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Abstract— In today’s rapidly evolving technology era, 
cybersecurity threats have become sophisticated, challenging 
conventional detection and defense. Classical machine learning 
aids early threat detection but lacks real-time data processing 
and adaptive threat detection due to the reliance on large, clean 
datasets. New attack techniques emerge daily, and data scale 
and complexity limit classical computing. Quantum-based 
machine learning (QML) using quantum computing (QC) offers 
solutions. QML combines QC and machine learning to analyze 
big data effectively. This paper investigates multiple QML 
algorithms and compare their performance with their classical 
counterparts.  
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I. INTRODUCTION 

As technology continues to reshape our world, it brings 
heightened cybersecurity risks that affect businesses, 
individuals, and governments. Identifying and differentiating 
these attacks is crucial. Classical machine learning (ML) 
techniques can perform these tasks but are quickly 
approaching their capacity. As the sophistication of attacks 
increases a new solution will be needed. Quantum-based 
Machine Learning (QML) based on Quantum Computing 
(QC) and ML poses a solution to this problem. 

QML aims to harness the power of classical ML 
algorithms in a quantum state, using the power of quantum 
properties such as entanglement, interference, and 
superposition to increase the parallelizability of computation. 
While quantum advantage has been proven, qubit limitations 
and error correction affect the computation. The result is that 
quantum computations are simulated on classical hardware. 
Researchers claim that QML sometimes performs better in 
certain situations than classical algorithms. 

This research focuses on three types of cybersecurity 
attacks: Email Phishing, Malware in Android devices, and 
DDoS attacks. We evaluate the performance of three quantum 
algorithms: Quantum Neural Networks (QNN), Quantum 
Logistic Regression (QLR), and Quantum Support Vector 
Machines (QSVM) with datasets that contain those 
cybersecurity attacks. We evaluate the performance of each 
algorithm against its classical contemporary using standard 
evaluation metrics such as accuracy, loss, precision, recall, 
etc. We then compare the results from quantum simulations to 
quantum NISQ devices. Our findings conclude that the future 
of this technology is bright. 

II. RELATED WORK

Quantum computing is a computing paradigm that applies 
unique properties of quantum physics, such as superposition, 
entanglement, and interface, to process data and perform 
computational activities [1-3]. Quantum computing can solve 
complex issues that regular supercomputers can’t handle 
efficiently. Benefits fields like industrial engineering, 
industrial engineering, and mathematics. 

Machine learning trains a wide range of computational 
models on existing data to make decisions, predict events, and 
detect patterns [4-6]. Machine learning can be applied in many 
fields, such as industrial engineering, healthcare, and biology.  

With the advancement of technology, more and more big 
data are generated daily, and traditional machine learning 
approaches cannot successfully extract useful information 
from the data because it requires enormous time and 
resources. Quantum computing is combined with machine 
learning to achieve quicker processing and more accurate data 
analysis [7-9], and QML has lately received a lot of interest 
from academia and industry. 

III. METHODOLOGY

In this section, we will introduce the datasets involved, 
discuss the implementation of QML algorithms, and analyze 
their performance compared to their classical counterparts.  

A. Datasets

All datasets used in this project are obtained from the
open-source machine learning platform Kaggle [10], and they 
split into 70/30 training/testing sets. 

B. Hybrid-Quantum Neural Networks

The hybrid-quantum neural network (HQNN) is based on
a fundamental quantum algorithm called variational quantum 
circuits; these circuits are parametrized, allowing for the 
parameters to be learned during reptation. HQNN has the 
added advantage of both classical and quantum algorithms, 
such as the ability to encode classical data into a quantum 
state while being able to use classical optimization algorithms 
and architectural patterns that are easily implemented using 
popular libraries such as TensorFlow, Keras, Poarch, etc. 

Our implementation of a classical model is a Keras 
sequential model that consists of 3 Dense layers numbering 
256, 128, and 64 nodes, respectively. All Dense layers use the 
Tanh activation; the last layer is a sigmoid-activated 
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classification layer. The classical model uses no dropout or 
batch normalization layers to make the comparison fair.          

