
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 7429–7440
November 12-16, 2024 ©2024 Association for Computational Linguistics

BIPEFT: Budget-Guided Iterative Search for Parameter Efficient
Fine-Tuning of Large Pretrained Language Models

Aofei Chang1, Jiaqi Wang1, Han Liu2

Parminder Bhatia3, Cao Xiao3, Ting Wang4, Fenglong Ma1→

1Pennsylvania State University, 2Dalian University of Technology
3GE Healthcare, 4Stony Brook University

1{aofei, jqwang, fenglong}@psu.edu, 2hanliu@dlut.edu.cn
3{parminder.bhatia, cao.xiao}@gehealthcare.com, 4twang@cs.stonybrook.edu

Abstract

Parameter Efficient Fine-Tuning (PEFT) of-
fers an efficient solution for fine-tuning large
pretrained language models for downstream
tasks. However, most PEFT strategies are
manually designed, often resulting in subop-
timal performance. Recent automatic PEFT
approaches aim to address this issue but face
challenges such as search space entanglement,
inefficiency, and lack of integration between
parameter budgets and search processes. To
overcome these issues, we introduce a novel
Budget-guided Iterative search strategy for au-
tomatic PEFT (BIPEFT), which significantly
enhances search efficiency. BIPEFT employs
a new iterative search strategy to disentangle
the binary module and rank dimension search
spaces. Additionally, we design early selection
strategies based on parameter budgets, accel-
erating the learning process by gradually re-
moving unimportant modules and fixing rank
dimensions. Extensive experiments on public
benchmarks demonstrate the superior perfor-
mance of BIPEFT in achieving efficient and ef-
fective PEFT for downstream tasks with a low
parameter budget.1

1 Introduction

Large pre-trained models (PTMs) (Devlin et al.,
2019; Radford et al., 2019) based on Transformer
architectures (Vaswani et al., 2017) have achieved
significant success across a variety of downstream
tasks through fine-tuning, including applications
of healthcare (Wang et al., 2024; Luo et al., 2024).
However, the computational and storage demands
of PTMs limit the feasibility of full fine-tuning.
To address this, parameter-efficient fine-tuning
(PEFT) methods have garnered considerable atten-
tion. Existing PEFT approaches have demonstrated
superior performance on downstream tasks (Xu

→Corresponding author.
1Source code is available at https://github.com/

Aofei-Chang/BIPEFT

Q K V

Multi-Head
Attention

Feed
Forward

Add & Norm

Add & Norm LoRA

…

…

S3Delta

AutoPEFT

BIPEFT
(Ours)

Figure 1: Search space comparison among different au-
tomatic PEFT approaches when searching on low-rank
adaption (LoRA) (Hu et al., 2022a). S3Delta (Hu et al.,
2022b) uses a {0, 1} binary space to determine whether
the module is kept. AutoPEFT (Zhou et al., 2024) uses
a multi-dimensional space to search module existence
and dimension ranks simultaneously, where 0 means the
module will be removed. The proposed BIPEFT uses a
novel iterative search strategy to disentangle the binary
module search and the rank dimension search.

et al., 2023). However, most methods, such as
adapters (Houlsby et al., 2019; Lin et al., 2020;
Rücklé et al., 2021), BitFit (Ben Zaken et al., 2022),
and LoRA (Hu et al., 2022a; Zhang et al., 2023b;
Zi et al., 2023; Zhang et al., 2023a; Dettmers et al.,
2023) require manual design of fine-tuning strate-
gies. Configuring PEFT for different layers of
Transformers can result in varying performance
outcomes.

To mitigate this issue, automatic PEFT ap-
proaches (Hu et al., 2022b; Zhou et al., 2024) have
been proposed to automatically search for the opti-
mal PEFT configuration. S3Delta (Hu et al., 2022b)
is the first differential neural architecture search
(NAS)-based PEFT approach, which automatically
searches for the optimal modules to include in the
configuration. AutoPEFT (Zhou et al., 2024) em-
ploys Bayesian optimization to conduct the PEFT
search across a large space. Although these two
automatic approaches are effective, they still suffer
from the following issues:

(1) Search Space Entanglement. As shown in
Figure 1, the search space of S3Delta (Hu et al.,

7429

https://github.com/Aofei-Chang/BIPEFT
https://github.com/Aofei-Chang/BIPEFT

2022b) is limited, focusing only on binary PEFT
module searches. In contrast, AutoPEFT (Zhou
et al., 2024) combines binary module selection
with multiple rank dimension spaces by represent-
ing binary module selection with 0 and denoting
non-zero values for ranks. Such a mixed search
ignores the fact that these two spaces are interde-
pendent and entangled. During the search, a mod-
ule with a rank of 0 means that the search on this
module is not necessary yet. In contrast, a non-
zero rank indicates that the module will be kept,
and 0 will not be selected further. Consequently,
jointly searching within such entangled spaces in-
troduces new optimization challenges, requiring
an automatic balance between dimensional choices
and binary decisions, especially when the search
space is large.

(2) Better Search Efficiency. Using a
non-differential optimization strategy makes Au-
toPEFT (Zhou et al., 2024) less efficient compared
to S3Delta (Hu et al., 2022b). However, even with
differential NAS, the efficiency of S3Delta is still
unsatisfactory due to overlooking the unique char-
acteristics of the PEFT task. Unlike traditional au-
tomated machine learning tasks that typically learn
model parameters and architectures from scratch,
automatic PEFT only learns a small set of param-
eters, with most being fixed. The weight distribu-
tions for some modules or dimension ranks may
quickly stabilize after a few training steps. Thus,
keeping them involved in the PEFT learning until
the final training step is unnecessary and lowers
search efficiency.

(3) Isolation between Parameter Budgets and
Search Efficiency. In practice, a smaller yet ef-
fective model is more useful for downstream tasks.
S3Delta (Hu et al., 2022b) uses a parameter budget
to control the number of trainable model param-
eters. However, this budget does not accelerate
PEFT optimization. An ideal solution would be to
use the parameter budget as a factor to guide the
efficient PEFT configuration, potentially yielding a
more effective downstream model.

To solve all the aforementioned issues simul-
taneously, in this paper, we propose a parameter
Budget-guided Iterative search strategy BIPEFT for
boosting the search efficiency of automatic PEFT,
as shown in Figure 2. BIPEFT works as follows:
At each training step t, BIPEFT uses the designed
iterative search strategy to search optimal architec-
ture weights for the binary PEFT module search

space and rank dimension search space alterna-
tively, which can handle the first issue. After a
few training steps, BIPEFT will trigger the selec-
tion modules, where the trigger is generated based
on the parameter budget B and the current module
state, as detailed in §Sec. 3.2. BIPEFT contains a
novel parameter budget-guided module selection
strategy in §Sec. 3.3 to gradually remove the unim-
portant modules and a new parameter history-based
dimension selection strategy in §Sec. 3.4 to adap-
tively fix rank dimensions during the search. These
two new selection strategies can perfectly address
the second and third issues. After selecting mod-
ules and fixing rank dimensions, BIPEFT will re-
peat again until the number of triggers achieves the
maximum number Z.

