiments on
publically available datasets, demonstrating EHRPD’s superior per-
formance from three comprehensive perspectives: utility, "delity,
and privacy.
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6 Appendix
6.1 Details of P-DDPM
In this section, we provide formula derivations for the theoretical
foundation of P-DDPM.

6.1.1 Forward Noise Addition Process. In the forward di!usion
process of P-DDPM, we gradually add noise to v𝐿 according to the
noise schedule 𝑎𝑈 :

𝑍(v1:𝑇𝐿 |v0𝐿 ) =
𝑇∏
𝑈=1

𝑍(v𝑈𝐿 |v𝑈↑1𝐿 ),

𝑍(v𝑈𝐿 |v𝑈↑1𝐿 ) = N(v𝑈𝐿 ;
√
1 ↑ 𝑎𝑈v𝑈↑1𝐿 , 𝑎𝑈 I) .

(22)

Let 𝑑𝑈 = 1 ↑ 𝑎𝑈 and 𝑑𝑈 =
∏𝑈

𝑂=1 𝑑 𝑂 , we can re-parameterize the
Gaussian step above with its mean and variance as:

v𝑈𝐿 =
↔
𝑑𝑈v𝑈↑1𝐿 +

↔
1 ↑ 𝑑𝑈𝑒𝑈↑1

=
↔
𝑑𝑈𝑑𝑈↑1v𝑈↑2𝐿 +

↔
1 ↑ 𝑑𝑈𝑑𝑈↑1𝑒𝑈↑2

= · · ·
=
↔
𝑑𝑈v0𝐿 +

↔
1 ↑ 𝑑𝑈𝑒,

(23)
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where 𝑒 is the merged Gaussian noise term from [𝑒1, · · · , 𝑒𝑇 ] by
the property of normal distribution.

6.1.2 Predictive Mapping Process. By Eq.(7), we construct a rela-
tionship between v𝑈𝐿+1, v

𝑈
𝐿 , and ”𝐿 .

6.1.3 Backward Denoising Di!usion Process. Then in the backward
di!usion process, we start with v𝑈𝐿+1. We utilize Bayes Theorem
to rewrite the backward di!usion step into a mixture of forward
Gaussian steps as:

𝑍(v𝑈↑1𝐿+1 |v𝑈𝐿+1, v0𝐿+1) = 𝑍(v𝑈𝐿+1 |v𝑈↑1𝐿+1 , v
0
𝐿+1)

𝑍(v𝑈↑1𝐿+1 |v0𝐿+1)
𝑍(v𝑈𝐿+1 |v0𝐿+1)

. (24)

Then by the density function of normal distribution, the above
equation is proportional to:

↗ exp{↑1
2
(
(v𝑈𝐿+1 ↑

↔
𝑑𝑈v𝑈↑1𝐿+1 )2

𝑎𝑈
+
(v𝑈↑1𝐿+1 ↑ ↔

𝑑𝑈↑1v0𝐿+1)2

1 ↑ 𝑑𝑈↑1

↑
(v𝑈𝐿+1 ↑

↔
𝑑𝑈v0𝐿+1)2

1 ↑ 𝑑𝑈
)}

= exp{↑1
2
(
(v𝑈𝐿+1)2 ↑ 2↔𝑑𝑈v𝑈𝐿+1v𝑈↑1𝐿+1 + 𝑑𝑈 (v𝑈↑1𝐿+1 )2

𝑎𝑈

+
(v𝑈↑1𝐿+1 )2 ↑ 2

↔
𝑑𝑊↑1v0𝐿+1v

𝑈↑1
𝐿+1 + 𝑑𝑈↑1 (v0𝐿+1)2

1 ↑ 𝑑𝑈↑1

↑
(v𝑈𝐿+1 ↑

↔
𝑑𝑈v0𝐿+1)2

1 ↑ 𝑑𝑈
)}

= exp{↑1
2
((𝑑𝑈
𝑎𝑈

+ 1
1 ↑ 𝑑𝑈↑1

) (v𝑈↑1𝐿+1 )2

↑ (
2↔𝑑𝑈
𝑎𝑈

v𝑈𝐿+1 +
2
↔
𝑑𝑈↑1

1 ↑ 𝑑𝑈↑1
v0𝐿+1)v𝑈↑1𝐿+1 + Constant)}

(25)

Then by inspection, we can derive the mean and variance of the
above density function as:

