Unity in Diversity: Collaborative Pre-training Across
Multimodal Medical Sources

Xiaochen Wang!, Junyu Luo!, Jiaqi Wang', Yuan Zhong',
Xiaokun Zhang?, Yaqing Wang?, Parminder Bhatia*, Cao Xiao®*, Fenglong Ma'*
'Pennsylvania State University, ?Dalian University of Technology,
3Purdue University, *GE Healthcare
Lf{xcwang, junyu, jgwang, yfz5556, fenglong}@psu.edu, >’dawnkun1993@gmail.com,
3wang5075@purdue. edu, *{parminder.bhatia, cao.xiao}@gehealthcare.com

Abstract

Although pre-training has become a prevalent
approach for addressing various biomedical
tasks, the current efficacy of pre-trained mod-
els is hindered by their reliance on a limited
scope of medical sources. This limitation re-
sults in data scarcity during pre-training and
restricts the range of applicable downstream
tasks. In response to these challenges, we
develop Medical Cross-Source Pre-training
(MEDCSP'), a new pre-training strategy de-
signed to bridge the gap between multimodal
medical sources. MEDCSP employs modality-
level aggregation to unify patient data within in-
dividual sources. Additionally, leveraging tem-
poral information and diagnosis history, MED-
CSP effectively captures explicit and implicit
correlations between patients across different
sources. To evaluate the proposed strategy, we
conduct comprehensive experiments, where the
experiments are based on 6 modalities from 2
real-world medical data sources, and MEDCSP
is evaluated on 4 tasks against 19 baselines,
marking an initial yet essential step towards
cross-source modeling in the medical domain.

1 Introduction

Pre-training, a widely adopted technique with the
primary objective of enhancing the performance
of downstream tasks, is a practice extensively em-
ployed in natural language processing (Kenton and
Toutanova, 2019; Radford et al., 2018). In the med-
ical domain, researchers have dedicated efforts in
pretraining powerful models, including Clinical-
BERT (Huang et al., 2019), ClinicalT5 (Lehman
and Johnson, 2023), and MedHMP (Wang et al.,
2023). While these pre-training techniques benefit-
ing from unlabeled data have showcased superior-
ity in diverse medical downstream tasks, they still
suffer from the following challenges:

* Corresponding author.
'Source codes are available at https://github.com/
XiaochenWang-PSU/MedCSP.

Data scarcity. Training a robust pre-trained model
typically requires a substantial corpus, particularly
in a multimodal approach. However, obtaining a
sizable training dataset in the medical domain poses
challenges owing to concerns surrounding data pri-
vacy. Hence, exploring innovative approaches for
integrating more medical data into the pre-training
process becomes imperative.

Limited downstream tasks. Current pre-trained
models in the medical domain are often trained
using data from a single source, thus limiting the
spectrum of applicable downstream tasks. For ex-
ample, MedHMP (Wang et al., 2023) pretrained
on electronic health records (EHRs) source is only
suitable for predictive modeling tasks involving
EHR data. In contrast, pre-trained models in the
general domain are usually applicable to various
tasks. For instance, Flamingo (Alayrac et al., 2022),
a visual-language model, achieves state-of-the-art
performance on 16 few-shot learning tasks. There-
fore, considering the multimodal nature of medical
data, an ideal pre-trained model should be equipped
to address as many tasks as possible.

To tackle these issues simultaneously, a promis-
ing approach involves training a model using di-
verse medical data sources from various datasets.
This strategy not only augments the volume of train-
ing data but also broadens the spectrum of tasks.
Nevertheless, achieving this objective is inherently
challenging due to the following reasons:

Firstly, the number of patients who have data
across multiple data sources is significantly lim-
ited. For example, this number is 14,620 between
the MIMIC-IV and MIMIC-CXR databases, rep-
resenting only 22.36% and 45.19% of these two
databases, respectively. The scarcity of patients
with data spanning multiple sources further di-
minishes the limited connectivity between these
sources, adding complexity to cross-source integra-
tion efforts. Thus, designing an effective model
that proficiently leverages the overlapped patients
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Figure 1: Overview of the proposed MEDCSP.

as a bridge to facilitate the training of other patients
simultaneously is essential.

Secondly, modeling patients with data from mul-
tiple sources is challenging due to the intrinsic com-
plexity of medical data. For example, a patient’s
chest X-ray images and reports may be housed in
the MIMIC-CXR database, while diagnosis and
treatment information are stored in the MIMIC-
IV database. However, owing to the temporal na-
ture of medical data, their recorded times of infor-
mation across various sources may not align per-
fectly. Therefore, exploring a reasonable approach
to model these relationships is urgently needed.

Finally, implicit yet informative relationships of-
ten exist among patients across different sources,
requiring appropriate handling. For instance, pa-
tients with analogous conditions may exhibit simi-
lar symptoms, despite being in separate databases.
Recognizing and leveraging these implicit connec-
tions is essential for facilitating cross-source train-
ing, as they hold significant potential for enhancing
model performance through the aggregation of sim-
ilar patient profiles.