To sum up, this work has the following contribu-
tions:

• We recognize the importance of disentangling
the binary module and rank dimension search
spaces for automatic PEFT optimization.

• We introduce a novel automatic PEFT model
BIPEFT, which is an iterative differential NAS-
based approach to effectively search for down-
stream task models with parameter budget
constraints.

• We design early selection strategies for differ-
ent space searches, which significantly accel-
erates the optimal PEFT model learning.

• We conduct extensive experiments on two pub-
lic benchmarks and compare BIPEFT against
state-of-the-art baselines. Experimental re-
sults demonstrate the efficacy and efficiency
of BIPEFT for automatic PEFT.

2 Related Work

Parameter Efficient Fine-Tuning (PEFT). Gen-
erally, PEFT is designed based on a Transformer
architecture and only optimizes a small portion of
parameters and leaves the vast majority of parame-
ters frozen for efficient adaptation to downstream
tasks. The PEFT methods can be broadly classi-
fied into four categories (Han et al., 2024): (1)
Additive PEFT such as Adapter (Houlsby et al.,
2019) and Prefix-Tuning (Li and Liang, 2021) in-
serts new trainable modules or parameters in the
model. (2) Selective PEFT aims to optimize model
performance by selectively fine-tuning a subset of

7430

Q K V

Multi-Head
Attention

Layer Norm LNFit

Feed
Forward

Layer
BitFit

Adapter

LoRA

X

{0,1}

{0,1}

{0,1}

{0,1}

{1,4,8}

{1,4,8}

Binary Module
Search !

Dimension
Rank Search "

(a) Fine-tuning a PTM layer using disentanglement search spaces

Binary Module
Search !

Dimension
Rank Search "

Training Steps!! − 1 ! + 1

Trigger? Trigger? Trigger?

Budget-aware Trigger
Generation

Module
Sensitivity

Module
Importance

Model
Stability

Binary Module Selection Multiple Rank Dimension Selection

Expected
Model

Parameters

Module Sensitivity

Module Selection

Dimension Stability

Reduction Size

Dimension
Selection

(b) The proposed BIPEFT model with iterative search and selection strategies

Figure 2: Overview of the proposed BIPEFT, which conducts an iterative search on disentanglement search spaces
with novel module and rank dimension selection strategies to accelerate search efficiency.

the model’s parameters by masking (Guo et al.,
2021; Fu et al., 2023; Liao et al., 2023; Sung et al.,
2021) or manual design (Ben Zaken et al., 2022).
(3) Reparameterized PEFT like LoRA (Hu et al.,
2022a), constructs a reparameterization of the origi-
nal model parameters for training, then equivalently
transforms it back at the inference stage (Zhang
et al., 2023b; Luo et al., 2023). (4) Hybrid PEFT
focuses on combining the benefits of diverse PEFT
modules from the last three categories (Mao et al.,
2021; Chen et al., 2023). A series of automated hy-
brid PEFT methods are developed to automatically
search for an effective hybrid PEFT structure, and
our work falls into this category.

Automated Configuration Search for PEFT. Au-
toPEFT (Zhou et al., 2024) using Bayesian op-
timization and S3Delta (Hu et al., 2022b) utiliz-
ing differential neural architecture search (NAS)
techniques to search for optimal architectures for
natural language processing (NLP) tasks. In con-
trast, PrunePEFT (Lawton et al., 2023) adopts a
straightforward pruning approach to identify es-
sential PEFT parameters. In the vision domain,
NOAH (Zhang et al., 2022b) applies an evolution-
ary NAS strategy to tailor PEFT configurations
specifically for Vision Transformer (Dosovitskiy
et al., 2021). Despite these advancements, signifi-
cant challenges remain in optimizing search space
design and improving search efficiency.

Early Stopping in Neural Architecture Search.
Existing early stopping strategies in neural archi-
tecture search address the overfitting issues on se-
lecting many skip connections in convolutional
neural networks (CNNs) when using methods like
DARTS (Liu et al., 2019). OLES (Jiang et al.,
2023) introduces an operation-level early stopping
method to mitigate this issue. DARTS+ (Liang
et al., 2019) implements a manual threshold for

stopping the search. SGAS-es utilizes an indica-
tor for stabilizing search results on CNNs. No-
tably, early stopping techniques have not yet been
adapted for the PEFT search, which is character-
ized by faster convergence compared to CNNs.

3 Methodology
3.1 Overview

Our approach aims to automatically search for the
optimal PEFT structure from N modules of LLMs
through a novel budget-aware search strategy
named BIPEFT. This strategy iteratively searches
from two distinct spaces: a binary position search
space and a dimension search space, with module
and dimension selection mechanisms. As shown
in Figure 2, at each training step t, BIPEFT will
first optimize the architecture weights !t → RN↑2

by fixing the weights of ”t↓1 → RN↑K for the
dimension search space, where K is the number
of dimension candidates. Subsequently, BIPEFT
updates ”t using the optimized !t.

After each training step, BIPEFT checks whether
the budget-aware selection mechanisms are trig-
gered according to module sensitivity scores and
the targeted budget B detailed in §Sec. 3.2. If trig-
gered, BIPEFT will first estimate the number of
reduced parameters Rz at this trigger stage and
then discard unimportant modules according to the
estimated Rz with a designed module selection
strategy in §Sec. 3.3. BIPEFT also selects an ap-
propriate dimension size for certain modules in
§Sec. 3.4. These selection operations lead to fur-
ther updates !t and ”t. BIPEFT stops when the
maximum trigger count Z is reached, ensuring that
the model size approximates the targeted budget B.
The search process of BIPEFT is outlined in Algo-
rithm 1, with the details of the designed strategy
discussed in the following subsections.