𝑎𝑈 = 1/(𝑑𝑈
𝑎𝑈

+ 1
1 ↑ 𝑑𝑈↑1

) = 1 ↑ 𝑑𝑈↑1
1 ↑ 𝑑𝑈

𝑎𝑈 ,

𝜷̂𝑈 (v𝑈𝐿+1, v0𝐿+1)

=(
↔
𝑑𝑈
𝑎𝑈

v𝑈𝐿+1 +
↔
𝑑𝑈↑1

1 ↑ 𝑑𝑈↑1
v0𝐿+1)/(

𝑑𝑈
𝑎𝑈

+ 1
1 ↑ 𝑑𝑈↑1

)

=(
↔
𝑑𝑈
𝑎𝑈

v𝑈𝐿+1 +
↔
𝑑𝑈↑1

1 ↑ 𝑑𝑈↑1
v0𝐿+1)

1 ↑ 𝑑𝑈↑1
1 ↑ 𝑑𝑈

𝑎𝑈

=
↔
𝑑𝑈 (1 ↑ 𝑑𝑈↑1)

1 ↑ 𝑑𝑈
v𝑈𝐿+1 +

↔
𝑑𝑈↑1𝑎𝑈
1 ↑ 𝑑𝑈

v0𝐿+1 .

(26)

Substituting v0𝐿+1 with Eq.(6) by v𝑈𝐿+1, we have:

𝜷̂𝑈 (v𝑈𝐿+1, v0𝐿+1)

=
↔
𝑑𝑈 (1 ↑ 𝑑𝑈↑1)

1 ↑ 𝑑𝑈
v𝑈𝐿+1 +

↔
𝑑𝑈↑1𝑎𝑈
1 ↑ 𝑑𝑈

1↔
𝑑𝑈

(v𝑈𝐿+1 ↑
↔
1 ↑ 𝑑𝑈𝑒𝑈 )

=
1↔
𝑑𝑊

(v𝑈𝐿+1 ↑
1 ↑ 𝑑𝑈↔
1 ↑ 𝑑𝑊

𝑒𝑈 )

(27)

And "nally we have the closed-form solution that describes the
cross-visit relation with Eq. (7) as follows:

𝜷̂𝑈 (v𝑈𝐿+1, v0𝐿+1) =
1↔
𝑑𝑈

(𝑓 (v𝑈𝐿 ,𝛚𝐿 ) ↑
1 ↑ 𝑑𝑈↔
1 ↑ 𝑑𝑈

𝑒𝑈 ) . (28)

6.2 Details of PU-Net
In this section, we provide the detailed structure of our PU-Net, as
in Figure 4.

6.2.1 Downsampling Path. Denoting the BatchNorm layer as BN,
the downsampling path of the PU-Net utilizes Resnet Block (ResB)
to re"ne features and downsamples with a 1-D convolutional layer
as follows:

ResB(v𝑈𝐿,𝑋 ) = ReLU(BN(Conv(v𝑈𝐿,𝑋 ))) + v𝑈𝐿,𝑋 ,

v𝑈𝐿,𝑋+1 = Conv1d(ResB(v𝑈𝐿,𝑋 )) .
(29)

6.2.2 Self-a"ention. In the skip connection, we utilize a self-
attention to fuse 𝑕-th layer 𝛚𝐿,𝑋 and v𝑈𝐿,𝑋 :

v̄𝑈𝐿+1,𝑋 = Softmax !"
#
W𝑑

𝑋
(v𝑈𝐿,𝑋 ) ·W

𝑒
𝑋 (𝛚𝐿,𝑋 )

↔
𝑖

'(
)
·W𝑓

𝑋 (𝛚𝐿,𝑋 ),

↘v𝑈𝐿+1,𝑋 = MaxPooling(LayerNorm(v𝑈𝐿,𝑋 ) + v̄𝑈𝐿+1,𝑋 ),
(30)

where W𝑑
𝑋
,W𝑒

𝑋 ,W
𝑓
𝑋
↓ R𝑌𝑀 ≃𝑌𝑀 .