To address the aforementioned challenges inher-
ent in multimodal medical records from diverse
sources, we introduce a pioneering pre-training
framework in this paper, named Medical Cross-
Source Pre-training (MEDCSP), as shown in Fig-
ure 1. MEDCSP first encodes each modality from
each source using modality-specific encoders in
Section 3.2. Subsequently, it employs two distinct
pre-training tasks. The first task explores modality-
level relations among patients within individual
sources (Section 3.3), while the second task fo-
cuses on discovering relationships among patients
across different sources (Section 3.4). Specifically,
MEDCSP models relations for overlapped patients
across sources by considering their record times in
Section 3.4.1 and establishes connections among

patients in similar cohorts using their diagnosis
similarities in Section 3.4.2.

Through interactive modeling, MEDCSP ac-
quires the capability to generate informative and
representative medical embeddings for diverse
downstream tasks. Our exhaustive experiments
across six modalities within two sources demon-
strate the effectiveness of our pre-training strategy,
providing an initial yet crucial solution for unifying
diverse modalities across multiple medical sources.

2 Related Work

Multimodal Pre-training on Medical Data. Pre-
training on multimodal medical data, although it
has seen significant development in recent years,
remains fragmented across various sources. The
predominant approach to multimodal pre-training
involves aligning images with text (Hervella et al.,
2021, 2022a,b; Khare et al., 2021). Additionally,
with the emergence of Large Language Models
(LLMs), some pioneering studies have endeav-
ored to integrate images into the semantic space of
LLMs (Li et al., 2023; Moor et al., 2023). However,
due to the constraints imposed by their pretraining
data sources, applying these pretrained models to
tasks devoid of images proves challenging.

Thus, research on pre-training with multimodal
medical data excluding images remains relatively
limited. Some researchers have achieved success
by aligning numerical clinical features with diagno-
sis codes (Li et al., 2022, 2020), while others have
explored the correlation between clinical language
and codes. Recent advancements include modeling
complex interactions within EHR data, incorporat-
ing multiple modalities such as diagnosis codes,
demographics, clinical notes, medication codes,
and clinical monitoring data (Meng et al., 2021;
Wang et al., 2023). Nonetheless, these endeavors
face challenges akin to those encountered in image-
related pre-training, compounded by the issue of
data scarcity within EHR data, which significantly
restricts their broader applicability.

Multi-source Multimodal Pre-training. Conven-
tional pre-training techniques typically leverage
diverse data sources to enhance the generalizability
of representations, a principle that extends to mul-
timodal settings. Previous studies (Lu et al., 2019;
Cho et al., 2021; Su et al., 2019; Lee et al., 2023a;
Tan and Bansal, 2019) have demonstrated this by
combining image-text pairs from multiple sources,
thereby enhancing model performance across vari-
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ous domains. However, these models face limita-
tions when confronted with new modalities, as they
are built upon uniform data sources.

Recognizing the shortcomings of homogeneous
multimodal pre-training approaches, recent endeav-
ors have shifted focus towards harnessing more
diverse and heterogeneous sources. Recent stud-
ies (Liang et al., 2022; Reed et al., 2022) have
embraced data from varied modalities for joint pre-
training, resulting in improved modality-specific
encoders. Despite these advancements, designed
to cater to general fields, these approaches struggle
to capture latent medical correlations within multi-
modal health data, thereby impeding the generation
of domain-specific representations.

3 Methodology

3.1 Model Input

Let p € P represent a patient in the patient set
‘P. The patient’s data may be distributed across
multiple medical sources, as illustrated in Fig-
ure 1. We use DY to represent data stored in
the s-th source for patient p. Each patient’s data
from a source s may contain multiple records, i.e.,
D = {Dé’,r}fi, where R% represents the number
of records in DY. In addition, each record usually
consists of multimodal modalities. Let D%, ,,, de-
note the m-th modality in the r-th record from the
s-th source for patient p. With these inputs, the
subsequent step involves modality-level encoding.

3.2 Modality Encoding

Due to the significant differences among modalities
in the data sources, employing a uniform encoder
to embed them poses challenges. Hence, we adopt
modality-specific encoders to map the modality-
level data to a shared latent space, formulated as
follows:

el ., = Encoder,, (DL, ), (1)

s,r,m

where the specifics of each encoder Encoder,, (-)
are detailed in Appendix A. By averaging embed-
dings of modalities, we then obtain the record-level
representation as follows:

1 M
CZs),r = M Z eg,r,m? (2)
m=1

where M is the number of modalities.
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Figure 2: Illustration of intra-source pre-training.

3.3 Intra-source Pre-training

To conduct pre-training across multiple sources,
the primary challenge lies in modeling the relation-
ships among both modality-level and source-level
data. Despite the different formats of modalities
in sources, they inherently exhibit alignment. For
instance, a chest X-ray image typically corresponds
to a radiological report detailing the findings from
the image, and a patient’s in-hospital visit corre-
lates with a set of diagnosis codes, procedure codes,
clinical notes, and so forth. These alignments indi-
cate that corresponding data in different modalities
convey information about the same clinical event
or patient admission. Consequently, it is imperative
that these modality-level embeddings are mapped
as closely as possible.