Our hybrid-quantum neural network (HQNN) model 
consists of a classical input and output layer with a hidden 
quantum layer. The classical input layer takes in 10 features 
and outputs 7 into the quantum layer using a ReLU activation 
function. The quantum layer consists of two separate 
Pennylane templates: the angle embedding layer (encoding 
our data into a quantum state) and the strongly entangled 
layer. The strongly entangled layer is trainable, allowing us 
to learn the parameters through successive repetitions. A 
strongly entangled layer performs a single qubit rotation 
followed by an entangler. This entanglement facilitates the 
efficient transfer of quantum information between qubits. 
Like our classical model, this model uses a 4-layer 
architecture that opts for 2 quantum layers. These quantum 
layers use 7 qubits, allowing us to encode 7 data features into 
a quantum state. The output layer inputs the quantum layers' 
resulting measurements and performs binary class prediction 
via a sigmoid activation. This is all bundled into a Kera 
sequential model using the same Adam optimizer as the 
classical model. 

As mentioned, we use only a select number of features for 
both models. We do not use dimensionality-reducing 
techniques to keep comparisons focused on the algorithms. 
Instead, we use scalers to scale our data to aid performance. 
In our classical algorithm, we use the StandardScalar 
provided by the sklearn library. Because we are embedding 
our data as angles in a Hilbert space in our quantum 
algorithm, we use the MinMax scalar from the sklearn library 
to scale our data to be between 0 and 2π. 

We then train our models on these data points after they 
have been scaled and split recording performance. We then 
plot our training, testing, and validation loss and accuracy. 
Confusion matrices are a standard metric used to evaluate 
model performance, and we use this method to compare our 
models. After calculating the matrices, we plot both loss and 
accuracy and the confusion matrix. 

C. Quantum Logistic Regression 

The logistic regression Model is an important machine 
learning tool used for classification. It has broad applications 
in text classification and image analysis. However, processing 
large amounts of data using the traditional logistic regression 
model is inefficient. Therefore, it is critical to design an 
effectual algorithm with the help of quantum computing. Our 
quantum logistic regression (QLR) model has a non-linear 
regression function f(x)=(1)/(1+exp(-x)) that has four levels. 
First, there is a basic entry level with seven spots using ReLU. 
This quantum part mixes angles and ties things using 
Pennylane. There are also two more levels with seven 
quantum dots each that are mixed. They all lead to the last 
classical level. The training uses TensorFlow Adam to figure 
out the loss. Quantum logistic regression is quite efficient, 
even with just seven features put into the quantum dots. This 
makes quantum-based machine learning very useful when 
computing and machine learning meet. 

As mentioned in previous sections, quantum computing 
systems solve problems much faster than ordinary computers. 
The output of the classification provides an interpretation used 
for labeling a class. Quantum methodology evaluates 
solutions simultaneously, while standard computers must 

check things one at a time. Many researchers are devoted to 
creating algorithms for this quantum technology that work 
well and resist errors. At the same time, they are trying to 
make quantum machines more affordable and able to solve 
more complex problems. However, quantum logistic 
regression also has its challenges. Specifically, there is a 
constraint on the feature numbers encoded into Hilbert Space 
due to limitations on quantum simulations. Researchers have 
applied the logistic regression model to quantum processors to 
make predictions based on data features. They encoded only 
the seven most important features from each data set into 
quantum states. That led them to use the quantum processing 
power while working with the hardware restrictions.  

D. Hybrid-Quantum Support Vector Machine  

The hybrid quantum support vector machine (HQ-SVM) 
represents an innovative fusion of quantum computing and 
classical machine learning techniques. Designed to exploit 
quantum computing benefits like efficient high-dimensional 
data processing, HQ-SVM retains the robustness of the 
classical SVM. At its core, the model enhances SVM using 
quantum state representations for data, particularly in kernel 
computations, which are critical for SVM performance. HQ-
SVM incorporates variational quantum circuits that are 
parametrized to adapt and learn dynamically. 

For the hybrid quantum model, we use data processed 
through a quantum circuit to train the classical SVM 
algorithm. Before we can create our quantum data, we must 
process the data to use it with the quantum aspect of the 
algorithm. To use our original datasets with the quantum 
aspect of the algorithm, we use angle embedding, similar to 
the process in our HQNN model. As discussed in previous 
sections, quantum embedding encodes the classical data 
points (image, text, audio) as quantum states within a Hilbert 
space using a quantum feature map. Angle embedding is a 
type of quantum embedding that assigns each feature of the 
dataset a rotation gate with the angle of rotation set by the 
value of the feature. The type of quantum gate we used is the 
Pauli-Z gate. This matrix operates on a single qubit. It leaves 
the basis state ∣0⟩ unchanged and maps ∣1⟩ to −∣1⟩. On the 
Bloch sphere, a graphical representation of qubit states, the 
Pauli-Z gate corresponds to a rotation of 180° about the Z-
axis. It effectively flips the qubit from the northern 
hemisphere to the southern hemisphere or vice versa. Angle 
embedding is a relatively simple yet versatile quantum 
encoding method that allows us to use the three datasets with 
our quantum algorithms. The quantum data are then fed into 
the classical SVM model for evaluation. 

