
979-8-3315-1024-4/24/$31.00 ©2024 IEEE

Quantum-based Multi-Model Machine Learning for
Security Data Analysis

Mason Chester
Computer Science Department

Kennesaw State University
United States

mchest15@students.kennesaw.edu

Andrew Polisetty
Computer Science Department

Kennesaw State University
Marietta, United States

apoliset@students.kennesaw.edu

Ethan Barton
Computer Science Department

Kennesaw State University
United States

ebarton6@students.kennesaw.edu

Yong Shi
Computer Science Department

Kennesaw State University
Marietta, United States
yshi5@kennesaw.edu

Andrew Liban
Computer Science Department

Kennesaw State University
United States

aliban@students.kennesaw.edu

Abstract— In today’s rapidly evolving technology era,
cybersecurity threats have become sophisticated, challenging
conventional detection and defense. Classical machine learning
aids early threat detection but lacks real-time data processing
and adaptive threat detection due to the reliance on large, clean
datasets. New attack techniques emerge daily, and data scale
and complexity limit classical computing. Quantum-based
machine learning (QML) using quantum computing (QC) offers
solutions. QML combines QC and machine learning to analyze
big data effectively. This paper investigates multiple QML
algorithms and compare their performance with their classical
counterparts.

Keywords— Quantum Computing, Quantum-based Machine
Learning, Email Phishing, Malware, DDoS

I. INTRODUCTION

As technology continues to reshape our world, it brings
heightened cybersecurity risks that affect businesses,
individuals, and governments. Identifying and differentiating
these attacks is crucial. Classical machine learning (ML)
techniques can perform these tasks but are quickly
approaching their capacity. As the sophistication of attacks
increases a new solution will be needed. Quantum-based
Machine Learning (QML) based on Quantum Computing
(QC) and ML poses a solution to this problem.

QML aims to harness the power of classical ML
algorithms in a quantum state, using the power of quantum
properties such as entanglement, interference, and
superposition to increase the parallelizability of computation.
While quantum advantage has been proven, qubit limitations
and error correction affect the computation. The result is that
quantum computations are simulated on classical hardware.
Researchers claim that QML sometimes performs better in
certain situations than classical algorithms.

This research focuses on three types of cybersecurity
attacks: Email Phishing, Malware in Android devices, and
DDoS attacks. We evaluate the performance of three quantum
algorithms: Quantum Neural Networks (QNN), Quantum
Logistic Regression (QLR), and Quantum Support Vector
Machines (QSVM) with datasets that contain those
cybersecurity attacks. We evaluate the performance of each
algorithm against its classical contemporary using standard
evaluation metrics such as accuracy, loss, precision, recall,
etc. We then compare the results from quantum simulations to
quantum NISQ devices. Our findings conclude that the future
of this technology is bright.

II. RELATED WORK

Quantum computing is a computing paradigm that applies
unique properties of quantum physics, such as superposition,
entanglement, and interface, to process data and perform
computational activities [1-3]. Quantum computing can solve
complex issues that regular supercomputers can’t handle
efficiently. Benefits fields like industrial engineering,
industrial engineering, and mathematics.

Machine learning trains a wide range of computational
models on existing data to make decisions, predict events, and
detect patterns [4-6]. Machine learning can be applied in many
fields, such as industrial engineering, healthcare, and biology.

With the advancement of technology, more and more big
data are generated daily, and traditional machine learning
approaches cannot successfully extract useful information
from the data because it requires enormous time and
resources. Quantum computing is combined with machine
learning to achieve quicker processing and more accurate data
analysis [7-9], and QML has lately received a lot of interest
from academia and industry.

III. METHODOLOGY

In this section, we will introduce the datasets involved,
discuss the implementation of QML algorithms, and analyze
their performance compared to their classical counterparts.

A. Datasets

All datasets used in this project are obtained from the
open-source machine learning platform Kaggle [10], and they
split into 70/30 training/testing sets.