An ideal approach to capture the relationships
among modalities is through pair-wise modality-
level contrastive learning. However, the pair-wise
learning paradigm encounters a drawback: the com-
putational complexity escalates significantly with a
large value of M. To address this challenge, we pro-
pose conducting record-modality-level contrastive
learning. Intuitively, as illustrated in Eq. (2), the
record representation ck . serves as the centroid
of all modality-level representations. Ideally, each
modality e@’,r,m should be proximate to its corre-
sponding centroid cf;r but distant from others, as
shown in Figure 2.

Based on this intuition, we design our alignment-
based loss. The loss is based on InfoNCE (Oord
et al., 2018) and functions on a record-modality
pair (€% ,,,,ck ) for intra-source pre-training as
follows:

exp(Sim(eZ;,r,m s Cg,r)/T)

. ’
St eng, XPsim(el i/ )/7)
sl,r )

Lo = —log , (3)

where sim(-, ) is the cosine similarity function,

/
c’s’, ,» denotes a randomly selected record within
the batch, A, denotes the negative set, and 7 is a
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Figure 3: Illustration of pre-training for same patients
across different sources.

temperature hyperparameter. Thus, the total align-
ment loss is defined based on Eq. (3) as follows:

SP RE M,

La=> 2.2 > Lo @&

pEP s=1r=1m=1

where S? is the number of medical sources con-
taining patient p’s data, and M is the number of
modalities within the source s.

3.4 Cross-source Pre-training

The training objectives outlined in Eq. (4) serve
to direct the model in capturing explicit alignment
between different modalities for the same patient
within the same source comprehensively. However,
an unresolved issue remains: what if no explicit
alignment is defined? This issue becomes particu-
larly prominent in cross-source settings, where dis-
tributed medical data often represent distinct admis-
sions and studies. To address this issue, we propose
two additional loss functions to capture relation-
ships among patients across medical sources. The
first loss term focuses on modeling relationships
for patients present in different sources, while the
second loss term aims to learn the relationships of
patients in similar cohorts among different sources.

3.4.1 Same Patients Across Different Sources

Intuitively, the data of the same patient across dif-
ferent sources should exhibit similar patterns, par-
ticularly for records archived within the same time
window. Let us assume that a patient’s data in
two distinct sources are denoted as DY and DY, .,
and the timestamps of these two records satisfy
T, — T% .| < 6, where 0 represents a predefined
time window threshold. The similarity between

D5, and D ; represented by sim(ci,r, ¢ ;) should

be larger than that between Dgr and a record

DS,I ,» randomly selected from different sources,
ie, s # &,if p # p/. As illustrated in Figure 3,

we design a record-level cross-source contrastive
learning loss for the same patients as follows:

sP RE

B 3) 3 S

peEP s=1r=1
exp(sim(ct,,, €3 7)/7) )

g . / ’
Zcpf ,EN exp(sim(ct,r, €5 /) /7)
T

s

L, =—lo

st. |10, —TZ: <0,
where N, is the randomly selected pairs.

3.4.2 Patients with Similar Cohorts Across
Different Sources

In addition to within-patient interactions, as shown
in Eq. (5), relationships between records that nei-
ther share the same patient nor belong to the same
source still require appropriate analysis. When con-
sidering two data samples from distinct sources,
denoted as D% . and DY ., the absence of explicit
similarity poses a challeflge for understanding their
relationship.

To ensure that no potential relationships across
the medical domain are overlooked, we leverage
diagnostic history from different patients to further
capture implicit cross-source interactions. Intu-
itively, if D% . and DY . belong to patients with the
same medical history — such as two patients both
suffering from schizophrenia and bipolar disorder
— the symptoms manifested through their records
should exhibit similarity. Conversely, data without
any overlap in diagnoses, i.e., D} . and ng,w’ are
unlikely to have similar recorded contents.

Let us denote the multi-hot vector representing
all distinct diagnosis codes related to the patient p
as h? € R, where |#| denotes the distinct num-
ber of diagnosis codes. h” serves as the diagnostic
history of patient p. By calculating the cosine simi-
larity between two patients, p and p, we extend the
definition of diagnostic similarity as follows:

a5 = sim(h?, bP). (6)

In Egs. (3) and (5), we employ a strategy of di-
rectly choosing negative pairs with hard negative la-
bels. This is because the positive labels exclusively
originate from identical records (i.e., Eq.(3)) or pa-
tients (i.e., Eq. (5)). Consequently, pairs randomly
selected in this manner exhibit a high confidence
of being negative. Nevertheless, discerning posi-
tive and negative labels for similar cohorts drawn
from distinct patients across diverse sources poses
a challenge. To address this, we are prompted to
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Figure 4: Illustration of pre-training for patients with
similar cohorts across different sources.

adopt the similarity score calculated by Eq. (6) as
a soft label for each pair, which contains more fine-
grained information than a hard label.