7431

Algorithm 1: Algorithm of BIPEFT
Input: N PEFT modules with trainable weights !W,

architecture parameters !0 and ”0, stability
trigger threshold ω , parameter budget B, total
steps T , maximum trigger count Z, binary
selection indicator bz , dimension selection
indicator dz

Output: Searched PEFT architecture A
for t = 1, . . . , T do

Update !W by gradient descent;
Optimize !t↑1 and ”t↑1 iteratively according to

the objective;
Accumulate the sensitivity score s̄t of each PEFT

module using Eq. (4);
Calculate module importance indicator It;
Evaluate model stability εt using Eq. (5);
if (εt → ω) then

Estimate expected parameters Et using Eq. (7);
Calculate expected parameter reduction Rz

using Eq. (6);
Rank N modules by sensitivity score s̄t;
Perform early module selection until the

reduction Rz is achieved;
Update binary selection indicator bz;
Evaluate dimension stability ϑn

z using Eq. (9);
Estimate the number of modules Yz for

dimension selection using Eq. (10);
Fix dimensions for Yz modules with the lowest

stability scores ϑn
z ;

Update dimension selection indicator dz;
Freeze part of the !t↑1 and ”t↑1 according to

selection indicators bz , dz;
Z ↑ Z ↓ 1;

if Z ↔ 0 then
Exit;

return A

3.2 Budget-aware Trigger Generation

A naive solution of automatically searching for the
optimal PEFT structure is to gradually reduce the
number of parameters during model fine-tuning.
However, if the fine-tuned model is unstable, we
cannot decide which modules will be pruned. Thus,
evaluating model stability is important. To achieve
this goal, we design a new budget-aware model sta-
bility strategy according to module-level sensitive
scores and the targeted budget B.

3.2.1 Module Sensitivity Estimation

In our setting, we apply the differential neural ar-
chitecture search (NAS) for optimal PEFT config-
uration. If a module Mn plays an important role
in the PEFT model, it should be more stable and
contribute greatly to the loss function. In the NAS-
based model training, we have both training and
validation data, denoted as Dtra and Dval. The
module sensitivity can be evaluated on these two

kinds of data as follows:

s
t

n = f
t

n(Dtra) + ω
t

nf
t

n(Dval), (1)

f
t

n(D) =
1

|Mn|
∑

w↔Mn

∣∣∣wGt

n(w,D)
∣∣∣, (2)

ω
t

n = cos(Gt

n(Dtra),G
t

n(Dval)). (3)

Following (Molchanov et al., 2019), we use f
t
n to

calculate the parameter-level average magnitude of
the gradient-weight product. |Mn| is the number of
fine-tuned parameters of the n-th module. Gt

n(w)
denotes the gradient of weight w. ωt

n denotes the
gradient cosine similarity of the module Mn on
both training and validation data.

The sensitivity score s
t
n of each module can be

measured after each training step t. To mitigate
the impact of stochastic data batch sampling, we
propose to smooth the sensitivity score using an ex-
ponential moving average following (Zhang et al.,
2022a) as follows:

s̄
t

n = εs̄
t↓1
n + (1↑ ε)stn, (4)

where ε is a predefined hyperparameter.

3.2.2 Trigger Generation
Determining the optimal timing for starting param-
eter reduction is pivotal. To address this challenge,
we propose an adaptive trigger generation approach
to automatically estimate the optimal timing ac-
cording to module sensitivity scores learned by
Eq. (4) along with the targeted budget B.
Module Importance Indicator. Ideally, the finally
selected modules should be greatly yet continu-
ously contributed to the model fine-tuning. More-
over, the total parameters of the finally selected
modules should be close to the targeted budget B
in our setting.

Based on these motivations, we design a module
importance indicator It → {0, 1}N for each train-
ing step t to record the estimated importance of
modules. Specifically, we initialize It = 0 and
rank the module sensitivity scores in descending
order. We accumulate the parameters from top-
ranked modules one by one. If the current sum
is smaller than the targeted budget B, we set the
indicator value as 1 for that module. Otherwise, all
the remaining indicator values are 0.
Trigger. Intuitively, the model performs stably if
the important modules change slightly within a
time window H . We use an average cosine simi-
larity between two consecutive module importance

7432

indicators within H steps to evaluate the model
stability as follows:

ϑt =
1

H

t∑

j=t↓H

cos(Ij , Ij↓1), (5)

where ϑt ↓ ϖ means that the model is stable now,
and the trigger can be generated, where ϖ is a hy-
perparameter. After triggering the parameter reduc-
tion, BIPEFT then uses two strategies to reduce the
number of training parameters, i.e., binary module
selection and multiple dimension selection.

3.3 Binary Module Selection
The majority of parameters will be reduced in the
binary module selection stage. In the design of
BIPEFT, we aim to gradually obtain the optimal
PEFT configuration after triggering the reduction
Z times. Thus, estimating the number of parameter
reductions at the trigger step z is essential. Let Et

denote the expected number of parameters at the
t-th training step when the trigger counter is z. We
can estimate the expected number of reductions is

Rz =
Et ↑ B
Z ↑ z

. (6)

Here, the challenge is how can we estimate Et.

3.3.1 Expected Parameters Estimation
We use the current status of the PEFT model at
the t-th training step (i.e., the z-th trigger counter)
and the selection status at the (z ↑ 1)-th trigger
stage to estimate the expected parameters Et. The
PEFT model contains both architecture weights
!t and ”t. The selection status at z ↑ 1 con-
tains a binary module selection indicator denoted
as bz↓1 → {0, 1}N and a module dimension selec-
tion indicator vector dz↓1 → {0, 1}N . bn

z↓1 = 1
means that the module Mn is kept in the PEFT
training. Otherwise, the module has been removed.
dn

z↓1 = 1 indicates that Mn has a selected or
fixed dimension value with index k

→
n, but dn

z↓1 = 0
means the dimension is undetermined. Based on
these notations, we can estimate Et as follows:

Et =
N∑

n=1

pn

K∑

k=1

C
k

n, (7)

where pn = bn

z↓1 ↔ softmax(!n

t)[1] is the proba-
bility of the kept module, and C

k
n is the estimated

number of parameters of each module, which is

defined as follows:

C
k

n =

{
qn[k→n], if dn

z↓1 = 1,

qn · softmax(”n

t)
↗
, if dn

z↓1 = 0,
(8)

where qn → RK is the parameter vector for all
candidate dimensions, which can be precalculated.
When the dimension is fixed, we use the corre-
sponding parameter values directly. Otherwise, we
use a weighted sum over the estimated probabili-
ties.

3.3.2 Adaptive Module Selection
Using Eq. (7), we can obtain the expected reduc-
tions Rz . To prune unimportant modules, we still
use the module-level sensitivity scores calculated
by Eq. (4) at step t. We rank all sensitivity scores of
the currently kept modules and remove the modules
with the lowest scores if their total parameter size
is smaller than Rz . Correspondingly, we update
bz↓1 to obtain bz as the new module indicator.

3.4 Multiple Rank Dimension Selection
We can also determine the dimension size for each
module Mn if there is a clearly stable pattern on
learned architecture weights ”n

t . Since evaluating
the sensitivity score for each dimension as each
module is hard, we propose a new strategy to mea-
sure the weight distributions between two trigger
counters, z ↑ 1 and z. Note that there are several
training steps between the trigger gap. Assume
that at the j-th training step, BIPEFT triggers the
reduction z ↑ 1, and at t (t > j), the z-th trigger
happens. We use the historical architecture weights
[”n

j , · · · ,”n

t] to evaluate the stability of each di-
mension.