The performance of HQ-SVM is meticulously evaluated 
against traditional SVM models, focusing on accuracy, loss, 
and detailed insights from confusion matrices. The 70/30 
training/test split allows for a rigorous comparison, and the 
restriction to 7 features ensures a fair assessment of each 
model's capabilities. This approach highlights the 
enhancements brought by quantum computing to the SVM 
algorithm, demonstrating notable improvements in efficiency 
and accuracy. The HQ-SVM showcases the potential of 
quantum computing in enhancing classical machine learning 
models and sets the stage for future research that could 
expand the model to handle larger datasets and explore 
additional quantum algorithms for further advancements. 
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E. Quantum Hardware Resarch 

This section discusses our findings on the current state and 
plausibility of implementing these algorithms on current 
quantum hardware. Quantum devices are in an era typically 
referred to as the noisy-intermediate scale quantum state, or 
NISQ for short. This acronym refers to the current iteration 
of quantum computers that cannot properly perform 
computation without noise interference. This is due to the 
lack of error-correcting or detection and the high sensitivity 
to environmental noise such as electromagnetic radiation, et 
cetera. Companies like Microsoft, Google, and Amazon have 
invested heavily in developing these technologies. 

While all these quantum resource providers are leading 
technology innovations for this research effort, we could not 
use them for our research. This is mainly due to the free tier 
of their service offering little to no resources per month. For 
example, IBM Qiskit offers 1 hour of computing resources 
per month. This was unreasonable for our application, as the 
QNN algorithm alone took 20 hours to train. 

IV. EXPERIMENTAL RESULTS 

In this section, we demonstrate and discuss the 
experimental results, comparing the performance of quantum-
based machining learning modules with their counterparts on 
various data sets introduced in section III. In the tables below, 
data set #1 is the Email Phishing data set, data set #2 is the 
Malware in Android Devices data set, and data set #3 is the 
DDoS Attacks data set. 

In our experiments, we use Google Colaboratory [11]. 
This tool allows the execution of Python code. It uses Google 
Drive to design, implement, and test our classical and quantum 
machine learning modules on those data sets. 

A. Neural Networks 

All training and validation metrics are measured as an 
average over 5 epochs. We use accuracy, precision, recall, and 
F1-score as our preferred comparison metrics. These metrics 
give us a good general overview of model performance. 

 In our experiment, we first download all required libraries, 
mount the Google Drive, create a directory to hold Kaggle 
datasets and the Kaggle API key, and then import all packages 
needed. Next, we perform the dataset preprocessing step, 
where we download the dataset, load it into a data frame, and 
sample it. We find the top K features from the data frame for 
both the Quantum and Classical models, where we set K=10. 
We then scale the data to each model. We use a standard scalar 
for the classical model, and for the quantum model, we use a 
min-max scalar. We then split our data into the 70/30 sets. 

In the classical neural network implementation, we define 
network architecture, compile and fit the model to the data, 
and plot all performance measurements, such as accuracy, loss 
for training and validation, and confusion matrix. 

Table 1. Classical Neural Network training and validation results 

Dataset Training 
Accuracy 

Training 
Loss 

Validation 
Accuracy 

Validation 
Loss 

#1 90.6% 0.222 93.52% 0.186 

#2 81.93% 0.3563 81.54% 0.353 

#3 99.86% 0.0049 100% 3.7e-4 

   

Fig. 1. Classical neural network accuracy changes over Epochs. 

Table 2. Classical Neural Network confusion matrix results 

Dataset Accuracy Precision Recall F1-Score 

#1 95% 95.31% 94.40% 94.84% 

#2 81.75% 78% 98.8% 87.17% 

#3 99% 99% 99% 99% 

   
Fig. 2. Classical neural network loss changes over Epochs. 