As illustrated in Figure 4, given any cross-source
pair (c% ., c ), we can derive its diagnostic rela-
tionship ap,ﬁ’ using Eq. (6). Building on previous
research (Wu et al., 2021), we define the loss func-
tion designed for aggregating records associated
with similar cohorts as follows:

SP Rg’

D 5) ) WA

peEP s=1r=1
@)

exp(sim(ct, ., £ ;) /7)

og ; 7 )
St o B, )/7)
sl

Ed = —Qpp 1

where R is the relation set across sources.

3.5 Training Objective of MEDCSP

The final pre-training objective of MEDCSP is the
weighted summation of alignment-based, patient-
based, and disease-based contrastive learning
terms, expressed as:

L=LAa+pLp+ApLD, (8)

where Ap and \p are two hyperparameters aiding
in balancing the loss terms. This aggregated opti-
mization objective balances intra- and cross-source
modeling on health data, catering to sources with
diverse cohorts and modalities. We will showcase
the effectiveness of MEDCSP through numerous
experiments in the subsequent sections.

4 Experiments

In this section, we first outline the configuration of
our pretraining process in Section 4.1 and then
demonstrate evaluation with downstream tasks
on EHR source (Section 4.2) and medical image
source (Section 4.3), respectively. Due to the space
limitation, we put more experimental results in
Appendix D and E.

4.1 Pretraining Setting
4.1.1 Datasets of Pretraining

For our pretraining, we engage with two distinct
sources: the MIMIC-IV dataset (Johnson et al.,
2023), which acts as a proxy for EHR data, and the
MIMIC-CXR dataset (Johnson et al., 2019), which
represents sources of medical imaging. These
datasets span six modalities: text, images, tem-
poral clinical data, demographics, diagnosis codes,
and medication codes.

4.1.2 Data Processing

We adopt existing pipeline (Tang et al., 2020)
for preprocessing EHR data. We follow existing
work (Wang et al., 2023) to set the values of hy-
perparameters. To showcase the model’s capability
to manage non-overlapping cohorts across sources,
we retain patients who do not appear in the MIMIC-
CXR dataset. Regarding the CXR data source,
we omit records from pre-training if their corre-
sponding patients are not featured in the processed
MIMIC-1V dataset, prioritizing efficiency. These
excluded records are then utilized for zero-shot text-
image retrieval tasks. This approach ensures the
complete avoidance of any potential data leakage
issues. From the pool of patients excluded from pre-
training, we randomly select 1% and subsequently
gather 1,202 records to form the evaluation set for
the text-image retrieval task in Table 2. Compre-
hensive details on the datasets used for pretraining
and fine-tuning across downstream tasks are pro-
vided in Table 1.

4.1.3 Implementation Details of Pretraining

We subject the introduced model to pretraining
over 10 epochs with a learning rate of le-5. The
batch size is configured at 128, optimized for the
NVIDIA A100 GPU. Setups of modality-specific
encoders are outlined in Appendix A. Throughout
the training phase, we adjust all parameters, setting
the balancing hyperparameters Ap and Ap to 0.5
and 0.2, respectively. Temperature hyperparameter
T 1s set to 0.1. Furthermore, we establish a time
gap threshold 6 of 30 days for the training process.

4.2 Evaluation on EHR Source

4.2.1 EHR Tasks

In-ICU Criticality Prediction. This experiment
focuses on forecasting in-ICU activities by utilizing
temporal clinical data and demographic informa-
tion as inputs. We use three predictive tasks in this
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Table 1: Data statistics.

Stage Source Dataset # of Patients # of Records
Pretrainin EHR MIMIC-IV | 32,355 41,230
g Medical Image | MIMIC-CXR | 14,620 156,837
Source Dataset Predictive Task Total Positive Negative
AREF within 48 hours 5,038 402 4,636
Downstream EHR MIMIC-IIT | Shock within 48 hours 7,182 693 6,489
Readmission within 30 days 11,695 1,581 10,114
Medical Imace MIMIC-CXR | Image Text Retrieval 1,202 - -
£ COVID-19 | Image Classification 13,808 3,616 10,192
ARF Shock Mortality
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(b) AUROC on downstream tasks.

Figure 5: In-ICU Ceriticality Prediction Tasks.

evaluation, including acute renal failure (ARF) pre-
diction, shock prediction, and mortality prediction
within a 48-hour window.

Readmission Prediction. The goal here is to fore-
cast the likelihood of a patient’s readmission within
30 days. This prediction’s input includes temporal
clinical data, clinical notes, demographic details,
diagnosis codes, and medication codes.