3.4.1 Dimension Stability Estimation
Intuitively, a stable dimension needs to satisfy two
conditions. On the one hand, the intra-dimension
weight at each training step may not change much,
i.e., the standard deviation of dimension-level
weights [ϱn

z,1, · · · ,ϱn

z,K
] should be as small as pos-

sible. On the other hand, the cross-dimension
weights, i.e., the weight distributions, should also
be as similar as possible. Specifically, we can use
the Kullback-Leibler (KL) divergence to evaluate
the similarity of two distributions. Based on these
motivations, we design a dimension stability indi-
cator as follows:

ς
n

z =
1

K

K∑

k=1

ϱ
n

z,k
KL(”n

j ,”
n

t). (9)

7433

3.4.2 Adaptive Dimension Selection
Similar to the module selection, we need to de-
termine which modules’ dimensions should be
selected automatically according to the calcu-
lated dimension stability scores [ς1

z, · · · ,ςN
z] using

Eq. (9). However, the challenge here is estimating
the expected number of modules for dimension
reduction.
Expected Reduction Module Size Estimation. In-
tuitively, we can fix more modules’ dimensions if
the potential dimension selections at z ↑ 1 and z

are similar, which motivates us to use the similarity
score to potential dimension vectors, i.e., vz↓1 and
vz . The potential dimension of the n-th module
that is not fixed can be obtained through its ar-
chitecture weights, i.e., vn

z = Dim[argmax
k
(”n

t)],
where Dim is all the possible dimension vector.
Note that if the module is removed, then dn

z↓1 =
1,vn

z = 0, and vn
z = Dim[k→n] for the fixed module.

Finally, we can estimate the number of modules for
dimension reduction as follows:

Yz =
⌊sum(1↑ dz↓1) ↔ cos(vz↓1,vz)

Z ↑ z

⌋
. (10)

Adaptive Dimension Selection. After obtaining
the expected number of reduction modules, we then
use the dimension stability scores [ς1

z, · · · ,ςN
z]

to select dimension-unfixed modules among the
top Yz lowest scores, whose dimensions are then
fixed using the corresponding values in vn

z . Finally,
we can update dz based on dz↓1 and the newly
dimension-fixed modules.

3.5 Iterative Optimization
The proposed BIPEFT is a differential NAS-
based PEFT model, which can be optimized as
DARTS (Liu et al., 2019). The optimization objec-
tive is defined as follows:

min
!→,”→

Lval (Dval;!,”,W0 +!W→) ,

s.t. !W→ = argmin
!W

Ltra (Dtra;!
→,”→,W0 +!W) ,

where the network parameters contain two parts –
fixed pre-trained LLM weights W0 and trainable
PEFT parameters !W. However, we have two
distinct search spaces with architecture weights !
and ”. These two kinds of architecture weights
depend on each other, making optimizing them
simultaneously hard.

To address this issue, we propose an iterative
optimization approach. We first use the first-order

approximation in DARTS to optimize !W, which
improves the search efficiency by considering that
!W converges fast based on the pre-trained W0.
After obtaining !W→, we then fix the dimension
parameters ”→ and optimize the module parameters
! first. Subsequently, we use the optimized !→ to
learn the optimal dimension parameters ”→. We
repeat the previous steps until BIPEFT converges.

Besides, to bridge the gap between the search
and validation stages, we follow (Chang et al.,
2019) by employing the Gumbel-Softmax (Jang
et al., 2017) function to normalize !→ and ”→,
where the nodes with maximal weight will have the
highest probability to be selected. In addition, dur-
ing the search, we implement weight entanglement,
as utilized in AutoFormer (Chen et al., 2021), al-
lowing shared weights across different dimensions
to enhance stability, promoting faster convergence
and reducing memory costs.

4 Experiments

4.1 Experimental Setups
Datasets. We use two widely used natural language
processing (NLP) benchmarks: GLUE (Wang
et al., 2018) and SuperGLUE (Wang et al., 2019) in
our experiments. All datasets are downloaded from
the HuggingFace Datasets (Lhoest et al., 2021).

We follow S3Delta (Hu et al., 2022b) to gen-
erate the training, validation, and test splits. For
larger datasets, including QQP, QNLI, ReCoRD,
SST-2, and MNLI, we allocate 2,000 random sam-
ples from the training set to form a new validation
set, use the remaining samples as the training set,
and repurpose the original validation set as the test
set. For smaller datasets, we equally split the origi-
nal validation set into new validation and test sets,
while the original training set remains unchanged.
Each dataset is split using different random seeds to
introduce variability in the dataset configurations.
Note that we remove the COPA dataset in Super-
GLUE since its performance varies dramatically
following S3Delta (Hu et al., 2022b).
Baselines. We follow existing studies and use
the following models as baselines: (1) Automatic
PEFT methods: AutoPEFT (Zhou et al., 2024)
uses multi-objective Bayesian optimization to dis-
cover a Pareto-optimal set of PEFT configura-
tions. S3Delta (Hu et al., 2022b) automatically
searches sparse PEFT structure by determining
the usage of each module using differential NAS.
PrunePEFT (Lawton et al., 2023) implements a

7434

Table 1: Results on the GLUE and SuperGLUE benchmarks. “Ratio” specifies the ratio of trainable parameters
compared to T5. Average metrics (AVG) and parameter ratios (Ratio) are averaged over all the values. ↔ denotes the
results that are directly copied from S3Delta (Hu et al., 2022b).

GLUE
Ratio Method CoLA SST2 MRPC QQP STSB MNLI QNLI AVG

10000%% Fine-tune→ 62.25 ± 3.96 95.87 ± 0.42 91.86 ± 1.19 89.50 ± 0.22 91.86 ± 0.46 89.61 ± 0.30 94.22 ± 0.35 87.88

Manual PEFT Methods
65.33%% Adapter→ 59.03 ± 3.06 95.90 ± 0.29 93.02 ± 0.28 88.39 ± 0.06 91.77 ± 0.25 89.53 ± 0.07 94.17 ± 0.19 87.40
21.32%% LoRA(r=8)→ 58.43 ± 4.16 95.79 ± 0.27 92.21 ± 0.88 88.35 ± 0.25 91.78 ± 0.31 89.38 ± 0.32 94.14 ± 0.12 87.15
8.13%% BitFit→ 56.98 ± 3.89 96.24 ± 0.33 92.16 ± 0.68 88.12 ± 0.07 91.59 ± 0.08 89.10 ± 0.09 94.07 ± 0.21 86.90
1.70%% LNFit→ 56.15 ± 4.06 95.81 ± 0.20 91.71 ± 0.39 88.17 ± 0.10 91.37 ± 0.24 89.11 ± 0.09 93.99 ± 0.20 86.62