B. Hybrid-Quantum Neural Networks

The hybrid-quantum neural network (HQNN) is based on
a fundamental quantum algorithm called variational quantum
circuits; these circuits are parametrized, allowing for the
parameters to be learned during reptation. HQNN has the
added advantage of both classical and quantum algorithms,
such as the ability to encode classical data into a quantum
state while being able to use classical optimization algorithms
and architectural patterns that are easily implemented using
popular libraries such as TensorFlow, Keras, Poarch, etc.

Our implementation of a classical model is a Keras
sequential model that consists of 3 Dense layers numbering
256, 128, and 64 nodes, respectively. All Dense layers use the
Tanh activation; the last layer is a sigmoid-activated

20
24

 IE
EE

 4
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

dv
an

ce
d

Le
ar

ni
ng

 T
ec

hn
ol

og
ie

s o
n

Ed
uc

at
io

n
&

 R
es

ea
rc

h
(IC

AL
TE

R)
 |

 9
79

-8
-3

31
5-

10
24

-4
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

AL
TE

R6
54

99
.2

02
4.

10
81

92
07

Authorized licensed use limited to: Kennesaw State University. Downloaded on June 08,2025 at 15:02:48 UTC from IEEE Xplore. Restrictions apply.

classification layer. The classical model uses no dropout or
batch normalization layers to make the comparison fair.

Our hybrid-quantum neural network (HQNN) model
consists of a classical input and output layer with a hidden
quantum layer. The classical input layer takes in 10 features
and outputs 7 into the quantum layer using a ReLU activation
function. The quantum layer consists of two separate
Pennylane templates: the angle embedding layer (encoding
our data into a quantum state) and the strongly entangled
layer. The strongly entangled layer is trainable, allowing us
to learn the parameters through successive repetitions. A
strongly entangled layer performs a single qubit rotation
followed by an entangler. This entanglement facilitates the
efficient transfer of quantum information between qubits.
Like our classical model, this model uses a 4-layer
architecture that opts for 2 quantum layers. These quantum
layers use 7 qubits, allowing us to encode 7 data features into
a quantum state. The output layer inputs the quantum layers'
resulting measurements and performs binary class prediction
via a sigmoid activation. This is all bundled into a Kera
sequential model using the same Adam optimizer as the
classical model.

As mentioned, we use only a select number of features for
both models. We do not use dimensionality-reducing
techniques to keep comparisons focused on the algorithms.
Instead, we use scalers to scale our data to aid performance.
In our classical algorithm, we use the StandardScalar
provided by the sklearn library. Because we are embedding
our data as angles in a Hilbert space in our quantum
algorithm, we use the MinMax scalar from the sklearn library
to scale our data to be between 0 and 2π.

We then train our models on these data points after they
have been scaled and split recording performance. We then
plot our training, testing, and validation loss and accuracy.
Confusion matrices are a standard metric used to evaluate
model performance, and we use this method to compare our
models. After calculating the matrices, we plot both loss and
accuracy and the confusion matrix.

C. Quantum Logistic Regression

The logistic regression Model is an important machine
learning tool used for classification. It has broad applications
in text classification and image analysis. However, processing
large amounts of data using the traditional logistic regression
model is inefficient. Therefore, it is critical to design an
effectual algorithm with the help of quantum computing. Our
quantum logistic regression (QLR) model has a non-linear
regression function f(x)=(1)/(1+exp(-x)) that has four levels.
First, there is a basic entry level with seven spots using ReLU.
This quantum part mixes angles and ties things using
Pennylane. There are also two more levels with seven
quantum dots each that are mixed. They all lead to the last
classical level. The training uses TensorFlow Adam to figure
out the loss. Quantum logistic regression is quite efficient,
even with just seven features put into the quantum dots. This
makes quantum-based machine learning very useful when
computing and machine learning meet.