4.2.2 Experimental Setups for EHR Tasks

The data used in the evaluation of these tasks are ex-
tracted from the MIMIC-III dataset (Johnson et al.,
2016), which avoids the label leakage issue. We di-
vide the dataset into training, validation, and testing
subsets at an 80%/10%/10% split. The baselines
include F-LSTM (Tang et al., 2020), F-CNN (Tang
etal., 2020), RAIM (Xu et al., 2018), DCMN (Feng
et al., 2019), and MedHMP (Wang et al., 2023)
for the In-ICU Ceriticality Prediction task. For the
Readmission Prediction task, we use eight multi-
modal approaches present in existing study (Yang

and Wu, 2021) and MedHMP as baselines. Note
that only MedHMP and the proposed MEDCSP are
pre-trained models. However, MedHMP uses both
MIMIC-III and MIMIC-1V databases for the pre-
training, while MEDCSP conducts the pre-training
with MIMIC-IV and MIMIC-CXR databases. In
other words, MedHMP uses more training EHR
data than MEDCSP for the EHR tasks.

To evaluate the effectiveness of our pretrained
encoder, we merge its output embeddings for each
task and employ a Multi-layer Perceptron (MLP)
module for task-specific classification. We deter-
mined the optimal learning rate and batch size
through a grid search, with the batch size rang-
ing from 32 to 256 and the learning rate from 2e-5
to 2e-2. We employ the area under the Precision-
Recall (PR) curve (AUPR) and the area under the
receiver operating characteristic curve (AUROC)
as the evaluation metrics. The higher, the better.
We obtain the final results as the mean values of
five runs.
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Figure 6: Results (%) of the readmission task.

4.2.3 Results of Evaluation on EHR Source

The experiment results on the in-ICU criticality
prediction task are depicted in Figure 5. The pre-
trained models, MedHMP and MEDCSP, outper-
form other non-pre-trained baselines. MEDCSP,
pre-trained with less EHR data but taking the lead
in all three tasks, demonstrates its superiority by
using cross-sourced pre-training. This observation
consolidates the correct rationale behind our de-
sign of a cross-source pre-training strategy. We
can observe similar patterns for the readmission
prediction task, as shown in Figure 6.

4.3 Evaluation on Radiological Source

One advantage of the proposed MEDCSP is to
increase the diversity of downstream tasks by lever-
aging multi-source pre-training. To validate this
advantage, we also conduct experiments to assess
our model’s proficiency in analyzing radiological
images and the corresponding reports.

4.3.1 Radiological Tasks

Text-image Retrieval. This task assesses the
model’s ability to associate radiological images
with corresponding textual descriptions correctly.
It measures the model’s comprehension of visual
elements and textual information.

Zero-shot Image Classification. The model’s
accuracy in categorizing medical images into es-
tablished categories without fine-tuning is evalu-
ated. This ability is vital for healthcare applications
and medical diagnostics, offering insights into the
model’s utility in real-world scenarios.

4.3.2 Radiological Datasets

We utilize a subset of the MIMIC-CXR dataset
which is NOT included in the pretraining phase for
the text-image retrieval task. Extra experiments

on Open-I (Demner-Fushman et al., 2016) can be
found in Appendix D. The text queries came from
X-ray reports, and the corresponding X-ray images
act as the ground truth for image candidates.

For zero-shot image classification, we use the
COVID-19 dataset (Chowdhury et al., 2020; Rah-
man et al., 2021), consisting of COVID and non-
COVID lung X-ray images, as the evaluation task.
Additional experiments on CheXpert (Irvin et al.,
2019) are covered in Appendix E.

4.3.3 Implementation Details

We maintain the original configuration settings for
all CLIP-like baseline models, including MEDCSP.
Specifically, for LLaVA-Med, we utilize models de-
signed for pure text input to encode textual data. To
process images, we employ a summarizing prompt
in conjunction with the radiological image as input.
The final aggregated outputs from these processes
serve as the encoded embeddings for both text and
image modalities. We then calculate the similarity
between these modalities using the cosine distance
metric, facilitating a comprehensive evaluation of
the model’s ability to bridge the gap between tex-
tual descriptions and visual representations. For the
text-image retrieval task, we measure and report
precision and recall at K scores, aligning with the
methodologies established in previous studies, such
as those detailed in (Wang et al., 2022) and (Zhang
et al., 2023). In the image classification task, we
document the precision, recall, and F1 score to
evaluate model performance comprehensively.

4.3.4 Result Analysis

The findings from our Text-Image Retrieval task
experiments, detailed in Table 2, indicate that our
model, MEDCSP, significantly outshines CLIP-
like baseline models with similar architecture in all
assessed precision metrics at every k value. Impres-
sively, MEDCSP even exceeds the performance of
CXRCLIP (Lee et al., 2023b), another model pre-
trained on the MIMIC-CXR dataset, evidencing the
superior advantage of our multi-source pre-training
approach. This advantage is particularly notewor-
thy because it suggests that our model’s effective-
ness is not merely due to its alignment with the test
data’s origin.