6.2.3 Upsampling Path. With DeConv denoting the deconvolution
layer, our upsampling path "rst upsamples the lower level feature
v𝑈𝐿+1,𝑋+1 to ⇐v𝑈𝐿+1,𝑋 :

⇐v𝑈𝐿+1,𝑋 = ReLU(BN(DeConv1d(v𝑈𝐿+1,𝑋+1))). (31)

Then the feature from the skip connection is fused with the upsam-
pled feature with a 1-D convolution layer as:

ṽ𝑈𝐿+1,𝑋 = Conv1d[ ↘v𝑈𝐿+1,𝑋 ; ⇐v
𝑈
𝐿+1,𝑋 ] . (32)

Lastly, we utilize a Resnet block to re"ne the learned feature:

v̂𝑈𝐿+1,𝑋 = ResB(ṽ𝑈𝐿+1,𝑋 ). (33)

6.3 Baseline EHR Generation Models
• MLP [13] integrates an LSTM with an MLP to learn relation-
ships between patient visits.

• medGAN [3] uses a GAN to generate synthetic patient data,
enhanced with an LSTM for temporal dynamics.

• synTEG [36] employs a Transformer for learning relation-
ships in patient visit sequences and a Wasserstein GAN for
generating EHR data sequences.

• EVA [4] utilizes a VAE to encode health records into latent
vectors and generate synthetic records from the learned
distribution.

• TWIN [8] combines a VAE for capturing data distribution
with decoders for predicting current and next visit codes,
focusing on cross-modality fusion and temporal dynamics.

• TabDDPM [15] generates tabular healthcare data, incorpo-
rating an LSTM for temporal learning.

• Meddi! [11] uses an accelerated DDPM to generate realistic
synthetic EHR data, capturing temporal dependencies.

• ScoEHR [22] utilizes continuous-time di!usion models to
generate synthetic EHR data with temporal dynamics.

• PromptEHR [32] uses a pre-trained BART to generate di-
verse longitudinal EHR data.

• HALO [30] uses transformer architecture to learn di!erent
modalities of EHR codes jointly.
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Task Model F-LSTM F-CNN RAIM DCMN
Metric AUPR F1 Kappa AUPR F1 Kappa AUPR F1 Kappa AUPR F1 Kappa

A
RF

Orginal 0.9582 0.8969 0.7826 0.9550 0.8794 0.7590 0.9465 0.8698 0.7307 0.9471 0.8795 0.7439
MLP 0.9577 0.8932 0.7810 0.9587 0.8886 0.7635 0.9494 0.8713 0.7419 0.9438 0.8756 0.7486
medGAN 0.9518 0.8871 0.7610 0.9535 0.8873 0.7673 0.9538 0.8715 0.7408 0.9523 0.8754 0.7449
synTEG 0.9590 0.8929 0.7722 0.9535 0.8812 0.7701 0.9445 0.8636 0.7273 0.9536 0.8871 0.7610
EVA 0.9600 0.8980 0.7820 0.9526 0.8870 0.7623 0.9478 0.8761 0.7358 0.9530 0.8856 0.7663
TWIN 0.9617 0.8997 0.7946 0.9537 0.8903 0.7728 0.9575 0.8820 0.7584 0.9541 0.8844 0.7629
TabDDPM 0.9574 0.8952 0.7792 0.9567 0.8885 0.7720 0.9414 0.8706 0.7371 0.9518 0.8820 0.7559
Meddi! 0.9542 0.8965 0.7840 0.9542 0.8837 0.7572 0.9435 0.8700 0.7222 0.9511 0.8824 0.7503
ScoEHR 0.9559 0.9013 0.7933 0.9487 0.8719 0.7114 0.9487 0.8701 0.7260 0.9524 0.8802 0.7521
PromptEHR 0.9530 0.8940 0.7706 0.9540 0.8797 0.7724 0.9562 0.8840 0.7443 0.9560 0.8894 0.7731
HALO 0.9645 0.9020 0.7944 0.9546 0.8884 0.7657 0.9556 0.8776 0.7630 0.9542 0.8868 0.7657
EHRPD 0.9628 0.9031 0.7975 0.9616 0.8918 0.7737 0.9582 0.8862 0.7637 0.9562 0.8931 0.7785