Automated PEFT Methods
18.90%% AutoPEFT 59.59 ± 1.24 95.87 ± 0.23 91.06 ± 0.52 88.21 ± 0.04 91.42 ± 0.08 89.16 ± 0.10 93.90 ± 0.15 87.03
1.39%% BIPEFT 59.04 ± 8.20 95.70 ± 0.08 92.10 ± 0.61 88.28 ± 0.09 91.83 ± 0.40 89.14 ± 0.01 94.06 ± 0.01 87.16

1.39%% S3Delta-M→ 59.34 ± 4.75 95.84 ± 0.14 92.13 ± 2.09 88.04 ± 0.23 91.58 ± 0.25 89.14 ± 0.13 94.12 ± 0.12 87.17
1.39%% PrunePEFT 60.39 ± 5.90 95.87 ± 0.09 92.83 ± 1.41 88.12 ± 0.11 91.62 ± 0.61 89.19 ± 0.15 93.95 ± 0.08 87.42
1.39%% BIPEFT 62.97 ± 3.72 96.27 ± 0.24 93.22 ± 0.62 88.28 ± 0.02 92.23 ± 0.28 89.28 ± 0.02 94.25 ± 0.06 88.07

SuperGLUE
Ratio Method BoolQ CB MultiRC ReCORD RTE WIC AVG

10000%% Fine-tune→ 86.67 ± 0.21 96.43 ± 2.92 76.65 ± 1.01 85.03 ± 0.67 88.49 ± 2.12 73.12 ± 1.71 84.40

Manual PEFT Methods
65.33%% Adapter→ 85.98 ± 0.68 94.64 ± 6.19 77.60 ± 0.84 85.96 ± 0.37 89.21 ± 2.94 71.63 ± 0.90 84.17
21.32%% LoRA(r=8)→ 85.06 ± 0.70 91.96 ± 3.42 76.94 ± 1.16 85.84 ± 0.21 87.05 ± 0.59 72.10 ± 1.31 83.16
21.32%% BitFit→ 85.02 ± 0.48 89.29 ± 2.92 75.79 ± 1.15 85.85 ± 0.32 86.15 ± 1.48 72.34 ± 1.61 82.41
1.70%% LNFit→ 84.07 ± 0.50 82.14 ± 2.92 75.52 ± 1.16 86.14 ± 0.11 86.69 ± 1.81 69.28 ± 1.49 80.64

Automated PEFT Methods
17.69%% AutoPEFT 83.39 ± 0.13 93.75 ± 4.49 76.49 ± 0.41 85.59 ± 0.13 85.99 ± 0.42 72.17 ± 1.19 82.89
1.39%% BIPEFT 84.55 ± 0.13 92.86 ± 3.58 75.90 ± 0.12 85.94 ± 0.05 88.85 ± 1.53 70.38 ± 0.66 83.08

1.39%% S3Delta-M→ 84.92 ± 0.68 92.86 ± 2.92 76.38 ± 0.92 86.10 ± 0.11 86.69 ± 1.90 71.63 ± 1.07 83.10
1.39%% PrunePEFT 85.16 ± 0.47 91.66 ± 4.12 76.66 ± 0.60 85.46 ± 0.81 87.29 ± 0.42 70.37 ± 0.23 82.77
1.39%% BIPEFT 85.44 ± 1.12 94.65 ± 2.52 75.84 ± 0.04 85.70 ± 0.07 88.49 ± 2.04 72.25 ± 0.22 83.73

simple unstructured pruning strategy to search for
optimal PEFT structures. (2) Manually designed
PEFT methods: We use LoRA (Hu et al., 2022a),
Adapter (Houlsby et al., 2019), BitFit, and LNFit
as baselines following S3Delta (Hu et al., 2022b).

Pretrained Backbone Model. Our experiments
utilize the T5 large model for all the baselines and
BIPEFT, which contains approximately 770 million
parameters. We freeze the pretrained parameters
W0 across all PEFT settings.

Search Spaces. Since the search space of existing
work is different, for a fair comparison, we follow
existing work and make comparisons within the
space that they use. Setting 1 (S1): For AutoPEFT,
we use a mixture of Serial Adapter (Houlsby
et al., 2019), Parallel Adapter (He et al., 2022),
and Prefix-Tuning (Li and Liang, 2021). Set-
ting 2 (S2): When comparing with S3Delta and
PrunePEFT, we use a mixture of LoRA, Adapter-
LR, BitFit (Ben Zaken et al., 2022), and LNFiT
modules as the search space. For both S1 and S2,
each module has a binary selection space {0, 1}.
For baseline S3Delta, its dimension size is fixed,

which is 1. For other approaches, the candidate di-
mensions for all the PEFT modules in both search
space settings are Dim = {1, 4, 8}. Additional ex-
periment settings and hyperparameters are listed in
Appendix B.

4.2 Main Results

We report the results on GLUE and SuperGLUE
in Table 1 by averaging 3 runs with different ran-
dom seeds. We follow previous work (Hu et al.,
2022b) and use different metrics to validate the
performance of different tasks, as detailed in Ap-
pendix A. Notably, BIPEFT typically outperforms
both manual PEFT methods and automated PEFT
baselines regarding average scores on both bench-
marks under different search spaces, with a small
budget. On the GLUE benchmark, BIPEFT even
surpasses the full fine-tuning with only 1.39%%
parameters.

When comparing the automated PEFT methods
with manually designed PEFT, we find that BIPEFT
and other automated PEFT methods achieve better
average scores on GLUE and SuperGLUE with

7435

Table 2: Results of ablation study within the S1. “Entanglement” means that we directly use differential NAS to
search from the entangled search space. “b ↗ d” is a two-stage search, where we first run a binary search until
the model converges, then run the dimension rank search based on the binary search results. “d ↗ b” means to
exchange the search order of “b ↗ d”. “w.o. Selection” is a variant of BIPEFT by removing the early selection and
only conducting the iterative search. “w. Selection” is BIPEFT. Red and Green highlight the best and second-best.

Entanglement
Disentanglement

Ratio COLA MRPC RTE AVGw.o. Iteration w. Iteration
b ↗ d d ↗ b w.o. Selection w. Selection

↭ 33.81%% 60.52 ± 2.58 91.54 ± 2.48 87.77 ± 1.01 79.94
↭ 29.01%% 60.03 ± 2.94 91.66 ± 1.89 88.01 ± 0.83 79.90

↭ 21.98%% 60.33 ± 3.70 92.03 ± 1.36 87.77 ± 1.86 80.04
↭ 29.22%% 62.95 ± 3.03 92.04 ± 2.29 88.25 ± 0.83 81.08

↭ 1.39%% 62.97 ± 3.72 93.22 ± 0.62 88.49 ± 0.83 81.56

fewer parameters. We also find that the differ-
ences in search space design result in performance
change. Under the S1 setting designed by Au-
toPEFT, BIPEFT searched with an equivalent low
parameter budget of 1.39%% does not match the
performance achieved under the S2 setting, which
contains more types of PEFT modules, highlight-
ing the benefits of including a diverse range of
searchable PEFT modules in BIPEFT.