Similar to the results listed in Table 2, MED-
CSP outperforms baselines on the zero-shot image
classification task, as shown in Table 3. These ob-
servations highlight the robustness of MEDCSP’s
pre-training processes in forging strong correla-
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Table 2: Results (%) on Text-image Retrieval Task

Methods Precision @ K Recall @ K
1 5 10 20 50 100 1 5 10 20 50 100
CLIP 0.17 0.18 0.17 0.13 0.14 0.12 {008 067 1.16 175 463 17.79
MedCLIP 0.08 0.10 0.08 0.09 0.08 0.08 |0.04 023 044 1.03 207 421
BiomedCLIP | 0.50 053 043 039 031 026|046 229 349 589 11.79 18.73
PubMedCLIP | 0.25 0.13 0.16 0.15 0.15 0.12|0.11 039 09 171 430 742
CXRCLIP 0.08 0.10 0.11 0.09 0.09 0.08|0.03 024 058 096 277 4.6l
LLaVAMed 0.17 0.13 0.12 0.12 0.11 0.10 | 0.11 044 082 166 390 7.00
MEDCSP 12.06 641 445 297 1.64 1.04 | 8.74 2191 29.51 38.04 5049 61.74
Table 3: Performance(%) comparison of the zero-shot 0.62
image classification task on the COVID-19 dataset. 0.60
0.58
Methods Precision Recall  Fl1 0.56
CLIP 26.01 6491 37.14 0.54 I
MedCLIP 17.80 37.28 24.10 052 mmm l
PubMedCLIP 66.67 0.11 0.22 PR Céz;‘ PR
BiomedCLIP 97.54 21.93 35.80 « ) \@Q &
CXRCLIP 30.49 96.03 47.43
LLaVAMed 26.18 100.00 41.50 Figure 7: Results of ablation study. The X-axis denotes
MEDCSP 71.98 55.00 62.36 different settings, and the Y-axis represents the F1 score.

tions between image and text modalities. Conse-
quently, MEDCSP emerges as a powerful asset for
addressing complex medical issues, demonstrating
its particular strength in the field of radiological
image analysis.

4.4 Ablation Study

Our ablation study is conducted from two distinct
angles: loss-wise and source-wise. This approach
allows us to examine not just the impact of each in-
dividual loss term but also the benefits derived from
a cross-source setting. For this purpose, we utilize
the COVID-19 image classification task as a means
to analyze the effectiveness of our pretraining strat-
egy. Through this methodical examination, we aim
to uncover the specific contributions of different
loss components and the value added by leveraging
diverse data sources to enhance our model’s perfor-
mance on a critical healthcare challenge. We report
the F1 score of different settings in Figure 7.

Source-wise Comparison. MEDCSPg;,1., which
represents the version of our model pretrained
solely on the MIMIC-CXR dataset, exhibits a
noticeable decrease in performance (}15.36%)
compared to its multi-source pretrained counter-
part, MEDCSP. This comparison starkly highlights
the indispensable role of cross-source pretraining,
demonstrating the substantial benefits that accrue
from incorporating a variety of data sources to im-

prove pretraining outcomes.

Loss-wise Comparison. Delving deeper into the
architecture of our model, we introduce notations
MEDCSP,, MEDCSPap, and, MEDCSPa,p to
represent only keeping L4, Lo+ Lp,and Lo+ Lp
in the loss function (Eq. (8)), respectively. There
are several observations: (1) The omission of
any of these components results in a significant
drop in performance metrics, emphasizing the es-
sential contribution of each term to the model’s
comprehensive efficacy. (2) Only utilization of
MEDCSP4.p causes the most significant drop
({11.56%) of the F1 score based on the experiment.
The ablation study demonstrates the importance
of disease-oriented metric learning terms. This
analysis further elucidates the synergistic impact of
these components in enhancing the model’s ability
to navigate complex medical data landscapes.

4.5 Case Study

To better illustrate how MEDCSP benefits from
patient-centric and disease-oriented learning objec-
tives, we visualize the case study performance in
this section.

Patient-wise Modeling. The cross-source pre-
training strategy aims to consolidate records from
different sources linked by common patient iden-
tifiers. To evaluate the impact of alignment- and
patient-centric training objectives, we focus on two
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(a) Pretraining with alignment-based loss only. (b) Pretraining with all our losses.

Figure 8: Case study on patient-wise modeling.

patients with the highest number of radiological
records in the MIMIC-CXR dataset. We then vi-
sualize the embeddings of both modalities, CXR
images, and their corresponding reports to facilitate
a detailed analysis, as presented in Figure 8. We
can observe that data from the same patients are
organized according to modality rather than patient
identity when using solely the alignment-based loss
function Eq. (4). This observation suggests the in-
sufficient modeling of the unique latent medical
patterns specific to each patient. In contrast, our
model, designed to capture patient-level consis-
tency, effectively clusters data by patient rather
than by modality. This comparison vividly demon-
strates that our model acquires an excellent under-
standing of patient latent medical patterns through
the targeted design of our loss function.
Diagnosis-wise Modeling. We further explore
our model’s ability to forge connections between
patients diagnosed with similar diseases. The
analysis, illustrated in Figure 9, focuses on the
record representations from three distinct patients.
Patients 1 and 2 exhibit diagnostic similarities,
whereas Patient 3 does not share any common dis-
eases. Our findings reveal that when our model
is pre-trained in the comprehensive setting, it ef-
fectively clusters records of patients with similar
diagnoses. In contrast, when the model is pre-
trained solely with the alignment-based loss, it
faces challenges in forming consistent connections
within disease-specific cohorts. This outcome un-
derscores MEDCSP’s proficiency in capturing the
relationships between patients with similar diag-
nostic profiles, thereby generating meaningful rep-
resentations for diverse downstream tasks.