Sh
oc
k

Orginal 0.8147 0.7092 0.5354 0.8110 0.7057 0.4669 0.8104 0.7455 0.5944 0.8012 0.7256 0.5726
MLP 0.8274 0.7630 0.6298 0.8189 0.7500 0.5731 0.8101 0.7353 0.5868 0.8079 0.7345 0.5849
medGAN 0.8379 0.7695 0.6322 0.8224 0.7579 0.5878 0.8010 0.7494 0.6005 0.8106 0.7399 0.5920
synTEG 0.8391 0.7561 0.6155 0.8227 0.7513 0.6107 0.8262 0.7473 0.6053 0.8105 0.7449 0.5933
EVA 0.8437 0.7638 0.6325 0.8324 0.7517 0.5934 0.8287 0.7406 0.6044 0.8192 0.7441 0.5908
TWIN 0.8472 0.7639 0.6263 0.8382 0.7616 0.6282 0.8208 0.7374 0.5939 0.8280 0.7534 0.5968
TabDDPM 0.8421 0.7684 0.6327 0.8247 0.7508 0.5882 0.8199 0.7477 0.6019 0.8085 0.7380 0.5824
Meddi! 0.8437 0.7651 0.6283 0.8371 0.7651 0.6134 0.8138 0.7456 0.5943 0.8106 0.7423 0.5895
ScoEHR 0.8477 0.7652 0.6400 0.8316 0.7638 0.6148 0.8153 0.7340 0.5826 0.8117 0.7434 0.5872
PromptEHR 0.8427 0.7661 0.6268 0.8334 0.7672 0.6179 0.8282 0.7437 0.5938 0.8152 0.7518 0.6060
HALO 0.8563 0.7709 0.6419 0.8253 0.7568 0.5923 0.8268 0.7538 0.6084 0.8212 0.7435 0.5926
EHRPD 0.8507 0.7722 0.6353 0.8421 0.7704 0.6369 0.8361 0.7791 0.6189 0.8376 0.7704 0.6118

Table 7: Result evaluation via other two risk prediction tasks on multimodal EHR data.

Dataset Modality Metric MLP medGAN synTEG EVA TWIN TabDDPM Meddi! ScoEHR PromptEHR HALO EHRPD

M
IM

IC
-II
I

Diagnosis LPL 325.55 242.30 36.87 29.62 26.28 108.79 664.54 685.17 126.23 149.66 15.97
MPL 352.54 257.48 45.61 31.63 27.68 114.18 670.91 691.55 128.05 192.13 17.95

Drug LPL 553.63 403.02 83.38 43.79 40.94 179.22 936.28 934.87 167.48 166.11 20.53
MPL 551.67 405.75 82.66 44.02 40.86 178.70 936.14 950.27 136.04 202.01 19.15

Lab Item LPL 168.25 77.10 26.80 20.05 17.47 54.69 413.41 432.11 107.22 322.51 15.11
MPL 166.61 87.12 30.34 19.97 17.41 54.44 412.33 431.09 98.52 303.09 13.99

Procedure LPL 290.38 234.81 49.33 27.39 21.26 98.03 471.81 486.81 51.18 22.68 14.53
MPL 286.53 245.28 44.00 30.49 24.26 102.72 479.96 499.89 31.13 39.04 18.89

Table 8: EHR data generation evaluation of di!erent approaches on eICU dataset.

6.4 Multimodal Risk Prediction Models
Multimodal risk prediction models used in Section 4.5.2:

• F-LSTM [28] combines static demographic features with
time-series features as input for an LSTM module.

• F-CNN [28] is similar to F-LSTM but with a CNN.
• RAIM [35] integrates attention mechanism with modality
fusion and uses an LSTM for visit-wise relationship learning.

• DCMN [9] utilizes separate recursive learning modules for
each modality with an attention mechanism.

6.5 Backbone Unimodal Risk Prediction Models
Unimodal risk prediction models used in Section 4.5.3:

• AdaCare [20] uses a CNN for feature extraction and GRU
blocks for prediction.

• Dipole [19] combines a bidirectional GRU with an attention
mechanism to analyze patient visit sequences.

• HiTANet [18] adopts a time-aware attention mechanism to
capture evolving disease patterns.

• LSTM [13] learns the hidden state of each visit and performs
risk prediction with an MLP.

• Retain [7] employs a reverse time attention mechanism to
prioritize recent medical events.

6.6 Backbone Time Interval Prediction Models
Time interval prediction methods in Section 4.5.4:

• ARIMA [5] forecasts future values using past values and
errors in a rolling window fashion.

• KF [33] estimates system states in linear dynamic systems.
• SVR [2] predicts continuous values by "tting a regression
line within an error margin.

• GBRT [27] combines multiple decision trees to improve
prediction accuracy through boosting.

• LSTM [13] outputs a single value for time prediction.

6.7 More Result on eICU Dataset and
Multimodal Risk Prediction Task

Additional results on the eICU dataset and multimodal risk predic-
tion task (Acute Respiratory Failure(ARF) and Shock) are shown in
Table 8 and Table 7.
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