4.3 Ablation Study

The proposed BIPEFT mainly considers the disen-
tanglement search spaces and uses both binary mod-
ule and dimension rank early selection strategies to
enhance efficiency and boost performance. We use
four baselines in the ablation study to validate the
effectiveness of our model design. The experimen-
tal setting follows (Hu et al., 2022b), and the results
of these baselines are shown in Table 2. We can ob-
serve that the iterative search approaches (the last
two rows) outperform the entanglement and non-
iterative ones, indicating the effectiveness of our
proposed iterative search solution. Besides, using
the designed selection strategies, BIPEFT further
enhances its performance and reduces the number
of parameters. This comparison validates the use-
fulness of our early selection strategies.

4.4 Efficiency Analysis

In addition to the promising performance, we also
evaluate the search efficiency of our method by
comparing the time consumed during the search
stage against the re-training duration, as detailed
in Table 3. All the training time is tested with the
same batch size on the same GPU devices. The
time is averaged from three datasets, RTE, STSB,
and CoLA, under two search space settings, S1 and
S2. It clearly shows that BIPEFT achieves a high
search efficiency with the design of early selection.

Table 3: Efficiency Comparison.

Setting Method Avg. Time (min)
Search Re-train Ratio

S1 AutoPEFT 348 22 15.80
BIPEFT 13 22 0.59

S2
S
3Delta 125 20 6.30

PrunePEFT 20 20 1.00
BIPEFT 13 20 0.65

Fine-Tune

Parameter Budget Ratio (%%)

A
cc
ur
ac
y

SuperGLUE RTE

70
58.3

75.9

83

85

87

89

91

5.56 1.39 0.35 0.17 0.09

S3Delta BIPEFT PrunePEFT

55

Figure 3: Performance vs. different levels of budget.

4.5 Different Parameter Budgets

We also explore the influence of the parameter bud-
get. Ideally, a larger budget will lead to better
performance. Figure 3 shows the results with dif-
ferent ratios of parameter budgets, and the models
are searched in space S1 on the RTE dataset in the
SuperGLUE benchmark, compared with S3Delta
and PrunePEFT. We can observe that BIPEFT con-
sistently sustains a higher accuracy and saturates to
full fine-tuning performance by preserving essen-
tial PEFT modules even at very low budget levels.

4.6 Generalization Ability Analysis

We evaluate the task generalization capability of the
structures searched within search space S1, as pre-
sented in Table 4. The results indicate that the struc-
tures searched for source datasets such as MRPC,
MNLI, and QQP exhibit robust generalization to
various target datasets, which encompass different
types of NLP tasks. This demonstrates the abil-

7436

Table 4: PEFT structure generalization from source
datasets to target datasets. “No Transfer” means using
the original structures searched from the target datasets.

Source Target Datasets

Datasets STSB SST2 QNLI COLA

No Transfer 92.23 ± 0.28 96.27 ± 0.24 94.34 ± 0.06 62.95 ± 3.03
MRPC 92.28 ± 0.22 96.04 ± 0.08 94.18 ± 0.16 60.51 ± 6.21
MNLI 92.04 ± 0.12 96.16 ± 0.24 94.04 ± 0.17 60.17 ± 2.96
QQP 92.20 ± 0.05 96.10 ± 0.16 94.16 ± 0.12 62.08 ± 5.72

ity of our searched structures in maintaining high
performance across diverse NLP downstream ap-
plications.

5 Conclusion

In this paper, we introduce BIPEFT, a highly ef-
ficient search framework for parameter-efficient
fine-tuning (PEFT) modules on large pretrained
language models. BIPEFT operates within a specif-
ically designed disentangled search space using
an iterative search strategy, incorporating novel se-
lection mechanisms that significantly accelerate
the search process while delivering promising per-
formance outcomes. Our extensive experiments
on two widely used NLP benchmarks demonstrate
the superiority of the PEFT structures identified
by BIPEFT. Despite requiring limited parameters
and incurring minimal search costs, BIPEFT outper-
forms both manually designed and other automated
PEFT methods across a variety of NLP tasks. Ad-
ditionally, the searched structures exhibit excellent
generalization ability, proving effective for other
downstream tasks as well. Overall, BIPEFT rep-
resents a substantial advancement in the field of
automatic PEFT optimization, providing an effi-
cient and effective solution for fine-tuning large
pretrained language models.

Limitations

While we conduct our PEFT within the S1 and S2
search space settings, which include many popular
PEFT modules, there remains the potential to inte-
grate additional existing or new PEFT modules into
our framework to further evaluate search perfor-
mance and efficiency. Nonetheless, the proposed
BIPEFT framework is inherently flexible, allowing
for the seamless integration of new PEFT modules
as they become available. In addition, although the
early stopping design requires manual hyperparam-
eters like the maximum step Z, this mechanism
will sustain high efficiency and strong performance
because it could effectively prioritize the most crit-
ical PEFT modules within the given budget.

Acknowledgements

This work is partially supported by the National
Science Foundation under Grant No. 2238275 and
2212323 and the National Institutes of Health under
Grant No. R01AG077016.

References
Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.

2022. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 60th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1–9.

Jianlong Chang, Yiwen Guo, Gaofeng Meng, Shiming
Xiang, Chunhong Pan, et al. 2019. Data: Differen-
tiable architecture approximation. NeurIPS, 32.

Jiaao Chen, Aston Zhang, Xingjian Shi, Mu Li, Alex
Smola, and Diyi Yang. 2023. Parameter-efficient fine-
tuning design spaces. In The Eleventh International
Conference on Learning Representations.

Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin
Ling. 2021. Autoformer: Searching transformers for
visual recognition. In ICCV, pages 12270–12280.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. NeurIPS, 36.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In North American Chapter of the Association
for Computational Linguistics.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on
Learning Representations.

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai
Lam, Lidong Bing, and Nigel Collier. 2023. On the
effectiveness of parameter-efficient fine-tuning. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 12799–12807.

Demi Guo, Alexander Rush, and Yoon Kim. 2021.
Parameter-efficient transfer learning with diff prun-
ing. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4884–4896.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang,
et al. 2024. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint
arXiv:2403.14608.