In the quantum neural network implementation, we define 
the quantum variation circuit, the base circuit for a quantum 
neural network. This network encodes 7 features into a 
quantum state and has a two-layer, strongly entangling layer 
that acts as the network's hidden layer. We then define the 
entire network using Keres layers with a 7-node input layer 
and a 1-node output layer without the previous quantum layer 
in the middle. We compile and fit out the model using the 
same metrics and optimizer as the classical model. Next, we 
plot all relevant performance metrics. 

Table 3. Quantum Neural Network training and validation results 
Dataset Training 

Accuracy 
Training 
Loss 

Validation 
Accuracy 

Validation 
Loss 

#1 82.62% .451 85.54% .428 
#2 78.88% .4329 81.4 % .3948 
#3 98.75% .054 99.83% .015 

 

 
Fig. 3. Quantum neural network accuracy changes over Epochs.  

Table 4. Quantum Neural Network confusion matrix results 
Dataset Accuracy Recall Precision F1-Score 

#1 90.43% 90.5% 89.81 % 90.15% 

#2 81.65% 78.39% 97.77% 87.01% 

#3 99.98% 99.99% 99.97% 99.99% 
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Fig. 4. Quantum neural network loss changes over Epochs.  

Given the context of our quantum model, only being able 
to see 7 of the features, the performance is very promising. 
While the metrics are like the classical model, training time 
is exponentially different; for instance, the last dataset took 
around an hour per epoch to train. In comparison, the classical 
model took around 4ms per epoch. This is most likely due to 
quantum simulation. With actual hardware implementations, 
we should see noticeable improvements. Overall, in the 
current implementations, quantum neural networks do not 
perform as well as classical networks, even when large 
datasets are processed. 

As this technology continues to develop, though, it has a 
bright future in outperforming classical algorithms in terms 
of performance. Also, it will be a large area of research to 
determine how to increase training times. 

B. Support vector machines 

We also design the classical and quantum SVM models 
and compare their performance. We create the quantum wires 
and circuit using angle embedding and Pauli-z in the quantum 
SVM implementation. We load the dataset and clean it up 
using the K-best feature selection, then apply the 
MinMaxScaler to place the data points' values in the correct 
range. We then generate the quantum data using the circuit 
created earlier in the code, split the data into training and 
testing datasets, and test the trained model. 

Table 5. Classical SVM confusion matrix results 
Dataset Accuracy Precision Recall F1-Score 

#1 92.73% 93% 92% 93% 
#2 99.94% 100% 100% 100% 
#3 98.38% 99% 98% 98% 

 
Table 6. Hybrid Quantum SVM confusion matrix results 

Dataset Accuracy Precision Recall F1-Score 

#1 71.33% 76% 71% 70% 

#2 99.92% 100% 100% 100% 

#3 96.52% 96% 97% 96% 

Tables 5 and 6 show the running results of classical SVM 
and quantum SVM on various data sets. From these two 
tables, we can see that the quantum SVM does not outperform 
its counterparts. There can be multiple reasons, such as the 
data we choose, the quantum gate we select, the data 
preprocessing step we conduct, etc.  

C. Logistic regression  
We also design the classical and quantum logistic 

regression models and compare their performance. In the 
quantum logistic regression implementation, we choose how 

many qubits to use and split the data by qubit count. We then 
select a quantum device and analyze how to gauge errors 
using mean squared error through our quantum loss function. 
In our quantum model with layers, each had its own weight 
and parameters tally. We adjust these figures until they cut 
down losses as needed.  

Table 7. Classical vs. quantum Logistic Regression results 
Dataset 
 

Accuracy 
 

Dataset 
 

Accuracy 
 

#2 43.40% #2 56.26% 

#3 97.40% #3 50.60% 

Table 7 shows part of the running results of classical 
logistic regression vs. quantum logistic regression algorithm 
on various data sets. As we can see, quantum logistic 
regression outperforms its counterpart for some data sets. 

V. CONCLUSION AND FUTURE WORK 

Quantum machine learning still has a long way to go 
before it catches up to classical algorithms' performance, 
specifically in training time when classical algorithms usually 
outperform quantum algorithms. This can be equated to the 
performance of quantum simulations calculated on classical 
hardware. As the development of quantum hardware devices 
continues to evolve, we will see dramatic performance 
increases. As more data features can be encoded and qubit 
gates are optimized, quantum machine learning will be the 
next step in the evolution of machine learning. 

For future work, we will continue exploring quantum-
based machine learning, implement and evaluate more 
quantum machine learning models, and compare their 
performance with their traditional counterparts. We will also 
study what types of data sets suit each quantum machine 
learning model. 
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