As mentioned in previous sections, quantum computing
systems solve problems much faster than ordinary computers.
The output of the classification provides an interpretation used
for labeling a class. Quantum methodology evaluates
solutions simultaneously, while standard computers must

check things one at a time. Many researchers are devoted to
creating algorithms for this quantum technology that work
well and resist errors. At the same time, they are trying to
make quantum machines more affordable and able to solve
more complex problems. However, quantum logistic
regression also has its challenges. Specifically, there is a
constraint on the feature numbers encoded into Hilbert Space
due to limitations on quantum simulations. Researchers have
applied the logistic regression model to quantum processors to
make predictions based on data features. They encoded only
the seven most important features from each data set into
quantum states. That led them to use the quantum processing
power while working with the hardware restrictions.

D. Hybrid-Quantum Support Vector Machine

The hybrid quantum support vector machine (HQ-SVM)
represents an innovative fusion of quantum computing and
classical machine learning techniques. Designed to exploit
quantum computing benefits like efficient high-dimensional
data processing, HQ-SVM retains the robustness of the
classical SVM. At its core, the model enhances SVM using
quantum state representations for data, particularly in kernel
computations, which are critical for SVM performance. HQ-
SVM incorporates variational quantum circuits that are
parametrized to adapt and learn dynamically.

For the hybrid quantum model, we use data processed
through a quantum circuit to train the classical SVM
algorithm. Before we can create our quantum data, we must
process the data to use it with the quantum aspect of the
algorithm. To use our original datasets with the quantum
aspect of the algorithm, we use angle embedding, similar to
the process in our HQNN model. As discussed in previous
sections, quantum embedding encodes the classical data
points (image, text, audio) as quantum states within a Hilbert
space using a quantum feature map. Angle embedding is a
type of quantum embedding that assigns each feature of the
dataset a rotation gate with the angle of rotation set by the
value of the feature. The type of quantum gate we used is the
Pauli-Z gate. This matrix operates on a single qubit. It leaves
the basis state ∣0⟩ unchanged and maps ∣1⟩ to −∣1⟩. On the
Bloch sphere, a graphical representation of qubit states, the
Pauli-Z gate corresponds to a rotation of 180° about the Z-
axis. It effectively flips the qubit from the northern
hemisphere to the southern hemisphere or vice versa. Angle
embedding is a relatively simple yet versatile quantum
encoding method that allows us to use the three datasets with
our quantum algorithms. The quantum data are then fed into
the classical SVM model for evaluation.

The performance of HQ-SVM is meticulously evaluated
against traditional SVM models, focusing on accuracy, loss,
and detailed insights from confusion matrices. The 70/30
training/test split allows for a rigorous comparison, and the
restriction to 7 features ensures a fair assessment of each
model's capabilities. This approach highlights the
enhancements brought by quantum computing to the SVM
algorithm, demonstrating notable improvements in efficiency
and accuracy. The HQ-SVM showcases the potential of
quantum computing in enhancing classical machine learning
models and sets the stage for future research that could
expand the model to handle larger datasets and explore
additional quantum algorithms for further advancements.

Authorized licensed use limited to: Kennesaw State University. Downloaded on June 08,2025 at 15:02:48 UTC from IEEE Xplore. Restrictions apply.

E. Quantum Hardware Resarch

This section discusses our findings on the current state and
plausibility of implementing these algorithms on current
quantum hardware. Quantum devices are in an era typically
referred to as the noisy-intermediate scale quantum state, or
NISQ for short. This acronym refers to the current iteration
of quantum computers that cannot properly perform
computation without noise interference. This is due to the
lack of error-correcting or detection and the high sensitivity
to environmental noise such as electromagnetic radiation, et
cetera. Companies like Microsoft, Google, and Amazon have
invested heavily in developing these technologies.

While all these quantum resource providers are leading
technology innovations for this research effort, we could not
use them for our research. This is mainly due to the free tier
of their service offering little to no resources per month. For
example, IBM Qiskit offers 1 hour of computing resources
per month. This was unreasonable for our application, as the
QNN algorithm alone took 20 hours to train.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate and discuss the
experimental results, comparing the performance of quantum-
based machining learning modules with their counterparts on
various data sets introduced in section III. In the tables below,
data set #1 is the Email Phishing data set, data set #2 is the
Malware in Android Devices data set, and data set #3 is the
DDoS Attacks data set.