7437

https://openreview.net/forum?id=XSRSWxyJIC
https://openreview.net/forum?id=XSRSWxyJIC
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In International Conference on Learning Representa-
tions.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022a. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Shengding Hu, Zhen Zhang, Ning Ding, Yadao Wang,
Yasheng Wang, Zhiyuan Liu, and Maosong Sun.
2022b. Sparse structure search for delta tuning. In
Thirty-Sixth Conference on Neural Information Pro-
cessing Systems.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cate-
gorical reparameterization with gumbel-softmax. In
International Conference on Learning Representa-
tions.

Shen Jiang, Zipeng Ji, Guanghui Zhu, Chunfeng Yuan,
and Yihua Huang. 2023. Operation-level early stop-
ping for robustifying differentiable NAS. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

Neal Lawton, Anoop Kumar, Govind Thattai, Aram
Galstyan, and Greg Ver Steeg. 2023. Neural archi-
tecture search for parameter-efficient fine-tuning of
large pre-trained language models. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 8506–8515.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario !a"ko, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597.

Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu
He, Weiran Huang, Kechen Zhuang, and Zhenguo
Li. 2019. Darts+: Improved differentiable archi-
tecture search with early stopping. arXiv preprint
arXiv:1909.06035.

Baohao Liao, Yan Meng, and Christof Monz. 2023.
Parameter-efficient fine-tuning without introducing
new latency. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics,
pages 4242–4260.

Zhaojiang Lin, Andrea Madotto, and Pascale Fung.
2020. Exploring versatile generative language model
via parameter-efficient transfer learning. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 441–459.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2019.
DARTS: Differentiable architecture search. In Inter-
national Conference on Learning Representations.

Gen Luo, Minglang Huang, Yiyi Zhou, Xiaoshuai Sun,
Guannan Jiang, Zhiyu Wang, and Rongrong Ji. 2023.
Towards efficient visual adaption via structural re-
parameterization. arXiv preprint arXiv:2302.08106.

Junyu Luo, Xiaochen Wang, Jiaqi Wang, Aofei Chang,
Yaqing Wang, and Fenglong Ma. 2024. CoRelation:
Boosting automatic ICD coding through contextual-
ized code relation learning. In LREC-COLING 2024,
pages 3997–4007, Torino, Italia. ELRA and ICCL.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-
hairi, Hao Ma, Jiawei Han, Wen tau Yih, and Madian
Khabsa. 2021. Unipelt: A unified framework for
parameter-efficient language model tuning. In An-
nual Meeting of the Association for Computational
Linguistics.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri
Frosio, and Jan Kautz. 2019. Importance estima-
tion for neural network pruning. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 11264–11272.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2021. Adapterdrop: On the efficiency
of adapters in transformers. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7930–7946.

Yusheng Su, Chi-Min Chan, Jiali Cheng, Yujia Qin,
Yankai Lin, Shengding Hu, Zonghan Yang, Ning
Ding, Xingzhi Sun, Guotong Xie, et al. 2023. Ex-
ploring the impact of model scaling on parameter-
efficient tuning. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 15062–15078.

7438

https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=oOte_397Q4P
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=yAOwkf4FyL
https://openreview.net/forum?id=yAOwkf4FyL
https://openreview.net/forum?id=S1eYHoC5FX
https://aclanthology.org/2024.lrec-main.355
https://aclanthology.org/2024.lrec-main.355
https://aclanthology.org/2024.lrec-main.355
https://api.semanticscholar.org/CorpusID:238857301
https://api.semanticscholar.org/CorpusID:238857301

Yi-Lin Sung, Varun Nair, and Colin A Raffel. 2021.
Training neural networks with fixed sparse masks.
NeurIPS, 34:24193–24205.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, #ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. NeurIPS, 30.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. NeurIPS, 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355.

Jiaqi Wang, Junyu Luo, Muchao Ye, Xiaochen Wang,
Yuan Zhong, Aofei Chang, Guanjie Huang, Ziyi Yin,
Cao Xiao, Jimeng Sun, and Fenglong Ma. 2024. Re-
cent advances in predictive modeling with electronic
health records. In Proceedings of the Thirty-Third
International Joint Conference on Artificial Intel-
ligence, IJCAI-24, pages 8272–8280. International
Joint Conferences on Artificial Intelligence Organi-
zation. Survey Track.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui
Tao, and Fu Lee Wang. 2023. Parameter-efficient
fine-tuning methods for pretrained language models:
A critical review and assessment. arXiv preprint
arXiv:2312.12148.

Feiyu Zhang, Liangzhi Li, Junhao Chen, Zhouqiang
Jiang, Bowen Wang, and Yiming Qian. 2023a. In-
crelora: Incremental parameter allocation method
for parameter-efficient fine-tuning. arXiv preprint
arXiv:2308.12043.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023b. Adaptive budget allocation for
parameter-efficient fine-tuning. In International Con-
ference on Learning Representations. Openreview.

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander
Bukharin, Pengcheng He, Weizhu Chen, and Tuo
Zhao. 2022a. Platon: Pruning large transformer mod-
els with upper confidence bound of weight impor-
tance. In International conference on machine learn-
ing, pages 26809–26823. PMLR.

Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. 2022b.
Neural prompt search.

Han Zhou, Xingchen Wan, Ivan Vulić, and Anna Korho-
nen. 2024. Autopeft: Automatic configuration search
for parameter-efficient fine-tuning. Transactions of
the Association for Computational Linguistics, 12.

Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang,
Kam-Fai Wong, and Lei Zhang. 2023. Delta-lora:
Fine-tuning high-rank parameters with the delta of
low-rank matrices. arXiv preprint arXiv:2309.02411.

A Evaluation Metrics

For both GLUE and SuperGLUE benchmarks, we
employ various evaluation metrics: Accuracy is
reported for the SST-2, MNLI, QNLI, BoolQ, CB,
RTE, and WIC tasks. We utilize the F1 score to
assess performance on MRPC, QQP, MultiRC, and
ReCoRD. Additionally, Matthew’s Correlation is
used to evaluate CoLA, and the Pearson Correlation
coefficient is applied to the STSB task.

B Experiment Settings and
Hyperparameters

For each experiment setting, we report the average
performances and standard deviations using results
from three different seeds on the final test sets. We
configure the maximum sequence lengths as 128
for GLUE tasks and 256 for SuperGLUE tasks,
maintaining a consistent batch size of 32 across
both benchmarks. For the ReCoRD task, we adjust
the settings to a maximum sequence length of 512
and a batch size of 16. We utilize the AdamW op-
timizer with a linear learning rate decay schedule
to optimize our model. All experiments maintain
a consistent learning rate of 3 ↘ 10↓4 for PEFT
training, while the learning rate for architecture pa-
rameters in BIPEFT is set at 0.01. For BIPEFT, fol-
lowing DARTS (Liu et al., 2019), we equally split
the original training set into two parts. One part is
used for optimizing the model parameters, and the
other for optimizing the architecture parameters.
The original validation set serves to evaluate and
save the searched structures. For the default values
of the model hyperparameters used in BIPEFT, we
set Z = 100, ε = 0.85, H = 5, and ϖ = 0.85.