5 Conclusion

This paper introduces a novel pre-training frame-
work, MEDCSP, specifically designed for the com-
plexities of diverse and highly heterogeneous med-
ical sources. MEDCSP aggregates patient data
within individual sources by aligning different

(a) Pretraining with alignment-based loss only. (b) Pretraining with all our losses.

Figure 9: Case study on diagnosis-wise modeling.

modalities and subsequently captures patient rela-
tionships across multiple medical sources by lever-
aging temporal information and diagnosis history.
Our experiments across a range of medical tasks
and sources demonstrate that MEDCSP achieves
superior performance. The observations are further
supported by ablation studies and case analyses, un-
derscoring the potential of MEDCSP in advancing
medical cross-source modeling.

6 Ethic Consideration

The data utilized in our study have been appropri-
ately de-identified according to Health Insurance
Portability and Accountability Act (HIPAA) stan-
dards, which mandate the removal of all sensitive
information as outlined in the HIPAA guidelines.
As such, privacy concerns regarding the data we
employ are mitigated. Additionally, the pretrained
checkpoints of MEDCSP will be released follow-
ing a thorough assessment of privacy, ethnicity, and
security considerations.

7 Limitations

This study is constrained by computational re-
sources, leading to the inclusion of only two med-
ical databases during the pre-training phase. Rec-
ognizing the importance of diverse data for com-
prehensive learning, we aim to incorporate a wider
array of medical sources in future research endeav-
ors. Furthermore, we are considering an upgrade of
our text encoding system by integrating advanced
large language models (LLMs), as detailed in Ap-
pendix C. This strategic enhancement is expected to
augment the learning capabilities of our framework,
paving the way for more sophisticated analyses and
applications in the medical domain.
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A Details of Encoders

As detailed in Section 3.2, we utilize modality-
specific encoders to handle data from different
modalities. Specific details about these encoders
and the modalities they correspond to are provided
in Table 4. For initialization, we employ Biomed-
CLIP checkpoints for both the image and language
encoders. Throughout the pretraining phase, the
language encoders designated for clinical notes and
radiological reports are set up to share parameters.

Table 4: Modalities leveraged in our experiments, along
with their corresponding encoders.

Sources | Modalities Encoders
ICD Codes Multi-Layer Perceptron
Drug Codes Multi-Layer Perceptron
EHR Clinical Notes PubMedBERT_256
Demograhics Multi-Layer Perceptron
Clinical Temporal Readings | Long-short Term Memory
CXR Radiological Images VIT_base_patch16_224
Radiological Reports PubMedBERT_256

B Baselines

B.1 Baselines for EHR Tasks

The following multimodal approaches designed to
handle clinical tasks serve as our baselines in EHR-
related evaluation: F-LSTM (Tang et al., 2020)
is a Long-short Term Memory (LSTM) architec-
ture that processes inputs consisting of concate-
nated demographic and clinical temporal features.
F-CNN (Tang et al., 2020) is a conventional Con-
volutional Neural Network (CNN) operating on
the concatenation of clinical time series and de-
mographic information for prediction on down-

stream tasks. Raim (Xu et al., 2018) is an ad-
vanced architecture engineered to process clinical
information with a multi-channel attention mech-
anism. DCMN (Feng et al., 2019) is a combina-
tion of two distinct memory networks, with one
focusing on temporal information and the other
on static demographic data, allowing for compre-
hensive analysis. MedHMP (Wang et al., 2023)
leverages a hierarchical pretraining strategy for
boosting the model’s performance in medical down-
stream tasks. Representations of modalities are ag-
gregated through an attention mechanism for pre-
training and fine-tuning. BertLstm et al. (Yang
and Wu, 2021) contains different combinations of
modality-specific encoders, including BERT, Star-
Transformer, LSTM, and MLP. Multimodal repre-
sentations are aggregated through summation for
prediction tasks.

B.2 Baselines for Radiological Tasks

We adopt the following baselines for our evaluation
of the radiological source: CLIP (Radford et al.,
2021) is the backbone architecture developed by
OpenAl. By performing contrastive learning be-
tween aligned image-text pairs, the model marks
a significant step towards the unification of vision
and language domains. MedCLIP (Wang et al.,
2022) is pretrained on multiple datasets in a multi-
tasking pattern.It relies on labeled images for ex-
tracting medical knowledge, thus performing con-
trastive learning without leveraging alignment be-
tween image and text. Biomed CLIP (Zhang et al.,
2023) leverages PMC-15M dataset for deepening
CLIP’s adaptation in the biomedical domain, pre-
training with InfoNCE loss (Radford et al., 2021).
PubMedCLIP (Eslami et al., 2023) performs pair-
wise pretraining based on ROCO dataset (Pelka
et al., 2018), following the conventional CLIP de-
sign. CXRCLIP (You et al., 2023) is pretrained
on MIMIC-CXR dataset. The authors utilize con-
trastive learning loss between image and text, as
well as multi-view of images, to achieve compet-
itive performance. LLaVAMed(Li et al., 2023)
is a multimodal Large Language Model (LLM)
built upon pretrained LLaVA(Liu et al., 2023). It
leverages the PMC-15M dataset for additional pre-
training in a generative pattern.