In our experiments, we use Google Colaboratory [11].
This tool allows the execution of Python code. It uses Google
Drive to design, implement, and test our classical and quantum
machine learning modules on those data sets.

A. Neural Networks

All training and validation metrics are measured as an
average over 5 epochs. We use accuracy, precision, recall, and
F1-score as our preferred comparison metrics. These metrics
give us a good general overview of model performance.

 In our experiment, we first download all required libraries,
mount the Google Drive, create a directory to hold Kaggle
datasets and the Kaggle API key, and then import all packages
needed. Next, we perform the dataset preprocessing step,
where we download the dataset, load it into a data frame, and
sample it. We find the top K features from the data frame for
both the Quantum and Classical models, where we set K=10.
We then scale the data to each model. We use a standard scalar
for the classical model, and for the quantum model, we use a
min-max scalar. We then split our data into the 70/30 sets.

In the classical neural network implementation, we define
network architecture, compile and fit the model to the data,
and plot all performance measurements, such as accuracy, loss
for training and validation, and confusion matrix.

Table 1. Classical Neural Network training and validation results

Dataset Training
Accuracy

Training
Loss

Validation
Accuracy

Validation
Loss

#1 90.6% 0.222 93.52% 0.186

#2 81.93% 0.3563 81.54% 0.353

#3 99.86% 0.0049 100% 3.7e-4

Fig. 1. Classical neural network accuracy changes over Epochs.

Table 2. Classical Neural Network confusion matrix results

Dataset Accuracy Precision Recall F1-Score

#1 95% 95.31% 94.40% 94.84%

#2 81.75% 78% 98.8% 87.17%

#3 99% 99% 99% 99%

Fig. 2. Classical neural network loss changes over Epochs.

In the quantum neural network implementation, we define
the quantum variation circuit, the base circuit for a quantum
neural network. This network encodes 7 features into a
quantum state and has a two-layer, strongly entangling layer
that acts as the network's hidden layer. We then define the
entire network using Keres layers with a 7-node input layer
and a 1-node output layer without the previous quantum layer
in the middle. We compile and fit out the model using the
same metrics and optimizer as the classical model. Next, we
plot all relevant performance metrics.

Table 3. Quantum Neural Network training and validation results
Dataset Training

Accuracy
Training
Loss

Validation
Accuracy

Validation
Loss

#1 82.62% .451 85.54% .428
#2 78.88% .4329 81.4 % .3948
#3 98.75% .054 99.83% .015

Fig. 3. Quantum neural network accuracy changes over Epochs.

Table 4. Quantum Neural Network confusion matrix results
Dataset Accuracy Recall Precision F1-Score

#1 90.43% 90.5% 89.81 % 90.15%

#2 81.65% 78.39% 97.77% 87.01%

#3 99.98% 99.99% 99.97% 99.99%

Authorized licensed use limited to: Kennesaw State University. Downloaded on June 08,2025 at 15:02:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Quantum neural network loss changes over Epochs.

Given the context of our quantum model, only being able
to see 7 of the features, the performance is very promising.
While the metrics are like the classical model, training time
is exponentially different; for instance, the last dataset took
around an hour per epoch to train. In comparison, the classical
model took around 4ms per epoch. This is most likely due to
quantum simulation. With actual hardware implementations,
we should see noticeable improvements. Overall, in the
current implementations, quantum neural networks do not
perform as well as classical networks, even when large
datasets are processed.

As this technology continues to develop, though, it has a
bright future in outperforming classical algorithms in terms
of performance. Also, it will be a large area of research to
determine how to increase training times.

B. Support vector machines

We also design the classical and quantum SVM models
and compare their performance. We create the quantum wires
and circuit using angle embedding and Pauli-z in the quantum
SVM implementation. We load the dataset and clean it up
using the K-best feature selection, then apply the
MinMaxScaler to place the data points' values in the correct
range. We then generate the quantum data using the circuit
created earlier in the code, split the data into training and
testing datasets, and test the trained model.