C Additional Experiment Results

C.1 Hyperparameter Sensitivity Analysis
We perform a detailed hyperparameter sensitivity
analysis using the same datasets as in our ablation
study. Specifically, we test the following hyper-
parameters: (1) maximum trigger count Z, (2) ε,
used for the smoothed sensitivity in Eq. (4), (3)
time window H , employed in the trigger design to
measure model stability, and (4) stability threshold
ϖ . All these hyperparameters are configured for the

7439

https://doi.org/10.24963/ijcai.2024/914
https://doi.org/10.24963/ijcai.2024/914
https://doi.org/10.24963/ijcai.2024/914
http://arxiv.org/abs/2206.04673

Table 5: Additional Results on the GLUE benchmark.↔ denotes the results that are directly copied from S3Delta (Hu
et al., 2022b). Red denotes the best score.

GLUE
Ratio Method CoLA SST2 MRPC QQP STSB MNLI QNLI AVG

10000%% Fine-tune→ 62.25 ± 3.96 95.87 ± 0.42 91.86 ± 1.19 89.50 ± 0.22 91.86 ± 0.46 89.61 ± 0.30 94.22 ± 0.35 87.88

Automated PEFT Methods
5.56%% S3Delta-M→ 61.67 ± 5.38 95.88 ± 0.11 91.16 ± 2.09 88.22 ± 0.04 91.81 ± 0.41 89.18 ± 0.08 93.88 ± 0.05 87.40
5.56%% PrunePEFT 63.83 ± 2.32 95.95 ± 0.19 91.67 ± 1.13 88.45 ± 0.08 92.06 ± 0.47 89.50 ± 0.14 94.35 ± 0.08 87.97
5.56%% BIPEFT 64.48 ± 2.63 96.04 ± 0.40 93.19 ± 1.24 88.32 ± 0.14 92.09 ± 0.30 89.19 ± 0.02 94.25 ± 0.04 88.22

Table 6: The sensitivity analysis of the maximum trigger
count Z. “AVG.Time” denotes the average search time
(in minutes).

Value of Z COLA MRPC RTE AVG AVG. Time

10 60.96 ± 1.22 92.98 ± 1.39 86.69 ± 0.36 80.21 6.34
50 61.82 ± 3.85 92.78 ± 0.84 87.77 ± 1.44 80.79 8.41
100 62.97 ± 3.72 93.22 ± 0.62 88.49 ± 2.04 81.56 12.39
200 62.99 ± 5.38 92.98 ± 1.09 89.21 ± 0.72 81.73 16.34

Table 7: The sensitivity analysis of ε.

Value of ε COLA MRPC RTE AVG

0.75 63.01 ± 2.86 93.24 ± 1.16 87.77 ± 0.72 81.34
0.85 62.97 ± 3.72 93.22 ± 0.62 88.49 ± 2.04 81.56

1 56.83 ± 4.70 92.01 ± 1.06 83.45 ± 0.59 77.43

sub-modules of our early selection module, which
is designed to enhance search efficiency. The pa-
rameter budget ratios are uniformly set to 1.39%%.
A comprehensive analysis of each hyperparameter
is presented below.

The maximum trigger count Z controls the speed
of the early selection process. We report the av-
erage search time across three datasets, demon-
strating that while larger Z values ensure smoother
selection, they may marginally reduce efficiency.
As shown in Table 6, increasing Z beyond 100
diminishes marginal returns in performance im-
provement. The parameter ε is used for smoothed
sensitivity in Eq. (4), capturing the ratio of his-
torical sensitivity information retained during the
training process. The default value for ε is set
to 0.85. Our additional experiments, presented in
Table 7, indicate that setting it to 1 prevents the
sensitivity from being updated with new data. Sta-
ble performance is observed when ε remains 0.7
to 0.9. The time window H is used in the trigger
design to measure model stability. As indicated by
the results in Table 8, varying H does not produce

Table 8: The sensitivity analysis of time window H

used in the trigger design.

Value of H COLA MRPC RTE AVG

3 62.29 ± 4.80 93.26 ± 0.84 88.13 ± 0.36 81.23
5 62.97 ± 3.72 93.22 ± 0.62 88.49 ± 2.04 81.56
10 61.89 ± 4.54 93.45 ± 0.40 88.13 ± 0.36 81.16
20 62.72 ± 3.99 92.64 ± 1.25 88.13 ± 1.08 81.16

Table 9: The sensitivity analysis of stability threshold ϖ .

Value of ϖ COLA MRPC RTE AVG

0.1 61.57 ± 4.62 92.74 ± 1.02 87.41 ± 0.36 80.57
0.5 62.18 ± 4.10 92.94 ± 1.04 87.41 ± 0.36 80.84

0.85 62.97 ± 3.72 93.22 ± 0.62 88.49 ± 2.04 81.56

Table 10: Comparison with APET.
Method Ratio COLA MRPC RTE AVG

APET 1.39%% 59.99 ± 4.87 91.92 ± 0.67 85.61 ± 2.16 79.17
APET 5.56%% 60.82 ± 3.95 92.68 ± 1.17 88.49 ± 1.01 80.66
BIPEFT 1.39%% 62.97 ± 3.72 93.22 ± 0.62 88.49 ± 2.04 81.56

significant performance differences across the three
datasets. The default value of H is set to 5. The
stability threshold ϖ influences trigger generation,
with higher values enforcing stricter stability re-
quirements, leading to smoother trigger generation
and improved performance of the searched struc-
tures, as demonstrated in Table 9. By default, we
set ϖ to 0.85.

C.2 Higher Sparsity Ratio of Parameters
As demonstrated in the main experiments, BIPEFT
outperforms all baselines at a parameter ratio of
1.39%%. To further showcase the effectiveness
of our method across diverse budget settings, we
provide additional results on the GLUE benchmark
at a parameter ratio of 5.56%% under setting S2,
compared to PrunePEFT and S3Delta. The aver-
age score for full fine-tuning is 87.88. As shown
in Table 5, BIPEFT continues to outperform other
baselines given a higher budget.

C.3 Zero-Cost PEFT Configuration
As introduced in (Su et al., 2023), their zero-
cost PEFT configuration method, APET, initially
freezes key factors such as the number of trainable
parameters. Under this constraint, APET arbitrarily
selects tunable parameters using different random
seeds, each representing a distinct parameter dis-
tribution, and trains them on the tasks. As shown
in Table 10, BIPEFT outperforms APET even at a
lower parameter ratio, albeit with a small search
cost.

7440