We adopt image processors and tokenizers cor-
responding to each baseline for a fair comparison,
as introduced in the original papers.
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Table 5: Text-Image Retrieval Results (%) on the Open-I Dataset.

Methods Precision @ K Recall @ K

1 5 10 20 50 100 1 5 10 20 50 100
CLIP 0.03 0.05 0.04 0.04 004 0.04|003 013 021 045 1.12 2.08
MedCLIP 0.18 0.09 0.10 0.08 0.07 0.06 | 0.09 023 051 078 1.79 2.90
BiomedCLIP | 0.21 0.10 0.14 0.11 0.09 0.08 | 0.12 0.26 0.70 1.10 224 395
PubMedCLIP | 0.00 0.03 0.04 0.04 0.03 0.03 000 006 020 041 0.89 1.62
CXRCLIP 0.03 0.04 0.03 0.02 003 0.02|001 0.09 0.12 021 0.62 1.12
LLaVAMed 0.03 0.03 0.03 0.03 003 0.03]001 0.05 013 030 0.66 1.43
MEDCSP 091 063 048 037 025 0.19 | 049 1.74 2.62 4.09 6.92 10.25

C Implementing MEDCSP with Large
Language Model (LLM)

Inspired by recent findings demonstrating the effi-
cacy of applying LLM in the medical domain (Li
et al., 2023), we sought to integrate our pre-
training strategies with proficient LLM. Specifi-
cally, for modalities other than text, we employ
the modality-specific encoders detailed in Table 4
to generate uniform embeddings, which are then
concatenated with modality-specific prompts as
input for LLaMA (Touvron et al., 2023). Tex-
tual contents are directly encoded alongside the
prompt. Our pre-training approach, encompass-
ing various data modalities, records, and patient
information, aligns with the methodologies out-
lined in Sections 3.3, 3.4, and 3.5. We adopt the
LLaVA-med model (Li et al., 2023) as the struc-
tural foundation for our exploration.

During this exploration, we solely fine-tune the
projection layer between the frozen visual encoder
and the fixed LLM, comprising only 3.15 million
parameters. We observed a notable performance
enhancement in the text-image retrieval task. This
improvement is particularly evident when compar-
ing our results to those obtained with LLaVA-med,
achieving a significant increase in Recall@100 on
the MIMIC-CXR dataset (16.19% versus 7.00%).
This exploratory investigation underscores the ef-
fectiveness of MEDCSP’s pre-training strategy and
hints at its potential for integration with various
backbone architectures.

D Extra Text-image Retrieval Results

Although we meticulously executed data split-
ting that absolutely eliminates data leakage con-
cerns in our text-image retrieval task experiments,
there might still be skepticism regarding whether
MEDCSP truly surpasses baseline models on the
MIMIC-CXR dataset, given its pre-training on the

Table 6: Performance(%) comparison of the zero-shot
image classification task on the CheXpert dataset.

Methods Precision Recall F1

CLIP 55.42 4220 47.92
MedCLIP 31.52 26.61 28.86
PubMedCLIP 36.61 37.61 37.10
BiomedCLIP 68.42 11.92 20.31
CXRCLIP 42.11 44.04 43.05
LLaVAMed 46.58 100.00 63.56
MEDCSP 62.93 66.97 64.89

same source. To address this and demonstrate that
the robust performance of MEDCSP is attributed to
our strategically crafted pre-training approach, we
conducted additional experiments on the Open-I
dataset (Demner-Fushman et al., 2016). The results
are presented in Table 5. Echoing the findings de-
tailed in Table 2, MEDCSP consistently exceeds
the performance of all comparison models across
various metrics, further validating the effectiveness
and soundness of our well-designed pre-training
strategies.

E Extra Experiments for Zero-shot
Image Classification

To further demonstrate the effectiveness of MED-
CSP in the zero-shot image classification task,
we conducted experiments on the CheXpert
dataset (Irvin et al., 2019). In these experiments,
MEDCSP and baseline models are tasked with pre-
dicting the presence of an enlarged cardiomedi-
astinum in images without any fine-tuning. The re-
sults are presented in Table 6. Consistent with our
findings from the COVID-19 dataset experiments
(Table 3), MEDCSP surpasses both CLIP-like base-
lines and the Large Language Model (LLaVAMed),
underscoring its superior performance resulting
from well-devised pretraining strategies.
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