Table 5. Classical SVM confusion matrix results
Dataset Accuracy Precision Recall F1-Score

#1 92.73% 93% 92% 93%
#2 99.94% 100% 100% 100%
#3 98.38% 99% 98% 98%

Table 6. Hybrid Quantum SVM confusion matrix results

Dataset Accuracy Precision Recall F1-Score

#1 71.33% 76% 71% 70%

#2 99.92% 100% 100% 100%

#3 96.52% 96% 97% 96%

Tables 5 and 6 show the running results of classical SVM
and quantum SVM on various data sets. From these two
tables, we can see that the quantum SVM does not outperform
its counterparts. There can be multiple reasons, such as the
data we choose, the quantum gate we select, the data
preprocessing step we conduct, etc.

C. Logistic regression
We also design the classical and quantum logistic

regression models and compare their performance. In the
quantum logistic regression implementation, we choose how

many qubits to use and split the data by qubit count. We then
select a quantum device and analyze how to gauge errors
using mean squared error through our quantum loss function.
In our quantum model with layers, each had its own weight
and parameters tally. We adjust these figures until they cut
down losses as needed.

Table 7. Classical vs. quantum Logistic Regression results
Dataset

Accuracy

Dataset

Accuracy

#2 43.40% #2 56.26%

#3 97.40% #3 50.60%

Table 7 shows part of the running results of classical
logistic regression vs. quantum logistic regression algorithm
on various data sets. As we can see, quantum logistic
regression outperforms its counterpart for some data sets.

V. CONCLUSION AND FUTURE WORK

Quantum machine learning still has a long way to go
before it catches up to classical algorithms' performance,
specifically in training time when classical algorithms usually
outperform quantum algorithms. This can be equated to the
performance of quantum simulations calculated on classical
hardware. As the development of quantum hardware devices
continues to evolve, we will see dramatic performance
increases. As more data features can be encoded and qubit
gates are optimized, quantum machine learning will be the
next step in the evolution of machine learning.

For future work, we will continue exploring quantum-
based machine learning, implement and evaluate more
quantum machine learning models, and compare their
performance with their traditional counterparts. We will also
study what types of data sets suit each quantum machine
learning model.

ACKNOWLEDGMENT

The work is partially supported by the U.S. National
Science Foundation under award # 2413540. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation

REFERENCES

[1]. Nielsen, M.A. and Chuang, I.L., 2010. Quantum computation and

quantum information. Cambridge University Press.
[2]. Steane, A., 1998. Quantum computing. Reports on Progress in Physics,

61(2), p.117.
[3]. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda,

D. A quantum adiabatic evolution algorithm applied to random
instances of an NP-complete problem. Science. 2001 Apr
20;292(5516):472-5. doi: 10.1126/science.1057726. PMID: 11313487.

[4]. Murphy, K.P., 2012. Machine learning: a probabilistic perspective.
MIT Press.

[5]. Alpaydin, E., 2020. Introduction to machine learning. MIT Press.
[6]. Jordan, M.I. and Mitchell, T.M., 2015. Machine learning: Trends,

perspectives, and prospects. Science, 349(6245), pp.255-260.
[7]. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N. and

Lloyd, S., 2017. Quantum machine learning. Nature, 549(7671),
pp.195-202.

[8]. Schuld, M., Sinayskiy, I. and Petruccione, F., 2015. An introduction to
quantum machine learning. Contemporary Physics, 56(2), pp.172-185.

[9]. Schuld, M. and Killoran, N., 2019. Quantum machine learning in
feature Hilbert spaces. Physical review letters, 122(4), p.040504.

[10]. https://www.kaggle.com/datasets
[11]. Google Colab. https://colab.research.google.com/

Authorized licensed use limited to: Kennesaw State University. Downloaded on June 08,2025 at 15:02:48 UTC from IEEE Xplore. Restrictions apply.

